Systemprogrammierung

Grundlagen von Betriebssystemen

Teil C - XIl.2 Speicherverwaltung: Zuteilungsverfahren

9. Januar 2026

Rudiger Kapitza

(© Wolfgang Schroder-Preikschat, Riidiger Kapitza)

O Lehrstuhl fiir Informatik 4

Systemsoftware

E/ \ Frledrlch Alexander Universitat
A l I' ulta

Einfuhrung

Rekapitulation

Platzierungsstrategie
Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt
Fragmentierung
Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Einflihrung c-Xil2 /2

Gliederung

Einfuhrung

Rekapitulation

SP Einflihrung c-Xi2 /3

Lehrstoff

m Grundlagen der Speicherzuteilungsstrategie eines Betriebssys. fiir
Mehrprogrammbetrieb thematisieren und punktuell vertiefen
= verschiedene Formen der Organisation freien Speichers darstellen
= Abspeicherung von Verwaltungsstrukturen beleuchten
= Freispeicher, sog. Locher, als speziell gefiillte Hohlraume auffassen

SP Einflihrung c-Xl2 /4

Lehrstoff

m Grundlagen der Speicherzuteilungsstrategie eines Betriebssys. fiir
Mehrprogrammbetrieb thematisieren und punktuell vertiefen

m klassische Verfahrensweisen besprechen und dadurch
verschiedene Aspekte einer Zuteilungsstrategie herausarbeiten

= Locher nach GroBe verwalten: best-fit, worst-fit, buddy
= Locher nach Adresse verwalten: first-fit, next-fit

SP Einflihrung c-Xl2 /4

Lehrstoff

m Grundlagen der Speicherzuteilungsstrategie eines Betriebssys. fiir
Mehrprogrammbetrieb thematisieren und punktuell vertiefen

m klassische Verfahrensweisen besprechen und dadurch
verschiedene Aspekte einer Zuteilungsstrategie herausarbeiten

= auf Speicherverschnitt eingehen, ein grundsatzliches Problem
jeder Zuteilungsvariante, das ihre Effizienz bestimmt

intern « der, wenn er auftritt, unvermeidbar ist
extern = der aufwendig auflosbar ist

SP Einflihrung c-Xl2 /4

Lehrstoff

m Grundlagen der Speicherzuteilungsstrategie eines Betriebssys. fiir
Mehrprogrammbetrieb thematisieren und punktuell vertiefen

m klassische Verfahrensweisen besprechen und dadurch
verschiedene Aspekte einer Zuteilungsstrategie herausarbeiten

= auf Speicherverschnitt eingehen, ein grundsatzliches Problem
jeder Zuteilungsvariante, das ihre Effizienz bestimmt

m Verschmelzung und Kompaktifizierung erklaren, zwei MaBnahmen,
um Speicherverschnitt zu minimieren oder aufzulosen

SP Einflihrung c-Xl2 /4

Einfiilhrung

Rekapitulation

s Aufgaben der Speicherverwaltung Politiken

= Kernaufgabe ist es, iiber die Speicherzuteilung an einen Prozess
Buch zu fiihren und seine AdressraumgrofRe passend auszulegen
= Platzierungsstrategie (placement policy)
— wo im Hauptspeicher ist noch Platz?

SP Einflihrung c-Xi2 /5

s Aufgaben der Speicherverwaltung Politiken

= weitere Aufgabe kann die Speichervirtualisierung sein, um trotz
knappem Hauptspeicher Mehrprogrammbetrieb zu maximieren
= Ladestrategie (fetch policy)
— wann muss ein Datum im Hauptspeicher liegen?
= Ersetzungsstrategie (replacement policy)
— welches Datum im Hauptspeicher ist ersetzbar?

SP Einflihrung c-Xi2 /5

s Aufgaben der Speicherverwaltung Politiken

= Kernaufgabe ist es, iiber die Speicherzuteilung an einen Prozess
Buch zu fiihren und seine AdressraumgrofRe passend auszulegen

= weitere Aufgabe kann die Speichervirtualisierung sein, um trotz
knappem Hauptspeicher Mehrprogrammbetrieb zu maximieren

m die zur Durchfiihrung dieser Aufgaben zu verfolgenden Strategien
profitieren oft voneinander — oder bedingen einander
= ein Datum kann ggf. erst platziert werden, wenn Platz freigemacht wurde
= etwa indem das Datum den Inhalt eines belegten Speicherplatzes ersetzt
= ggf. aber ist das so ersetzte Datum spater erneut zu laden
= bevor ein Datum geladen werden kann, ist Platz dafiir bereitzustellen

SP Einflihrung c-Xi2 /5

Gliederung

Platzierungsstrategie
Freispeicherorganisation

Verfahrensweisen

SP Platzierungsstrategie c-Xl2 /6

Platzierungsstrategie

Freispeicherorganisation

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

SP Platzierungsstrategie c-Xil2 /7

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

m ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen

= die Struktur dieser Hohlrdume ist von fester oder variabler GroRe

SP Platzierungsstrategie c-Xil2 /7

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

= ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen
= die Struktur dieser Hohlrdaume ist von fester oder variabler GroRe
= entsprechend motiviert sie verschiedene Darstellungen des Freispeichers
Bitkarte = fiir Hohlrdume fester GroRe ~ bit map

Lochliste = fiir Hohlrdume variabler GroRe ~ hole list

SP Platzierungsstrategie c-Xi2 /7

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

= ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen
= die Struktur dieser Hohlrdaume ist von fester oder variabler GroRe
= entsprechend motiviert sie verschiedene Darstellungen des Freispeichers
Bitkarte = fiir Hohlrdume fester GroRe ~ bit map

- eignet sich fiir seitennummerierte Adressraume
- grobkornige Speichervergabe auf Seitenrahmenbasis

— alle Hohlraume sind gleich gut bei der Lochersuche ©

SP Platzierungsstrategie

C-Xil2 /7

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

= ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen
= die Struktur dieser Hohlrdaume ist von fester oder variabler GroRe
= entsprechend motiviert sie verschiedene Darstellungen des Freispeichers

Lochliste = fiir Hohlraume variabler GroRe ~ hole list
- ist typisch fiir segmentierte Adressraume
- feinkornige Speichervergabe auf Segmentbasis
— nicht alle Hohlraume sind gleich gut bei der Lochersuche @

SP Platzierungsstrategie c-Xil2 /7

Verwaltung der freien Speicherbereiche

Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

m ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen

m Anforderung an Verfahren zur Hohlraumzuteilung ist Effizienz, d.h.,
Sparsamkeit bezliglich Rechenzeit und Speicherplatz
= in Hinsicht auf Vergeudung und Zerstiickelung freien Speichers

SP Platzierungsstrategie c-Xil2 /7

Bitkarte

m der Speicher ist aufgeteilt in gleichgroBe Stiicken, die jeweils Platz
fiir n Bytes bieten, mit n typischerweise eine Zweierpotenz
= d.h,, nist Vielfaches der SeitengroBe eines logischen Adressraums

SP Platzierungsstrategie c-Xl2 /8

Bitkarte

m der Speicher ist aufgeteilt in gleichgroBe Stiicken, die jeweils Platz
fiir n Bytes bieten, mit n typischerweise eine Zweierpotenz

m jedes solcher Stiicke hat einen zweiwertigen logischen Zustand,
der eine Aussage zur freien Verfiigharkeit macht
frei = das Stiick ist ein Hohlraum, keinem Prozess zugeordnet
benutzt - das Stiick ist kein Hohlraum, einem Prozess zugeordnet
= je nach Konvention mit den Werten 1 und o kodiert, oder umgekehrt

