
Systemprogrammierung
Grundlagen von Betriebssystemen

Teil C – XII.2 Speicherverwaltung: Zuteilungsverfahren

9. Januar 2026

Rüdiger Kapitza

(©Wolfgang Schröder-Preikschat, Rüdiger Kapitza)

Lehrstuhl für Informatik 4
Systemsoftware

Agenda

Einführung

Rekapitulation

Platzierungsstrategie

Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt

Fragmentierung

Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Einführung C – XII.2 / 2

Gliederung

Einführung

Rekapitulation

Platzierungsstrategie

Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt

Fragmentierung

Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Einführung C – XII.2 / 3

Lehrstoff

Grundlagen der Speicherzuteilungsstrategie eines Betriebssys. für
Mehrprogrammbetrieb thematisieren und punktuell vertiefen
verschiedene Formen der Organisation freien Speichers darstellen
Abspeicherung von Verwaltungsstrukturen beleuchten
Freispeicher, sog. Löcher, als speziell gefüllte Hohlräume auffassen

klassische Verfahrensweisen besprechen und dadurch
verschiedene Aspekte einer Zuteilungsstrategie herausarbeiten
Löcher nach Größe verwalten: best-fit, worst-fit, buddy
Löcher nach Adresse verwalten: first-fit, next-fit

auf Speicherverschnitt eingehen, ein grundsätzliches Problem
jeder Zuteilungsvariante, das ihre Effizienz bestimmt
intern der, wenn er auftritt, unvermeidbar ist
extern der aufwendig auflösbar ist

Verschmelzung und Kompaktifizierung erklären, zwei Maßnahmen,
um Speicherverschnitt zu minimieren oder aufzulösen

SP Einführung C – XII.2 / 4

Einführung

Rekapitulation

[3, S. 15] Aufgaben der Speicherverwaltung Politiken

Kernaufgabe ist es, über die Speicherzuteilung an einen Prozess
Buch zu führen und seine Adressraumgröße passend auszulegen
Platzierungsstrategie (placement policy)

wo im Hauptspeicher ist noch Platz?

weitere Aufgabe kann die Speichervirtualisierung sein, um trotz
knappem Hauptspeicher Mehrprogrammbetrieb zu maximieren
Ladestrategie (fetch policy)

wann muss ein Datum im Hauptspeicher liegen?
Ersetzungsstrategie (replacement policy)

welches Datum im Hauptspeicher ist ersetzbar?

die zur Durchführung dieser Aufgaben zu verfolgenden Strategien
profitieren oft voneinander — oder bedingen einander
ein Datum kann ggf. erst platziert werden, wenn Platz freigemacht wurde
etwa indem das Datum den Inhalt eines belegten Speicherplatzes ersetzt
ggf. aber ist das so ersetzte Datum später erneut zu laden
bevor ein Datum geladen werden kann, ist Platz dafür bereitzustellen

SP Einführung C – XII.2 / 5

Gliederung

Einführung

Rekapitulation

Platzierungsstrategie

Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt

Fragmentierung

Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Platzierungsstrategie C – XII.2 / 6

Platzierungsstrategie

Freispeicherorganisation

Verwaltung der freien Speicherbereiche
Ein freier Bereich erscheint als Hohlraum im Innern des Haupt- oder
Arbeitsspeichers eines Rechensystems.

ein solcher Hohlraum wird als Loch (hole) bezeichnet, wobei
mehrere davon und getrennt voneinander im realen Adressraum
liegen
die Struktur dieser Hohlräume ist von fester oder variabler Größe
entsprechend motiviert sie verschiedene Darstellungen des Freispeichers
Bitkarte für Hohlräume fester Größe ; bit map

eignet sich für seitennummerierte Adressräume
grobkörnige Speichervergabe auf Seitenrahmenbasis

↪→ alle Hohlräume sind gleich gut bei der Löchersuche ,
Lochliste für Hohlräume variabler Größe ; hole list

ist typisch für segmentierte Adressräume
feinkörnige Speichervergabe auf Segmentbasis

