Ubungen zu Systemprogrammierung 2
B4 - Ringpuffer

Wintersemester 2025/26

Jiirgen Kleindder, Thomas Preisner, Tobias Haberlein, Ole Wiedemann

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Nirnberg

O Lehrstuhl fiir Informatik 4 "EAU

Friedrich-Alexander-Universitat
Systemsoftware

Agenda

4. Synchronisation des Ringpuffers
4.2 ABA-Problem bei der Verwendung von CAS

4.3 Vorteile nicht-blockierender Synchronisation

Agenda

4. Synchronisation des Ringpuffers

Unter-/ Uberlaufsituationen

Leerer Ringpuffer: Voller Ringpuffer:
buf buf
y \

0 11 0 11
Weiteres Lesen wiirde noch nicht Weiteres Schreiben wiirde vollen
geflllten Slot liefern Slot Uberschreiben
— Unterlauf! — Uberlauf!

1= Synchronisation mit Hilfe zweier Semaphore

Wettlauf der Leser

m Auslesen des Slots und Inkrementieren des Leseindex ri geschieht
nicht atomar

= Mehrere Threads konnten nebenlaufig den selben Slot auslesen

= Synchronisation mittels Compare and Swap (CAS)

Wettlauf der Leser

buf
\
o]
sem_full sem_free
0 11

wi ri

m Erhohen des Leseindex mittels CAS - vollstandig korrekt?

int get(void) {
int fd, pos, npos;
down(sem_full);
do { // Wiederhole...

pos = ri; // Lokale Kopie des Werts ziehen
npos = (pos + 1) % 12; // Folgewert lokal berechnen
} while(!cas(&ri, pos, npos)); // ... bis CAS erfolgreich

fd = buf[pos];
up(sem_free);

Wettlauf der Leser Vorsicht bei CAS!

buf

\

] [

sem_full sem_free

0 /f\ 11

m Uberlaufsituation: Schreiber blockiert, weil keine Slots frei

int get(void) {
int fd, pos, npos;

W
ggw?(sem_full), void add(int val) { ~L,
pos = ri; down(sem_free);

buf[wi] = val;
wi = (wi+ 1) % 12;
up(sem_full);

npos = (pos + 1) % 12;
} while(!cas(&ri, pos, npos));
fd = buf[pos]; }
up(sem_free);
return fd;

Wettlauf der Leser Vorsicht bei CAS!

buf

]

sem_full sem_free

m R1sichert sich Leseindex 4, wird nach erfolgreichem CAS verdrangt

R1
int get(void) {
int fd, pos, npos; W
ggw?(sem_full); void add(int val) { ~L,
pos = ri; down(sem_free);

buf[wi] = val;
); wi = (wi+ 1) % 12;
' up(sem_full);

npos = (pos + 1) % 12;
} while(!cas(&ri, pos, npo,
fd = buf[pos]; .
up(sem_free); pos: 4 t
return fd;

Wettlauf der Leser Vorsicht bei CAS!

buf

sem_full sem_free

= R2 durchlauft get() komplett, entnimmt Datum in Slot 5

R1 R2

int get(void) {
int fd, pos, npos; W
ggw?(sem_full); void add(int val) { ,L
pos = ri; down(sem_free);
} while(!cas(&ri, pos, nposd); (FUlL); H
fd = buf[pos]; .) up(sem_tu H
up(sem_free); pos: lE)OS' 5
return fd; .

Wettlauf der Leser Vorsicht bei CAS!

buf
A\
(o]
sem_full sem_free
0 11

= W wird deblockiert, komplettiert add() und iiberschreibt Slot 4

R1 R2
int get(void) {
int fd, pos, npos; W
ggw?(sem‘fuu); void add(int val) {
0os = ri; down(sem_free);
b : buf[wi] = val;

npos = (pos + 1) % 12; e .
} while(!cas(&ri, pos, nposd); Wl(_ (W; {'L%) % 125
fd = buflpos]; .) uptsem_tutl);
up(sem_free); pos: lE)OS' 5
return fd; .

Wettlauf der Leser Vorsicht bei CAS!

buf
A\
(o]
sem_full sem_free
0 11

m Ursache: FIFO-Entnahmeeigenschaft des Puffers nicht sichergestellt

R1 R2
int get(void) {
int fd, pos, npos; W
ggw?(sem_fuu); void add(int val) {
0os = ri; down(sem_free);
b : buf[wi] = val;

npos = (pos + 1) % 12; e .
} while(!cas(&ri, pos, nposd); Wl(_ (W; {'L%) % 125
fd = buflpos]; .) uptsem_tutl);
up(sem_free); pos: lE)OS' 5
return fd; .