SP Platzierungsstrategie c-Xl2 /8

Bitkarte

m der Speicher ist aufgeteilt in gleichgroBe Stiicken, die jeweils Platz

fiir n Bytes bieten, mit n typischerweise eine Zweierpotenz

m jedes solcher Stiicke hat einen zweiwertigen logischen Zustand,
der eine Aussage zur freien Verfiigharkeit macht

m der Speicherbedarf der Karte fiir den gesamten Hauptspeicher
eines Rechners hangt damit maRgeblich von der StiickgrofRe ab
= angenommen 8 GiB Hauptspeicher und 4 KiB Stiick (SeitengroBe):
8GIiB = 2097152 Seiten a 4096 Bytes = 2097152 Bits

= 262144 Bytes = 256 KiB
= d.h.,, die Unkosten zur Abspeicherung der Bitkarte betragen 0.003 %

SP Platzierungsstrategie

C-Xll2 /8

Bitkarte

m der Speicher ist aufgeteilt in gleichgroBe Stiicken, die jeweils Platz
fiir n Bytes bieten, mit n typischerweise eine Zweierpotenz

m jedes solcher Stiicke hat einen zweiwertigen logischen Zustand,
der eine Aussage zur freien Verfiigharkeit macht

m der Speicherbedarf der Karte fiir den gesamten Hauptspeicher
eines Rechners hangt damit maRgeblich von der StiickgrofRe ab

= Aktionen (bspw. Suche eines Hohlraums operieren auf einem
byteweise gespeicherten zweidimensionalen Bitfeld
= manche Prozessoren (x86) bieten hierflir spezielle Maschinenbefehle

SP Platzierungsstrategie c-Xl2 /8

Freispeicherverwaltung mit Bitkarte

benutzt
frei 3

i T o] | Seitenrahmen/Kacheln

00000* |[1/1{1]1]/0]0[1]|0

00008* |1/1/1]/1)/0/1|0|0|]—

00010* |111/0[0[1]0/0]0

m Beispiel mit 4 KiB SeitengroRe:

OO OOOOOO
OO0OO0O0OO0OO0O0O
28292923C = als Bytefeld reprasentierte Bitkarte
X K X Kk X ¥ ¥ X

= jede Zeile attributiert 8 Seiten
Bitkarte m Adressschritte direkt ablesbar
= pro Zeile 0x8000 (8 x 4KiB)
= pro Spalte 0x1000 (4KiB)
m in Kombination die

Kacheladresse
SP Platzierungsstrategie c-Xi2 /9

Lochliste

m der Speicher ist aufgeteilt in eventuell verschiedengroBe Stiicke,
die jeweils Platz fur mindestens n Bytes bieten
= wobei n typischerweise Vielfaches der Gr6Re von einem Listenelement ist
— d.h,, 4, 8 oder 16 Bytes bei einer 16-, 32- bzw. 64-Bit Maschine

typedef struct piece {

.
2 chain_t *next; /* single-linked list assumed */

3 size_t size; /* # of bytes claimed by this piece */
4 } piece_t;

SP Platzierungsstrategie c-Xil2 /10

Lochliste

m der Speicher ist aufgeteilt in eventuell verschiedengroBe Stiicke,
die jeweils Platz fur mindestens n Bytes bieten

typedef struct piece {

.
2 chain_t *next; /* single-linked list assumed */

3 size_t size; /* # of bytes claimed by this piece */
4 } piece_t;

m der Speicherbedarf einer Liste fur den gesamten Hauptspeicher
eines Rechners hangt damit von Anzahl und GroRe der Locher ab
= gleiche Annahme wie zuvor, jedoch Seite gleich Segment und 64-Bit:

8GIiB < 2097152 Listenelemente (piece_t) a 16 Bytes
< 33554432 Bytes = 32 MiB

= d.h.,, die Unkosten zur Abspeicherung der Lochliste liegen unter 0.390 %
— sie fallen an, falls Hohlraume selbst unbrauchbar zur Abspeicherung sind

SP Platzierungsstrategie c-Xil2 /10

Lochliste

m der Speicher ist aufgeteilt in eventuell verschiedengroBe Stiicke,
die jeweils Platz fur mindestens n Bytes bieten

typedef struct piece {

.
2 chain_t *next; /* single-linked list assumed */

3 size_t size; /* # of bytes claimed by this piece */
4 } piece_t;

m der Speicherbedarf einer Liste fur den gesamten Hauptspeicher
eines Rechners hangt damit von Anzahl und GroRe der Locher ab

m Aktionen zur Suche, zum Erwerben und zur Abgabe eines
Hohlraums beziehen sich auf eine dynamische Datenstruktur

SP Platzierungsstrategie c-Xil2 /10

Abspeicherung der Lochliste

m jedes Listenelement beschreibt ein Stiick freien Speicher, d.h.,
einen leeren oder mit etwas angefiillten Hohlraum im
Speicherinnern

= z.B. angefullt mit eben dem Listenelement, das den Hohlraum beschreibt

SP Platzierungsstrategie c-Xil2 /m

Abspeicherung der Lochliste

m jedes Listenelement beschreibt ein Stiick freien Speicher, d.h.,
einen leeren oder mit etwas angefiillten Hohlraum im
Speicherinnern

® somit ergeben sich zwei grundlegende Speicherauspragungen fiir

die Lochliste, mit Konsequenzen in verschiedener Hinsicht
i die Hohlraume sind wirklich leer, adressraumlich von der Liste getrennt

ii die Hohlraume sind scheinbar leer, adressraumlich mit der Liste vereint

SP Platzierungsstrategie c-Xil2 /1

Abspeicherung der Lochliste

m jedes Listenelement beschreibt ein Stiick freien Speicher, d.h.,
einen leeren oder mit etwas angefiillten Hohlraum im
Speicherinnern

® somit ergeben sich zwei grundlegende Speicherauspragungen fiir
die Lochliste, mit Konsequenzen in verschiedener Hinsicht
i die Hohlraume sind wirklich leer, adressraumlich von der Liste getrennt
— jeder Hohlraum ist freier Speicherplatz im realen Adressraum, das durch ihn
reprasentierte Loch kann beliebig klein sein: sizeof (hole) > 0
— jedes Listenelement belegt Speicher im Adressraum des Betriebssystems und
die Listenoperationen wirken in derselben Schutzdomane

SP Platzierungsstrategie c-Xl2 /n

Abspeicherung der Lochliste

m jedes Listenelement beschreibt ein Stiick freien Speicher, d.h.,
einen leeren oder mit etwas angefiillten Hohlraum im
Speicherinnern

® somit ergeben sich zwei grundlegende Speicherauspragungen fiir
die Lochliste, mit Konsequenzen in verschiedener Hinsicht

ii die Hohlraume sind scheinbar leer, adressraumlich mit der Liste vereint
— jeder Hohlraum ist freier Speicher und zugleich ein Listenelement im realen
Adressraum, er hat eine MindestgroRRe: sizeof (hole) > sizeof (piece_t)
— kein Listenelement belegt Speicher im Adressraum des Betriebssystems, aber
die Listenoperationen wirken in einer anderen Schutzdomane

SP Platzierungsstrategie c-Xl2 /n

Abspeicherung der Lochliste

m jedes Listenelement beschreibt ein Stiick freien Speicher, d.h.,
einen leeren oder mit etwas angefiillten Hohlraum im
Speicherinnern

