Middleware - Cloud Computing

Konsistente Replikation

- Ubung

Wintersemester 2025/26

Paul Bergmann, Christian Berger
Friedrich-Alexander-Universitdt Erlangen-Niirnberg

Lehrstuhl Informatik 4 (Systemsoftware)

https://sys.cs.fau.de

O Lehrstuhl fiir Informatik 4

Systemsoftware

|E/\ Friedrich-Alexander-Universitat
| /l\ J

https://sys.cs.fau.de

Uberblick

Replikation
Konsistenzwahrung

Zab

Replikation

Konsistenzwahrung

Konsistenzwahrung

m Replikation einer zustandsbehafteten Anwendung
= Replikatzustande miissen konsistent gehalten werden
= Beispiel fiir inkonsistente Zustande zweier Replikate Ry und Ro
— Zwei Anfragen A; und A», die einem Knoten /node neue Daten zuweisen

A1: /node =z.7/) E (\Az:/node =48
) Ry -)

=
=
R
— Annahme: A; erreicht Ry friiher als A, bei Ry ist es umgekehrt
Ry | /node-Daten R | /node-Daten
< init > 0 < init > 0
Ay 47 Aa 48
Ao 484 Ay 47

m Sicherstellung der Replikatkonsistenz: Alle Replikate vollziehen Zustandsanderungen

in derselben Reihenfolge
m Replikationsvarianten
= Aktiv: Anfragen an alle Replikate verteilen und dort ausfiihren
= Passiv (Zookeeper): Anflihrer bearbeitet Anfragen und verteilt Zustandsanderungen

Replikation in ZooKeeper

m Gruppe von ZooKeeper-Replikaten
= 2f + 1 Replikate zur Tolerierung von hochstens f Fehlern bzw. Ausfallen

= Jedes Replikat nimmt Verbindungen von Clients an

m Leader-Follower-Ansatz fiir stark konsistente Schreibanfragen
= Follower leitet Anfrage an den Leader weiter
= Leader bearbeitet Anfrage und schreibt Anderungen in Zustandstransaktion
= Fehlerfall: Erstellung einer Fehlertransaktion [Bsp.: Zu l6schender Knoten existiert nicht.]
= Total Order Broadcast verteilt Transaktionen in vom Leader vorgegebener Reihenfolge
= Transaktionsauslieferung erst nach Bestatigung durch Mehrheit der Replikate
= Konsistente Ausfiihrung ausgelieferter Transaktionen auf allen Replikaten

Client R
Request SelpRlns
applyTxn()
forwardRequest() deliverTxn() ¥

Follower 4| Processing
processWriteRequest() applyTxn()

Request Txn Reliable = =
Leader > Execution Total Order ~| Processing
deliverRequest() ? proposeTxn() Broadcast . o

createzXID() Sl nyn
Follower 3| Processing

deliverTxn()

Anfrageverarbeitung

Zustand des Anfiihrers Zustand eines Followers

/ / / /
Version: 0 Version: 0
/node a7 /node [f7
Version: 2 Version: 2
"L"2?I "42"
foo . foo .
/ Version: 4 / Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node j v
Version: 2

Client B: setbata("/node", "48", 1) i

A Das Beispiel wird im zugehorigen Video besprochen

Optimierung fiir lesende Anfragen

m Einsicht: Leseanfragen haben keinen Einfluss auf Replikatkonsistenz

m Optimierte Bearbeitung lesender Anfragen in ZooKeeper

= AusschlieBlich durch direkt mit Client verbundenem Replikat
= Sofort nach Erhalt, d. h. unabhangig von schreibenden Anfragen
= Aber: Unter Garantie von FIFO fiir samtliche Anfragen eines Clients

m Vorteile

= Einsparung von Ressourcen
= Kiirzere Antwortzeiten

= Konsequenzen

= Antworten auf Leseanfragen sind abhangig vom bearbeitenden Replikat
= Riickgabe von ,veralteten” Daten und Versionsnummern moglich

