
Middleware – Cloud Computing – Übung
Aufgabe 6: ZooKeeper

Wintersemester 2025/26

Paul Bergmann, Christian Berger

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

Lehrstuhl für Informatik 4
Systemsoftware

https://sys.cs.fau.de


Überblick

ZooKeeper

Apache ZooKeeper

Aufgabe 6

Replikation

Konsistenzwahrung

Zab



ZooKeeper

Apache ZooKeeper



Apache ZooKeeper

Koordinierungsdienst für verteilte Systeme
Anfangs entwickelt bei Yahoo! Research, jetzt Apache-Projekt
Im Produktiveinsatz unter anderem für:

Anführerwahl: z. B. Apache HDFS
Konfigurationsdaten: z. B. Kafka

Verwaltung von Daten
Hierarchischer Namensraum: Knoten in einer Baumstruktur
Knoten sind eindeutig identifizierbar und können Nutzdaten aufnehmen
Keine expliziten Sperren (Locks), aber Gewährleistung bestimmter Ordnungen
bei konkurrierenden Zugriffen

Fehlertoleranz
Replikation des Diensts auf mehrere Rechner (Replikate)
Replikatkonsistenz mittels Leader-Follower-Ansatz
Leseoptimierung: Jedes Replikat kann Leseanfragen beantworten

Literatur
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed
ZooKeeper: Wait-free coordination for Internet-scale systems
Proc. of the 2010 USENIX Annual Technical Conf. (ATC ’10), S. 145–158, 2010.

6.1:1



Schnittstelle

Zentrale Operationen
create / delete Erstellen / Löschen eines Knotens
exists Prüfen auf Existenz eines Knotens
setData / getData Setzen und Auslesen der Nutzdaten und Metadaten eines Knotens
getChildren Rückgabe der Pfade von Kindknoten eines Knotens
sync Warten auf die Bearbeitung aller vorherigen Schreiboperationen

Persistente Knoten (Regular Nodes)
Erzeugung durch den Client
Explizites Löschen durch den Client

Flüchtige Knoten (Ephemeral Nodes)
Erzeugung durch den Client unter Angabe des EPHEMERAL-Flag
Keine Kindknoten
Löschen

Automatisches Löschen durch den Dienst, sobald die Verbindung zum Client, der diesen Knoten erstellt hat,
beendet wird oder abbricht

→ Anwendungsbeispiel: Erkennen eines Client-Ausfalls
Explizites Löschen durch den Client

Sequenzielle Knoten (Sequential Nodes) [Siehe Vorlesung]
6.1:2



Verwaltung von Nutzdaten

Grundprinzipien [→ Unterschiede zu Dateisystemen]
Jeder Knoten kann Nutzdaten aufnehmen

Speicherung von Nutzdaten ist nicht auf Blattknoten des Baums beschränkt
Kleine Datenmengen, üblicherweise < 1MB pro Knoten

Daten werden atomar geschrieben und gelesen
{S,Ers}etzen der kompletten Nutzdaten eines Knotens beim Schreiben
Kein partielles Lesen der Nutzdaten

Versionierung der Nutzdaten
Schreiben neuer Daten→ Inkrementierung der Knoten-Versionsnummer
Bedingtes Schreiben von Nutzdaten
public Stat setData(String path, byte[] data, int version);

Speicherung der Nutzdaten data nur, falls die aktuelle Versionsnummer
des Knotens dem Wert version entspricht
Schreiben ohne Randbedingung: version = -1 setzen

Kein Zugriff auf ältere Versionen möglich

6.1:3



Verwaltung von Metadaten

Verwaltete Metadaten eines Knotens
Zeitstempel der Erstellung
Zeitstempel der letzten Modifikation
Versionsnummer der Nutzdaten
Größe der Nutzdaten
Anzahl der Kindknoten
Bei flüchtigen Knoten: ID der Verbindung des ZooKeeper-Clients,
der den Knoten erstellt hat (Ephemeral Owner)
...