® somit ergeben sich zwei grundlegende Speicherauspragungen fiir

die Lochliste, mit Konsequenzen in verschiedener Hinsicht
i die Hohlraume sind wirklich leer, adressraumlich von der Liste getrennt

ii die Hohlraume sind scheinbar leer, adressraumlich mit der Liste vereint

m bei spezieller Auslegung des Betriebssystemadressraums kann von
den positiven Eigenschaften beider Auspragungen profitiert

werden
SP Platzierungsstrategie c-Xil2 /1

Adressraumbelegungsplan Betriebssystem

SP Platzierungsstrategie c-Xil2 /12

Adressraumbelegungsplan Betriebssystem

m angenommen, der Hauptspeicher von =~ 1GiB liegt partitioniert im
realen Adressraum wie folgt:
= 640KiB konventioneller Speicher ab Adresse 0x00000000
= 1GiB — 640KiB erweiterter Speicher ab Adresse 0x00100000

SP Platzierungsstrategie c-Xil2 /12

Adressraumbelegungsplan Betriebssystem

m angenommen, der Hauptspeicher von =~ 1GiB liegt partitioniert im
realen Adressraum wie folgt:
= 640KiB konventioneller Speicher ab Adresse 0x00000000
= 1GiB — 640KiB erweiterter Speicher ab Adresse 0x00100000
m weiter sei angenommen, dass fiir das Betriebssystem eine
identische Abbildung (identity mapping) von logischen zu realen
Adressen gilt

SP Platzierungsstrategie c-Xil2 /12

Adressraumbelegungsplan Betriebssystem

® angenommen, der Hauptspeicher von = 1GiB
realen Adressraum wie folgt:

liegt partitioniert im

= 640KiB konventioneller Speicher ab Adresse 0x00000000
= 1GiB — 640KiB erweiterter Speicher ab Adresse 0x00100000

m weiter sei angenommen, dass fiir das Betriebs
identische Abbildung (identity mapping) von |
Adressen gilt

system eine
ogischen zu realen

Betriebssystemadressraum

BS

0x00000000
konventioneller Speicher

speicherabgebildete Ein-/Ausgabe

< o

0
1072693248

::ﬁ/

Deskriptor: Loch von ca. 1 GiB

erweiteter Speicher

Ox3fffffff

:l—'—’:"r//

0x40000000
Maschinenprogrammadressraum

Oxffffefff

Platzierungsstrategie

OxffEfFEFE

C-Xll2 /12

Adressraumbelegungsplan Betriebssystem 32-Bit

m angenommen, der Hauptspeicher von =~ 1GiB liegt partitioniert im
realen Adressraum wie folgt:
= 640KiB konventioneller Speicher ab Adresse 0x00000000
= 1GiB — 640KiB erweiterter Speicher ab Adresse 0x00100000

m weiter sei angenommen, dass fiir das Betriebssystem eine

identische Abbildung (identity mapping) von logischen zu realen
Adressen gilt
= die Adressraumpartition fiir das

. . Betriebssystemadressraum
Betriebssystem macht die unteren 1200000000
1 GlB aus (Vgl [21 S 29_31]): BS konventioneller Speicher
— der konventionelle Speicher ist fiir das <) :)
: : R s Cretabgsbicoteln iusga ol
Betrlebss.yStem beStImmt . . ?072593243 Deskriptor: Loch von ca. 1 GiB
- der er\{velterte Speicher ist fur die | erweietorspeicher
Maschinenprogramme bestimmt
— die Lochliste liegt dann ebenfalls im Ox3EEFEELE
) h 0x40000000
erweiterten SpelCher :,M Maschinenprogrammadressraum
OxfEffefff
OxfFFEFEFF
SP Platzierungsstrategie

C-Xl2 /12

Adressraumbelegungsplan Betriebssystem 32-Bit

m angenommen, der Hauptspeicher von =~ 1GiB liegt partitioniert im
realen Adressraum wie folgt:
= 640KiB konventioneller Speicher ab Adresse 0x00000000
= 1GiB — 640KiB erweiterter Speicher ab Adresse 0x00100000

m weiter sei angenommen, dass fiir das Betriebssystem eine

identische Abbildung (identity mapping) von logischen zu realen
Adressen gilt

= die Adressraumpartition fiir das
Betriebssystem macht die unteren

Betriebssystemadressraum

. 0x00000000
1 G|B aus (Vgl [21 S 29_31]): BS konventioneller Speicher
— der konventionelle Speicher ist fiir das <) ’ '
. . R s Cretabgsbicoteln iusga ol
Betrlebss.yStem beStImmt n . ?072593243 Deskriptor: Loch von ca. 1 GiB
- der er\{velterte Speicher ist fur die | eweieter Speicher
Maschinenprogramme bestimmt
— die Lochliste liegt dann ebenfalls im Ox3EEFEELE
) h 0x40000000
erweiterten SpelCher :,M Maschinenprogrammadressraum
= initial besteht die Lochliste aus nur oxgeffefer
OxfFFEFEFF

einem Listenelement

SP Platzierungsstrategie c-Xil2 /12

Identische Abbildung identity mapping

Die Identitdt von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

SP Platzierungsstrategie c-Xi2 /13

Identische Abbildung identity mapping

Die Identitdt von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

m im gegebenen Beispiel bedeutet dies, dass die logische Adresse
eines Elements der Lochliste der realen Adresse des Lochs gleicht

= d.h.,, die Elemente der Lochliste liegen im Betriebssystemadressraum und
= jedes Element fiillt dabei jeweils auch einen Hohlraum im Hauptspeicher

SP Platzierungsstrategie c-Xil2 /13

Identische Abbildung identity mapping

Die Identitdt von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

m im gegebenen Beispiel bedeutet dies, dass die logische Adresse
eines Elements der Lochliste der realen Adresse des Lochs gleicht
= d.h.,, die Elemente der Lochliste liegen im Betriebssystemadressraum und
= jedes Element fiillt dabei jeweils auch einen Hohlraum im Hauptspeicher
— die Listenoperationen wirken in der Domane des Betriebssystems
— zur Verwaltung freien Speichers fallt kein zusatzlicher Speicherbedarf an

SP Platzierungsstrategie c-Xil2 /13

Identische Abbildung identity mapping

Die Identitdt von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

m bei diesr Vorgehensweise sind nicht nur Hohlraume, sondern alle
Stiicke dem Betriebssystem direkt zuganglich
= Adressierungsfehler im Betriebssystem konnen daher leicht Stiicke
treffen, die Maschinenprog. oder einige ihrer Bestandteile speichern
= diese Stiicke sind daher im Betriebssystemadressraum auszublenden

SP Platzierungsstrategie c-Xi2 /13

Identische Abbildung identity mapping

Die Identitdt von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

m bei diesr Vorgehensweise sind nicht nur Hohlraume, sondern alle
Stiicke dem Betriebssystem direkt zuganglich

m sowohl segmentierter als auch seitennummerierter Adressraum
helfen, die Gebrauchsstiicke vor direkten Zugriffen zu schiitzen

SP Platzierungsstrategie c-Xi2 /13

Gebrauchsstiick functional piece

Neben den Stiicken, die Hohlrdume darstellen, solche, die allgemein
zur Ablage von Programmtext, -daten und Stapeln im Hauptspeicher
von Prozessexemplaren in Gebrauch sind.

SP Platzierungsstrategie C-Xil2 /14

Gebrauchsstiick functional piece

Neben den Stiicken, die Hohlrdume darstellen, solche, die allgemein
zur Ablage von Programmtext, -daten und Stapeln im Hauptspeicher
von Prozessexemplaren in Gebrauch sind.

® ein solches Stiick bildet entweder ein Segment oder ein Vielfaches
von Seiten, je nach Adressraumkonzept (vgl. [2])

= geschiitzt durch einen Segmentdeskriptor bzw. n > 1 Seitendeskriptoren
= zugeteilt dem Adressraum des Prozesses, der das Stiick gebraucht

SP Platzierungsstrategie C-Xil2 /14

Gebrauchsstiick functional piece

Neben den Stiicken, die Hohlrdume darstellen, solche, die allgemein
zur Ablage von Programmtext, -daten und Stapeln im Hauptspeicher
von Prozessexemplaren in Gebrauch sind.

