Ubungen zu Systemprogrammierung 2
Us — Mehrfadige Programme

Wintersemester 2025/26

Jiirgen Kleindder, Thomas Preisner, Tobias Haberlein, Ole Wiedemann

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Nirnberg

O Lehrstuhl fiir Informatik 4 "EAU

Friedrich-Alexander-Universitat
Systemsoftware




Agenda

5.1 Thread-Pool-Entwurfsmuster
5.2 Zusammenspiel von BS-Konzepten

5.3 Aufgabe 5: mother



Agenda

5.1 Thread-Pool-Entwurfsmuster



Thread-Pool-Entwurfsmuster

m Feste Menge von Produzenten-Thread(s)
Arbeiter-Threads:
= laufen endlos O
= erhalten Auftrage zur
Abarbeitung i
. .. . @ cintragen
m Verteilen der Auftrage mittels ;
zentraler, synchronisierter y
Warteschlange (z. B. Ringpuffer) o0 %fggggﬁlange

m Vorteil: kein standiges
Erzeugen + Zerstoren von
Threads fir Auftrage

... @ entnehmen

abarbeiten .
Arbeiter-Threads



5.2 Zusammenspiel von BS-Konzepten



Threads und UNIX-Signale

m Signale konnen ...
= an einen Thread gerichtet sein:
- Synchron auftretende Signale (z. B. SIGSEGV, SIGPIPE)
- Signale, die mit pthread_kill1(3p) geschickt wurden
= an einen Prozess gerichtet sein:
- Alle anderen Signale (z.B. mit kill1(3p) erzeugte Signale)

m Signalbehandlung gilt prozessweit:
= An Thread gerichtete Signale werden von diesem bearbeitet
= An Prozess gerichtete Signale werden von beliebigem Thread bearbeitet

m Signalmaske ist Thread-lokal:
= Statt sigprocmask(3p) muss pthread_sigmask(3p) benutzt
werden:
- Verhalten von sigprocmask(3p) in mehrfadigem Prozess ist undefiniert
= Neue Threads ,erben” Signalmaske des Erzeugers
= Von einem Thread blockierte Signale, die ...
— an diesen gerichtet sind, werden verzogert
— an dessen Prozess gerichtet sind, werden von einem anderen Thread
bearbeitet


https://man.archlinux.org/man/pthread_kill.3p.en
https://man.archlinux.org/man/kill.3p.en
https://man.archlinux.org/man/sigprocmask.3p.en
https://man.archlinux.org/man/pthread_sigmask.3p.en
https://man.archlinux.org/man/sigprocmask.3p.en

Threads und Prozesse

m Verwendung von fork(3p) in mehrfadigen Prozessen grundsatzlich
problematisch:
= Bei fork(3p) wird nur der aufrufende Thread geklont; alle anderen
Threads sind im Kind nicht mehr vorhanden
= Gelockte Mutexe bleiben gelockt und kdnnen nicht freigegeben oder
zerstort werden
= Kind kann inkonsistenten Zustand kopieren

m Unproblematisch, wenn geforkt wird, um exec(3p) auszufiihren:
= Zwischen fork(3p) und exec(3p) dirfen im Kind nur
async-signal-safe Funktionen verwendet werden
- siehe signal-safety(7)
= Beim Aufruf von exec(3p) ...

— werden alle Mutexe und Bedingungsvariablen zerstort
— verschwinden alle Threads - bis auf den aufrufenden


https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/signal-safety.7.en
https://man.archlinux.org/man/exec.3p.en

Threads und globaler Zustand

m Verwendung von (static) globalen Variablen in einer Funktion ist
problematisch, wenn die Funktion von mehreren Threads gleichzeitig
aufgerufen wird

= Beispiel: strtok(3p)

= Ohne Synchronisierung: Race-Conditions

= Zustand wird unter Umstanden wechselseitig Uberschrieben

= Darf daher nicht in mehreren Threads gleichzeitig verwendet werden

m POSIX definiert deswegen einige Funktionen, die als thread-sichere
Alternative verwendet werden kénnen:
= enden meist auf _r
= Beispiel: strtok_r(3p)

char *state; // wird verwendet, um den Zustand zu speichern
strtok_r(str, " ", &state);


https://man.archlinux.org/man/strtok.3p.en
https://man.archlinux.org/man/strtok_r.3p.en

Prozesse und offene Dateien

® Erinnerung: offene Dateien/Sockets/...

= werden bei fork(3p) an den neu erzeugten Kindprozess vererbt
= bleiben bei exec(3p) im neu geladenen Programm erhalten

m Dieses Verhalten ist unter Umstanden unerwiinscht!

= Beispiel: Server will seine offenen Sockets nicht an ein von ihm
gestartetes Programm weiterreichen

m Abhilfe: Close-on-exec-Flag fur Dateideskriptoren
= Dateideskriptoren, bei denen dieses Flag gesetzt ist, werden beim Aufruf
von exec(3p) automatisch geschlossen
= Sofortiges Setzen beim Offnen einer Datei:

int fd = open("index.html", O_RDONLY | O_CLOEXEC);
FILE »fp = fdopen(fd, "r");


https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/exec.3p.en

Prozesse und offene Dateien, cont.

m Close-on-exec-Flag fiir Dateideskriptoren, Fortsetzung
= Alternativ: Setzen mit fcnt1(3p):

int flags = fcntl(fd, F_GETFD, 0); // Alte Flags holen
fcntl(fd, F_SETFD, flags | FD_CLOEXEC); // Neue Flags setzen

= dup(3p), dup2(3p) setzen Close-on-exec beim neuen Dateideskriptor
zurick

= Statt dup(3p) + fcnt1(3p) um Close-on-exec wieder zu setzen, kann
auch Folgendes verwendet werden:

int new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);


https://man.archlinux.org/man/fcntl.3p.en
https://man.archlinux.org/man/dup.3p.en
https://man.archlinux.org/man/dup2.3p.en
https://man.archlinux.org/man/dup.3p.en
https://man.archlinux.org/man/fcntl.3p.en

5.3 Aufgabe 5: mother



Aufgabe 5: mother Modular Threaded Server

m Stark aufgebohrte Version der sister

= Anderungen:

= Das Connection- und das Request-Modul sollen mithilfe eines
Thread-Pools implementiert werden
= in der sister wurden dafiir Prozesse verwendet

m Neue Features:

= Auflistung von Verzeichnisinhalten (alphabetisch sortiert)
= Ausfiihren von Perl-Skripten

m Ziel der Aufgabe:
= Wiederholung etlicher in den SP-Ubungen gelernter Konzepte

"



	5 Mehrfädigkeit
	5.1 Thread-Pool-Entwurfsmuster
	5.2 Zusammenspiel von BS-Konzepten
	5.3 Aufgabe 5: mother


