6 Ubungsaufgabe #6: ZooKeeper

In dieser Aufgabe soll ein fehlertoleranter Dienst zur Koordinierung verteilter Anwendungen entwickelt werden. Als
Vorbild dient Apache ZooKeeper, das mit folgender (eingeschréankter) Funktionalitit nachgebildet wird:
public class MWZooKeeper {
public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);
public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);
}
create() erstellt unter dem Pfad path einen neuen Knoten mit den Nutzdaten data; ephemeral gibt an, ob es sich um
einen fliichtigen Knoten (siehe Teilaufgabe [6.4) handelt. Ein Aufruf von delete() 18scht einen Knoten, sofern dessen
aktuelle Versionsnummer version entspricht oder version = -1 iibergeben wurde. Mit setData() lassen sich einem
Knoten neue Nutzdaten zuweisen, falls der Knoten beim Bearbeiten der Anfrage die entsprechende Versionsnummer
aufweist. Als Riickgabewert liefert setData() ein Objekt der Klasse MWZooKeeperStat, das die aktualisierten Meta-
daten des Knotens (z.B. Versionsnummer, Zeitstempel der letzten Modifikation) enthélt. Mit getData() lassen sich
sowohl die Nutz- und Metadaten eines Knotens auslesen. Die Riickgabe der Metadaten erfolgt iiber den Ausgabepa-
rameter stat [Folie 6.1:7]. Ausnahmesituationen (z. B. ungiiltige Pfadangaben, veraltete Versionsnummern) werden
per MWZooKeeperException signalisiert.

Als Ausgangsbasis fiir die eigene Implementierung sind im Pub-Verzeichnis einige Klassen bereitgestellt. Falls erfor-
derlich, diirfen diese beliebig modifiziert bzw. erweitert werden. Als Orientierungshilfe kann der Uberblick iiber den
Nachrichtenfluss von Schreibanfragen dienen [Folie 6.2:2].

6.1 Verteilung des Diensts (fiir alle)

Im ersten Schritt soll der entfernte Zugriff auf ZooKeeper ermdoglicht werden. Wahrend die als Client fungierende Klasse
MWZooKeeper bereits existiert (siehe Pub-Verzeichnis), ist der MWZooKeeperServer noch zu implementieren. Dieser
soll tiber einen ServerSocket TCP-Verbindungen annehmen und die eigentliche Interaktion mit Clients in separaten
Worker-Threads abwickeln. Da Clients mehrere Anfragen tiber dieselbe Verbindung schicken kénnen, muss ein Worker
die Verbindung nach dem Senden einer Antwort offen halten. Um dariiber hinaus eine effiziente Kommunikation zu
garantieren, sollte durch einmaligen Aufruf von setTcpNoDelay (true) am Socket jeder Client-Verbindung der in Java
standardméBig verwendete Nagle-Algorithmus deaktiviert werden.

Aufgabe:
— Implementierung der Klasse MWZooKeeperServer in einem Subpackage mw.zookeeper

6.2 Implementierung der Zustandsverwaltung (fiir alle)

ZooKeeper unterscheidet bei der Bearbeitung zwischen lesenden (getData) und schreibenden (create, delete und
setData) Operationen: Leseanfragen werden fiir eine moglichst effiziente Verarbeitung unmittelbar von dem Server
beantwortet, der sie empfingt [Folie 6.2 : 3]. Die Ausfithrung von modifizierenden Operationen erfolgt dagegen auf einem
Anfiithrerreplikat, das fiir jede Schreibanfrage eine Transaktion erstellt, mit deren Hilfe alle Replikate anschlieend ihre
Zustande aktualisieren. Die Antwort auf eine Leseanfrage kann folglich auf einem (leicht) veralteten Zustand basieren,
falls eine Aktualisierung den antwortenden Server noch nicht erreicht hat. Als Vorbereitung fiir die Replikation des
Diensts soll hier zunéchst die zur Zustandsverwaltung erforderliche Logik in einer Klasse MWZooKeeperImpl realisiert
werden, die mindestens folgende Methoden umfasst:
public class MWZooKeeperImpl {

public MWZooKeeperResponse processReadRequest (MWZooKeeperRequest request);

public MWZooKeeperTxn processWriteRequest (MWZooKeeperRequest request, long zxid);

public MWZooKeeperResponse applyTxn(MWZooKeeperTxn txn, long zxid);