® ein solches Stiick bildet entweder ein Segment oder ein Vielfaches
von Seiten, je nach Adressraumkonzept (vgl. [2])

® im Moment der Zuteilung zum Prozessadressraum, wird es aus
dem Betriebssystemadressraum ausgeblendet
= der mit dem Stiick darin abgedeckte Adressbereich bleibt jedoch giiltig
= allerdings ist dieser Bereich nicht mehr durch Adresszugriffe zuganglich

SP Platzierungsstrategie C-Xil2 /14

Gebrauchsstiick functional piece

Neben den Stiicken, die Hohlrdume darstellen, solche, die allgemein
zur Ablage von Programmtext, -daten und Stapeln im Hauptspeicher
von Prozessexemplaren in Gebrauch sind.

® ein solches Stiick bildet entweder ein Segment oder ein Vielfaches
von Seiten, je nach Adressraumkonzept (vgl. [2])

® im Moment der Zuteilung zum Prozessadressraum, wird es aus
dem Betriebssystemadressraum ausgeblendet

m bei Zuriicknahme der Stiicke bzw. Zerstorung des
Prozessexemplars werden sie wieder in den
Betriebssystemadressraum eingeblendet

= die Stiicke werden wieder zu Hohlraumen, kommen auf die Lochliste
= sie erscheinen wieder an ihren alten Stellen im
Betriebssystemadressraum

Die Lésung ist immer einfach, man muss sie nur finden. (Alexander Solschenizyn)
SP Platzierungsstrategie C-Xil2 /14

Einblendung von Speicherstii

0x00000000
BS

/0

0x00100000

0x1£££0000 [0x00110000
16768

Loch, 16 KiB

:l#

0 0x1f£f£0000
2 Loch, 8 KiB

Ox3fffffff

0x40000000

:l—’_’:’///

Oxffffefff

Oxffffffff

Betriebssystemadressraum

SP Platzierungsstrategie c-Xi2 /15

Ein- und Ausblendung von Speicherstiicken

0x00000000 0x00000000
BS BS

/0 / /0
0x00100000 i 0x00100000

0x1£££0000 [0x00110000 0x00110000

16768

Loch, 16 KiB Gebrauchsstiick

:l#

0 0x1£££0000 0x1£££0000
2 Loch, 8 KiB Gebrauchsstiick
Ox3LLFFLEE Ox3ELEEEEE [N _ N SEE—
0x40000000 0x40000000 \ 8KiB U I6KiB |
1 L :
:l—’_’:’/// :l:”:/’/y/ i] i]
Oxffffefff __ Oxffffefff | —
OxXEfffffff Oxffffffff
Betriebssystemadressraum Betriebss) Iressraum Maschinenprogr dressriume

SP Platzierungsstrategie c-Xi2 /15

Platzierungsstrategie

Verfahrensweisen

Lineare Lochliste |

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste |

Hinweis (Verschnitt vs. Suchaufwand)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofSer als ein Listenelement ist, fallt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste |

Hinweis (Verschnitt vs. Suchaufwand)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofSer als ein Listenelement ist, fallt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

m die Lochliste ist der GroRe nach auf- oder absteigend sortiert:

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste |

Hinweis (Verschnitt vs. Suchaufwand)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofSer als ein Listenelement ist, fallt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

m die Lochliste ist der GroRe nach auf- oder absteigend sortiert:

best-fit = aufsteigende LochgroRen, das kleinste passende Loch suchen
= beste Zuteilung, minimaler Verschnitt, aber eher langsam
= erzeugt kleine Locher von vorn, erhalt groRe Locher hinten
— hinterlasst eher kleine Locher, bei steigendem Suchaufwand

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste |

Hinweis (Verschnitt vs. Suchaufwand)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofSer als ein Listenelement ist, fallt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

m die Lochliste ist der GroRe nach auf- oder absteigend sortiert:

worst-fit = absteigende LochgroBen, das grofte passende Loch suchen
= sehr schnelle Zuteilungsentscheidung, begiinstigt Zerstiickelung

= zerstort groBe Locher von vorn, macht kleine Locher hinten

— hinterlasst eher groRe Locher, bei konstantem Suchaufwand

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste |

Hinweis (Verschnitt vs. Suchaufwand)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofSer als ein Listenelement ist, fallt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

m die Lochliste ist der GroRe nach auf- oder absteigend sortiert:
best-fit = aufsteigende LochgroRen, das kleinste passende Loch suchen

worst-fit = absteigende LochgroBen, das grofte passende Loch suchen

m fallt ein Restloch an, muss dieses in die Liste einsortiert werden,
aber nur, wenn es eine MindestgroBe nicht unterschreitet

SP Platzierungsstrategie C-Xil2 /16

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofier als ein Listenelement ist, fallt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

SP Platzierungsstrategie c-Xil2 /17

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofier als ein Listenelement ist, fallt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

m die Lochliste ist der GroRRe des Adresswerts nach aufsteigend
sortiert

SP Platzierungsstrategie c-Xil2 /17

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofier als ein Listenelement ist, fallt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

m die Lochliste ist der GroRRe des Adresswerts nach aufsteigend
sortiert:

first-fit « schnelle Zuteilung, begiinstigt aber Verschwendung
= erzeugt kleine Locher von vorn, erhalt groRe Locher hinten
— hinterlasst eher kleine Locher, bei steigendem Suchaufwand

SP Platzierungsstrategie c-Xil2 /17

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofier als ein Listenelement ist, fallt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

m die Lochliste ist der GroRRe des Adresswerts nach aufsteigend
sortiert:

next-fit = reihum (round-robin) Variante von first-fit
— die Suche beginnt immer beim zuletzt zugeteiltem Loch

— hinterldsst eher gleichgroRe Locher (Gleichverteilung)
— Konsequenz ist ein im Mittel eher abnehmender Suchaufwand

SP Platzierungsstrategie c-Xil2 /17

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)

Ist die angeforderte GrofSe Rleiner als die Grofie des gefundenen Loch, die Differenz
jedoch grofier als ein Listenelement ist, fallt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

m die Lochliste ist der GroRRe des Adresswerts nach aufsteigend
sortiert:
first-fit « schnelle Zuteilung, begiinstigt aber Verschwendung

next-fit = reihum (round-robin) Variante von first-fit

m keine dieser Verfahren erzeugt ein Restloch, das im nachge-
schalteten zweiten Listendurchlauf einsortiert werden misste

= sie machen eine effiziente Hohlraumverwaltung (vgl. S. 44) moglich

SP Platzierungsstrategie c-Xil2 /17

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)

Das zur Speicheranfrage gegebener Gr6f3e am besten passende Stiick durch fortgesetzte
Halbierung eines grof3en Stiicks gewinnen.

