Middleware - Cloud Computing

ZooKeeper

- Ubung

Wintersemester 2025/26

Paul Bergmann, Christian Berger
Friedrich-Alexander-Universitdt Erlangen-Niirnberg

Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

O Lehrstuhl fiir Informatik 4

Systemsoftware

|E/\ Friedrich-Alexander-Universitat
| /l\ J

https://sys.cs.fau.de

Uberblick

ZooKeeper
Apache ZooKeeper

Aufgabe 6

ZooKeeper

Apache ZooKeeper

Apache ZooKeeper

m Koordinierungsdienst fiir verteilte Systeme
= Anfangs entwickelt bei Yahoo! Research, jetzt Apache-Projekt
= Im Produktiveinsatz unter anderem fiir:
— Anflihrerwahl: z. B. Apache HDFS
— Konfigurationsdaten: z. B. Kafka
= Verwaltung von Daten
= Hierarchischer Namensraum: Knoten in einer Baumstruktur
= Knoten sind eindeutig identifizierbar und konnen Nutzdaten aufnehmen
= Keine expliziten Sperren (Locks), aber Gewahrleistung bestimmter Ordnungen
bei konkurrierenden Zugriffen

= Fehlertoleranz
= Replikation des Diensts auf mehrere Rechner (Replikate)
= Replikatkonsistenz mittels Leader-Follower-Ansatz
= Leseoptimierung: Jedes Replikat kann Leseanfragen beantworten

m Literatur

@ Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed
ZooKeeper: Wait-free coordination for Internet-scale systems
Proc. of the 2010 USENIX Annual Technical Conf. (ATC '10), S. 145-158, 2010.

Schnittstelle

m Zentrale Operationen

= create [delete Erstellen / Loschen eines Knotens

= exists Priifen auf Existenz eines Knotens

= setData / getData Setzen und Auslesen der Nutzdaten und Metadaten eines Knotens
= getChildren Riickgabe der Pfade von Kindknoten eines Knotens

= sync Warten auf die Bearbeitung aller vorherigen Schreiboperationen

m Persistente Knoten (Regular Nodes)
= Erzeugung durch den Client
= Explizites Loschen durch den Client

= Fliichtige Knoten (Ephemeral Nodes)
= Erzeugung durch den Client unter Angabe des EPHEMERAL-Flag
= Keine Kindknoten
= Loschen
— Automatisches Loschen durch den Dienst, sobald die Verbindung zum Client, der diesen Knoten erstellt hat,
beendet wird oder abbricht
— Anwendungsbeispiel: Erkennen eines Client-Ausfalls
— Explizites Loschen durch den Client

= Sequenzielle Knoten (Sequential Nodes) [siehe Vorlesung]

Verwaltung von Nutzdaten

m Grundprinzipien [— Unterschiede zu Dateisystemen]
= Jeder Knoten kann Nutzdaten aufnehmen

— Speicherung von Nutzdaten ist nicht auf Blattknoten des Baums beschrankt
— Kleine Datenmengen, liblicherweise < 1 MB pro Knoten

= Daten werden atomar geschrieben und gelesen

— {S,Ers}etzen der kompletten Nutzdaten eines Knotens beim Schreiben
— Kein partielles Lesen der Nutzdaten

m Versionierung der Nutzdaten

= Schreiben neuer Daten — Inkrementierung der Knoten-Versionsnummer
= Bedingtes Schreiben von Nutzdaten
public Stat setData(String path, byte[] data, int version);

— Speicherung der Nutzdaten data nur, falls die aktuelle Versionsnummer
des Knotens dem Wert version entspricht
— Schreiben ohne Randbedingung: version = -1 setzen

= Kein Zugriff auf altere Versionen moglich

Verwaltung von Metadaten

= Verwaltete Metadaten eines Knotens

Zeitstempel der Erstellung

Zeitstempel der letzten Modifikation

Versionsnummer der Nutzdaten

GroRe der Nutzdaten

Anzahl der Kindknoten

Bei fliichtigen Knoten: ID der Verbindung des ZooKeeper-Clients,
der den Knoten erstellt hat (Ephemeral Owner)

m Abruf der Metadaten eines Knotens

= Kapselung in einem Objekt der Klasse Stat
= Nur in Kombination mit dem Lesen der Nutzdaten maglich

m Implementierungsentscheidung

= Nutz- und Metadaten werden komplett im Hauptspeicher gehalten
= Keine Strategie flir den Fall, dass der Hauptspeicher voll ist