}

Wie in der Tafelilbung erldutert, muss MWZooKeeperImpl zwischen zwei ZooKeeper-Zustinden unterscheiden: Fi-
nem bestitigten Zustand Zp, den jedes Replikat vorhélt, und dem nur vom Anfiihrer verwalteten aktuellen Zu-
stand Z4, der im Vergleich zu Zp neue, noch unbestitigte Anderungen umfassen kann [Folie 6.2:4]. Ein Aufruf von
processReadRequest () fiihrt die iibergebene Leseanfrage direkt auf Zp aus und gibt das Ergebnis bzw. eine Fehler-
meldung als Antwortnachricht zuriick. Die Methode processWriteRequest () fiihrt eine Schreibanfrage auf Z4 aus
und erstellt darauf basierend eine (Fehler-) Transaktion MWZooKeeperTxn mit eindeutiger ID zxid. Mittels applyTxn ()
lasst sich die in der Transaktion txn enthaltene Zustandsdnderung auf Zg anwenden.

Aufgabe:
— Implementierung der Klassen MWZooKeeperImpl und MWZooKeeperTxn
Hinweise:
¢ FKine Transaktion soll die durch eine Schreibanfrage verursachten Zustandsénderungen enthalten.
o Um Hauptspeicherplatz zu sparen, darf Z4 nur im Vergleich zu Zp gednderte Knoten speichern.
e Sobald eine Transaktion auf Zp angewendet wurde, sind nicht mehr benétigte Knoten in Z4 zu 16schen.
e Als Hilfestellung kann mit dem MWZooKeeperImplTest ein Teil der Implementierung getestet werden.

Ubungen zu Middleware - Cloud Computing 2025/26 Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Lehrstuhl fiir Informatik 4



6.3 Replikation des Diensts und Testfille (fiir alle)

Die aktuelle Implementierung des Diensts bietet keinerlei Schutz vor Rechnerausfillen, da sie sich auf das korrekte
Funktionieren eines einzelnen Servers verldsst. Um die Server-Seite des Diensts tolerant gegeniiber Ausfillen zu ge-
stalten, soll sie im Rahmen dieser Teilaufgabe repliziert werden. Da sich jeder Client mit einem beliebigen ZooKeeper-
Replikat seiner Wahl verbinden kann, muss dabei sichergestellt sein, dass alle Replikate iiber einen konsistenten
Zustand verfiigen. In ZooKeeper wird dies dadurch erreicht, dass ein Anfiihrerreplikat alle zustandsmodifizierenden
Anfragen bearbeitet und die daraus resultierenden Zustandsaktualisierungen mittels Zab an die anderen Replikate
verteilt. Zab garantiert hierbei, dass eine solche Zustandstransaktion nur dann ausgeliefert wird, wenn zuvor eine
Mehrheit aller Replikate den Erhalt der Transaktion bestétigt hat und weiterhin dem aktuellen Anfiihrerreplikat
folgt.

Da in der eigenen ZooKeeper-Implementierung sémtliche Interaktion zwischen Replikaten mittels Zab erfolgen soll,
benotigt jeder MWZooKeeperServer Zugriff auf einen eigenen Zab-Knoten [Folie 6.2: 6]. Des weiteren muss ein Server
die Schnittstelle ZabCallback implementieren, um per Zab iibermittelte Anfragen und/oder Transaktionen empfangen
sowie tiber den Ausgang von Anfiihrerwahlen informiert werden zu koénnen [Folie 6.2: 7).

