
Middleware – Cloud Computing – Übung
Konsistente Replikation

Wintersemester 2025/26

Paul Bergmann, Christian Berger

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

Lehrstuhl für Informatik 4
Systemsoftware

https://sys.cs.fau.de


Überblick

Replikation

Konsistenzwahrung

Zab



Replikation

Konsistenzwahrung



Konsistenzwahrung

Replikation einer zustandsbehafteten Anwendung
Replikatzustände müssen konsistent gehalten werden
Beispiel für inkonsistente Zustände zweier Replikate R1 und R2

Zwei Anfragen A1 und A2 , die einem Knoten /node neue Daten zuweisen



A1: /node = 47



A2: /node = 48
R1


R2

Annahme: A1 erreicht R1 früher als A2 , bei R2 ist es umgekehrt
R1 /node-Daten

< init > ∅
A1 47
A2 48 

R2 /node-Daten
< init > ∅

A2 48
A1 47 

Sicherstellung der Replikatkonsistenz: Alle Replikate vollziehen Zustandsänderungen
in derselben Reihenfolge
Replikationsvarianten

Aktiv: Anfragen an alle Replikate verteilen und dort ausführen
Passiv (Zookeeper): Anführer bearbeitet Anfragen und verteilt Zustandsänderungen

1



Replikation in ZooKeeper

Gruppe von ZooKeeper-Replikaten
2f+ 1 Replikate zur Tolerierung von höchstens f Fehlern bzw. Ausfällen
Jedes Replikat nimmt Verbindungen von Clients an

Leader-Follower-Ansatz für stark konsistente Schreibanfragen
Follower leitet Anfrage an den Leader weiter
Leader bearbeitet Anfrage und schreibt Änderungen in Zustandstransaktion
Fehlerfall: Erstellung einer Fehlertransaktion [Bsp.: Zu löschender Knoten existiert nicht.]
Total Order Broadcast verteilt Transaktionen in vom Leader vorgegebener Reihenfolge
Transaktionsauslieferung erst nach Bestätigung durch Mehrheit der Replikate
Konsistente Ausführung ausgelieferter Transaktionen auf allen Replikaten

Client

Follower

Leader

Follower

Request

Execution
Request Reliable

Total Order
Broadcast

Txn

Processing

Processing

Processing

Txn
Txn

Txn

Response

forwardRequest()

deliverRequest()

createZXID()

processWriteRequest()

proposeTxn()

deliverTxn()

...

deliverTxn()

applyTxn()

applyTxn()

applyTxn()

2



Anfrageverarbeitung

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node 

2  



 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
2



Optimierung für lesende Anfragen

Einsicht: Leseanfragen haben keinen Einfluss auf Replikatkonsistenz

Optimierte Bearbeitung lesender Anfragen in ZooKeeper
Ausschließlich durch direkt mit Client verbundenem Replikat
Sofort nach Erhalt, d. h. unabhängig von schreibenden Anfragen
Aber: Unter Garantie von FIFO für sämtliche Anfragen eines Clients

Vorteile
Einsparung von Ressourcen
Kürzere Antwortzeiten

Konsequenzen
Antworten auf Leseanfragen sind abhängig vom bearbeitenden Replikat
Rückgabe von „veralteten“ Daten und Versionsnummern möglich

sync()-Methode
Erzwingen eines Synchronisationspunkts
Wartet bis alle vor dem sync() empfangenen Anfragen bearbeitet wurden

3



Zustandsverwaltung im Anführer

Problemstellung
Leseanfragen dürfen nur konsistenten, bestätigten Zustand zurückgeben

⇒ Unbestätigte Zustandsänderungen könnten im Fehlerfall noch verloren gehen
Schreibanfragen müssen aber auf aktuellem, unbestätigtem Zustand arbeiten

⇒ Anführer muss beide Zustände gleichzeitig verwalten

Effizienter Lösungsansatz
Bestätigter Zustand ZB

Verwaltung des vollständigen Baumes von Datenknoten
Aktualisierung durch Einspielen bestätigter, total geordneter Transaktionen
Grundlage für die Bearbeitung rein lesender Anfragen

Aktueller Zustand ZA
Verwaltung in Form einer Sammlung von gegenüber Zustand ZB geänderten Knoten
Modifikation durch Bearbeitung von schreibenden Anfragen
Basis für die Erstellung von Zustandstransaktionen

Mechanismus zur Garbage-Collection
Vergabe eindeutiger IDs (zxids) an Zustandsänderungen/-transaktionen
Einspielen einer Transaktion→ Löschen der unbestätigten Änderung

4



Anfrageverarbeitung ohne aktuellen Zustand

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1/node ”47”
Version: 2

/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1/node ”47”
Version: 2/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1) /node ”48”
Version: 2

/node  2

 



 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
4



Anfrageverarbeitung mit aktuellem Zustand

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1 

Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node 

2  

 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
4



Garbage-Collection von Transaktionen

Bestätigt

Zustand des Anführers

Aktuell

Zustand eines Followers

Zustand
des

Anführers

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2/node ”48”
Version: 2

/foo
”42”

Version: 4

/ ∅
Version: 0

/node ∅
Version: 1

/node ”47”
Version: 2

/node ”47”
Version: 2

1

/foo
”42”

Version: 4

Anfrage Transaktion Antwort an Client

Client A: setData("/node", "47", 1) /node ”47”
Version: 2

1



Client B: setData("/node", "48", 1)

/node ”48”
Version: 2

/node  2

 

 Optimierung für Leseanfragen fehlt hier noch!

