
exec(2)
exec(2)

N
A

M
E

exec, execl, execv,execle, execve, execlp, execvp −
 execute a file

S
Y

N
O

P
S

IS#include <
unistd.h>

int execl(const char *p
a

th,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execv(const char *p
a

th,char *consta
rg

v[]);

int execle(const char *p
a

th,char *consta
rg

0
[],

... , const char *a
rg

n,
char *

/*N
U

LL
*/,char *conste

nvp
[]);

int execve
(const char *p

a
th,char *consta

rg
v[]

char *conste
nvp

[]);

int execlp (const char *file,const char *a
rg

0,
...,const char *a

rg
n,char *

/*N
U

LL
*/);

int execvp (const char *file,char *consta
rg

v[]);

D
E

S
C

R
IP

T
IO

N
E

ach of the functions in theexecfam
ily overlays a new

process im
age on an old process.

T
he ne
w

process
im

age is constructed from
 an ordinary

,
executable file.

T
his file is either an e

xecutable object file, or a file
of data for an interpreter

.
T

here can be no return from
 a successful call to one of these functions because

the calling process im
age is o

verlaid by the new
process im

age.

W
hen a C

 program
 is executed, it is called as follow

s:

int m
ain (int argc, char∗argv[], char∗envp[]);

w
here

a
rg

c
is the argum

ent count,arg
v

is an array of character pointers to the argum
ents them

selves, and
e

nvp
is an array of character pointers to the environm

ent strings.
A

s indicated,
a

rg
c

is at least one, and the
first m

em
ber of the array points to a string containing the nam

e of the file.

T
he argum

entsa
rg

0,
...,a

rg
n

point to null-term
inated character strings.

T
hese strings constitute the ar

gu-
m

ent list available to the new
process im

age.C
onventionally at leasta

rg
0

should be present.The
a

rg
0

argum
ent points to a string that is the sam

e as
p

a
th

(or the last com
ponent ofpa

th).
T

he
list of argum

ent
strings is term

inated by a(char∗)0
argum

ent.

T
he

a
rg

v
argum

ent is an array of character pointers to null-term
inated strings.

T
hese strings constitute the

argum
ent list available to the new

process im
age.

B
y convention,a

rg
v

m
ust have atleast one m

em
ber
,and

it should point to a string that is the sam
e as
p

a
th

(or its last com
ponent).The

a
rg

v
argum

ent is term
inated

by a null pointer.

T
he

p
a

th
argum

ent points to a path nam
e that identifies the ne

w
process file.

T
he

file
argum

ent points to the newprocess file.If
file

does not contain a slash character
,the path prefix for

this file is obtained by a search of the directories passed in the
P

AT
H

environm
ent variable (seeenviron(5)).

F
ile descriptors open in the calling process rem

ain open in the ne
w

process.

S
ignals that are being caught by the calling process are set to the default disposition in the ne

w
process

im
age (seesignal(3C

)).
O

therw
ise,the new

process im
age inherits the signal dispositions of the calling

process.

R
E

T
U

R
N

 VA
LU

E
S

If a function in theexecfam
ily returns to the calling process, an error has occurred; the return value is

−
1

and
errno

is set to indicate the error.

S
P

-M
iniklausur M

anual-A
uszug

2016-04-27
1

stat(2)
stat(2)

N
A

M
E

stat, lstat −
 get file status

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/stat.h>

#include <
unistd.h>

int stat(const char *p
a

th,struct stat *
buf);

int lstat(const char *p
a

th,struct stat *
buf);

D
E

S
C

R
IP

T
IO

N
T

hese functions return inform
ation about the specified file.

You
do

not need any
access rights to the file to

get this inform
ation but you need search rights to all directories nam

ed in the path leading to the file.

statstats the file pointed to bypa
th

and fills in
buf.

lstatis identical tostat,except in the case of a sym
bolic link, w

here the link itself is stat-ed, not the file that
it refers to.

T
hey

all return asta
tstructure, w

hich contains the follow
ing fields:

struct stat {
dev_t

st_dev;
/*

device */
ino_t

st_ino;
/* inode */

m
ode_t

st_m
ode;

/* protection */
nlink_t

st_nlink;
/* num

ber of hard links */
uid_t

st_uid;
/* user ID

 of ow
ner */

gid_t
st_gid;

/* group ID
 of ow

ner */
dev_t

st_rdev;
/*

device type (if inode device) */
off_t

st_size;
/* total size, in bytes */

blksize_t
st_blksize;/* blocksize for filesystem

 I/O
 */

blkcnt_t
st_blocks;/* num

ber of blocks allocated */
tim

e_t
st_atim

e;
/* tim

e of last access */
tim

e_t
st_m

tim
e;

/* tim
e of last m

odification */
tim

e_t
st_ctim

e;
/* tim

e of last status change */
};

T
he value

st_
sizegives

the size of the file (if it is a regular file or a sym
link) in bytes. T

he size of a sym
link

is the length of the pathnam
e it contains, w

ithout trailing N
U

L.

