
Übungen zu Systemprogrammierung 2
B4 – Ringpu�er

Wintersemester 2025/26

Jürgen Kleinöder, Thomas Preisner, Tobias Häberlein, Ole Wiedemann

Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Informatik 4

Systemsoftware



Agenda

4.1 Synchronisation des Ringpu�ers

4.2 ABA-Problem bei der Verwendung von CAS

4.3 Vorteile nicht-blockierender Synchronisation



Agenda

4.1 Synchronisation des Ringpu�ers

4.2 ABA-Problem bei der Verwendung von CAS

4.3 Vorteile nicht-blockierender Synchronisation



Unter-/Überlaufsituationen

Leerer Ringpu�er:

0 11

buf

ri wi

Weiteres Lesen würde noch nicht
gefüllten Slot liefern
→ Unterlauf!

3



Unter-/Überlaufsituationen

Leerer Ringpu�er:

0 11

buf

ri wi

Weiteres Lesen würde noch nicht
gefüllten Slot liefern
→ Unterlauf!

Voller Ringpu�er:

0 11

buf

wi ri

Weiteres Schreiben würde vollen
Slot überschreiben
→ Überlauf!

3



Unter-/Überlaufsituationen

Leerer Ringpu�er:

0 11

buf

ri wi

Weiteres Lesen würde noch nicht
gefüllten Slot liefern
→ Unterlauf!

Voller Ringpu�er:

0 11

buf

wi ri

Weiteres Schreiben würde vollen
Slot überschreiben
→ Überlauf!

☞ Synchronisation mit Hilfe zweier Semaphore

3



Wettlauf der Leser

Auslesen des Slots und Inkrementieren des Leseindex ri geschieht
nicht atomar

Mehrere Threads könnten nebenläufig den selben Slot auslesen

Synchronisation mittels Compare and Swap (CAS)

4



Wettlauf der Leser

12

sem_full

0

sem_free
0 11

buf

wi ri

Erhöhen des Leseindex mittels CAS – vollständig korrekt?

int get(void) {
int fd, pos, npos;
down(sem_full);
do { // Wiederhole...
pos = ri; // Lokale Kopie des Werts ziehen
npos = (pos + 1) % 12; // Folgewert lokal berechnen

} while(!cas(&ri, pos, npos)); // ... bis CAS erfolgreich
fd = buf[pos];
up(sem_free);

}

5



Wettlauf der Leser Vorsicht bei CAS!

12

sem_full

0

sem_free
0 11

buf

wi ri

Überlaufsituation: Schreiber blockiert, weil keine Slots frei

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W

6



Wettlauf der Leser Vorsicht bei CAS!

11

sem_full

0

sem_free
0 11

buf

wi ri

R1 sichert sich Leseindex 4, wird nach erfolgreichem CAS verdrängt

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W

6



Wettlauf der Leser Vorsicht bei CAS!

10

sem_full

1

sem_free
0 11

buf

wi ri

R2 durchläuft get() komplett, entnimmt Datum in Slot 5

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W

6



Wettlauf der Leser Vorsicht bei CAS!

11

sem_full

0

sem_free
0 11

buf

wi ri

W wird deblockiert, komplettiert add() und überschreibt Slot 4

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W

6



Wettlauf der Leser Vorsicht bei CAS!

11

sem_full

0

sem_free
0 11

buf

wi ri

Ursache: FIFO-Entnahmeeigenschaft des Pu�ers nicht sichergestellt

int get(void) {
int fd, pos, npos;
down(sem_full);
do {
pos = ri;
npos = (pos + 1) % 12;

} while(!cas(&ri, pos, npos));
fd = buf[pos];
up(sem_free);
return fd;

}

R1

pos: 4

R2

pos: 5

void add(int val) {
down(sem_free);
buf[wi] = val;
wi = (wi + 1) % 12;
up(sem_full);

}

W

6



Wettlauf der Leser Vorsicht bei CAS!

