
Übungen zu Systemprogrammierung 2
Ü5 – Mehrfädige Programme

Wintersemester 2025/26

Jürgen Kleinöder, Thomas Preisner, Tobias Häberlein, Ole Wiedemann

Lehrstuhl für Informatik 4
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Informatik 4
Systemsoftware



Agenda

5.1 Thread-Pool-Entwurfsmuster

5.2 Zusammenspiel von BS-Konzepten

5.3 Aufgabe 5: mother



Agenda

5.1 Thread-Pool-Entwurfsmuster

5.2 Zusammenspiel von BS-Konzepten

5.3 Aufgabe 5: mother



Thread-Pool-Entwurfsmuster

Feste Menge von
Arbeiter-Threads:

laufen endlos
erhalten Aufträge zur
Abarbeitung

Verteilen der Aufträge mittels
zentraler, synchronisierter
Warteschlange (z. B. Ringpuffer)

Vorteil: kein ständiges
Erzeugen + Zerstören von
Threads für Aufträge

Arbeiter-Threads

Produzenten-Thread(s)

Auftrags-
Warteschlange

eintragen

entnehmen

abarbeiten

3



Agenda

5.1 Thread-Pool-Entwurfsmuster

5.2 Zusammenspiel von BS-Konzepten

5.3 Aufgabe 5: mother



Threads und UNIX-Signale

Signale können ...
an einen Thread gerichtet sein:

Synchron auftretende Signale (z. B. SIGSEGV, SIGPIPE)
Signale, die mit pthread_kill(3p) geschickt wurden

an einen Prozess gerichtet sein:
Alle anderen Signale (z. B. mit kill(3p) erzeugte Signale)

Signalbehandlung gilt prozessweit:
An Thread gerichtete Signale werden von diesem bearbeitet
An Prozess gerichtete Signale werden von beliebigem Thread bearbeitet

Signalmaske ist Thread-lokal:
Statt sigprocmask(3p) muss pthread_sigmask(3p) benutzt
werden:

Verhalten von sigprocmask(3p) in mehrfädigem Prozess ist undefiniert
Neue Threads „erben“ Signalmaske des Erzeugers
Von einem Thread blockierte Signale, die ...

an diesen gerichtet sind, werden verzögert
an dessen Prozess gerichtet sind, werden von einem anderen Thread
bearbeitet

5

https://man.archlinux.org/man/pthread_kill.3p.en
https://man.archlinux.org/man/kill.3p.en
https://man.archlinux.org/man/sigprocmask.3p.en
https://man.archlinux.org/man/pthread_sigmask.3p.en
https://man.archlinux.org/man/sigprocmask.3p.en


Threads und Prozesse

Verwendung von fork(3p) in mehrfädigen Prozessen grundsätzlich
problematisch:

Bei fork(3p) wird nur der aufrufende Thread geklont; alle anderen
Threads sind im Kind nicht mehr vorhanden
Gelockte Mutexe bleiben gelockt und können nicht freigegeben oder
zerstört werden
Kind kann inkonsistenten Zustand kopieren

Unproblematisch, wenn geforkt wird, um exec(3p) auszuführen:
Zwischen fork(3p) und exec(3p) dürfen im Kind nur
async-signal-safe Funktionen verwendet werden

siehe signal-safety(7)
Beim Aufruf von exec(3p) ...

werden alle Mutexe und Bedingungsvariablen zerstört
verschwinden alle Threads – bis auf den aufrufenden

6

https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/signal-safety.7.en
https://man.archlinux.org/man/exec.3p.en


Threads und globaler Zustand

Verwendung von (static) globalen Variablen in einer Funktion ist
problematisch, wenn die Funktion von mehreren Threads gleichzeitig
aufgerufen wird

Beispiel: strtok(3p)
Ohne Synchronisierung: Race-Conditions
Zustand wird unter Umständen wechselseitig überschrieben
Darf daher nicht in mehreren Threads gleichzeitig verwendet werden

POSIX definiert deswegen einige Funktionen, die als thread-sichere
Alternative verwendet werden können:

enden meist auf _r
Beispiel: strtok_r(3p)

char *state; // wird verwendet, um den Zustand zu speichern
strtok_r(str, " ", &state);

7

https://man.archlinux.org/man/strtok.3p.en
https://man.archlinux.org/man/strtok_r.3p.en


Prozesse und offene Dateien

Erinnerung: offene Dateien/Sockets/...
werden bei fork(3p) an den neu erzeugten Kindprozess vererbt
bleiben bei exec(3p) im neu geladenen Programm erhalten

Dieses Verhalten ist unter Umständen unerwünscht!
Beispiel: Server will seine offenen Sockets nicht an ein von ihm
gestartetes Programm weiterreichen

Abhilfe: Close-on-exec-Flag für Dateideskriptoren
Dateideskriptoren, bei denen dieses Flag gesetzt ist, werden beim Aufruf
von exec(3p) automatisch geschlossen
Sofortiges Setzen beim Öffnen einer Datei:

int fd = open("index.html", O_RDONLY | O_CLOEXEC);
FILE *fp = fdopen(fd, "r");

8

https://man.archlinux.org/man/fork.3p.en
https://man.archlinux.org/man/exec.3p.en
https://man.archlinux.org/man/exec.3p.en


Prozesse und offene Dateien, cont.

Close-on-exec-Flag für Dateideskriptoren, Fortsetzung
Alternativ: Setzen mit fcntl(3p):

int flags = fcntl(fd, F_GETFD, 0); // Alte Flags holen
fcntl(fd, F_SETFD, flags | FD_CLOEXEC); // Neue Flags setzen

dup(3p), dup2(3p) setzen Close-on-exec beim neuen Dateideskriptor
zurück
Statt dup(3p) + fcntl(3p) um Close-on-exec wieder zu setzen, kann
auch Folgendes verwendet werden:

int new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);

9

https://man.archlinux.org/man/fcntl.3p.en
https://man.archlinux.org/man/dup.3p.en
https://man.archlinux.org/man/dup2.3p.en
https://man.archlinux.org/man/dup.3p.en
https://man.archlinux.org/man/fcntl.3p.en


Agenda

5.1 Thread-Pool-Entwurfsmuster

5.2 Zusammenspiel von BS-Konzepten

5.3 Aufgabe 5: mother



Aufgabe 5: mother Modular Threaded Server

Stark aufgebohrte Version der sister

Änderungen:
Das Connection- und das Request-Modul sollen mithilfe eines
Thread-Pools implementiert werden
in der sister wurden dafür Prozesse verwendet

Neue Features:
Auflistung von Verzeichnisinhalten (alphabetisch sortiert)
Ausführen von Perl-Skripten

Ziel der Aufgabe:
Wiederholung etlicher in den SP-Übungen gelernter Konzepte

11


	5 Mehrfädigkeit
	5.1 Thread-Pool-Entwurfsmuster
	5.2 Zusammenspiel von BS-Konzepten
	5.3 Aufgabe 5: mother