SP Platzierungsstrategie c-Xil2 /18

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)

Das zur Speicheranfrage gegebener Gr6f3e am besten passende Stiick durch fortgesetzte
Halbierung eines grof3en Stiicks gewinnen.

m die Lochliste ist der ZweierpotenzgroBe nach aufsteigend sortiert:
buddy - sucht das kleinste passende Loch buddy; der GroRe 2/
- jistIndex in eine Tabelle von Adressen auf Locher der GroBe 2/
— wobei i so zu bestimmen ist, dass gilt 2/~1 < size < 2/, i > 1
— mit size als GroRe (in Bytes) des angeforderten Speicherstiicks

SP Platzierungsstrategie c-Xil2 /18

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)

Das zur Speicheranfrage gegebener Gr6f3e am besten passende Stiick durch fortgesetzte
Halbierung eines grof3en Stiicks gewinnen.

m die Lochliste ist der ZweierpotenzgroBe nach aufsteigend sortiert:
buddy - sucht das kleinste passende Loch buddy; der GroRe 2/

= buddy; entsteht durch sukzessive Splittung von buddy;, j > i:
- 2"=2x2n"1
— zwei gleichgroBe Stiicke, die ,Kumpel“ des jeweils anderen sind

SP Platzierungsstrategie c-Xil2 /18

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)

Das zur Speicheranfrage gegebener Gr6f3e am besten passende Stiick durch fortgesetzte
Halbierung eines grof3en Stiicks gewinnen.

m die Lochliste ist der ZweierpotenzgroBe nach aufsteigend sortiert:
buddy - sucht das kleinste passende Loch buddy; der GroRe 2/

= buddy; entsteht durch sukzessive Splittung von buddy;, j > i:

- 2"=2x2n"1
— zwei gleichgroBe Stiicke, die ,Kumpel“ des jeweils anderen sind

= j wird fortgesetzt dekrementiert, solange 2/~1 > size, i > 1

SP Platzierungsstrategie c-Xil2 /18

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)

Das zur Speicheranfrage gegebener Gr6f3e am besten passende Stiick durch fortgesetzte
Halbierung eines grof3en Stiicks gewinnen.

m die Lochliste ist der ZweierpotenzgroBe nach aufsteigend sortiert:
buddy - sucht das kleinste passende Loch buddy; der GroRe 2/

® mogl. Verschnitt durch eine Auswahl von StiickgroBen begegnen

= vergleichsweise geringer Such- und Aufsplittungsaufwand, jedoch kann
der anfallende Verschnitt dennoch betrachtlich sein

— im Mittel sind die zugeteilten Stiicke um 1/3 groRer als angefordert und die
belegten Stiicke nur zu 3/4 genutzt [1, S.32]

SP Platzierungsstrategie c-Xil2 /18

Gliederung

Speicherverschnitt
Fragmentierung
Verschmelzung

Kompaktifizierung

SP Speicherverschnitt C-Xll2 /19

Speicherverschnitt

Fragmentierung

Bruchstiickbildung

Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.

SP Speicherverschnitt C-Xill2 /20

Bruchstiickbildung

Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.

® je nach Adressraumkonzept und Zuteilungsverfahren zeigen sich
verschiedene Auspragungen der Fragmentierung

SP Speicherverschnitt C-Xill2 /20

Bruchstiickbildung

Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.
® je nach Adressraumkonzept und Zuteilungsverfahren zeigen sich
verschiedene Auspragungen der Fragmentierung
intern = seitennummerierte Adressraume, Halbierungsverfahren (buddy)
= die angeforderte GroRe ist kleiner als das zugeteilte Stiick
- falls Seitennummerierung, ist die GroRRe auch kein
Seitenvielfaches
« der ,lokale Verschnitt” ist nutzbar, diirfte es aber nicht sein
— Verschwendung, ist (durch das Betriebssystem) unvermeidbar

SP Speicherverschnitt C-Xil2 /20

Bruchstiickbildung

Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.

® je nach Adressraumkonzept und Zuteilungsverfahren zeigen sich
verschiedene Auspragungen der Fragmentierung

extern = segmentierte Adressraume, Halbierungsverfahren (buddy)
= die angeforderte GroRe ist zu groR fiir jedes einzelne Loch
— in Summe ihrer GrofRen genligen die Locher der angeforderten
GroRe
- allerdings sind sie im Hauptspeicher nicht linear angeordnet
« der ,globale Verschnitt” ist ggf. nicht mehr zuteilbar
— Verlust, ist (durch das Betriebssystem) aufwendig vermeidbar

SP Speicherverschnitt C-Xl2 /20

Bruchstiickbildung

Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.
® je nach Adressraumkonzept und Zuteilungsverfahren zeigen sich

verschiedene Auspragungen der Fragmentierung
intern = seitennummerierte Adressraume, Halbierungsverfahren (buddy)
= die angeforderte GroRe ist kleiner als das zugeteilte Stiick

extern = segmentierte Adressraume, Halbierungsverfahren (buddy)
= die angeforderte GroRe ist zu groR fiir jedes einzelne Loch

m externe Fragmentierung kann durch Verschmelzung verringert und
Kompaktifizierung aufgeldst werden

SP Speicherverschnitt C-Xill2 /20

Interne Fragmentierung internal fragmentation

m seitennummerierter Adressraum
= abzubildende Programmsegmente sind
Vielfaches von Bytes
= der (log./virt.) Prozessadressraum ist
aber ein Vielfaches von Seiten
= die jew. letzte Seite der Segmente ist
ggf. nicht komplett belegt

= seitenlokaler Verschnitt

= wird vom Programm logisch nicht
beansprucht

= ist vom Prozess physisch jedoch
adressierbar -

= da eine seitennummerierte MMU Seiten i ‘
schiitzt, keine Segmente

Textsegment

} Datensegment

Seite/Seitenrahmen

Stapelsegment

3 % W Verschnirt

SP Speicherverschnitt c-Xil2 /21

Interne Fragmentierung internal fragmentation

Textsegment

} Datensegment

l

\
|
I
! T W Verschnirt
|
I

Seite/Seitenrahmen

[! } Stapelsegment

= das Halbierungsverfahren (buddy) liefert ein ahnliches Bild
= immer dann, wenn die AnforderungsgrofRe keine Zweierpotenz ist
= ein Verschnitt von 2/ — size (in Bytes) ergibt sich zum Stiickende hin
SP Speicherverschnitt c-Xil2 /21

Externe Fragmentierung external fragmentation

= segmentierter Adressraum

= die zu platzierenden Fragmente sind
Vielfaches von Bytes
= sie werden 1:1 auf Segmente einer MMU

abgebildet %
= die jew. eine lineare Bytefolge im £ ()~
realen Adressraum bedingen ﬁ >
= globaler Verschnitt % g:
= die Summe von Lochern ist grol’ genug % (1+2) §
fiir die Speicheranforderung i 3
= die Locher liegen aber verstreut im

realen Adressraum vor und
= jedes einzelne Loch ist zu klein fiir die
Speicheranforderung

|
|

SP Speicherverschnitt C-Xil2 /22

Externe Fragmentierung external fragmentation

Bunispiojuy

Fragmente/Segmente
—_— T

{ B Licher

m das Halbierungsverfahren (buddy) liefert ein ahnliches Bild
= immer dann, wenn zwischen zu kleinen Lochern ein Gebrauchsstuck liegt
= jede StiickgroBe ist eine Zweierpotenz, das grofite Loch ist aber zu klein
SP Speicherverschnitt C-Xil2 /22

Speicherverschnitt

Verschmelzung

Vereinigung eines Lochs mit angrenzenden Lochern

Eine wichtige Mafinahme, die bei der Zuriicknahme eines Gebrauchs-
stiicks oder Zerstorung eines Prozessexemplars greift.

SP Speicherverschnitt C-Xil2 /23

Vereinigung eines Lochs mit angrenzenden Lochern

Eine wichtige Mafinahme, die bei der Zuriicknahme eines Gebrauchs-

stiicks oder Zerstorung eines Prozessexemplars greift.

m Verschmelzung von Lochern erzeugt groBere Hohlraume und
bringt damit folgende positive (nichtfunktionale) Eigenschaften

= weniger Locher, dadurch geringere externe Fragmentierung

= weniger Lochdeskriptoren, dadurch kirzere Listen und Suchzeiten

= beides beschleunigt die Speicherzuteilung, gibt kiirzere Antwortzeiten

Speicherverschnitt

C-Xll2 /23

Vereinigung eines Lochs mit angrenzenden Lochern

Eine wichtige Mafinahme, die bei der Zuriicknahme eines Gebrauchs-
stiicks oder Zerstorung eines Prozessexemplars greift.

m Verschmelzung von Lochern erzeugt groBere Hohlraume und
bringt damit folgende positive (nichtfunktionale) Eigenschaften

m Lochervereinigung sieht sich mit vier Situationen konfrontiert, je
nach dem, welche relative Lage ein Loch im Adressraum hat:

1. zw. zwei Gebrauchsstiicken = keine Vereinigung moglich
2. direkt nach einem Loch = Vereinigung mit Vorganger
3. direkt vor einem Loch = Vereinigung mit Nachfolger
4. zwischen zwei Lochern = Kombination von 2. und 3.