Wettlauf der Leser bei CAS!

sem_full sem_free

m LGsung: Entnahme des Datums innerhalb der CAS-Schleife

int get(void) {
int fd, pos, npos;
down(sem_full);
do {)
pos = ri;
npos = (pos + 1) % 12;
fd = buf[pos]; // Datum bereits vorsorglich entnehmen
} while(!cas(&ri, pos, npos));
up(sem_free);
return fd;

4.2 ABA-Problem bei der Verwendung von CAS

ABA-Problem bei der Verwendung von CAS

2] [o]

full empty

T1

bbGet();

w
v

I\
r

(65

Aktiver
Thread

T2

bbGet();
bbPut(7);
bbGet();

ABA-Problem bei der Verwendung von CAS

W
¥
[o] b
full empty r Aktiver
Thread
bbGet(); bbGet() { bbGet();
int retval = 0; bbPut(7);
down(full);
do { bbGet();
retval = 5;
} while(!cas(sr, 0, 1));
up(empty);

ABA-Problem bei der Verwendung von CAS

W
¥
[o] [
full empty r Aktiver
Thread
—»6
bbGet(); bbGet() { bbGet();
int retval = 0; bbPut(7);
down(full);
do { bbGet();
retval = 5;
} while(!cas(sr, 0, 1));
! up(empty);

ABA-Problem bei der Verwendung von CAS

W
¥
o g
full empty r Aktiver
Thread
bbGet(); bbet() { /% 5_4/ bbeet();
int retval = 0; bbPut(7);
down(full);
do { bbGet();
retval = 5;

} while(!cas(sr, 0, 1));
up(empty);

ABA-Problem bei der Verwendung von CAS

W
¥
5 "
full empty r Aktiver
Thread
bbGet(); bbGet() { /* 5 #/ bbGet();
int retval = 0; bbPut(7);
down(full);
do { bbGet();
retval = 5;
} while(!cas(sr, 0, 1));
up(empty);

ABA-Problem bei der Verwendung von CAS

v
[o] i
full empty r Aktiver
Thread
bbGet(); bbGet() { /* 5 */ bbGet();
int retval = 0; bbPut(7);
down(full);
do { /* 6_*‘bbGet();
retval = 5;
} while(!cas(sr, 0, 1));

up(empty);

ABA-Problem bei der Verwendung von CAS

w
A
[o] T
full empty r Aktiver
Thread
bbGet(); bbGet() { /* 5 */ bbGet();
int retval = 0; bbPut(7);
down(full);
do { /* 6 */ bbGet();
retval = 5;

} while(!cas(sr, 0, 1));
up(empty);*

ABA-Problem bei der Verwendung von CAS

bbGet() liefert 5 statt 7 zuriick
= CAS schlagt nicht fehl, weil r nach dem Wiedereinlasten des Threads den
selben Wert hat wie vor dessen Verdrangung
= Zwischenzeitliche Wertanderung von r wird nicht erkannt

Grundsatzliches Problem von inhaltsbasierten Elementaroperationen
wie CAS

Erhohte Auftrittswahrscheinlichkeit, je kleiner der Puffer und je hoher
die Systemlast

GegenmaBnahmen siehe Vorlesung C | X-4 S. 24ff.

ABA-Problem in den Griff bekommen

Einflihren eines Generationszahlers, der bei jeder erfolgreichen
Operation inkrementiert wird

ABA-Situation: Leseindex hat nach Umlaufen des Ringpuffers wieder
den alten Wert — aber Generationszahler hat anderen Wert
— CAS schlagt fehl

Moglichkeit 1: separate Zahlvariable
- Erfordert gleichzeitige, atomare Anderung beider Zahlvariablen
= Bei 8 Byte Zdhlvariablen: 16 Byte CAS-Operation erforderlich

Maglichkeit 2: eingebetteter Generationszahler
= Zahlvariable wird monoton erhoht (Index tiber Modulo berechnen)
= Uberlaufbehandlung erforderlich

Keine hundertprozentige Sicherheit moglich:
= Generationszahler hat begrenzten Wertebereich und kann liberlaufen
= Je nach GroRe des Zahlers und konkretem Szenario (hoffentlich)

ausreichend unwahrscheinlich ©

4.3 Vorteile nicht-blockierender Synchronisation

Vorteile nicht-blockierender Synchronisation

m Vorteile gegeniiber sperrenden oder blockierenden Verfahren
(Auswabhl):
= Rein auf Anwendungsebene, keine teuren Systemaufrufe
= Geringere Mehrkosten als bei Locking, wenn die CAS-Operation auf
Anhieb funktioniert
= Konkurrierende Faden werden vom Scheduler nach dessen Kriterien

eingeplant
= Durch Locks wird eine Abhangigkeit vom Halter des Locks geschaffen:

— Halter des Locks wird moglicherweise im kritischen Abschnitt verdrangt
- Der ,Zweite", ,Dritte” usw. werden durch den ,Ersten” verzogert

m In unserem konkreten Anwendungsbeispiel kommen diese Vorteile
nicht wirklich zum Tragen
= Ubungsbeispiel zum Begreifen des Konzepts

	4 Ringpuffer
	4.1 Synchronisation des Ringpuffers
	4.2 ABA-Problem bei der Verwendung von CAS
	4.3 Vorteile nicht-blockierender Synchronisation

