
6 Übungsaufgabe #6: ZooKeeper
In dieser Aufgabe soll ein fehlertoleranter Dienst zur Koordinierung verteilter Anwendungen entwickelt werden. Als
Vorbild dient Apache ZooKeeper, das mit folgender (eingeschränkter) Funktionalität nachgebildet wird:

public class MWZooKeeper {
public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);
public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);

}
create() erstellt unter dem Pfad path einen neuen Knoten mit den Nutzdaten data; ephemeral gibt an, ob es sich um
einen flüchtigen Knoten (siehe Teilaufgabe 6.4) handelt. Ein Aufruf von delete() löscht einen Knoten, sofern dessen
aktuelle Versionsnummer version entspricht oder version = -1 übergeben wurde. Mit setData() lassen sich einem
Knoten neue Nutzdaten zuweisen, falls der Knoten beim Bearbeiten der Anfrage die entsprechende Versionsnummer
aufweist. Als Rückgabewert liefert setData() ein Objekt der Klasse MWZooKeeperStat, das die aktualisierten Meta-
daten des Knotens (z. B. Versionsnummer, Zeitstempel der letzten Modifikation) enthält. Mit getData() lassen sich
sowohl die Nutz- und Metadaten eines Knotens auslesen. Die Rückgabe der Metadaten erfolgt über den Ausgabepa-
rameter stat [Folie 6.1 : 7]. Ausnahmesituationen (z. B. ungültige Pfadangaben, veraltete Versionsnummern) werden
per MWZooKeeperException signalisiert.
Als Ausgangsbasis für die eigene Implementierung sind im Pub-Verzeichnis einige Klassen bereitgestellt. Falls erfor-
derlich, dürfen diese beliebig modifiziert bzw. erweitert werden. Als Orientierungshilfe kann der Überblick über den
Nachrichtenfluss von Schreibanfragen dienen [Folie 6.2 : 2].

6.1 Verteilung des Diensts (für alle)
Im ersten Schritt soll der entfernte Zugriff auf ZooKeeper ermöglicht werden. Während die als Client fungierende Klasse
MWZooKeeper bereits existiert (siehe Pub-Verzeichnis), ist der MWZooKeeperServer noch zu implementieren. Dieser
soll über einen ServerSocket TCP-Verbindungen annehmen und die eigentliche Interaktion mit Clients in separaten
Worker-Threads abwickeln. Da Clients mehrere Anfragen über dieselbe Verbindung schicken können, muss ein Worker
die Verbindung nach dem Senden einer Antwort offen halten. Um darüber hinaus eine effiziente Kommunikation zu
garantieren, sollte durch einmaligen Aufruf von setTcpNoDelay(true) am Socket jeder Client-Verbindung der in Java
standardmäßig verwendete Nagle-Algorithmus deaktiviert werden.
Aufgabe:
→ Implementierung der Klasse MWZooKeeperServer in einem Subpackage mw.zookeeper

6.2 Implementierung der Zustandsverwaltung (für alle)
ZooKeeper unterscheidet bei der Bearbeitung zwischen lesenden (getData) und schreibenden (create, delete und
setData) Operationen: Leseanfragen werden für eine möglichst effiziente Verarbeitung unmittelbar von dem Server
beantwortet, der sie empfängt [Folie 6.2 : 3]. Die Ausführung von modifizierenden Operationen erfolgt dagegen auf einem
Anführerreplikat, das für jede Schreibanfrage eine Transaktion erstellt, mit deren Hilfe alle Replikate anschließend ihre
Zustände aktualisieren. Die Antwort auf eine Leseanfrage kann folglich auf einem (leicht) veralteten Zustand basieren,
falls eine Aktualisierung den antwortenden Server noch nicht erreicht hat. Als Vorbereitung für die Replikation des
Diensts soll hier zunächst die zur Zustandsverwaltung erforderliche Logik in einer Klasse MWZooKeeperImpl realisiert
werden, die mindestens folgende Methoden umfasst:

public class MWZooKeeperImpl {
public MWZooKeeperResponse processReadRequest(MWZooKeeperRequest request);
public MWZooKeeperTxn processWriteRequest(MWZooKeeperRequest request , long zxid);
public MWZooKeeperResponse applyTxn(MWZooKeeperTxn txn, long zxid);

