
Übungen zu Systemprogrammierung 2 07.01.2026

Aufgabe 5: mother (20.0 Punkte)
Implementieren Sie ausgehend von Ihrer sister-Implementierung einen mehrfädigen Webserver mother (Modular Threaded
Server) mit erweiterter Funktionalität, der HTTP-Anfragen auf einem wählbaren Port p (falls nicht in der Befehlszeile an-
gegeben: 1337) entgegennimmt und Dateien innerhalb eines festen Verzeichnisbaums dir ausliefert. Das Programm wird
wie folgt aufgerufen:

./mother –wwwpath=<dir> [–port=<p>] [–bufsize=] [–threads=<t>]

Das Programm ist modular aufgebaut und in mehrere Komponenten untergliedert, die separat zu implementieren sind. Sie
können Ihr (fehlerbereinigtes) Hauptmodul sister.c als mother.c übernehmen oder alternativ das Programm gegen das
mother.o-Modul in der zur Verfügung gestellten Bibliothek libmother.a binden. Analog können Sie entweder Ihre eigene
Semaphor- und Ringpuffer-Implementierung oder die Musterlösung aus der Bibliothek libjbuffer.a benutzen.
Im Verzeichnis /proj/i4sp2/pub/aufgabe5 finden Sie Schnittstellenvorgaben für sämtliche Module – sowohl für die
von Ihnen zu implementierenden als auch für die Hilfsmodule, die Sie zum Lösen der Aufgabe benutzen können. Die
Schnittstellen sind verbindlich einzuhalten und die Headerdateien dürfen nicht verändert werden. Auf der Übungswebseite
finden Sie außerdem eine Doxygen-Dokumentation der APIs.
Testen Sie Ihren Webserver z. B. mit dem WWW-Pfad /proj/i4sp2/pub/aufgabe5/wwwdir. In diesem Verzeichnis
finden Sie einige ausführbare Perl-Skripte sowie die Schnittstellendokumentation der Module.

a) Verbindungs-Abarbeitung durch einen Thread-Pool: connection-mt.c

Ersetzen Sie das Verbindungs-Modul durch ein neues, in dem mehrere Arbeiter-Threads (siehe mach) die Anfragebearbeitung
übernehmen und der Haupt-Thread nur noch für die Verbindungsannahme zuständig ist. Bei der Initialisierung des Moduls
werden t Arbeiter-Threads (falls nicht in der Befehlszeile angegeben: 4) erzeugt, die dann für die Laufdauer des Programms
bestehen bleiben. Verwenden Sie zum Austausch gemeinsamer Daten zwischen den Arbeiter-Threads und dem Haupt-Thread
einen Ringpuffer (siehe jbuffer) mit b Einträgen (Standard: 8). Nach Annahme einer Verbindung trägt der Haupt-Thread
den zugehörigen Socket-Deskriptor in den Ringpuffer ein. Die Arbeiter-Threads entnehmen in einer Endlosschleife jeweils
einen Deskriptor aus dem Ringpuffer und führen die Bearbeitung der zugehörigen Verbindung durch.
Falls eine Socket-Verbindung getrennt wird, während ein Datenaustausch im Gange ist, stellt das Betriebssystem dem
sendenden Prozess ein SIGPIPE-Signal zu. Dies würde standardmäßig dazu führen, dass der Webserver sich unerwartet
beendet – und wäre ein Einfallstor für Denial-of-Service-Angriffe. Sorgen Sie deshalb bei der Initialisierung des Verbindungs-
Moduls dafür, dass das SIGPIPE-Signal ignoriert wird!

b) Automatische Anzeige von Verzeichnissen: request-httpx.c

Erweitern Sie das Anfrage-Modul so, dass nicht nur Dateien ausgeliefert, sondern auch Verzeichnisse aufgelistet werden
können. Bezieht sich die übergebene URL auf ein Verzeichnis, so überprüfen Sie zunächst, ob die URL mit einem Schrägstrich
(/) endet. Sollte dies nicht der Fall sein, würde der Webbrowser kaputte Hyperlinks anzeigen – weisen Sie den Client dann
mit Hilfe einer Moved-Permanently -Antwort freundlich auf die korrekte URL (mit Schrägstrich am Ende) hin und trennen
Sie die Verbindung.
Falls sich in dem angeforderten Verzeichnis eine Datei namens index.html befindet, senden Sie deren Inhalt an den Client.
Andernfalls geben Sie in alphabetischer Reihenfolge (siehe wsort) die Namen aller Verzeichniseinträge aus, die nicht mit einem
Punkt (.) beginnen (siehe creeper). Benutzen Sie zur Formatierung der Ausgabe die Funktionen im Modul dirlisting.
Beachten Sie, dass Sie in den Arbeiter-Threads keine Funktionen verwenden dürfen, die als nicht-reentrant gekennzeichnet
sind (z. B. strtok(3p), readdir(3p))! Benutzen Sie stattdessen Alternativen, die MT-Safe sind (z. B. scandir(3p)).

c) Ausführen von Perl-Skripten: request-httpx.c

Ermöglichen Sie nun noch die Ausführung von Perl-Skripten, deren Standardausgabe an den Client umgeleitet wird (siehe
clash und rush, fileno(3p)). Für das Senden einer HTTP-Statuszeile ist das Skript selbst verantwortlich.
Aus Sicherheitsgründen sollen nur Dateien, die auf .pl enden und deren Eigentümer das Ausführen-Recht hat, ausgeführt
werden. Jedes Perl-Skript soll in einem eigenen Prozess gestartet werden. Achten Sie darauf, das Erzeugen von Zombies
abzustellen oder diese sofort einzusammeln!
Stellen Sie im Verbindungs-Modul sicher, dass die offenen Sockets des Servers nicht an aufgerufene Perl-Skripte vererbt
werden (fcntl(3p)). Falls Sie das mother-Hauptmodul aus der vorgegebenen Bibliothek verwenden, können Sie davon
ausgehen, dass dort für den Verbindungsannahme-Socket das Close-on-exec-Flag bereits gesetzt wird.

Hinweise zur Abgabe:

• Obwohl die Aufgabe einen bibliotheks-ähnlichen Aufbau hat, sind in dieser Aufgabe Fehlerausgaben explizit zugelassen
und erwünscht.

Erforderliche Dateien: connection-mt.c (8 Punkte), request-httpx.c (12 Punkte)
Bearbeitung: Dreiergruppen

SP2 im WS25
Bei Fragen zur Aufgabenstellung bitte Mail an i4sp@cs.fau.de

FAU Erlangen-Nürnberg
Lehrstuhl für Informatik 4

Übungen zu Systemprogrammierung 2 07.01.2026

Bearbeitungszeit: 11 Werktage (ohne Wochenenden und Feiertage)
Abgabezeit: 17:30 Uhr

SP2 im WS25
Bei Fragen zur Aufgabenstellung bitte Mail an i4sp@cs.fau.de

FAU Erlangen-Nürnberg
Lehrstuhl für Informatik 4