↪→ nicht alle Hohlräume sind gleich gut bei der Löchersuche /

Anforderung an Verfahren zur Hohlraumzuteilung ist Effizienz, d.h.,
Sparsamkeit bezüglich Rechenzeit und Speicherplatz
in Hinsicht auf Vergeudung und Zerstückelung freien Speichers

SP Platzierungsstrategie C – XII.2 / 7

Bitkarte

der Speicher ist aufgeteilt in gleichgroße Stücken, die jeweils Platz
für n Bytes bieten, mit n typischerweise eine Zweierpotenz
d.h., n ist Vielfaches der Seitengröße eines logischen Adressraums

jedes solcher Stücke hat einen zweiwertigen logischen Zustand,
der eine Aussage zur freien Verfügbarkeit macht

frei das Stück ist ein Hohlraum, keinem Prozess zugeordnet
benutzt das Stück ist kein Hohlraum, einem Prozess zugeordnet
je nach Konvention mit den Werten 1 und 0 kodiert, oder umgekehrt

der Speicherbedarf der Karte für den gesamten Hauptspeicher
eines Rechners hängt damit maßgeblich von der Stückgröße ab
angenommen 8 GiB Hauptspeicher und 4 KiB Stück (Seitengröße):

8 GiB = 2097152 Seiten à 4096 Bytes = 2097152 Bits

= 262144 Bytes = 256 KiB

d.h., die Unkosten zur Abspeicherung der Bitkarte betragen 0.003 %
Aktionen (bspw. Suche eines Hohlraums operieren auf einem
byteweise gespeicherten zweidimensionalen Bitfeld
manche Prozessoren (x86) bieten hierfür spezielle Maschinenbefehle

SP Platzierungsstrategie C – XII.2 / 8

Freispeicherverwaltung mit Bitkarte

*
0
0
0
0

00000*

00008*

00010*

*
1
0
0
0

*
2
0
0
0

*
3
0
0
0

*
4
0
0
0

*
5
0
0
0

*
6
0
0
0

*
7
0
0
0

frei

benutzt

Seitenrahmen/Kacheln

Bitkarte

01 1 11 1 00

01 1 11 0 01

11 0 01 0 00

Beispiel mit 4 KiB Seitengröße:
als Bytefeld repräsentierte Bitkarte
jede Zeile attributiert 8 Seiten

Adressschritte direkt ablesbar
pro Zeile 0x8000 (8 × 4KiB)
pro Spalte 0x1000 (4KiB)

in Kombination die
Kacheladresse

SP Platzierungsstrategie C – XII.2 / 9

Lochliste

der Speicher ist aufgeteilt in eventuell verschiedengroße Stücke,
die jeweils Platz für mindestens n Bytes bieten
wobei n typischerweise Vielfaches der Größe von einem Listenelement ist

d.h., 4, 8 oder 16 Bytes bei einer 16-, 32- bzw. 64-Bit Maschine
1 typedef struct piece {
2 chain_t *next; /* single - linked list assumed */
3 size_t size; /* # of bytes claimed by this piece */
4 } piece_t ;

der Speicherbedarf einer Liste für den gesamten Hauptspeicher
eines Rechners hängt damit von Anzahl und Größe der Löcher ab
gleiche Annahme wie zuvor, jedoch Seite gleich Segment und 64-Bit:

8 GiB < 2097152 Listenelemente (piece_t) à 16 Bytes

< 33554432 Bytes ≡ 32 MiB

d.h., die Unkosten zur Abspeicherung der Lochliste liegen unter 0.390 %
↪→ sie fallen an, falls Hohlräume selbst unbrauchbar zur Abspeicherung sind

Aktionen zur Suche, zum Erwerben und zur Abgabe eines
Hohlraums beziehen sich auf eine dynamische Datenstruktur