}
Wie in der Tafelübung erläutert, muss MWZooKeeperImpl zwischen zwei ZooKeeper-Zuständen unterscheiden: Ei-
nem bestätigten Zustand ZB , den jedes Replikat vorhält, und dem nur vom Anführer verwalteten aktuellen Zu-
stand ZA, der im Vergleich zu ZB neue, noch unbestätigte Änderungen umfassen kann [Folie 6.2 : 4]. Ein Aufruf von
processReadRequest() führt die übergebene Leseanfrage direkt auf ZB aus und gibt das Ergebnis bzw. eine Fehler-
meldung als Antwortnachricht zurück. Die Methode processWriteRequest() führt eine Schreibanfrage auf ZA aus
und erstellt darauf basierend eine (Fehler-)Transaktion MWZooKeeperTxn mit eindeutiger ID zxid. Mittels applyTxn()
lässt sich die in der Transaktion txn enthaltene Zustandsänderung auf ZB anwenden.
Aufgabe:
→ Implementierung der Klassen MWZooKeeperImpl und MWZooKeeperTxn

Hinweise:
• Eine Transaktion soll die durch eine Schreibanfrage verursachten Zustandsänderungen enthalten.
• Um Hauptspeicherplatz zu sparen, darf ZA nur im Vergleich zu ZB geänderte Knoten speichern.
• Sobald eine Transaktion auf ZB angewendet wurde, sind nicht mehr benötigte Knoten in ZA zu löschen.
• Als Hilfestellung kann mit dem MWZooKeeperImplTest ein Teil der Implementierung getestet werden.

Übungen zu Middleware - Cloud Computing 2025/26 Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Informatik 4



6.3 Replikation des Diensts und Testfälle (für alle)
Die aktuelle Implementierung des Diensts bietet keinerlei Schutz vor Rechnerausfällen, da sie sich auf das korrekte
Funktionieren eines einzelnen Servers verlässt. Um die Server-Seite des Diensts tolerant gegenüber Ausfällen zu ge-
stalten, soll sie im Rahmen dieser Teilaufgabe repliziert werden. Da sich jeder Client mit einem beliebigen ZooKeeper-
Replikat seiner Wahl verbinden kann, muss dabei sichergestellt sein, dass alle Replikate über einen konsistenten
Zustand verfügen. In ZooKeeper wird dies dadurch erreicht, dass ein Anführerreplikat alle zustandsmodifizierenden
Anfragen bearbeitet und die daraus resultierenden Zustandsaktualisierungen mittels Zab an die anderen Replikate
verteilt. Zab garantiert hierbei, dass eine solche Zustandstransaktion nur dann ausgeliefert wird, wenn zuvor eine
Mehrheit aller Replikate den Erhalt der Transaktion bestätigt hat und weiterhin dem aktuellen Anführerreplikat
folgt.
Da in der eigenen ZooKeeper-Implementierung sämtliche Interaktion zwischen Replikaten mittels Zab erfolgen soll,
benötigt jeder MWZooKeeperServer Zugriff auf einen eigenen Zab-Knoten [Folie 6.2 : 6]. Des weiteren muss ein Server
die Schnittstelle ZabCallback implementieren, um per Zab übermittelte Anfragen und/oder Transaktionen empfangen
sowie über den Ausgang von Anführerwahlen informiert werden zu können [Folie 6.2 : 7].
Im letzten Schritt dieser Teilaufgabe ist dafür zu sorgen, dass ein Replikat nach Beendigung einer Anführerwahl
die ihm zugewiesene Rolle einnimmt: Für ein Follower-Replikat bedeutet dies, dass es nur Leseanfragen unmittelbar
bearbeiten darf, Schreibanfragen dagegen an den Anführer weiterleiten muss. Das Anführerreplikat führt im Unter-
schied dazu sämtliche (von Clients oder anderen Replikaten) eintreffenden Anfragen aus und schlägt für jede aus einer
Schreiboperation resultierenden Transaktion eine neue zxid vor.

