
Middleware – Cloud Computing – Übung
ZooKeeper

Wintersemester 2025/26

Paul Bergmann, Christian Berger

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

Lehrstuhl für Informatik 4
Systemsoftware

https://sys.cs.fau.de


Überblick

ZooKeeper

Apache ZooKeeper

Aufgabe 6



ZooKeeper

Apache ZooKeeper



Apache ZooKeeper

Koordinierungsdienst für verteilte Systeme
Anfangs entwickelt bei Yahoo! Research, jetzt Apache-Projekt
Im Produktiveinsatz unter anderem für:

Anführerwahl: z. B. Apache HDFS
Konfigurationsdaten: z. B. Kafka

Verwaltung von Daten
Hierarchischer Namensraum: Knoten in einer Baumstruktur
Knoten sind eindeutig identifizierbar und können Nutzdaten aufnehmen
Keine expliziten Sperren (Locks), aber Gewährleistung bestimmter Ordnungen
bei konkurrierenden Zugriffen

Fehlertoleranz
Replikation des Diensts auf mehrere Rechner (Replikate)
Replikatkonsistenz mittels Leader-Follower-Ansatz
Leseoptimierung: Jedes Replikat kann Leseanfragen beantworten

Literatur
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed
ZooKeeper: Wait-free coordination for Internet-scale systems
Proc. of the 2010 USENIX Annual Technical Conf. (ATC ’10), S. 145–158, 2010.

1



Schnittstelle

Zentrale Operationen
create / delete Erstellen / Löschen eines Knotens
exists Prüfen auf Existenz eines Knotens
setData / getData Setzen und Auslesen der Nutzdaten und Metadaten eines Knotens
getChildren Rückgabe der Pfade von Kindknoten eines Knotens
sync Warten auf die Bearbeitung aller vorherigen Schreiboperationen

Persistente Knoten (Regular Nodes)
Erzeugung durch den Client
Explizites Löschen durch den Client

Flüchtige Knoten (Ephemeral Nodes)
Erzeugung durch den Client unter Angabe des EPHEMERAL-Flag
Keine Kindknoten
Löschen

Automatisches Löschen durch den Dienst, sobald die Verbindung zum Client, der diesen Knoten erstellt hat,
beendet wird oder abbricht

→ Anwendungsbeispiel: Erkennen eines Client-Ausfalls
Explizites Löschen durch den Client

Sequenzielle Knoten (Sequential Nodes) [Siehe Vorlesung]
2



Verwaltung von Nutzdaten

Grundprinzipien [→ Unterschiede zu Dateisystemen]
Jeder Knoten kann Nutzdaten aufnehmen

Speicherung von Nutzdaten ist nicht auf Blattknoten des Baums beschränkt
Kleine Datenmengen, üblicherweise < 1MB pro Knoten

Daten werden atomar geschrieben und gelesen
{S,Ers}etzen der kompletten Nutzdaten eines Knotens beim Schreiben
Kein partielles Lesen der Nutzdaten

Versionierung der Nutzdaten
Schreiben neuer Daten→ Inkrementierung der Knoten-Versionsnummer
Bedingtes Schreiben von Nutzdaten
public Stat setData(String path, byte[] data, int version);

Speicherung der Nutzdaten data nur, falls die aktuelle Versionsnummer
des Knotens dem Wert version entspricht
Schreiben ohne Randbedingung: version = -1 setzen

Kein Zugriff auf ältere Versionen möglich

3



Verwaltung von Metadaten

Verwaltete Metadaten eines Knotens
Zeitstempel der Erstellung
Zeitstempel der letzten Modifikation
Versionsnummer der Nutzdaten
Größe der Nutzdaten
Anzahl der Kindknoten
Bei flüchtigen Knoten: ID der Verbindung des ZooKeeper-Clients,
der den Knoten erstellt hat (Ephemeral Owner)
...

