Middleware - Cloud Computing
Aufgabe 6: ZooKeeper

- Ubung

Wintersemester 2025/26

Paul Bergmann, Christian Berger
Friedrich-Alexander-Universitdt Erlangen-Niirnberg

Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

O Lehrstuhl fiir Informatik 4

Systemsoftware

|E/\ Friedrich-Alexander-Universitat
| /l\ J

https://sys.cs.fau.de

Uberblick

ZooKeeper
Apache ZooKeeper

Aufgabe 6

Replikation
Konsistenzwahrung

Zab

ZooKeeper

Apache ZooKeeper

Apache ZooKeeper

= Koordinierungsdienst fiir verteilte Systeme
= Anfangs entwickelt bei Yahoo! Research, jetzt Apache-Projekt
= Im Produktiveinsatz unter anderem fiir:
— Anfiihrerwahl: z. B. Apache HDFS
- Konfigurationsdaten: z. B. Kafka
= Verwaltung von Daten
= Hierarchischer Namensraum: Knoten in einer Baumstruktur
= Knoten sind eindeutig identifizierbar und konnen Nutzdaten aufnehmen
= Keine expliziten Sperren (Locks), aber Gewahrleistung bestimmter Ordnungen
bei konkurrierenden Zugriffen

m Fehlertoleranz
= Replikation des Diensts auf mehrere Rechner (Replikate)
= Replikatkonsistenz mittels Leader-Follower-Ansatz
= Leseoptimierung: Jedes Replikat kann Leseanfragen beantworten

m Literatur

@ Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed
ZooKeeper: Wait-free coordination for Internet-scale systems
Proc. of the 2010 USENIX Annual Technical Conf. (ATC '10), S. 145-158, 2010.

Schnittstelle

m Zentrale Operationen

= create [delete Erstellen / Loschen eines Knotens

= exists Priifen auf Existenz eines Knotens

= setData / getData Setzen und Auslesen der Nutzdaten und Metadaten eines Knotens
= getChildren Riickgabe der Pfade von Kindknoten eines Knotens

= sync Warten auf die Bearbeitung aller vorherigen Schreiboperationen

m Persistente Knoten (Regular Nodes)
= Erzeugung durch den Client
= Explizites Loschen durch den Client

m Fliichtige Knoten (Ephemeral Nodes)
= Erzeugung durch den Client unter Angabe des EPHEMERAL-Flag
= Keine Kindknoten
= Loschen
— Automatisches Loschen durch den Dienst, sobald die Verbindung zum Client, der diesen Knoten erstellt hat,
beendet wird oder abbricht
— Anwendungsbeispiel: Erkennen eines Client-Ausfalls
— Explizites Loschen durch den Client

m Sequenzielle Knoten (Sequential Nodes) [siehe vorlesung]

Verwaltung von Nutzdaten

m Grundprinzipien [— Unterschiede zu Dateisystemen]
= Jeder Knoten kann Nutzdaten aufnehmen

— Speicherung von Nutzdaten ist nicht auf Blattknoten des Baums beschrankt
— Kleine Datenmengen, liblicherweise < 1 MB pro Knoten

= Daten werden atomar geschrieben und gelesen

— {S,Ers}etzen der kompletten Nutzdaten eines Knotens beim Schreiben
— Kein partielles Lesen der Nutzdaten

m Versionierung der Nutzdaten

= Schreiben neuer Daten — Inkrementierung der Knoten-Versionsnummer
= Bedingtes Schreiben von Nutzdaten
public Stat setData(String path, byte[] data, int version);

— Speicherung der Nutzdaten data nur, falls die aktuelle Versionsnummer
des Knotens dem Wert version entspricht
— Schreiben ohne Randbedingung: version = -1 setzen