Abruf der Metadaten eines Knotens
Kapselung in einem Objekt der Klasse Stat
Nur in Kombination mit dem Lesen der Nutzdaten möglich

Implementierungsentscheidung
Nutz- und Metadaten werden komplett im Hauptspeicher gehalten
Keine Strategie für den Fall, dass der Hauptspeicher voll ist

6.1:4



Benachrichtigung über Ereignisse

Problemstellung
Client wartet darauf, dass ein bestimmtes Ereignis eintritt
Aktives Nachfragen durch den Client ist im Allgemeinen nicht effizient

Beobachter (Watcher)
Registrierung bei Leseoperationen (muss ggf. erneuert werden!)
Ereignisarten

Erstellen / Löschen oder Ändern der Nutzdaten eines Knotens (exists)
Ändern der Nutzdaten oder Löschen eines Knotens (getData)
Hinzukommen oder Wegfallen von Kindknoten (getChildren)

Aufruf durch ZooKeeper-Dienst bei Eintritt bestimmter Ereignisse

Schnittstelle für Beobachter-Objekte
public interface Watcher {

public void process(WatchedEvent event);
}

6.1:5



ZooKeeper

Aufgabe 6



Aufgabe 6

Umsetzung eines Koordinierungsdienstes
ZooKeeper-Implementierung von Apache als Vorbild
Funktionen zum Erstellen, Löschen, Schreiben und Lesen von Knoten

⇒ Bedingtes und unbedingtes Schreiben anhand von Versionsnummer

Vereinfachte Schnittstelle
public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);
public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);

Teilaufgaben
Implementierung als Client-Server-Anwendung
Zustandsverwaltung inklusive Leseoptimierung von ZooKeeper

↪→ Hilfestellung: Tests für Teilfunktionalitäten in MWZooKeeperImplTest bereitgestellt
Konsistente, passive Replikation unter Zuhilfenahme von Zab
Unterstützung flüchtiger Knoten (optional für 5,0 ECTS)

6.1:6



Ausgabeparameter in Java

Problem
Methode (z. B. getData()) soll mehr als ein Objekt zurückgeben
Nur ein „echter“ Rückgabewert möglich

Lösungsmöglichkeiten
Einführung eines Hilfsobjekts, das mehrere Rückgabewerte kapselt
Verwendung von Ausgabeparametern

Beispiel für Ausgabeparameter: ZooKeeper-Methode getData()
Aufruf: Übergabe eines „leeren“ Parameters
MWZooKeeper zooKeeper = new MWZooKeeper([...]);
MWZooKeeperStat stat = new MWZooKeeperStat(); // Leeres Objekt
zooKeeper.getData("/example", stat);
System.out.println("Version:␣" + stat.getVersion());

Intern: Setzen von Attributen des Ausgabeparameters
public byte[] getData(String path, MWZooKeeperStat stat) {

[...] // Bestimmung der angeforderten Daten
stat.setVersion(currentVersion);
[...] // Setzen weiterer Attribute und Daten-Rueckgabe

}

6.1:7



Serialisierung & Deserialisierung von Objekten

Serialisierung & Deserialisierung in Java
Objekte müssen das Marker-Interface Serializable implementieren
{S,Des}erialisierung mittels Object{Out,In}putStream-Klassen

Beispiel: Deserialisierung von Anfragen
// Einmaliges Anlegen des Objekt-Stroms
Socket s = [...]; // Socket der Verbindung
ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

while(true) {
// Empfang und Deserialisierung einer Anfrage
MWZooKeeperRequest request = (MWZooKeeperRequest) ois.readObject();
[...] // Bearbeitung der Anfrage

}

Wichtige Hinweise zum Einsatz von Object-Streams:
Der Konstruktor eines ObjectInputStream blockiert, bis auf der anderen Seite ein
ObjectOutputStream geöffnet wurde⇒ Bei Deadlock Reihenfolge beachten.
Object-Streams in Java puffern Objekte. Bei Wiederverwendung von Objekten können daher alte
Daten übermittelt werden, wenn der Puffer nicht mit reset() geelert wird.

6.1:8



Replikation

Konsistenzwahrung



Konsistenzwahrung

Replikation einer zustandsbehafteten Anwendung
Replikatzustände müssen konsistent gehalten werden
Beispiel für inkonsistente Zustände zweier Replikate R1 und R2

Zwei Anfragen A1 und A2 , die einem Knoten /node neue Daten zuweisen



A1: /node = 47



A2: /node = 48
R1


R2

Annahme: A1 erreicht R1 früher als A2 , bei R2 ist es umgekehrt
R1 /node-Daten

< init > ∅
A1 47
A2 48 

R2 /node-Daten
< init > ∅

A2 48
A1 47 

Sicherstellung der Replikatkonsistenz: Alle Replikate vollziehen Zustandsänderungen
in derselben Reihenfolge
Replikationsvarianten

Aktiv: Anfragen an alle Replikate verteilen und dort ausführen
Passiv (Zookeeper): Anführer bearbeitet Anfragen und verteilt Zustandsänderungen