SP Platzierungsstrategie C – XII.2 / 10

Abspeicherung der Lochliste

jedes Listenelement beschreibt ein Stück freien Speicher, d.h.,
einen leeren oder mit etwas angefüllten Hohlraum im
Speicherinnern
z.B. angefüllt mit eben dem Listenelement, das den Hohlraum beschreibt

somit ergeben sich zwei grundlegende Speicherausprägungen für
die Lochliste, mit Konsequenzen in verschiedener Hinsicht

i die Hohlräume sind wirklich leer, adressräumlich von der Liste getrennt
jeder Hohlraum ist freier Speicherplatz im realen Adressraum, das durch ihn
repräsentierte Loch kann beliebig klein sein: sizeof (hole) > 0
jedes Listenelement belegt Speicher im Adressraum des Betriebssystems und
die Listenoperationen wirken in derselben Schutzdomäne

ii die Hohlräume sind scheinbar leer, adressräumlich mit der Liste vereint
jeder Hohlraum ist freier Speicher und zugleich ein Listenelement im realen
Adressraum, er hat eine Mindestgröße: sizeof (hole) ≥ sizeof (piece_t)
kein Listenelement belegt Speicher im Adressraum des Betriebssystems, aber
die Listenoperationen wirken in einer anderen Schutzdomäne

bei spezieller Auslegung des Betriebssystemadressraums kann von
den positiven Eigenschaften beider Ausprägungen profitiert
werden

SP Platzierungsstrategie C – XII.2 / 11

Adressraumbelegungsplan Betriebssystem 32-Bit

angenommen, der Hauptspeicher von ≈ 1 GiB liegt partitioniert im
realen Adressraum wie folgt:
640 KiB konventioneller Speicher ab Adresse 0x00000000
1 GiB − 640 KiB erweiterter Speicher ab Adresse 0x00100000

weiter sei angenommen, dass für das Betriebssystem eine
identische Abbildung (identity mapping) von logischen zu realen
Adressen gilt
die Adressraumpartition für das
Betriebssystem macht die unteren
1 GiB aus (vgl. [2, S. 29–31]):
der konventionelle Speicher ist für das
Betriebssystem bestimmt
der erweiterte Speicher ist für die
Maschinenprogramme bestimmt
die Lochliste liegt dann ebenfalls im
erweiterten Speicher

initial besteht die Lochliste aus nur
einem Listenelement

0x00000000

erweiteter Speicher

0x40000000

0xffffffff

0x3fffffff

0xffffefff

speicherabgebildete Ein−/Ausgabe

Maschinenprogrammadressraum

Betriebssystemadressraum

Deskriptor: Loch von ca. 1 GiB

BS

I/O

1072693248

0

konventioneller Speicher

SP Platzierungsstrategie C – XII.2 / 12

Identische Abbildung identity mapping

Die Identität von realem und logischem/virtuellem Adressraum
des Betriebssystems, in dem eine logische/virtuelle Adresse iden-
tisch zu einer realen Adresse ist.

im gegebenen Beispiel bedeutet dies, dass die logische Adresse
eines Elements der Lochliste der realen Adresse des Lochs gleicht
d.h., die Elemente der Lochliste liegen im Betriebssystemadressraum und
jedes Element füllt dabei jeweils auch einen Hohlraum im Hauptspeicher

↪→ die Listenoperationen wirken in der Domäne des Betriebssystems
↪→ zur Verwaltung freien Speichers fällt kein zusätzlicher Speicherbedarf an

bei diesr Vorgehensweise sind nicht nur Hohlräume, sondern alle
Stücke dem Betriebssystem direkt zugänglich
Adressierungsfehler im Betriebssystem können daher leicht Stücke
treffen, die Maschinenprog. oder einige ihrer Bestandteile speichern
diese Stücke sind daher im Betriebssystemadressraum auszublenden

sowohl segmentierter als auch seitennummerierter Adressraum
helfen, die Gebrauchsstücke vor direkten Zugriffen zu schützen