= Kein Zugriff auf altere Versionen moglich

Verwaltung von Metadaten

= Verwaltete Metadaten eines Knotens

Zeitstempel der Erstellung

Zeitstempel der letzten Modifikation

Versionsnummer der Nutzdaten

GroRe der Nutzdaten

Anzahl der Kindknoten

Bei fliichtigen Knoten: ID der Verbindung des ZooKeeper-Clients,
der den Knoten erstellt hat (Ephemeral Owner)

m Abruf der Metadaten eines Knotens

= Kapselung in einem Objekt der Klasse Stat
= Nur in Kombination mit dem Lesen der Nutzdaten maglich

m Implementierungsentscheidung

= Nutz- und Metadaten werden komplett im Hauptspeicher gehalten
= Keine Strategie flir den Fall, dass der Hauptspeicher voll ist

Benachrichtigung iiber Ereignisse

= Problemstellung

= Client wartet darauf, dass ein bestimmtes Ereignis eintritt
= Aktives Nachfragen durch den Client ist im Allgemeinen nicht effizient

m Beobachter (Watcher)

= Registrierung bei Leseoperationen (muss ggf. erneuert werden!)

= Ereignisarten
- Erstellen / Loschen oder Andern der Nutzdaten eines Knotens (exists)
- Andern der Nutzdaten oder Léschen eines Knotens (getData)
— Hinzukommen oder Wegfallen von Kindknoten (getChildren)

= Aufruf durch ZooKeeper-Dienst bei Eintritt bestimmter Ereignisse

m Schnittstelle fiir Beobachter-Objekte

public interface Watcher {
public void process(WatchedEvent event);

}

ZooKeeper

Aufgabe 6

® Umsetzung eines Koordinierungsdienstes
= ZooKeeper-Implementierung von Apache als Vorbild
= Funktionen zum Erstellen, Loschen, Schreiben und Lesen von Knoten
= Bedingtes und unbedingtes Schreiben anhand von Versionsnummer

m Vereinfachte Schnittstelle

public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);

public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);

= Teilaufgaben

= Implementierung als Client-Server-Anwendung
= Zustandsverwaltung inklusive Leseoptimierung von ZooKeeper
— Hilfestellung: Tests fiir Teilfunktionalitaten in MWZooKeeperImplTest bereitgestellt
= Konsistente, passive Replikation unter Zuhilfenahme von Zab
= Unterstiitzung fliichtiger Knoten (optional fiir 5,0 ECTS)

Ausgabeparameter in Java

= Problem
= Methode (z.B. getData()) soll mehr als ein Objekt zuriickgeben
= Nur ein ,echter” Riickgabewert moglich
m Losungsmoglichkeiten
= Einfiihrung eines Hilfsobjekts, das mehrere Riickgabewerte kapselt
= Verwendung von Ausgabeparametern

m Beispiel fiir Ausgabeparameter: ZooKeeper-Methode getbata()
= Aufruf: Ubergabe eines ,leeren” Parameters

MwZooKeeper zooKeeper = new MWZooKeeper([...]);
MWZooKeeperStat stat = new MWZooKeeperStat(); // Leeres Objekt
zooKeeper.getData("/example", stat);
System.out.println("Version: " + stat.getVersion());

Intern: Setzen von Attributen des Ausgabeparameters

public byte[] getData(String path, MWZooKeeperStat stat) {
[...] // Bestimmung der angeforderten Daten
stat.setVersion(currentVersion);
[...] // Setzen weiterer Attribute und Daten-Rueckgabe

Serialisierung & Deserialisierung von Objekten

m Serialisierung & Deserialisierung in Java
= Objekte mussen das Marker-Interface Serializable implementieren
= {S,Des}erialisierung mittels Object{Out,In}putStream-Klassen

m Beispiel: Deserialisierung von Anfragen

// Einmaliges Anlegen des Objekt-Stroms
Socket s = [...]; // Socket der Verbindung
ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

while(true) {
// Empfang und Deserialisierung einer Anfrage
MWZooKeeperRequest request = (MWZooKeeperRequest) ois.readObject();
[...] // Bearbeitung der Anfrage

® Wichtige Hinweise zum Einsatz von Object-Streams:
= Der Konstruktor eines ObjectInputStream blockiert, bis auf der anderen Seite ein
ObjectOutputStream gedffnet wurde = Bei Deadlock Reihenfolge beachten.
= Object-Streams in Java puffern Objekte. Bei Wiederverwendung von Objekten konnen daher alte
Daten iibermittelt werden, wenn der Puffer nicht mit reset() geelert wird.

