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Unter-/Überlaufsituationen
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Unter-/Überlaufsituationen

Leerer Ringpu�er:
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buf
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Weiteres Lesen würde noch nicht
gefüllten Slot liefern
→ Unterlauf!

Voller Ringpu�er:
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Weiteres Schreiben würde vollen
Slot überschreiben
→ Überlauf!

☞ Synchronisation mit Hilfe zweier Semaphore
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Wettlauf der Leser

Auslesen des Slots und Inkrementieren des Leseindex ri geschieht
nicht atomar

Mehrere Threads könnten nebenläufig den selben Slot auslesen

Synchronisation mittels Compare and Swap (CAS)
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Wettlauf der Leser
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Erhöhen des Leseindex mittels CAS – vollständig korrekt?

int get(void) {
int fd, pos, npos;
down(sem_full);
do { // Wiederhole...
pos = ri; // Lokale Kopie des Werts ziehen
npos = (pos + 1) % 12; // Folgewert lokal berechnen

} while(!cas(&ri, pos, npos)); // ... bis CAS erfolgreich
fd = buf[pos];
up(sem_free);

}
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Wettlauf der Leser Vorsicht bei CAS!
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Überlaufsituation: Schreiber blockiert, weil keine Slots frei

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W
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Wettlauf der Leser Vorsicht bei CAS!
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R1 sichert sich Leseindex 4, wird nach erfolgreichem CAS verdrängt

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W
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Wettlauf der Leser Vorsicht bei CAS!

10

sem_full

1

sem_free
0 11

buf

wi ri

R2 durchläuft get() komplett, entnimmt Datum in Slot 5

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W
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Wettlauf der Leser Vorsicht bei CAS!
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W wird deblockiert, komplettiert add() und überschreibt Slot 4

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W
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Wettlauf der Leser Vorsicht bei CAS!
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Ursache: FIFO-Entnahmeeigenschaft des Pu�ers nicht sichergestellt

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W
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Wettlauf der Leser Vorsicht bei CAS!
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Lösung: Entnahme des Datums innerhalb der CAS-Schleife

int get(void) {
int fd, pos, npos;
down(sem_full);
do {

pos = ri;
npos = (pos + 1) % 12;
fd = buf[pos]; // Datum bereits vorsorglich entnehmen

} while(!cas(&ri, pos, npos));
up(sem_free);
return fd;

}
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ABA-Problem bei der Verwendung von CAS
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ABA-Problem bei der Verwendung von CAS
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ABA-Problem bei der Verwendung von CAS
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ABA-Problem bei der Verwendung von CAS
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ABA-Problem bei der Verwendung von CAS
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ABA-Problem bei der Verwendung von CAS

bbGet() liefert 5 statt 7 zurück
CAS schlägt nicht fehl, weil r nach dem Wiedereinlasten des Threads den
selben Wert hat wie vor dessen Verdrängung
Zwischenzeitliche Wertänderung von r wird nicht erkannt

Grundsätzliches Problem von inhaltsbasierten Elementaroperationen
wie CAS

Erhöhte Auftrittswahrscheinlichkeit, je kleiner der Pu�er und je höher
die Systemlast

Gegenmaßnahmen siehe Vorlesung C | X-4 S. 24�.
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ABA-Problem in den Gri� bekommen

Einführen eines Generationszählers, der bei jeder erfolgreichen
Operation inkrementiert wird

ABA-Situation: Leseindex hat nach Umlaufen des Ringpu�ers wieder
den alten Wert – aber Generationszähler hat anderen Wert
→ CAS schlägt fehl

Möglichkeit 1: separate Zählvariable
Erfordert gleichzeitige, atomare Änderung beider Zählvariablen
Bei 8 Byte Zählvariablen: 16 Byte CAS-Operation erforderlich

Möglichkeit 2: eingebetteter Generationszähler
Zählvariable wird monoton erhöht (Index über Modulo berechnen)
Überlaufbehandlung erforderlich
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ABA-Problem in den Gri� bekommen

Einführen eines Generationszählers, der bei jeder erfolgreichen
Operation inkrementiert wird

ABA-Situation: Leseindex hat nach Umlaufen des Ringpu�ers wieder
den alten Wert – aber Generationszähler hat anderen Wert
→ CAS schlägt fehl

Möglichkeit 1: separate Zählvariable
Erfordert gleichzeitige, atomare Änderung beider Zählvariablen
Bei 8 Byte Zählvariablen: 16 Byte CAS-Operation erforderlich

Möglichkeit 2: eingebetteter Generationszähler
Zählvariable wird monoton erhöht (Index über Modulo berechnen)
Überlaufbehandlung erforderlich

Keine hundertprozentige Sicherheit möglich:
Generationszähler hat begrenzten Wertebereich und kann überlaufen
Je nach Größe des Zählers und konkretem Szenario (ho�entlich)
ausreichend unwahrscheinlich 10
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Vorteile nicht-blockierender Synchronisation

Vorteile gegenüber sperrenden oder blockierenden Verfahren
(Auswahl):

Rein auf Anwendungsebene, keine teuren Systemaufrufe
Geringere Mehrkosten als bei Locking, wenn die CAS-Operation auf
Anhieb funktioniert
Konkurrierende Fäden werden vom Scheduler nach dessen Kriterien
eingeplant
Durch Locks wird eine Abhängigkeit vom Halter des Locks gescha�en:

Halter des Locks wird möglicherweise im kritischen Abschnitt verdrängt
Der „Zweite“, „Dritte“ usw. werden durch den „Ersten“ verzögert

In unserem konkreten Anwendungsbeispiel kommen diese Vorteile
nicht wirklich zum Tragen

Übungsbeispiel zum Begreifen des Konzepts
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