SP Platzierungsstrategie C – XII.2 / 13

Gebrauchsstück functional piece

Neben den Stücken, die Hohlräume darstellen, solche, die allgemein
zur Ablage von Programmtext, -daten und Stapeln im Hauptspeicher
von Prozessexemplaren in Gebrauch sind.
ein solches Stück bildet entweder ein Segment oder ein Vielfaches
von Seiten, je nach Adressraumkonzept (vgl. [2])
geschützt durch einen Segmentdeskriptor bzw. n ≥ 1 Seitendeskriptoren
zugeteilt dem Adressraum des Prozesses, der das Stück gebraucht

im Moment der Zuteilung zum Prozessadressraum, wird es aus
dem Betriebssystemadressraum ausgeblendet
der mit dem Stück darin abgedeckte Adressbereich bleibt jedoch gültig
allerdings ist dieser Bereich nicht mehr durch Adresszugriffe zugänglich

bei Zurücknahme der Stücke bzw. Zerstörung des
Prozessexemplars werden sie wieder in den
Betriebssystemadressraum eingeblendet
die Stücke werden wieder zu Hohlräumen, kommen auf die Lochliste
sie erscheinen wieder an ihren alten Stellen im
Betriebssystemadressraum

Die Lösung ist immer einfach, man muss sie nur finden. (Alexander Solschenizyn)
SP Platzierungsstrategie C – XII.2 / 14

Ein- und Ausblendung von Speicherstücken

0xffffefff

0x00000000

0x1fff0000

I/O

BS

Betriebssystemadressraum

Loch, 16 KiB

Loch, 8 KiB

0x00100000

8196

0

0x00110000

0x1fff0000

16768

0x40000000

0xffffffff

0x3fffffff

0xffffefff

0x00000000

I/O

BS

0x1fff0000

0x00110000

Gebrauchsstück

Gebrauchsstück

MaschinenprogrammadressräumeBetriebssystemadressraum

16 KiB8 KiB

0x00100000

0x40000000

0xffffffff

0x3fffffff

SP Platzierungsstrategie C – XII.2 / 15

Platzierungsstrategie

Verfahrensweisen

Lineare Lochliste I

Hinweis (Verschnitt vs. Suchaufwand)
Ist die angeforderte Größe kleiner als die Größe des gefundenen Loch, die Differenz
jedoch größer als ein Listenelement ist, fällt Verschnitt an, der als verbleibendes Loch
in die Liste neu einsortiert werden muss.

die Lochliste ist der Größe nach auf- oder absteigend sortiert:
best-fit aufsteigende Lochgrößen, das kleinste passende Loch suchen

beste Zuteilung, minimaler Verschnitt, aber eher langsam
erzeugt kleine Löcher von vorn, erhält große Löcher hinten

↪→ hinterlässt eher kleine Löcher, bei steigendem Suchaufwand
worst-fit absteigende Lochgrößen, das größte passende Loch suchen

sehr schnelle Zuteilungsentscheidung, begünstigt Zerstückelung
zerstört große Löcher von vorn, macht kleine Löcher hinten

↪→ hinterlässt eher große Löcher, bei konstantem Suchaufwand

fällt ein Restloch an, muss dieses in die Liste einsortiert werden,
aber nur, wenn es eine Mindestgröße nicht unterschreitet
typischerweise die Größe (in Bytes) eines Listenelements

SP Platzierungsstrategie C – XII.2 / 16

Lineare Lochliste II

Hinweis (Suchaufwand vs. Zuteilung)
Ist die angeforderte Größe kleiner als die Größe des gefundenen Loch, die Differenz
jedoch größer als ein Listenelement ist, fällt Verschnitt an, der jedoch nicht in die Liste
einsortiert werden muss.

die Lochliste ist der Größe des Adresswerts nach aufsteigend
sortiert:

first-fit schnelle Zuteilung, begünstigt aber Verschwendung
erzeugt kleine Löcher von vorn, erhält große Löcher hinten