® sync()-Methode

= Erzwingen eines Synchronisationspunkts
= Wartet bis alle vor dem sync() empfangenen Anfragen bearbeitet wurden

Zustandsverwaltung im Anfiihrer

= Problemstellung
= Leseanfragen dirfen nur konsistenten, bestatigten Zustand zuriickgeben
= Unbestatigte Zustandsanderungen konnten im Fehlerfall noch verloren gehen
= Schreibanfragen missen aber auf aktuellem, unbestatigtem Zustand arbeiten
= Anflihrer muss beide Zustande gleichzeitig verwalten

m Effizienter Losungsansatz

= Bestatigter Zustand Zp
— Verwaltung des vollstandigen Baumes von Datenknoten
— Aktualisierung durch Einspielen bestatigter, total geordneter Transaktionen
— Grundlage fiir die Bearbeitung rein lesender Anfragen

= Aktueller Zustand Z,
— Verwaltung in Form einer Sammlung von gegeniiber Zustand Zg gednderten Knoten
— Modifikation durch Bearbeitung von schreibenden Anfragen
— Basis fiir die Erstellung von Zustandstransaktionen

m Mechanismus zur Garbage-Collection
= Vergabe eindeutiger IDs (zxids) an Zustandsanderungen/-transaktionen
= Einspielen einer Transaktion — Loschen der unbestatigten Anderung

Anfrageverarbeitung ohne aktuellen Zustand

Bestatigt

Aktuell
/]
Version: 0
Zustand "8
des e Version: 2
Anfiihrers -
"L"2?I
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node . v
Version: 2
. "48" -
Client B: setbata("/node", "48", 1) node .
setbatal /node / Version: 2 v n

A Das Beispiel wird im zugehorigen Video besprochen

Anfrageverarbeitung mit aktuellem Zustand

Bestatigt Aktuell
/]
d Version: 0
Zustan —
des /node @ L /node [f7
.. Version: 1 Version: 2
Anfuhrers
"L"2"
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client

Client A: setbata("/node", "47", 1)

Client B: setbata("/node", "48", 1)

” ”

47

/node .
Version: 2

A Das Beispiel wird im zugehorigen Video besprochen

Garbage-Collection von Transaktionen

Bestatigt Aktuell
/]
J Version: 0
Zustan W, o
des [node @ L /node 47 @
.. Version: 1 Version: 2
Anflhrers
"L"2VI
foo .
/ Version: 4
Anfrage Transaktion Antwort an Client
Client A: setbata("/node", "47", 1) /node "[f7" @
Version: 2

Client B: setbata("/node", "48", 1) @

A Das Beispiel wird im zugehorigen Video besprochen

Replikation

Zab

Zab

Uberblick

m Protokoll fiir zuverlassigen und geordneten Nachrichtenaustausch

= Von Apache ZooKeeper verwendet, aber nicht modular integriert
= Nachtragliche eigenstandige Implementierung als Zab

= Modifikation zur Anpassung an die Ubungsaufgabe

= Ubungsfolien sind Dokumentation der modifizierten Bibliothek

m Totally Ordered Broadcast Protocol mit zwei Betriebsmodi
= Normalbetrieb (Broadcast)

- Bereitstellen einer eindeutigen Sequenznummer (zxid) fiir jede Transaktion
— Zuverlassige Verteilung aller Zustandstransaktionen in Reihenfolge der Sequenznummern
= Wahl eines neuen Anfiihrers (Recovery)

— Szenarien: Ausfall des Anfiihrers, Anfiihrer hat keine Mehrheit mehr
— Sicherstellung der Eindeutigkeit von Sequenznummern

m Literatur

@ Benjamin Reed and Flavio P. Junqueira
A simple totally ordered broadcast protocol
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, pages 1-6, 2008.