Aufgaben:
→ Replikation des ZooKeeper-Diensts unter Verwendung von Zab
→ Testen der Implementierung mit drei ZooKeeper-Replikaten auf verschiedenen Rechnern
→ Implementierung von Testfällen, aus denen ersichtlich wird, dass a) die Antwortzeit lesender Anfragen

signifikant kleiner ist als die Antwortzeit zustandsmodifizierender Anfragen und b) ZooKeeper keine stark kon-
sistente Sichtweise auf den verwalteten Datenbestand bietet, es also unter Umständen vorkommt, dass Clients
beispielsweise veraltete Versionen von Datenknoten lesen.

Hinweise:
• Die zum Einsatz von Zab benötigten Klassen sind in zab-mwcc.jar (Pub-Verzeichnis) zusammengefasst.
• Um den geänderten Nachrichtenfluss auf einem Replikat lokal zu testen, kann statt MultiZab zunächst ein Objekt

der Klasse SingleZab als Schnittstelle zu Zab genutzt werden. Bei Verwendung von MultiZab sind mindestens
3 Replikate notwendig.

• Szenarien wie die Wiederherstellung ausgefallener bzw. das Hinzufügen neuer Replikate erfordern Mechanismen
zum Transfer von Replikatzuständen und sind daher nicht Teil dieser Übungsaufgabe.

• Um Fehlermeldungen von Zab zu erhalten, muss log4j entsprechend konfiguriert werden [Folie 6.2 : 9].

6.4 Flüchtige Knoten (optional für 5,0 ECTS)
Neben den regulären persistenten Knoten, die explizit erzeugt und gelöscht werden müssen, existiert in ZooKeeper
mit den „Ephemeral Nodes“ eine Kategorie von flüchtigen Knoten, die das System automatisch entfernt, sobald die
Verbindung zu dem Client, der sie erzeugt hat, geschlossen wird oder abbricht [Folie 6.1 : 2]. Ob es sich bei einem
Knoten um einen persistenten oder einen flüchtigen handelt, legt der Client bei der Erzeugung des Knotens fest (siehe
ephemeral-Parameter der create()-Methode).
Die Unterstützung von flüchtigen Knoten macht es auf Server-Seite erforderlich, Client-Verbindungen eindeutig iden-
tifizieren zu können. Da das Löschen flüchtiger Knoten eine zustandsmodifizierende Operation darstellt, muss darüber
hinaus darauf geachtet werden, dass alle Replikate diese in konsistenter Weise durchführen.

Aufgabe:
→ Erweiterung der bestehenden Implementierung um die Unterstützung flüchtiger Knoten

Hinweise:
• Flüchtige Knoten müssen Blattknoten sein, dürfen selbst also keine eigenen Kindsknoten haben.
• Der Fall, dass eine Client-Verbindung aufgrund eines Replikatausfalls endet, soll nicht betrachtet werden.
• Das Entfernen flüchtiger Knoten eines ausgefallenen Clients soll atomar erfolgen.

Abgabe: am 28.01.2026 in der Rechnerübung

Übungen zu Middleware - Cloud Computing 2025/26 Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Informatik 4


	Übungsaufgabe #6: ZooKeeper
	Verteilung des Diensts (für alle)
	Implementierung der Zustandsverwaltung (für alle)
	Replikation des Diensts und Testfälle (für alle)
	Flüchtige Knoten (optional für 5,0 ECTS)