↪→ hinterlässt eher kleine Löcher, bei steigendem Suchaufwand
next-fit reihum (round-robin) Variante von first-fit

die Suche beginnt immer beim zuletzt zugeteiltem Loch
↪→ hinterlässt eher gleichgroße Löcher (Gleichverteilung)
↪→ Konsequenz ist ein im Mittel eher abnehmender Suchaufwand

keine dieser Verfahren erzeugt ein Restloch, das im nachge-
schalteten zweiten Listendurchlauf einsortiert werden müsste
sie machen eine effiziente Hohlraumverwaltung (vgl. S. 16) möglich

SP Platzierungsstrategie C – XII.2 / 17

Halbierungsverfahren binary buddy

Hinweis (Verschnitt vs. Suchaufwand)
Das zur Speicheranfrage gegebener Größe am besten passende Stück durch fortgesetzte
Halbierung eines großen Stücks gewinnen.

die Lochliste ist der Zweierpotenzgröße nach aufsteigend sortiert:
buddy sucht das kleinste passende Loch buddyi der Größe 2i

i ist Index in eine Tabelle von Adressen auf Löcher der Größe 2i

wobei i so zu bestimmen ist, dass gilt 2i−1 < size ≤ 2i , i > 1
mit size als Größe (in Bytes) des angeforderten Speicherstücks

buddyi entsteht durch sukzessive Splittung von buddyj , j > i :
2n = 2 × 2n−1

zwei gleichgroße Stücke, die „Kumpel“ des jeweils anderen sind
i wird fortgesetzt dekrementiert, solange 2i−1 > size, i > 1

mögl. Verschnitt durch eine Auswahl von Stückgrößen begegnen
vergleichsweise geringer Such- und Aufsplittungsaufwand, jedoch kann
der anfallende Verschnitt dennoch beträchtlich sein

im Mittel sind die zugeteilten Stücke um 1/3 größer als angefordert und die
belegten Stücke nur zu 3/4 genutzt [1, S. 32]

SP Platzierungsstrategie C – XII.2 / 18

Gliederung

Einführung

Rekapitulation

Platzierungsstrategie

Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt

Fragmentierung

Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Speicherverschnitt C – XII.2 / 19

Speicherverschnitt

Fragmentierung

Bruchstückbildung
Verschnitt durch zuviel zugeteilte oder nicht nutzbare Bereiche, der
als Abfall in Erscheinung tritt und Verschwendung bedeutet.
je nach Adressraumkonzept und Zuteilungsverfahren zeigen sich
verschiedene Ausprägungen der Fragmentierung
intern seitennummerierte Adressräume, Halbierungsverfahren (buddy)

die angeforderte Größe ist kleiner als das zugeteilte Stück
falls Seitennummerierung, ist die Größe auch kein

Seitenvielfaches
der „lokale Verschnitt“ ist nutzbar, dürfte es aber nicht sein

↪→ Verschwendung, ist (durch das Betriebssystem) unvermeidbar
extern segmentierte Adressräume, Halbierungsverfahren (buddy)

die angeforderte Größe ist zu groß für jedes einzelne Loch
in Summe ihrer Größen genügen die Löcher der angeforderten

Größe
allerdings sind sie im Hauptspeicher nicht linear angeordnet

der „globale Verschnitt“ ist ggf. nicht mehr zuteilbar
↪→ Verlust, ist (durch das Betriebssystem) aufwendig vermeidbar

externe Fragmentierung kann durch Verschmelzung verringert und
Kompaktifizierung aufgelöst werden

SP Speicherverschnitt C – XII.2 / 20

Interne Fragmentierung internal fragmentation

seitennummerierter Adressraum
abzubildende Programmsegmente sind
Vielfaches von Bytes
der (log./virt.) Prozessadressraum ist
aber ein Vielfaches von Seiten
die jew. letzte Seite der Segmente ist
ggf. nicht komplett belegt

seitenlokaler Verschnitt
wird vom Programm logisch nicht
beansprucht
ist vom Prozess physisch jedoch
adressierbar
da eine seitennummerierte MMU Seiten
schützt, keine Segmente