Replikation

Konsistenzwahrung

Konsistenzwahrung

m Replikation einer zustandsbehafteten Anwendung
= Replikatzustande missen konsistent gehalten werden
= Beispiel fiir inkonsistente Zustande zweier Replikate Ry und Rz
— Zwei Anfragen A; und A,, die einem Knoten /node neue Daten zuweisen

A1: /node—zﬂ/) (\/node 48

g
=
R
— Annahme: A; erreicht Ry friiher als A,, bei Rs ist es umgekehrt
Ry | /node-Daten R | /node-Daten
< init > 0 < init > 0
Ay 47 As 48
Az 48% Ay u7%

m Sicherstellung der Replikatkonsistenz: Alle Replikate vollziehen Zustandsanderungen
in derselben Reihenfolge
m Replikationsvarianten
= Aktiv: Anfragen an alle Replikate verteilen und dort ausfiihren
= Passiv (Zookeeper): Anfiihrer bearbeitet Anfragen und verteilt Zustandsanderungen

6.2:1

Replikation in ZooKeeper

m Gruppe von ZooKeeper-Replikaten
= 2f + 1 Replikate zur Tolerierung von hochstens f Fehlern bzw. Ausfallen

= Jedes Replikat nimmt Verbindungen von Clients an

m Leader-Follower-Ansatz fiir stark konsistente Schreibanfragen
= Follower leitet Anfrage an den Leader weiter
= Leader bearbeitet Anfrage und schreibt Anderungen in Zustandstransaktion
= Fehlerfall: Erstellung einer Fehlertransaktion [Bsp.: Zu l6schender Knoten existiert nicht.]
= Total Order Broadcast verteilt Transaktionen in vom Leader vorgegebener Reihenfolge
= Transaktionsauslieferung erst nach Bestatigung durch Mehrheit der Replikate
= Konsistente Ausfiihrung ausgelieferter Transaktionen auf allen Replikaten

Client R
Request SelpRlns
applyTxn()
forwardRequest() deliverTxn() ¥

Follower 4| Processing
processWriteRequest() applyTxn()

Request Txn Reliable = =
Leader > Execution Total Order ~| Processing
deliverRequest() ? proposeTxn() Broadcast . o

createzXID() Sl nyn
Follower 3| Processing

deliverTxn()

6.2:2

Anfrageverarbeitung

Zustand des Anfiihrers Zustand eines Followers

/ / / /
Version: 0 Version: 0
/node a7 /node [f7
Version: 2 Version: 2
"L"2?I "42"
foo . foo .
/ Version: 4 / Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node j v
Version: 2

Client B: setbata("/node", "48", 1) i

A Das Beispiel wird im zugehorigen Video besprochen

6.2:2

Optimierung fiir lesende Anfragen

m Einsicht: Leseanfragen haben keinen Einfluss auf Replikatkonsistenz

m Optimierte Bearbeitung lesender Anfragen in ZooKeeper

= AusschlieBlich durch direkt mit Client verbundenem Replikat
= Sofort nach Erhalt, d. h. unabhangig von schreibenden Anfragen
= Aber: Unter Garantie von FIFO fiir samtliche Anfragen eines Clients

m Vorteile

= Einsparung von Ressourcen
= Kiirzere Antwortzeiten

= Konsequenzen

= Antworten auf Leseanfragen sind abhangig vom bearbeitenden Replikat
= Riickgabe von ,veralteten” Daten und Versionsnummern moglich

® sync()-Methode

= Erzwingen eines Synchronisationspunkts
= Wartet bis alle vor dem sync() empfangenen Anfragen bearbeitet wurden