6.2:1



Replikation in ZooKeeper

Gruppe von ZooKeeper-Replikaten
2f+ 1 Replikate zur Tolerierung von höchstens f Fehlern bzw. Ausfällen
Jedes Replikat nimmt Verbindungen von Clients an

Leader-Follower-Ansatz für stark konsistente Schreibanfragen
Follower leitet Anfrage an den Leader weiter
Leader bearbeitet Anfrage und schreibt Änderungen in Zustandstransaktion
Fehlerfall: Erstellung einer Fehlertransaktion [Bsp.: Zu löschender Knoten existiert nicht.]
Total Order Broadcast verteilt Transaktionen in vom Leader vorgegebener Reihenfolge
Transaktionsauslieferung erst nach Bestätigung durch Mehrheit der Replikate
Konsistente Ausführung ausgelieferter Transaktionen auf allen Replikaten

Client

Follower

Leader

Follower

Request

Execution
Request Reliable

Total Order
Broadcast

Txn

Processing

Processing

Processing

Txn
Txn

Txn

Response

forwardRequest()

deliverRequest()

createZXID()

processWriteRequest()

proposeTxn()

deliverTxn()

...

deliverTxn()

applyTxn()

applyTxn()

applyTxn()

6.2:2



Anfrageverarbeitung

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node 

2  



 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
6.2:2



Optimierung für lesende Anfragen

Einsicht: Leseanfragen haben keinen Einfluss auf Replikatkonsistenz

Optimierte Bearbeitung lesender Anfragen in ZooKeeper
Ausschließlich durch direkt mit Client verbundenem Replikat
Sofort nach Erhalt, d. h. unabhängig von schreibenden Anfragen
Aber: Unter Garantie von FIFO für sämtliche Anfragen eines Clients

Vorteile
Einsparung von Ressourcen
Kürzere Antwortzeiten

Konsequenzen
Antworten auf Leseanfragen sind abhängig vom bearbeitenden Replikat
Rückgabe von „veralteten“ Daten und Versionsnummern möglich

sync()-Methode
Erzwingen eines Synchronisationspunkts
Wartet bis alle vor dem sync() empfangenen Anfragen bearbeitet wurden

6.2:3



Zustandsverwaltung im Anführer

Problemstellung
Leseanfragen dürfen nur konsistenten, bestätigten Zustand zurückgeben

⇒ Unbestätigte Zustandsänderungen könnten im Fehlerfall noch verloren gehen
Schreibanfragen müssen aber auf aktuellem, unbestätigtem Zustand arbeiten

⇒ Anführer muss beide Zustände gleichzeitig verwalten

Effizienter Lösungsansatz
Bestätigter Zustand ZB

Verwaltung des vollständigen Baumes von Datenknoten
Aktualisierung durch Einspielen bestätigter, total geordneter Transaktionen
Grundlage für die Bearbeitung rein lesender Anfragen

Aktueller Zustand ZA
Verwaltung in Form einer Sammlung von gegenüber Zustand ZB geänderten Knoten
Modifikation durch Bearbeitung von schreibenden Anfragen
Basis für die Erstellung von Zustandstransaktionen

Mechanismus zur Garbage-Collection
Vergabe eindeutiger IDs (zxids) an Zustandsänderungen/-transaktionen
Einspielen einer Transaktion→ Löschen der unbestätigten Änderung

6.2:4



Anfrageverarbeitung ohne aktuellen Zustand

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1/node ”47”
Version: 2

/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1/node ”47”
Version: 2/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1) /node ”48”
Version: 2

/node  2

 



 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
6.2:4



Anfrageverarbeitung mit aktuellem Zustand

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1 

Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node 

2  

 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
6.2:4



Garbage-Collection von Transaktionen

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node  2

 

 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
6.2:4



Replikation

Zab



Zab Überblick

Protokoll für zuverlässigen und geordneten Nachrichtenaustausch
Von Apache ZooKeeper verwendet, aber nicht modular integriert
Nachträgliche eigenständige Implementierung als Zab
Modifikation zur Anpassung an die Übungsaufgabe
Übungsfolien sind Dokumentation der modifizierten Bibliothek

Totally Ordered Broadcast Protocol mit zwei Betriebsmodi
Normalbetrieb (Broadcast)

Bereitstellen einer eindeutigen Sequenznummer (zxid) für jede Transaktion
Zuverlässige Verteilung aller Zustandstransaktionen in Reihenfolge der Sequenznummern

Wahl eines neuen Anführers (Recovery)
Szenarien: Ausfall des Anführers, Anführer hat keine Mehrheit mehr
Sicherstellung der Eindeutigkeit von Sequenznummern

Literatur
Benjamin Reed and Flavio P. Junqueira
A simple totally ordered broadcast protocol
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, pages 1-6, 2008.