T
he follow

ing P
O

S
IX

 m
acros are defined to check the file type in the field

st_
m

o
d

e
:

S
_IS

R
E

G
(m

)
isit a regular file?

S
_IS

D
IR

(m
)

directory?

R
E

T
U

R
N

 VA
LU

E
O

n success, zero is returned.
O

n error
,−

1
is

returned, ande
rrn

o
is set appropriately.

E
R

R
O

R
SE

A
C

C
E

S
S

earch perm
isson is denied for one of the directories in the path prefix of

p
a

th
.

E
N

O
E

N
T

A
com

ponent ofp
a

th
does not exist, orpa

th
is an em

pty string.

E
N

O
T

D
IR

A
com

ponent of the path prefix of
p

a
th

is not a directory.

S
P

-M
iniklausur M

anual-A
uszug

2016-04-27
1

w
ait(2)

w
ait(2)

N
A

M
E

w
ait, w

aitpid, w
aitid −

 w
ait for process to change state

S
Y

N
O

P
S

IS#include <
sys/types.h>

#include <
sys/w

ait.h>

pid_t w
ait(int *

sta
tu

s);

pid_t w
aitpid(pid_t

p
id

,int *
sta

tu
s,int

o
p

tio
n

s);

D
E

S
C

R
IP

T
IO

N
A

ll of these system
 calls are used to w

ait for state changes in a child of the calling process, and obtain
inform

ation about the child w
hose state has changed.

A
state change is considered to be: the child term

i-
nated; the child w

as stopped by a signal; or the child w
as resum

ed by a signal.
In the case of a term

inated
child, perform

ing a w
ait allows the system

 to release the resources associated w
ith the child; if a w

ait is not
perform

ed, then the term
inated child rem

ains in a "zom
bie" state (see N

O
T

E
S

 below
).

If a child has already changed state, then these calls return im
m

ediately.

T
he

w
ait() system

 call suspends e
xecution of the calling process until one of its children term

inates.
T

he
w

aitpid
() system

 call suspends e
xecution of the calling process until a child specified by

p
id

argum
ent has

changed state.
B

y def
ault,w

aitpid
() w

aits only for term
inated children, b

ut this behavior is m
odifiable via

the
o

p
tio

n
sargum

ent, as described belo
w

.

T
he value ofp

id
can be:

<
−1

m
eaning w

ait for any
child process w

hose process group ID
 is equal to the absolute value of

p
id

.

−
1

m
eaningw

ait for any
child process.

0
m

eaning w
ait for any

child process w
hose process group ID

 is equal to that of the calling process.

>
0

m

eaning w
ait for the child w

hose process ID
 is equal to the value of

p
id

.

T
he value ofo

p
tio

n
sis an O

R
 of zero or m

ore of the follow
ing constants:

W
N

O
H

A
N

G
return im

m
ediately if no child has exited.

If
sta

tu
sis not N

U
LL,w

ait() andw
aitpid

() store status inform
ation in theintto w

hich it points.
T

his inte-
ger can be inspected w

ith the follow
ing m

acros (w
hich tak

e
the integer itself as an argum

ent, not a pointer
to it, as is done inw

ait() andw
aitpid

()!):

W
IF

E
X

IT
E

D
(

sta
tu

s)
returns true if the child term

inated norm
ally
,

that is, by callingexit(3) or_exit(2), or by returning
from

 m
ain().

W
E

X
IT

S
T

AT
U

S
(sta

tu
s)

returns the exit status of the child.
T

his consists of the least significant 8 bits of the
sta

tu
sargu-

m
ent that the child specified in a call to

exit(3) or_exit(2) or as the argum
ent for a return state-

m
ent in m

ain().
T

his m
acro should only be em

ployed if
W

IF
E

X
IT

E
D

returned true.

R
E

T
U

R
N

 VA
LU

E
w

ait(): on success, returns the process ID
 of the term

inated child; on error
,−

1
is

returned.

w
aitpid

(): on success, returns the process ID
 of the child w

hose state has changed; if
W

N
O

H
A

N
G

w
as

specified and one or m
ore child(ren) specified by

p
id

exist, but have not yet changed state, then 0 is
returned. O

nerror,−
1

is
returned.

S
P

-M
iniklausur M

anual-A
uszug

2016-04-27
1