Zustandsverwaltung im Anfiihrer

= Problemstellung
= Leseanfragen dirfen nur konsistenten, bestatigten Zustand zuriickgeben
= Unbestatigte Zustandsanderungen konnten im Fehlerfall noch verloren gehen
= Schreibanfragen missen aber auf aktuellem, unbestatigtem Zustand arbeiten
= Anflihrer muss beide Zustande gleichzeitig verwalten

m Effizienter Losungsansatz

= Bestatigter Zustand Zp
— Verwaltung des vollstandigen Baumes von Datenknoten
— Aktualisierung durch Einspielen bestatigter, total geordneter Transaktionen
— Grundlage fiir die Bearbeitung rein lesender Anfragen

= Aktueller Zustand Z,
— Verwaltung in Form einer Sammlung von gegeniiber Zustand Zg gednderten Knoten
— Modifikation durch Bearbeitung von schreibenden Anfragen
— Basis fiir die Erstellung von Zustandstransaktionen

m Mechanismus zur Garbage-Collection
= Vergabe eindeutiger IDs (zxids) an Zustandsanderungen/-transaktionen
= Einspielen einer Transaktion — Loschen der unbestatigten Anderung

Anfrageverarbeitung ohne aktuellen Zustand

Bestatigt

Aktuell
/]
Version: 0
Zustand "8
des e Version: 2
Anfiihrers -
"L"2?I
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node . v
Version: 2
. "48" -
Client B: setbata("/node", "48", 1) node .
setbatal /node / Version: 2 v n

A Das Beispiel wird im zugehorigen Video besprochen

Anfrageverarbeitung mit aktuellem Zustand

Bestatigt Aktuell
/]
d Version: 0
Zustan —
des /node @ L /node [f7
.. Version: 1 Version: 2
Anfuhrers
"L"2"
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client

Client A: setbata("/node", "47", 1)

Client B: setbata("/node", "48", 1)

” ”

47

/node .
Version: 2

A Das Beispiel wird im zugehorigen Video besprochen

Garbage-Collection von Transaktionen

Bestatigt Aktuell
/]
J Version: 0
Zustan W, o
des [node @ L /node 47 @
.. Version: 1 Version: 2
Anflhrers
"L"2VI
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node "[f7" @
Version: 2

Client B: setbata("/node", "48", 1) @

A Das Beispiel wird im zugehorigen Video besprochen

Replikation

Zab

Zab

Uberblick

m Protokoll fiir zuverlassigen und geordneten Nachrichtenaustausch

= Von Apache ZooKeeper verwendet, aber nicht modular integriert
= Nachtragliche eigenstandige Implementierung als Zab

= Modifikation zur Anpassung an die Ubungsaufgabe

= Ubungsfolien sind Dokumentation der modifizierten Bibliothek

m Totally Ordered Broadcast Protocol mit zwei Betriebsmodi
= Normalbetrieb (Broadcast)

- Bereitstellen einer eindeutigen Sequenznummer (zxid) fiir jede Transaktion
— Zuverlassige Verteilung aller Zustandstransaktionen in Reihenfolge der Sequenznummern
= Wahl eines neuen Anfiihrers (Recovery)

— Szenarien: Ausfall des Anfiihrers, Anfiihrer hat keine Mehrheit mehr
— Sicherstellung der Eindeutigkeit von Sequenznummern

m Literatur

@ Benjamin Reed and Flavio P. Junqueira
A simple totally ordered broadcast protocol
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, pages 1-6, 2008.