 Das Beispiel wird im zugehörigen Video besprochen
4



Replikation

Zab



Zab Überblick

Protokoll für zuverlässigen und geordneten Nachrichtenaustausch
Von Apache ZooKeeper verwendet, aber nicht modular integriert
Nachträgliche eigenständige Implementierung als Zab
Modifikation zur Anpassung an die Übungsaufgabe
Übungsfolien sind Dokumentation der modifizierten Bibliothek

Totally Ordered Broadcast Protocol mit zwei Betriebsmodi
Normalbetrieb (Broadcast)

Bereitstellen einer eindeutigen Sequenznummer (zxid) für jede Transaktion
Zuverlässige Verteilung aller Zustandstransaktionen in Reihenfolge der Sequenznummern

Wahl eines neuen Anführers (Recovery)
Szenarien: Ausfall des Anführers, Anführer hat keine Mehrheit mehr
Sicherstellung der Eindeutigkeit von Sequenznummern

Literatur
Benjamin Reed and Flavio P. Junqueira
A simple totally ordered broadcast protocol
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, pages 1-6, 2008.

5



Zab Implementierung

Repräsentation eines Zab-Knotens in der abstrakten Basisklasse Zab
Varianten von Zab-Teilnehmern

SingleZab Einzelne (lokale) Instanz, zum Testen
MultiZab Teil einer verteilten Gruppe aus mindestens 3 Replikaten

Methoden
public void startup();
public void shutdown();
public void forwardRequest(Serializable request);
public long createZXID();
public void proposeTxn(Serializable txn, long zxid);

startup() Starten eines Zab-Knotens
shutdown() Stoppen eines Zab-Knotens
forwardRequest() Weiterleiten einer Anfrage an den Anführer
createZXID() Anfordern der nächsten Sequenznummer (zxid)
proposeTxn() Vorschlagen einer zu ordnenden Transaktion

→ Aufruf muss in Reihenfolge der zxids erfolgen
→ createZXID() und proposeTXN() immer als Paar aufrufen

[Hinweis: Da Zab in den ersten 4 Bytes einer zxid eine Epochennummer codiert, führt eine Neuwahl des Anführers
zu einem Sprung in den von createZXID() erzeugten zxid-Werten.]

6



Zab Nachrichtenempfang

Empfang von Nachrichten über die Schnittstelle ZabCallback

Methoden
public void deliverRequest(Serializable request);
public void deliverTxn(Serializable txn, long zxid);
public void status(ZabStatus status, String leader);

deliverRequest() Übergabe einer dem Anführer weitergeleiteten Anfrage
deliverTxn() Zustellung der nächsten geordneten Transaktion
status() Benachrichtigung über Änderungen des Status

Status eines Zab-Knotens (ZabStatus)
LOOKING Temporärer Zustand während der Anführerwahl
FOLLOWING Lokales Replikat ist Follower
LEADING Lokales Replikat ist Anführer

Hinweise
Aufrufe von deliverRequest() können nebenläufig erfolgen
Geordnete Transaktionen werden dagegen durch Zab sequentiell zugestellt
Alle von einer Mehrheit (f+ 1) der 2f+ 1 Replikate bestätigten Transaktionen
werden auf allen korrekten Replikaten zugestellt

7



Zab Konfiguration

Übergabe eines Properties-Objekts an den Zab-Konstruktor
Parameter

myid ID des lokalen Replikats
peer<i> Zab-Adresse des Replikats i
...

Identische Konfiguration der peer<i>-Adressen auf allen Replikaten nötig
Beispielkonfiguration eines MultiZab-Knotens (insgesamt 3 Replikate)

Zusammenstellung der Konfiguration für ein Replikat mit der ID 1

Properties zabProperties = new Properties();
zabProperties.setProperty("myid", String.valueOf(1));
zabProperties.setProperty("peer1", "localhost:12345");
zabProperties.setProperty("peer2", "localhost:12346");
zabProperties.setProperty("peer3", "localhost:12347");

Initialisierung eines Zab-Knotens

ZabCallback zabListener = [...];
Zab zabNode = new MultiZab(zabProperties, zabListener);

8



Zab Logging mit log4j 2

Zab verwendet intern die Logging-API log4j
Konfiguration z.B. durch eine Datei log4j2.properties, die im Classpath abgelegt sein muss
Granularitätsstufen: OFF, ERROR, WARN, INFO, DEBUG, ALL, ...
Dokumentation unter:
https://logging.apache.org/log4j/2.x/manual/configuration.html

Beispiele für log4j-Konfigurationen
Ausgabe der Log-Meldungen auf der Konsole (Stufe: DEBUG)

rootLogger = DEBUG, CONSOLE
appender.CONSOLE.name = CONSOLE
appender.CONSOLE.type = Console
appender.CONSOLE.layout.type = PatternLayout

Ausgabe der Log-Meldungen in der Datei zab.log (Stufe: INFO)

rootLogger=INFO, FILE
appender.FILE.name = FILE
appender.FILE.type = File
appender.FILE.fileName = zab.log
appender.FILE.layout.type = PatternLayout

9

https://logging.apache.org/log4j/2.x/manual/configuration.html

	Replikation
	Konsistenzwahrung
	Zab