Abruf der Metadaten eines Knotens
Kapselung in einem Objekt der Klasse Stat
Nur in Kombination mit dem Lesen der Nutzdaten möglich

Implementierungsentscheidung
Nutz- und Metadaten werden komplett im Hauptspeicher gehalten
Keine Strategie für den Fall, dass der Hauptspeicher voll ist

4



Benachrichtigung über Ereignisse

Problemstellung
Client wartet darauf, dass ein bestimmtes Ereignis eintritt
Aktives Nachfragen durch den Client ist im Allgemeinen nicht effizient

Beobachter (Watcher)
Registrierung bei Leseoperationen (muss ggf. erneuert werden!)
Ereignisarten

Erstellen / Löschen oder Ändern der Nutzdaten eines Knotens (exists)
Ändern der Nutzdaten oder Löschen eines Knotens (getData)
Hinzukommen oder Wegfallen von Kindknoten (getChildren)

Aufruf durch ZooKeeper-Dienst bei Eintritt bestimmter Ereignisse

Schnittstelle für Beobachter-Objekte
public interface Watcher {

public void process(WatchedEvent event);
}

5



ZooKeeper

Aufgabe 6



Aufgabe 6

Umsetzung eines Koordinierungsdienstes
ZooKeeper-Implementierung von Apache als Vorbild
Funktionen zum Erstellen, Löschen, Schreiben und Lesen von Knoten

⇒ Bedingtes und unbedingtes Schreiben anhand von Versionsnummer

Vereinfachte Schnittstelle
public String create(String path, byte[] data, boolean ephemeral);
public void delete(String path, int version);
public MWZooKeeperStat setData(String path, byte[] data, int version);
public byte[] getData(String path, MWZooKeeperStat stat);

Teilaufgaben
Implementierung als Client-Server-Anwendung
Zustandsverwaltung inklusive Leseoptimierung von ZooKeeper

↪→ Hilfestellung: Tests für Teilfunktionalitäten in MWZooKeeperImplTest bereitgestellt
Konsistente, passive Replikation unter Zuhilfenahme von Zab
Unterstützung flüchtiger Knoten (optional für 5,0 ECTS)

6



Ausgabeparameter in Java

Problem
Methode (z. B. getData()) soll mehr als ein Objekt zurückgeben
Nur ein „echter“ Rückgabewert möglich

Lösungsmöglichkeiten
Einführung eines Hilfsobjekts, das mehrere Rückgabewerte kapselt
Verwendung von Ausgabeparametern

Beispiel für Ausgabeparameter: ZooKeeper-Methode getData()
Aufruf: Übergabe eines „leeren“ Parameters
MWZooKeeper zooKeeper = new MWZooKeeper([...]);
MWZooKeeperStat stat = new MWZooKeeperStat(); // Leeres Objekt
zooKeeper.getData("/example", stat);
System.out.println("Version:␣" + stat.getVersion());

Intern: Setzen von Attributen des Ausgabeparameters
public byte[] getData(String path, MWZooKeeperStat stat) {

[...] // Bestimmung der angeforderten Daten
stat.setVersion(currentVersion);
[...] // Setzen weiterer Attribute und Daten-Rueckgabe

}

7



Serialisierung & Deserialisierung von Objekten

Serialisierung & Deserialisierung in Java
Objekte müssen das Marker-Interface Serializable implementieren
{S,Des}erialisierung mittels Object{Out,In}putStream-Klassen

Beispiel: Deserialisierung von Anfragen
// Einmaliges Anlegen des Objekt-Stroms
Socket s = [...]; // Socket der Verbindung
ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

while(true) {
// Empfang und Deserialisierung einer Anfrage
MWZooKeeperRequest request = (MWZooKeeperRequest) ois.readObject();
[...] // Bearbeitung der Anfrage

}

Wichtige Hinweise zum Einsatz von Object-Streams:
Der Konstruktor eines ObjectInputStream blockiert, bis auf der anderen Seite ein
ObjectOutputStream geöffnet wurde⇒ Bei Deadlock Reihenfolge beachten.
Object-Streams in Java puffern Objekte. Bei Wiederverwendung von Objekten können daher alte
Daten übermittelt werden, wenn der Puffer nicht mit reset() geelert wird.

8


	ZooKeeper
	Apache ZooKeeper
	Aufgabe 6