Stapelsegment

Datensegment

Textsegment

S
e

it
e

/S
e

it
e

n
ra

h
m

e
n

Verschnitt

das Halbierungsverfahren (buddy) liefert ein ähnliches Bild
immer dann, wenn die Anforderungsgröße keine Zweierpotenz ist
ein Verschnitt von 2i − size (in Bytes) ergibt sich zum Stückende hin

SP Speicherverschnitt C – XII.2 / 21

Externe Fragmentierung external fragmentation

segmentierter Adressraum
die zu platzierenden Fragmente sind
Vielfaches von Bytes
sie werden 1:1 auf Segmente einer MMU
abgebildet
die jew. eine lineare Bytefolge im
realen Adressraum bedingen

globaler Verschnitt
die Summe von Löchern ist groß genug
für die Speicheranforderung
die Löcher liegen aber verstreut im
realen Adressraum vor und
jedes einzelne Loch ist zu klein für die
Speicheranforderung

F
ra

g
m

e
n

te
/S

e
g

m
e

n
te

A
n

fo
rd

e
ru

n
g

(1)

(2)

Löcher

(1+2)

das Halbierungsverfahren (buddy) liefert ein ähnliches Bild
immer dann, wenn zwischen zu kleinen Löchern ein Gebrauchsstück liegt
jede Stückgröße ist eine Zweierpotenz, das größte Loch ist aber zu klein

SP Speicherverschnitt C – XII.2 / 22

Speicherverschnitt

Verschmelzung

Vereinigung eines Lochs mit angrenzenden Löchern

Eine wichtige Maßnahme, die bei der Zurücknahme eines Gebrauchs-
stücks oder Zerstörung eines Prozessexemplars greift.

Verschmelzung von Löchern erzeugt größere Hohlräume und
bringt damit folgende positive (nichtfunktionale) Eigenschaften
weniger Löcher, dadurch geringere externe Fragmentierung
weniger Lochdeskriptoren, dadurch kürzere Listen und Suchzeiten
beides beschleunigt die Speicherzuteilung, gibt kürzere Antwortzeiten

Löchervereinigung sieht sich mit vier Situationen konfrontiert, je
nach dem, welche relative Lage ein Loch im Adressraum hat:

1. zw. zwei Gebrauchsstücken

2. direkt nach einem Loch

3. direkt vor einem Loch

4. zwischen zwei Löchern

keine Vereinigung möglich

Vereinigung mit Vorgänger

Vereinigung mit Nachfolger

Kombination von 2. und 3.

SP Speicherverschnitt C – XII.2 / 23

Bezug zum Zuteilungsverfahren . . .KISS

die Verschmelzungsaufwände variieren teils sehr stark mit der Art
und Weise, wie die Lochliste vom Betriebssystem geführt ist:

buddy das Stück wird mit seinem Buddy-Stück verschmolzen
Adressen zweier Buddies gleichen sich bis auf einem Bit
ein Stück ist Buddy eines anderen Stücks, wenn gilt:

1 bool buddy (void *this , unsigned size , void *that) {
2 return (size && !(size & (size - 1))) /* power of two !? */
3 && (((unsigned)this ^ (unsigned)that) == size);
4 }

ggf. mit jeweils nächst größerem Buddy verschmelzen
first/next-fit beim Einsortieren in die Lochliste Nachbarschaft prüfen

ein Stück ist Nachbar eines anderen Stücks, wenn gilt:
5 bool neighbor (void *this , unsigned size , void *that) {
6 return ((unsigned)this + size) == (unsigned)that;
7 }

mit jeweils aktuellem und nächsten Listenelement prüfen
best/worst-fit wie first/next-fit, beim Einsortieren prüfen

aber Listennachfolger müssen keine Nachbarn sein /
die ganze Lochliste durchlaufen: zwei Nachbarn finden /
erst dann ggf. verschmelzen und neu einsortieren /

