
fopen/fdopen/fileno(3) fopen/fdopen/fileno(3)

NAME

fopen, fdopen, fileno − stream open functions

SYNOPSIS

#include <stdio.h>

FILE *fopen(const char * path, const char *mode);

FILE *fdopen(int fildes, const char *mode);

int fileno(FILE *stream);

DESCRIPTION

The fopen function opens the file whose name is the string pointed to by path and associates a stream with

it.

The argument mode points to a string beginning with one of the following sequences (Additional characters

may follow these sequences.):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

w Truncate file to zero length or create text file for writing. The stream is positioned at the beginning

of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it is truncated. The

stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not exist. The stream is

positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it does not exist.

The stream is positioned at the end of the file.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream

(one of the values "r", "r+", "w", "w+", "a", "a+") must be compatible with the mode of the file descriptor.

The file position indicator of the new stream is set to that belonging to fildes, and the error and end-of-file

indicators are cleared. Modes "w" or "w+" do not cause truncation of the file. The file descriptor is not

dup’ed, and will be closed when the stream created by fdopen is closed. The result of applying fdopen to a

shared memory object is undefined.

The function fileno() examines the argument stream and returns its integer descriptor.

RETURN VALUE

Upon successful completion fopen, fdopen and freopen return a FILE pointer. Otherwise, NULL is

returned and the global variable errno is set to indicate the error.

ERRORS

EINVAL

The mode provided to fopen, fdopen, or freopen was inv alid.

The fopen, fdopen and freopen functions may also fail and set errno for any of the errors specified for the

routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

SEE ALSO

open(2), fclose(3), fileno(3)

SP-Miniklausur Manual-Auszug 2017-11-08 1

getc/fgets/putc/fputs(3) getc/fgets/putc/fputs(3)

NAME

fgetc, fgets, getc, getchar, fputc, fputs, putc, putchar − input and output of characters and strings

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int getc(FILE *stream);

int getchar(void);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

DESCRIPTION

fgetc() reads the next character from stream and returns it as an unsigned char cast to an int, or EOF on

end of file or error.

getc() is equivalent to fgetc() except that it may be implemented as a macro which evaluates stream more

than once.

getchar() is equivalent to getc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into the buffer pointed to

by s. Reading stops after an EOF or a newline. If a newline is read, it is stored into the buffer. A ’\0’ is

stored after the last character in the buffer.

fputc() writes the character c, cast to an unsigned char, to stream.

fputs() writes the string s to stream, without its terminating null byte ('\0').

putc() is equivalent to fputc() except that it may be implemented as a macro which evaluates stream more

than once.

putchar(c); is equivalent to putc(c, stdout).

Calls to the functions described here can be mixed with each other and with calls to other output functions

from the stdio library for the same output stream.

RETURN VALUE

fgetc(), getc() and getchar() return the character read as an unsigned char cast to an int or EOF on end of

file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no characters have been

read. fputc(), putc() and putchar() return the character written as an unsigned char cast to an int or EOF

on error.

fputs() returns a nonnegative number on success, or EOF on error.

SEE ALSO

read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3), getwchar(3),

scanf(3), ungetwc(3), write(2), ferror(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3), gets(3),

putwchar(3), scanf(3), unlocked_stdio(3)

SP-Miniklausur Manual-Auszug 2017-11-08 1

malloc(3) malloc(3)

NAME

calloc, malloc, free, realloc − Allocate and free dynamic memory

SYNOPSIS

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

DESCRIPTION

calloc() allocates memory for an array of nmemb elements of size bytes each and returns a pointer to the

allocated memory. The memory is set to zero.

malloc() allocates size bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been returned by a previous call to mal-

loc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour

occurs. If ptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to by ptr to size bytes. The contents will be

unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized. If ptr

is NULL, the call is equivalent to malloc(size); if size is equal to zero, the call is equivalent to free(ptr).

Unless ptr is NULL, it must have been returned by an earlier call to malloc(), calloc() or realloc().

RETURN VALUE

For calloc() and malloc(), the value returned is a pointer to the allocated memory, which is suitably aligned

for any kind of variable, or NULL if the request fails.

free() returns no value.

realloc() returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable

and may be different from ptr, or NULL if the request fails. If size was equal to 0, either NULL or a

pointer suitable to be passed to free() is returned. If realloc() fails the original block is left untouched - it is

not freed or moved.

CONFORMING TO

ANSI-C

SEE ALSO

brk(2), posix_memalign(3)

SP-Miniklausur Manual-Auszug 2017-11-08 1

qsort(3) qsort(3)

NAME

qsort − sorts an array

SYNOPSIS

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

int(*compar)(const void *, const void *));

DESCRIPTION

The qsort() function sorts an array with nmemb elements of size size. The base argument points to the start

of the array.

The contents of the array are sorted in ascending order according to a comparison function pointed to by

compar, which is called with two arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument

is considered to be respectively less than, equal to, or greater than the second. If two members compare as

equal, their order in the sorted array is undefined.

RETURN VALUE

The qsort() function returns no value.

SEE ALSO

sort(1), alphasort(3), strcmp(3), versionsort(3)

ATTRIBUTES

Multithreading (see pthreads(7))

The qsort() function is thread-safe if the comparison function compar does not access any global variables.

COLOPHON

This page is part of release 3.05 of the Linux man-pages project. A description of the project, and informa-

tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

SP-Miniklausur Manual-Auszug 2017-11-08 1

strcmp(3) strcmp(3)

NAME

strcmp, strncmp − compare two strings

SYNOPSIS

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION

The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or

greater than zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

The strncmp() function is similar, except it only compares the first (at most) n characters of s1 and s2.

RETURN VALUE

The strcmp() and strncmp() functions return an integer less than, equal to, or greater than zero if s1 (or the

first n bytes thereof) is found, respectively, to be less than, to match, or be greater than s2.

CONFORMING TO

SVr4, 4.3BSD, C89, C99.

SEE ALSO

bcmp(3), memcmp(3), strcasecmp(3), strcoll(3), strncasecmp(3), wcscmp(3), wcsncmp(3)

SP-Miniklausur Manual-Auszug 2017-11-08 1

strdup(3) strdup(3)

NAME

strdup, strndup − duplicate a string

SYNOPSIS

#include <string.h>

char *strdup(const char *s);

char *strndup(const char *s, size_t n);

DESCRIPTION

The strdup() function returns a pointer to a new string which is a duplicate of the string s. Memory for the

new string is obtained with malloc(3), and can be freed with free(3).

The strndup() function is similar, but copies at most n bytes. If s is longer than n, only n bytes are copied,

and a terminating null byte ('\0') is added.

RETURN VALUE

On success, the strdup() function returns a pointer to the duplicated string. It returns NULL if insufficient

memory was available, with errno set to indicate the cause of the error.

ERRORS

ENOMEM

Insufficient memory available to allocate duplicate string.

CONFORMING TO

strdup() conforms to SVr4, 4.3BSD, POSIX.1-2001. strndup() conforms to POSIX.1-2008.

SP-Miniklausur Manual-Auszug 2017-11-08 1