Speicherverschnitt C-Xil2 /23

Bezug zum Zuteilungsverfahren

= die Verschmelzungsaufwande variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem gefiihrt ist

SP Speicherverschnitt c-Xil2 /24

Bezug zum Zuteilungsverfahren

= die Verschmelzungsaufwande variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem gefiihrt ist:
buddy - das Stiick wird mit seinem Buddy-Stiick verschmolzen

= Adressen zweier Buddies gleichen sich bis auf einem Bit
= ein Stiick ist Buddy eines anderen Stiicks, wenn gilt:

1 bool buddy(void *this, unsigned size, void *that) {

2 return (size &% !(size & (size - 1))) /* power of two!? */
3 && (((unsigned)this ~ (unsigned)that) == size);
4

}

= ggf. mit jeweils nachst groBerem Buddy verschmelzen

SP Speicherverschnitt c-Xil2 /24

Bezug zum Zuteilungsverfahren

= die Verschmelzungsaufwande variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem gefiihrt ist:

first/next-fit - beim Einsortieren in die Lochliste Nachbarschaft priifen
= ein Stiick ist Nachbar eines anderen Stiicks, wenn gilt:

5 bool neighbor(void *this, unsigned size, void *that) {
6 return ((unsigned)this + size) == (unsigned)that;
7 }

= mit jeweils aktuellem und nachsten Listenelement priifen

SP Speicherverschnitt c-Xil2 /24

Bezug zum Zuteilungsverfahren

= die Verschmelzungsaufwande variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem gefiihrt ist:

best/worst-fit . wie first/next-fit, beim Einsortieren priifen

= aber Listennachfolger miissen keine Nachbarn sein @)
= die ganze Lochliste durchlaufen: zwei Nachbarn finden ©
= erst dann ggf. verschmelzen und neu einsortieren ®

SP Speicherverschnitt c-Xil2 /24

Bezug zum Zuteilungsverfahren ...KISS

= die Verschmelzungsaufwande variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem gefiihrt ist:

first/next-fit - beim Einsortieren in die Lochliste Nachbarschaft priifen

SP Speicherverschnitt c-Xil2 /24

Vereinigung beliebiger Locher first/next-fit

m das Stiick ist ,rechter Nachbar“ (Nachfolger) des Lochs:
0x0100

free(0x01le, 20)

1. das alte 30 Bytes groBe Loch kann um 20 Bytes vergroBert werden

SP Speicherverschnitt C-Xil2 /25

Vereinigung beliebiger Locher first/next-fit

m das Stiick ist ,rechter Nachbar“ (Nachfolger) des Lochs:
0x0100

free(0x01le, 20) TINS
\ 0x0

1. das alte 30 Bytes groBe Loch kann um 20 Bytes vergroBert werden
m Verschmelzung

OxOlOOﬂ [fel

50!

SP Speicherverschnitt C-Xil2 /25

Vereinigung beliebiger Locher first/next-fit

m das Stiick ist ,rechter Nachbar“ (Nachfolger) des Lochs:
0x0100

free(0x01le, 20)

1. das alte 30 Bytes groBe Loch kann um 20 Bytes vergroBert werden

m Verschmelzung; das nachste Stiick ist ,rechter Nachbar”
(Nachfolger) des Lochs und ,linker Nachbar* (Vorganger) des
Lochnachfolgers

OxOlOOﬂ [el

free(OxOl‘32, 36) 50

0x0156

2. das alte 50 Bytes grofRe Loch kann um 36 Bytes vergroRert werden
3. das neue 86 Bytes groBe Loch kann um 100 Bytes vergroRert werden

SP Speicherverschnitt C-Xil2 /25

Vereinigung beliebiger Locher first/next-fit

m das Stiick ist ,rechter Nachbar“ (Nachfolger) des Lochs:
0x0100

free(0x01le, 20)

1. das alte 30 Bytes groBe Loch kann um 20 Bytes vergroBert werden

m Verschmelzung; das nachste Stiick ist ,rechter Nachbar”
(Nachfolger) des Lochs und ,linker Nachbar* (Vorganger) des
Lochnachfolgers

OxOlOOﬂ [el

free(0x01‘32, 36) 50

0x0156

2. das alte 50 Bytes grofRe Loch kann um 36 Bytes vergroRert werden
3. das neue 86 Bytes groBe Loch kann um 100 Bytes vergroRert werden

0x0100 e -
= Verschmelzung: q_{ :
186]:: l

SP Speicherverschnitt C-Xil2 /25

Speicherverschnitt

Kompaktifizierung

Vereinigung des globalen Verschnitts

Die Gebrauchsstiicke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges grofies Loch vorhanden ist.

SP Speicherverschnitt C-Xil2 /26

Vereinigung des globalen Verschnitts

Die Gebrauchsstiicke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges grofies Loch vorhanden ist.

= um externe Fragmentierung aufzulosen, sind Gebrauchsstiicke im
Hauptspeicher durch Kopiervorgange umzulagern

i direkt im Hauptspeicher oder
i indirekt ber den Ablagespeicher ~» swapping

SP Speicherverschnitt C-Xil2 /26

Vereinigung des globalen Verschnitts

Die Gebrauchsstiicke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges grofies Loch vorhanden ist.

= um externe Fragmentierung aufzulosen, sind Gebrauchsstiicke im
Hauptspeicher durch Kopiervorgange umzulagern

= so wird zunachst ein weiteres Loch geschaffen, das dann aber gleich
wieder mit Nachbarlochern verschmilzt

— schrittweise wird die Lochliste verkiirzt, bis nur noch ein Loch lbrigbleibt

Speicherverschnitt

C-Xll2 /26

Vereinigung des globalen Verschnitts

Die Gebrauchsstiicke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges grofies Loch vorhanden ist.

= um externe Fragmentierung aufzulosen, sind Gebrauchsstiicke im
Hauptspeicher durch Kopiervorgange umzulagern

® Umlagerung zieht Verlagerung der betroffenen Segmente oder
Seiten nach sich, wenn sie ihre neue Position im realen
Adressraum haben
= deren Lage andert sich nur im realen Adressraum, nicht im logischen
— nur die Basisadresse im Segment-/Seitendeskriptor ist zu aktualisieren

= im logischen Adressraum behalt jedes Segment/jede Seite seine Adresse

SP Speicherverschnitt C-Xil2 /26

Vereinigung des globalen Verschnitts

Die Gebrauchsstiicke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges grofies Loch vorhanden ist.

= um externe Fragmentierung aufzulosen, sind Gebrauchsstiicke im
Hauptspeicher durch Kopiervorgange umzulagern

® Umlagerung zieht Verlagerung der betroffenen Segmente oder
Seiten nach sich, wenn sie ihre neue Position im realen
Adressraum haben

m zentraler Aspekt dabei ist, die Anzahl der Umlagerungsvorgange zu
minimieren, was ein komplexes Optimierungsproblem darstellt

SP Speicherverschnitt C-Xil2 /26

Auflosung externer Fragmentierung: Optionen

1200

' H
w

1600

was wohin?