SP Speicherverschnitt C – XII.2 / 24

Vereinigung beliebiger Löcher first/next-fit

das Stück ist „rechter Nachbar“ (Nachfolger) des Lochs:

free(0x011e, 20) 100

0x0100

30

0x0156

frei frei

1. das alte 30 Bytes große Loch kann um 20 Bytes vergrößert werden

Verschmelzung; das nächste Stück ist „rechter Nachbar“
(Nachfolger) des Lochs und „linker Nachbar“ (Vorgänger) des
Lochnachfolgers

free(0x0132, 36) 100

0x0100

50

0x0156

freifrei

2. das alte 50 Bytes große Loch kann um 36 Bytes vergrößert werden
3. das neue 86 Bytes große Loch kann um 100 Bytes vergrößert werden

frei

186

0x0100

free(0x0132, 36)

Verschmelzung:

SP Speicherverschnitt C – XII.2 / 25

Speicherverschnitt

Kompaktifizierung

Vereinigung des globalen Verschnitts
Die Gebrauchsstücke im Hauptspeicher werden so verschoben,
dass am Ende ein einziges großes Loch vorhanden ist.
um externe Fragmentierung aufzulösen, sind Gebrauchsstücke im
Hauptspeicher durch Kopiervorgänge umzulagern

i direkt im Hauptspeicher oder
ii indirekt über den Ablagespeicher ; swapping

so wird zunächst ein weiteres Loch geschaffen, das dann aber gleich
wieder mit Nachbarlöchern verschmilzt

schrittweise wird die Lochliste verkürzt, bis nur noch ein Loch übrigbleibt

Umlagerung zieht Verlagerung der betroffenen Segmente oder
Seiten nach sich, wenn sie ihre neue Position im realen
Adressraum haben
deren Lage ändert sich nur im realen Adressraum, nicht im logischen

nur die Basisadresse im Segment-/Seitendeskriptor ist zu aktualisieren

im logischen Adressraum behält jedes Segment/jede Seite seine Adresse

zentraler Aspekt dabei ist, die Anzahl der Umlagerungsvorgänge zu
minimieren, was ein komplexes Optimierungsproblem darstellt

SP Speicherverschnitt C – XII.2 / 26

Auflösung externer Fragmentierung: Optionen

was wohin?

700

S2

S3

300

0

S1

900

1200

1600

900

500

2

S3

600 Worte

S

0

S1

300

S2

900

700

S3

400 Worte

0

S1

300

1600

3

S2

200 Worte

0

S

S1

300

1200

SP Speicherverschnitt C – XII.2 / 27

Gliederung

Einführung

Rekapitulation

Platzierungsstrategie

Freispeicherorganisation

Verfahrensweisen

Speicherverschnitt

Fragmentierung

Verschmelzung

Kompaktifizierung

Zusammenfassung

SP Zusammenfassung C – XII.2 / 28

Resümee . . . facettenreiches Problem

Zuteilung von Arbeitsspeicher durch eine Platzierungsstrategie
die Erfassung freier Speicherstücke hängt u.a. ab vom Adressraummodell

i Seiten bzw. Seitenrahmen ; Bitkarte oder Lochliste
ii Segmente ; Lochliste

weitere Folge davon ist interne (i) oder externe (ii) Fragmentierung
Speicherverschnitt durch zuviel zugeteilte bzw. nicht nutzbare Bereiche

die Zuteilungsverfahren verwalten Löcher
nach abnehmender Größe worst-fit

nach ansteigender
{

Größe best-fit, buddy
Adresse first-fit, next-fit

angefallener Speicherverschnitt ist zu reduzieren oder aufzulösen
i Verschmelzung von Löchern verringert externe Fragmentierung

beschleunigt die Speicherzuteilungsverfahren und
lässt die Speicherzuteilung im Mittel häufiger gelingen

ii Kompaktifizierung der Löcher löst externe Fragmentierung auf
hinterlässt (im Idealfall) ein großes Loch
erfordert aber positionsunabhängige Programme d.h. logische Adressräume