Im letzten Schritt dieser Teilaufgabe ist dafiir zu sorgen, dass ein Replikat nach Beendigung einer Anfiithrerwahl
die ihm zugewiesene Rolle einnimmt: Fiir ein Follower-Replikat bedeutet dies, dass es nur Leseanfragen unmittelbar
bearbeiten darf, Schreibanfragen dagegen an den Anfiihrer weiterleiten muss. Das Anfithrerreplikat fithrt im Unter-
schied dazu sdmtliche (von Clients oder anderen Replikaten) eintreffenden Anfragen aus und schldgt fiir jede aus einer
Schreiboperation resultierenden Transaktion eine neue zxid vor.

Aufgaben:

— Replikation des ZooKeeper-Diensts unter Verwendung von Zab

— Testen der Implementierung mit drei ZooKeeper-Replikaten auf verschiedenen Rechnern

— Implementierung von Testfillen, aus denen ersichtlich wird, dass a) die Antwortzeit lesender Anfragen
signifikant kleiner ist als die Antwortzeit zustandsmodifizierender Anfragen und b) ZooKeeper keine stark kon-
sistente Sichtweise auf den verwalteten Datenbestand bietet, es also unter Umstdnden vorkommt, dass Clients
beispielsweise veraltete Versionen von Datenknoten lesen.

Hinweise:

o Die zum Einsatz von Zab benétigten Klassen sind in zab-mwcc. jar (Pub-Verzeichnis) zusammengefasst.

¢ Um den gednderten Nachrichtenfluss auf einem Replikat lokal zu testen, kann statt MultiZab zunéchst ein Objekt
der Klasse SingleZab als Schnittstelle zu Zab genutzt werden. Bei Verwendung von MultiZab sind mindestens
3 Replikate notwendig.

e Szenarien wie die Wiederherstellung ausgefallener bzw. das Hinzufligen neuer Replikate erfordern Mechanismen
zum Transfer von Replikatzustinden und sind daher nicht Teil dieser Ubungsaufgabe.

e Um Fehlermeldungen von Zab zu erhalten, muss log4j entsprechend konfiguriert werden [Folie 6.2:9].

6.4 Fliichtige Knoten (optional fiir 5,0 ECTS)

Neben den reguldren persistenten Knoten, die explizit erzeugt und geloscht werden miissen, existiert in ZooKeeper
mit den ,, Ephemeral Nodes“ eine Kategorie von fliichtigen Knoten, die das System automatisch entfernt, sobald die
Verbindung zu dem Client, der sie erzeugt hat, geschlossen wird oder abbricht [Folie 6.1:2]. Ob es sich bei einem
Knoten um einen persistenten oder einen fliichtigen handelt, legt der Client bei der Erzeugung des Knotens fest (siehe
ephemeral-Parameter der create()-Methode).

Die Unterstiitzung von fliichtigen Knoten macht es auf Server-Seite erforderlich, Client-Verbindungen eindeutig iden-
tifizieren zu kénnen. Da das Loschen fliichtiger Knoten eine zustandsmodifizierende Operation darstellt, muss dariiber
hinaus darauf geachtet werden, dass alle Replikate diese in konsistenter Weise durchfiithren.

Aufgabe:
— Erweiterung der bestehenden Implementierung um die Unterstiitzung fliichtiger Knoten

Hinweise:

o Fliichtige Knoten miissen Blattknoten sein, diirfen selbst also keine eigenen Kindsknoten haben.
e Der Fall, dass eine Client-Verbindung aufgrund eines Replikatausfalls endet, soll nicht betrachtet werden.
e Das Entfernen fliichtiger Knoten eines ausgefallenen Clients soll atomar erfolgen.

Abgabe: am 28.01.2026 in der Rechneriibung

Ubungen zu Middleware - Cloud Computing 2025/26 Friedrich-Alexander-Universitdt Erlangen-Niirnberg
Lehrstuhl fiir Informatik 4



	Übungsaufgabe #6: ZooKeeper
	Verteilung des Diensts (für alle)
	Implementierung der Zustandsverwaltung (für alle)
	Replikation des Diensts und Testfälle (für alle)
	Flüchtige Knoten (optional für 5,0 ECTS)