10

sem_full

2

sem_free
0 11

buf

wi ri

Lösung: Entnahme des Datums innerhalb der CAS-Schleife

int get(void) {
int fd, pos, npos;
down(sem_full);
do {

pos = ri;
npos = (pos + 1) % 12;
fd = buf[pos]; // Datum bereits vorsorglich entnehmen

} while(!cas(&ri, pos, npos));
up(sem_free);
return fd;

}

6



Agenda

4.1 Synchronisation des Ringpu�ers

4.2 ABA-Problem bei der Verwendung von CAS

4.3 Vorteile nicht-blockierender Synchronisation



ABA-Problem bei der Verwendung von CAS

2
full

0
empty

5 6

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

8



ABA-Problem bei der Verwendung von CAS

1
full

0
empty

5 6 T1

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

8



ABA-Problem bei der Verwendung von CAS

1
full

0
empty

5 6 T2

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

8



ABA-Problem bei der Verwendung von CAS

0
full

1
empty

5 6 T2

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

/* 5 */

8



ABA-Problem bei der Verwendung von CAS

1
full

0
empty

7 6 T2

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

/* 5 */

8



ABA-Problem bei der Verwendung von CAS

0
full

1
empty

7 6 T1

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

/* 5 */

/* 6 */

8



ABA-Problem bei der Verwendung von CAS

0
full

1
empty

7 6 T1

Aktiver
Thread

r

w

T1
bbGet();

T2
bbGet();

bbPut(7);

bbGet();

bbGet() {...
int retVal = 0;
down(full);
do {...

retVal = 5;
} while(!cas(&r, 0, 1));...
up(empty);

}

/* 5 */

/* 6 */

8



ABA-Problem bei der Verwendung von CAS

bbGet() liefert 5 statt 7 zurück
CAS schlägt nicht fehl, weil r nach dem Wiedereinlasten des Threads den
selben Wert hat wie vor dessen Verdrängung
Zwischenzeitliche Wertänderung von r wird nicht erkannt

Grundsätzliches Problem von inhaltsbasierten Elementaroperationen
wie CAS

Erhöhte Auftrittswahrscheinlichkeit, je kleiner der Pu�er und je höher
die Systemlast

Gegenmaßnahmen siehe Vorlesung C | X-4 S. 24�.

9



ABA-Problem in den Gri� bekommen

Einführen eines Generationszählers, der bei jeder erfolgreichen
Operation inkrementiert wird

ABA-Situation: Leseindex hat nach Umlaufen des Ringpu�ers wieder
den alten Wert – aber Generationszähler hat anderen Wert
→ CAS schlägt fehl

Möglichkeit 1: separate Zählvariable
Erfordert gleichzeitige, atomare Änderung beider Zählvariablen
Bei 8 Byte Zählvariablen: 16 Byte CAS-Operation erforderlich

Möglichkeit 2: eingebetteter Generationszähler
Zählvariable wird monoton erhöht (Index über Modulo berechnen)
Überlaufbehandlung erforderlich

10



ABA-Problem in den Gri� bekommen

Einführen eines Generationszählers, der bei jeder erfolgreichen
Operation inkrementiert wird

ABA-Situation: Leseindex hat nach Umlaufen des Ringpu�ers wieder
den alten Wert – aber Generationszähler hat anderen Wert
→ CAS schlägt fehl

Möglichkeit 1: separate Zählvariable
Erfordert gleichzeitige, atomare Änderung beider Zählvariablen
Bei 8 Byte Zählvariablen: 16 Byte CAS-Operation erforderlich

Möglichkeit 2: eingebetteter Generationszähler
Zählvariable wird monoton erhöht (Index über Modulo berechnen)
Überlaufbehandlung erforderlich

Keine hundertprozentige Sicherheit möglich:
Generationszähler hat begrenzten Wertebereich und kann überlaufen
Je nach Größe des Zählers und konkretem Szenario (ho�entlich)
ausreichend unwahrscheinlich 10



Agenda

4.1 Synchronisation des Ringpu�ers

4.2 ABA-Problem bei der Verwendung von CAS

4.3 Vorteile nicht-blockierender Synchronisation



Vorteile nicht-blockierender Synchronisation

Vorteile gegenüber sperrenden oder blockierenden Verfahren
(Auswahl):

Rein auf Anwendungsebene, keine teuren Systemaufrufe
Geringere Mehrkosten als bei Locking, wenn die CAS-Operation auf
Anhieb funktioniert
Konkurrierende Fäden werden vom Scheduler nach dessen Kriterien
eingeplant
Durch Locks wird eine Abhängigkeit vom Halter des Locks gescha�en:

Halter des Locks wird möglicherweise im kritischen Abschnitt verdrängt
Der „Zweite“, „Dritte“ usw. werden durch den „Ersten“ verzögert

In unserem konkreten Anwendungsbeispiel kommen diese Vorteile
nicht wirklich zum Tragen

Übungsbeispiel zum Begreifen des Konzepts

12


	4 Ringpuffer
	4.1 Synchronisation des Ringpuffers
	4.2 ABA-Problem bei der Verwendung von CAS
	4.3 Vorteile nicht-blockierender Synchronisation