SP Speicherverschnitt c-Xil2 /27

Auflosung externer Fragmentierung: Optionen

0 0
S1
300 300
S,
500
700 S3
900 900

1200

1600

was wohin? 600 Worte

SP Speicherverschnitt c-Xil2 /27

Auflosung externer Fragmentierung: Optionen

0 0 0
Sq Sq
300 300 300
S,
500 S3
700 S3 700

900 900

1200

1600

was wohin? 600 Worte 400 Worte

SP Speicherverschnitt c-Xil2 /27

Auflosung externer Fragmentierung: Optionen

S3
1600 1600
S»
was wohin? 600 Worte 400 Worte 200 Worte

SP Speicherverschnitt c-Xil2 /27

Gliederung

Zusammenfassung

SP Zusammenfassung c-Xil2 /28

Resiimee

SP Zusammenfassung C-Xll2 /29

Resiimee

m Zuteilung von Arbeitsspeicher durch eine Platzierungsstrategie
= die Erfassung freier Speicherstiicke hangt u.a. ab vom Adressraummodell

i Seiten bzw. Seitenrahmen ~ Bitkarte oder Lochliste
ii Segmente ~ Lochliste

SP Zusammenfassung C-Xll2 /29

Resiimee

m Zuteilung von Arbeitsspeicher durch eine Platzierungsstrategie
= die Erfassung freier Speicherstiicke hangt u.a. ab vom Adressraummodell

i Seiten bzw. Seitenrahmen ~ Bitkarte oder Lochliste
ii Segmente ~ Lochliste

= weitere Folge davon ist interne (i) oder externe (ii) Fragmentierung
— Speicherverschnitt durch zuviel zugeteilte bzw. nicht nutzbare Bereiche

SP Zusammenfassung C-Xll2 /29

Resiimee

m die Zuteilungsverfahren verwalten Locher
= nach abnehmender GroRe worst-fit

GroRRe best-fit, buddy

= nach ansteigender
g { Adresse first-fit, next-fit

SP Zusammenfassung C-Xll2 /29

Resiimee

m angefallener Speicherverschnitt ist zu reduzieren oder aufzulosen
i Verschmelzung von Léchern verringert externe Fragmentierung

— beschleunigt die Speicherzuteilungsverfahren und
— lasst die Speicherzuteilung im Mittel haufiger gelingen
ii Kompaktifizierung der Locher [6st externe Fragmentierung auf
— hinterlasst (im Idealfall) ein groBes Loch
— erfordert aber positionsunabhangige Programme d.h. logische Adressraume

SP Zusammenfassung C-Xill2 /29

Resiimee ...facettenreiches Problem

m Zuteilung von Arbeitsspeicher durch eine Platzierungsstrategie

m die Zuteilungsverfahren verwalten Locher

m angefallener Speicherverschnitt ist zu reduzieren oder aufzulosen

SP Zusammenfassung C-Xll2 /29

Zusammenfassung

Bibliographie

Literaturverzeichnis (1)

[HEISS, H.-U. :
Speicherverwaltung.
In: AG BETRIEBSSYSTEME UND VERTEILTE SYSTEME (Hrsg.): Konzepte
und Methoden der Systemsoftware.
Universitat-GH Paderborn, 2000 (Vorlesungsfolien), Kapitel 5

[2] KLEINODER, J. ; SCHRODER-PREIKSCHAT, W. :
Adressraume.
In: [4], Kapitel 121

[3] KLEINODER,). ; SCHRODER-PREIKSCHAT, W. :
Speicher.
In: [4], Kapitel 6.2

SP Zusammenfassung C-Xl2 /30

Literaturverzeichnis (2)

[4] KLEINODER,). ; SCHRODER-PREIKSCHAT, W. ; LEHRSTUHL INFORMATIK
4 (Hrsg.):
Systemprogrammierung.
FAU Erlangen-Niirnberg, 2015 (Vorlesungsfolien)

SP Zusammenfassung c-Xil2 /31

Anhang

Platzierungsstrategie

Halbierungsverfahren: Beispiel binary buddy

m angenommen sei die Anforderung von 42 Bytes:
= 2% = 64 ist kleinste Zweierpotenz > 42, d.h., zuzuteilen sind 64 Bytes
= ein entsprechend groRes Loch fehlt, es ist durch Splittung zu erzeugen
= ndchstes Loch in der Liste ist ein Stiick von 1024 KiB

1024 KiB

SP Anhang c-Xil2 /32

Halbierungsverfahren: Beispiel

binary buddy

m angenommen sei die Anforderung von 42 Bytes:
= 2% = 64 ist kleinste Zweierpotenz > 42, d.h., zuzuteilen sind 64 Bytes
= ein entsprechend groRes Loch fehlt, es ist durch Splittung zu erzeugen
= ndchstes Loch in der Liste ist ein Stiick von 1024 KiB

1. 1024 =210 =2 x 29 =512 + 512,

zu grof, eins davon wird halbiert

1024 KiB

1 512

512 KiB

Anhang

C-XIl.2 /32

Halbierungsverfahren: Beispiel binary buddy

m angenommen sei die Anforderung von 42 Bytes:
= 2% = 64 ist kleinste Zweierpotenz > 42, d.h., zuzuteilen sind 64 Bytes
= ein entsprechend groRes Loch fehlt, es ist durch Splittung zu erzeugen
= ndchstes Loch in der Liste ist ein Stiick von 1024 KiB

1. 1024 = 219 = 2 x 29 = 512 + 512, zu groR, eins davon wird halbiert
2. 512 =129 =2 x 28 =256 + 256, zu groB, eins davon wird halbiert

1024 KiB
512 512 KiB
2 256 256 512 KiB

SP Anhang c-Xil2 /32

Halbierungsverfahren: Beispiel binary buddy

m angenommen sei die Anforderung von 42 Bytes:
= 2% = 64 ist kleinste Zweierpotenz > 42, d.h., zuzuteilen sind 64 Bytes
= ein entsprechend groRes Loch fehlt, es ist durch Splittung zu erzeugen
= nachstes Loch in der Liste ist ein Stiick von 1024 KiB
1. 1024 = 219 = 2 x 29 = 512 + 512, zu groR, eins davon wird halbiert
2. 512 =129 =2 x 28 =256 + 256, zu groB, eins davon wird halbiert
3. 256 =28 =2 x27 =128+ 128, zu groB, eins davon wird halbiert

1024 KiB
512 512 KiB
256 256 512 KiB
128 128 256 512 KiB

SP Anhang c-Xil2 /32

Halbierungsverfahren: Beispiel binary buddy

m angenommen sei die Anforderung von 42 Bytes:
= 2% = 64 ist kleinste Zweierpotenz > 42, d.h., zuzuteilen sind 64 Bytes
= ein entsprechend groRes Loch fehlt, es ist durch Splittung zu erzeugen
= nachstes Loch in der Liste ist ein Stiick von 1024 KiB
1. 1024 = 219 = 2 x 29 = 512 + 512, zu groR, eins davon wird halbiert
2. 512 =129 =2 x 28 =256 + 256, zu groB, eins davon wird halbiert
3. 256 =28 =2 x27 =128+ 128, zu groB, eins davon wird halbiert
4. 128 =27 =2 x 2% = 64+ 64, passt, eins davon wird zugeteilt

1024 KiB
1 512 512 KiB
2 256 256 512 KiB
3 128 128 256 512 KiB
4| 64 | 64 | 128 256 512 KiB

SP Anhang c-Xil2 /32

Halbierungsverfahren: Beispiel binary buddy

m geeignet ist eine zweidimensionale Reprasentation der Lochliste:
i eine Tabelle von Buddy-Klassen, aufsteigend sortiert (Zweierpotenzen), lokal
gespeichert im Betriebssystem
ii eine lineare Liste gleicher Buddies, gespeichert in den Hohlraumen