Zab

Implementierung

m Reprasentation eines Zab-Knotens in der abstrakten Basisklasse zab
® Varianten von Zab-Teilnehmern

= Singlezab Einzelne (lokale) Instanz, zum Testen
= MultizZab Teil einer verteilten Gruppe aus mindestens 3 Replikaten
m Methoden
public void startup();
public void shutdown();
public void forwardRequest(Serializable request);
public long createzXID();
public void proposeTxn(Serializable txn, long zxid);
= startup() Starten eines Zab-Knotens
= shutdown() Stoppen eines Zab-Knotens
= forwardRequest() Weiterleiten einer Anfrage an den Anfiihrer
= createzxIn() Anfordern der nachsten Sequenznummer (zxid)
= proposeTxn() Vorschlagen einer zu ordnenden Transaktion

— Aufruf muss in Reihenfolge der zxids erfolgen
— createzXID() und proposeTXN() immer als Paar aufrufen

[Hinweis: Da Zab in den ersten 4 Bytes einer zxid eine Epochennummer codiert, fiihrt eine Neuwahl des Anfiihrers
zu einem Sprung in den von createZXID() erzeugten zxid-Werten.]

6.2:6

Zab Nachrichtenempfang

m Empfang von Nachrichten Uber die Schnittstelle zabcallback
= Methoden
public void deliverRequest(Serializable request);

public void deliverTxn(Serializable txn, long zxid);
public void status(ZabStatus status, String leader);

= deliverRequest() Ubergabe einer dem Anfiihrer weitergeleiteten Anfrage
= deliverTxn() Zustellung der ndchsten geordneten Transaktion
= status() Benachrichtigung iiber Anderungen des Status

m Status eines Zab-Knotens (zabstatus)

= LOOKING Temporarer Zustand wahrend der Anfiihrerwahl
= FOLLOWING Lokales Replikat ist Follower
= LEADING Lokales Replikat ist Anfiihrer

m Hinweise

= Aufrufe von deliverRequest() konnen nebenldufig erfolgen

= Geordnete Transaktionen werden dagegen durch Zab sequentiell zugestellt

= Alle von einer Mehrheit (f + 1) der 2f + 1 Replikate bestatigten Transaktionen
werden auf allen korrekten Replikaten zugestellt

Zab

m (bergabe eines properties-Objekts an den zab-Konstruktor

m Parameter

myid ID des lokalen Replikats
peer<i> Zab-Adresse des Replikats i

m |dentische Konfiguration der peer<i>-Adressen auf allen Replikaten notig

= Beispielkonfiguration eines multizab-Knotens (insgesamt 3 Replikate)
= Zusammenstellung der Konfiguration flir ein Replikat mit der ID 1

Properties zabProperties = new Properties();
zabProperties.setProperty("myid", String.valueOf(1));
zabProperties.setProperty("peerl”, "localhost:12345");
zabProperties.setProperty("peer2", "localhost:12346");
zabProperties.setProperty("peer3", "localhost:12347");

Initialisierung eines Zab-Knotens

ZabCallback zabListener = [...];
Zab zabNode = new MultiZab(zabProperties, zablListener);

Konfiguration

6.2:8

Logging mit logsj

m Zab verwendet intern die Logging-API log4j

= Konfiguration z.B. durch eine Datei log4j2.properties, die im Classpath abgelegt sein muss

= Granularitatsstufen: OFF, ERROR, WARN, INFO, DEBUG, ALL, ...

= Dokumentation unter:
https://logging.apache.org/log4j/2.x/manual/configuration.html

m Beispiele fiir logsj-Konfigurationen

= Ausgabe der Log-Meldungen auf der Konsole (Stufe: DEBUG)

rootLogger = DEBUG, CONSOLE
appender.CONSOLE.name = CONSOLE
appender.CONSOLE.type = Console
appender.CONSOLE.layout.type = PatternlLayout

Ausgabe der Log-Meldungen in der Datei zab.log (Stufe: INFO)

rootLogger=INFO, FILE

appender.FILE.name = FILE
appender.FILE.type = File
appender.FILE.fileName = zab.log
appender.FILE.layout.type = PatternlLayout

https://logging.apache.org/log4j/2.x/manual/configuration.html

	ZooKeeper
	Apache ZooKeeper
	Aufgabe 6

	Replikation
	Konsistenzwahrung
	Zab