Zab

Implementierung

m Reprasentation eines Zab-Knotens in der abstrakten Basisklasse zab
m Varianten von Zab-Teilnehmern

= Singlezab Einzelne (lokale) Instanz, zum Testen
= Multizab Teil einer verteilten Gruppe aus mindestens 3 Replikaten
m Methoden
public void startup();
public void shutdown();
public void forwardRequest(Serializable request);
public long createzXID();
public void proposeTxn(Serializable txn, long zxid);
= startup() Starten eines Zab-Knotens
= shutdown() Stoppen eines Zab-Knotens
= forwardRequest() Weiterleiten einer Anfrage an den Anfiihrer
= createzXID() Anfordern der nachsten Sequenznummer (zxid)
= proposeTxn() Vorschlagen einer zu ordnenden Transaktion

— Aufruf muss in Reihenfolge der zxids erfolgen
— createzXID() und proposeTXN() immer als Paar aufrufen

[Hinweis: Da Zab in den ersten 4 Bytes einer zxid eine Epochennummer codiert, fiihrt eine Neuwahl des Anflihrers
zu einem Sprung in den von createzXID() erzeugten zxid-Werten.]

Zab Nachrichtenempfang

m Empfang von Nachrichten Uber die Schnittstelle zabcallback
= Methoden
public void deliverRequest(Serializable request);

public void deliverTxn(Serializable txn, long zxid);
public void status(ZabStatus status, String leader);

= deliverRequest() Ubergabe einer dem Anfiihrer weitergeleiteten Anfrage
= deliverTxn() Zustellung der ndchsten geordneten Transaktion
= status() Benachrichtigung iiber Anderungen des Status

m Status eines Zab-Knotens (zabstatus)

= LOOKING Temporarer Zustand wahrend der Anfiihrerwahl
= FOLLOWING Lokales Replikat ist Follower
= LEADING Lokales Replikat ist Anfiihrer

m Hinweise

= Aufrufe von deliverRequest() konnen nebenldufig erfolgen

= Geordnete Transaktionen werden dagegen durch Zab sequentiell zugestellt

= Alle von einer Mehrheit (f + 1) der 2f + 1 Replikate bestatigten Transaktionen
werden auf allen korrekten Replikaten zugestellt

Zab

Ubergabe eines properties-Objekts an den zab-Konstruktor

Parameter
= myid ID des lokalen Replikats
= peer<i> Zab-Adresse des Replikats i

Identische Konfiguration der peer<i>-Adressen auf allen Replikaten notig

Beispielkonfiguration eines multizab-Knotens (insgesamt 3 Replikate)
= Zusammenstellung der Konfiguration fiir ein Replikat mit der ID 1

Properties zabProperties = new Properties();
zabProperties.setProperty("myid", String.valueOf(1));
zabProperties.setProperty("peerl”, "localhost:12345");
zabProperties.setProperty("peer2", "localhost:12346");
zabProperties.setProperty("peer3", "localhost:12347");

Initialisierung eines Zab-Knotens

ZabCallback zabListener = [...];
Zab zabNode = new MultiZab(zabProperties, zablListener);

Konfiguratio

Logging mit logsj

m Zab verwendet intern die Logging-API log4j

= Konfiguration z.B. durch eine Datei log4j2.properties, die im Classpath abgelegt sein muss

= Granularitatsstufen: OFF, ERROR, WARN, INFO, DEBUG, ALL, ...

= Dokumentation unter:
https://logging.apache.org/log4j/2.x/manual/configuration.html

m Beispiele fiir logsj-Konfigurationen

= Ausgabe der Log-Meldungen auf der Konsole (Stufe: DEBUG)

rootLogger = DEBUG, CONSOLE
appender.CONSOLE.name = CONSOLE
appender.CONSOLE.type = Console
appender.CONSOLE.layout.type = PatternlLayout

Ausgabe der Log-Meldungen in der Datei zab.log (Stufe: INFO)

rootLogger=INFO, FILE

appender.FILE.name = FILE
appender.FILE.type = File
appender.FILE.fileName = zab.log
appender.FILE.layout.type = PatternlLayout

https://logging.apache.org/log4j/2.x/manual/configuration.html

	Replikation
	Konsistenzwahrung
	Zab