Benachrichtigung iiber Ereignisse

= Problemstellung

= Client wartet darauf, dass ein bestimmtes Ereignis eintritt
= Aktives Nachfragen durch den Client ist im Allgemeinen nicht effizient

m Beobachter (Watcher)

= Registrierung bei Leseoperationen (muss ggf. erneuert werden!)

= Ereignisarten
- Erstellen / Loschen oder Andern der Nutzdaten eines Knotens (exists)
- Andern der Nutzdaten oder Léschen eines Knotens (getData)
— Hinzukommen oder Wegfallen von Kindknoten (getChildren)

= Aufruf durch ZooKeeper-Dienst bei Eintritt bestimmter Ereignisse

m Schnittstelle fiir Beobachter-Objekte

public interface Watcher {
public void process(WatchedEvent event);

}

ZooKeeper

Aufgabe 6

® Umsetzung eines Koordinierungsdienstes
= ZooKeeper-Implementierung von Apache als Vorbild
= Funktionen zum Erstellen, Loschen, Schreiben und Lesen von Knoten
= Bedingtes und unbedingtes Schreiben anhand von Versionsnummer

m Vereinfachte Schnittstelle

public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);

public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);

= Teilaufgaben

= Implementierung als Client-Server-Anwendung
= Zustandsverwaltung inklusive Leseoptimierung von ZooKeeper
— Hilfestellung: Tests fiir Teilfunktionalitaten in MWZooKeeperImplTest bereitgestellt
= Konsistente, passive Replikation unter Zuhilfenahme von Zab
= Unterstiitzung fliichtiger Knoten (optional fiir 5,0 ECTS)

Ausgabeparameter in Java

= Problem
= Methode (z.B. getData()) soll mehr als ein Objekt zuriickgeben
= Nur ein ,echter” Riickgabewert moglich
m Losungsmoglichkeiten
= Einfiihrung eines Hilfsobjekts, das mehrere Riickgabewerte kapselt
= Verwendung von Ausgabeparametern

m Beispiel fiir Ausgabeparameter: ZooKeeper-Methode getbata()
= Aufruf: Ubergabe eines ,leeren” Parameters

MwZooKeeper zooKeeper = new MWZooKeeper([...]);
MWZooKeeperStat stat = new MWZooKeeperStat(); // Leeres Objekt
zooKeeper.getData("/example", stat);
System.out.println("Version: " + stat.getVersion());

Intern: Setzen von Attributen des Ausgabeparameters

public byte[] getData(String path, MWZooKeeperStat stat) {
[...] // Bestimmung der angeforderten Daten
stat.setVersion(currentVersion);
[...] // Setzen weiterer Attribute und Daten-Rueckgabe

Serialisierung & Deserialisierung von Objekten

m Serialisierung & Deserialisierung in Java
= Objekte miissen das Marker-Interface Serializable implementieren
= {S,Des}erialisierung mittels object{out, In}putStream-Klassen

m Beispiel: Deserialisierung von Anfragen

// Einmaliges Anlegen des Objekt-Stroms
Socket s = [...]; // Socket der Verbindung
ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

while(true) {
// Empfang und Deserialisierung einer Anfrage

MWZooKeeperRequest request = (MWZooKeeperRequest) ois.readObject();

[...] // Bearbeitung der Anfrage

= Wichtige Hinweise zum Einsatz von Object-Streams:
= Der Konstruktor eines ObjectInputStream blockiert, bis auf der anderen Seite ein
ObjectOutputStream geoffnet wurde = Bei Deadlock Reihenfolge beachten.
= Object-Streams in Java puffern Objekte. Bei Wiederverwendung von Objekten konnen daher alte
Daten iibermittelt werden, wenn der Puffer nicht mit reset() geelert wird.

	ZooKeeper
	Apache ZooKeeper
	Aufgabe 6