6.2:5



Zab Implementierung

Repräsentation eines Zab-Knotens in der abstrakten Basisklasse Zab
Varianten von Zab-Teilnehmern

SingleZab Einzelne (lokale) Instanz, zum Testen
MultiZab Teil einer verteilten Gruppe aus mindestens 3 Replikaten

Methoden
public void startup();
public void shutdown();
public void forwardRequest(Serializable request);
public long createZXID();
public void proposeTxn(Serializable txn, long zxid);

startup() Starten eines Zab-Knotens
shutdown() Stoppen eines Zab-Knotens
forwardRequest() Weiterleiten einer Anfrage an den Anführer
createZXID() Anfordern der nächsten Sequenznummer (zxid)
proposeTxn() Vorschlagen einer zu ordnenden Transaktion

→ Aufruf muss in Reihenfolge der zxids erfolgen
→ createZXID() und proposeTXN() immer als Paar aufrufen

[Hinweis: Da Zab in den ersten 4 Bytes einer zxid eine Epochennummer codiert, führt eine Neuwahl des Anführers
zu einem Sprung in den von createZXID() erzeugten zxid-Werten.]

6.2:6



Zab Nachrichtenempfang

Empfang von Nachrichten über die Schnittstelle ZabCallback

Methoden
public void deliverRequest(Serializable request);
public void deliverTxn(Serializable txn, long zxid);
public void status(ZabStatus status, String leader);

deliverRequest() Übergabe einer dem Anführer weitergeleiteten Anfrage
deliverTxn() Zustellung der nächsten geordneten Transaktion
status() Benachrichtigung über Änderungen des Status

Status eines Zab-Knotens (ZabStatus)
LOOKING Temporärer Zustand während der Anführerwahl
FOLLOWING Lokales Replikat ist Follower
LEADING Lokales Replikat ist Anführer

Hinweise
Aufrufe von deliverRequest() können nebenläufig erfolgen
Geordnete Transaktionen werden dagegen durch Zab sequentiell zugestellt
Alle von einer Mehrheit (f+ 1) der 2f+ 1 Replikate bestätigten Transaktionen
werden auf allen korrekten Replikaten zugestellt

6.2:7



Zab Konfiguration

Übergabe eines Properties-Objekts an den Zab-Konstruktor
Parameter

myid ID des lokalen Replikats
peer<i> Zab-Adresse des Replikats i
...

Identische Konfiguration der peer<i>-Adressen auf allen Replikaten nötig
Beispielkonfiguration eines MultiZab-Knotens (insgesamt 3 Replikate)

Zusammenstellung der Konfiguration für ein Replikat mit der ID 1

Properties zabProperties = new Properties();
zabProperties.setProperty("myid", String.valueOf(1));
zabProperties.setProperty("peer1", "localhost:12345");
zabProperties.setProperty("peer2", "localhost:12346");
zabProperties.setProperty("peer3", "localhost:12347");

Initialisierung eines Zab-Knotens

ZabCallback zabListener = [...];
Zab zabNode = new MultiZab(zabProperties, zabListener);

6.2:8



Zab Logging mit log4j 2

Zab verwendet intern die Logging-API log4j
Konfiguration z.B. durch eine Datei log4j2.properties, die im Classpath abgelegt sein muss
Granularitätsstufen: OFF, ERROR, WARN, INFO, DEBUG, ALL, ...
Dokumentation unter:
https://logging.apache.org/log4j/2.x/manual/configuration.html

Beispiele für log4j-Konfigurationen
Ausgabe der Log-Meldungen auf der Konsole (Stufe: DEBUG)

rootLogger = DEBUG, CONSOLE
appender.CONSOLE.name = CONSOLE
appender.CONSOLE.type = Console
appender.CONSOLE.layout.type = PatternLayout

Ausgabe der Log-Meldungen in der Datei zab.log (Stufe: INFO)

rootLogger=INFO, FILE
appender.FILE.name = FILE
appender.FILE.type = File
appender.FILE.fileName = zab.log
appender.FILE.layout.type = PatternLayout

6.2:9

https://logging.apache.org/log4j/2.x/manual/configuration.html

	ZooKeeper
	Apache ZooKeeper
	Aufgabe 6

	Replikation
	Konsistenzwahrung
	Zab