SP Anhang c-Xil2 /32

Halbierungsverfahren: Randbedingungen binary buddy

m bei dieser Technik bilden die GroRRen der Adressbereiche aller
Locher und Gebrauchsstiicke eine Zweierpotenz
= wird ein beliebiges dieser Stiicke in zwei gleich groRe Halften gesplittet,
entstehen zwei Buddies, deren GroRe wieder einer Zweierpotenz bildet
= umgekehrt: werden diese beiden Buddies wieder kombiniert, entsteht ein
einzelner Buddy doppelter GroRe

SP Anhang

C-Xil.2 /33

Halbierungsverfahren: Randbedingungen binary buddy

m bei dieser Technik bilden die GroRen der Adressbereiche aller
Locher und Gebrauchsstiicke eine Zweierpotenz

m Buddy-Stiicke der GroRe 2" werden im Adressraum so platziert,
dass ihre jeweilige Anfangsadresse ein Vielfaches von 2" ist
= d.h,, fiir n > 1 sind die niederwertigen n Bits dieser Adressen gleich 0

SP Anhang c-Xil2 /33

Halbierungsverfahren: Randbedingungen

binary

m bei dieser Technik bilden die GroRen der Adressbereiche aller
Locher und Gebrauchsstiicke eine Zweierpotenz

m Buddy-Stiicke der GroRe 2" werden im Adressraum so platziert,
dass ihre jeweilige Anfangsadresse ein Vielfaches von 2" ist

m aus dieser Nebenbedingung ergibt sich folgende Konsequenz, die
in zweierlei Hinsicht von Bedeutung ist:

i bei Splittung eines Buddies der GroRe 2" unterscheiden sich die beiden
Adressen der Buddy-Halften nur in Bit 2"

ii gegeben sei ein Stiick der GroBe 2" an Adresse a, dann errechnet sich die Adresse
b seines Buddies wie folgt: b = a + 2", mit a mod 2" =0

SP Anhang

buddy

C-Xil2 /33

Halbierungsverfahren: Randbedingungen

m bei dieser Technik bilden die GroRen der Adressbereiche aller
Locher und Gebrauchsstiicke eine Zweierpotenz

m Buddy-Stiicke der GroRe 2" werden im Adressraum so platziert,
dass ihre jeweilige Anfangsadresse ein Vielfaches von 2" ist

m aus dieser Nebenbedingung ergibt sich folgende Konsequenz, die
in zweierlei Hinsicht von Bedeutung ist:
i bei Splittung eines Buddies der GroRe 2" unterscheiden sich die beiden
Adressen der Buddy-Halften nur in Bit 2"

ii gegeben sei ein Stiick der GroBe 2" an Adresse a, dann errechnet sich die Adresse
b seines Buddies wie folgt: b = a + 2", mit a mod 2" =0

m Beispiel: Buddy
del’ GI’OBe 25 32 Bytes

16 Bytes ...01110000
= gibt 2 x 2*

...01100000

16 Bytes ...01100000

Anhang

binary buddy

C-Xll2 /33

Halbierungsverfahren: Allokation binary buddy

m die Lochliste, reprasentiert als Tabelle verketteter Buddies:

1 static chain_t *holelist [NSLOT];

SP Anhang c-Xil2 /34

Halbierungsverfahren: Allokation binary buddy

m die Lochliste, reprasentiert als Tabelle verketteter Buddies:

1 static chain_t *holelist [NSLOT];

= ein Loch als Buddy hervorbringen (breed):

2 void *breed(unsigned slot) {

3 chain_t *hole = 0;

4 if (slot < NSLOT) {

5 if (holelist[slot] != 0) {

6 hole = holelist[slot];

7 holelist[slot] = hole->link;

8 } else {

9 if ((hole = breed(slot + 1)) != 0) {
10 chain_t *next = (chain_t x)((unsigned)hole ~ (1 << slot));
17 next->link = 0;

12 holelist[slot] = next;

13 }

14 ¥

15 ¥

16 return hole;

17 b3

SP Anhang c-Xil2 /34

Halbierungsverfahren: Allokation binary buddy

m die Lochliste, reprasentiert als Tabelle verketteter Buddies:

1 static chain_t *holelist [NSLOT];

= ein Loch als Buddy hervorbringen (breed):

2 void *breed(unsigned slot) {

3 chain_t *hole = 0;

4 if (slot < NSLOT) {

5 if (holelist[slot] != 0) {

6 hole = holelist[slot];

7 holelist[slot] = hole->link;

8 } else {

9 if ((hole = breed(slot + 1)) != 0) {
10 chain_t *next = (chain_t x)((unsigned)hole ~ (1 << slot));
17 next->link = 0;

12 holelist[slot] = next;

13 }

14 ¥

15 ¥

16 return hole;

17 b3

= einen Bedarf (need) an freien Speicher geltend machen:

18 void *need(unsigned size) {

19 unsigned slot;

20 for (slot = 0; (1 << slot) < size; slot++);
21 return breed(slot);

22 ¥

SP Anhang c-Xil2 /34

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E

] 64 \ 64 \ 128 \ 256 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes

64 | 64 | 128 256 512 KiB
1|64 | 64| 128 256 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E

1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes
2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes

64 | 64 | 128 256 512 KiB
64 | 64 | 128 256 512 KiB
2| 64| 64| 128 256 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes

2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes

3. free(A, 64), freier Buddy B, verschmilzt zu Loch AB von 128 Bytes

64 | 64 | 128 256 512 KiB
64 | 64 | 128 256 512 KiB
64 | 64 | 128 256 512 KiB
3 128 128 256 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes
2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes

3. free(A, 64), freier Buddy B, verschmilzt zu Loch AB von 128 Bytes
4. free(C, 128), freier Buddy AB, verschmilzt zu Loch ABC von 256 Bytes

64 | 64 | 128 256 512 KiB
1|64 | 64| 128 256 512 KiB
2| 64| 64| 128 256 512 KiB
3 128 128 256 512 KiB
4 256 256 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes
2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes

3. free(A, 64), freier Buddy B, verschmilzt zu Loch AB von 128 Bytes
4. free(C, 128), freier Buddy AB, verschmilzt zu Loch ABC von 256 Bytes

— freier Buddy D, verschmilzt zu Loch ABCD von 512 Bytes

64 | 64 | 128 256 512 KiB
1|64 | 64| 128 256 512 KiB
2| 64| 64| 128 256 512 KiB
3 128 128 256 512 KiB
4 256 256 512 KiB
4 512 512 KiB

SP Anhang c-Xil2 /35

Vereinigung halftiger Locher binary buddy

m vgl. auch die Belegung von S. 112 (v. li.): fiinf Gebrauchsstiicke A-E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes
2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes

3. free(A, 64), freier Buddy B, verschmilzt zu Loch AB von 128 Bytes
4. free(C, 128), freier Buddy AB, verschmilzt zu Loch ABC von 256 Bytes

— freier Buddy D, verschmilzt zu Loch ABCD von 512 Bytes
5. free(E, 512), freier Buddy ABCD, verschmilzt zum Loch von 1024 KiB

64 | 64 | 128 256 512 KiB
1|64 | 64| 128 256 512 KiB
2| 64| 64| 128 256 512 KiB
3 128 128 256 512 KiB
4 256 256 512 KiB
4 512 512 KiB
5 1024 KiB

SP Anhang c-Xil2 /35

	Einführung
	Rekapitulation

	Platzierungsstrategie
	Freispeicherorganisation
	Verfahrensweisen

	Speicherverschnitt
	Fragmentierung
	Verschmelzung
	Kompaktifizierung

	Zusammenfassung
	Bibliographie

	Anhang
	Platzierungsstrategie