SP Zusammenfassung C – XII.2 / 29

Zusammenfassung

Bibliographie

Literaturverzeichnis (1)

[1] Heiss, H.-U. :
Speicherverwaltung.
In: AG Betriebssysteme und Verteilte Systeme (Hrsg.): Konzepte
und Methoden der Systemsoftware.
Universität-GH Paderborn, 2000 (Vorlesungsfolien), Kapitel 5

[2] Kleinöder, J. ; Schröder-Preikschat, W. :
Adressräume.
In: [4], Kapitel 12.1

[3] Kleinöder, J. ; Schröder-Preikschat, W. :
Speicher.
In: [4], Kapitel 6.2

SP Zusammenfassung C – XII.2 / 30

Literaturverzeichnis (2)

[4] Kleinöder, J. ; Schröder-Preikschat, W. ; Lehrstuhl Informatik
4 (Hrsg.):
Systemprogrammierung.
FAU Erlangen-Nürnberg, 2015 (Vorlesungsfolien)

SP Zusammenfassung C – XII.2 / 31

Anhang

Platzierungsstrategie

Halbierungsverfahren: Beispiel binary buddy

angenommen sei die Anforderung von 42 Bytes:
26 = 64 ist kleinste Zweierpotenz ≥ 42, d.h., zuzuteilen sind 64 Bytes
ein entsprechend großes Loch fehlt, es ist durch Splittung zu erzeugen
nächstes Loch in der Liste ist ein Stück von 1024 KiB

1. 1024 = 210 = 2 × 29 = 512 + 512, zu groß, eins davon wird halbiert
2. 512 = 29 = 2 × 28 = 256 + 256, zu groß, eins davon wird halbiert
3. 256 = 28 = 2 × 27 = 128 + 128, zu groß, eins davon wird halbiert
4. 128 = 27 = 2 × 26 = 64 + 64, passt, eins davon wird zugeteilt

1024 KiB
1 512 512 KiB
2 256 256 512 KiB
3 128 128 256 512 KiB
4 64 64 128 256 512 KiB

geeignet ist eine zweidimensionale Repräsentation der Lochliste:
i eine Tabelle von Buddy-Klassen, aufsteigend sortiert (Zweierpotenzen), lokal

gespeichert im Betriebssystem
ii eine lineare Liste gleicher Buddies, gespeichert in den Hohlräumen

SP Anhang C – XII.2 / 32

Halbierungsverfahren: Randbedingungen binary buddy

bei dieser Technik bilden die Größen der Adressbereiche aller
Löcher und Gebrauchsstücke eine Zweierpotenz
wird ein beliebiges dieser Stücke in zwei gleich große Hälften gesplittet,
entstehen zwei Buddies, deren Größe wieder einer Zweierpotenz bildet
umgekehrt: werden diese beiden Buddies wieder kombiniert, entsteht ein
einzelner Buddy doppelter Größe

Buddy-Stücke der Größe 2n werden im Adressraum so platziert,
dass ihre jeweilige Anfangsadresse ein Vielfaches von 2n ist
d.h., für n > 1 sind die niederwertigen n Bits dieser Adressen gleich 0

aus dieser Nebenbedingung ergibt sich folgende Konsequenz, die
in zweierlei Hinsicht von Bedeutung ist:

i bei Splittung eines Buddies der Größe 2n+1 unterscheiden sich die beiden
Adressen der Buddy-Hälften nur in Bit 2n

ii gegeben sei ein Stück der Größe 2n an Adresse a, dann errechnet sich die Adresse
b seines Buddies wie folgt: b = a + 2n , mit a mod 2n = 0

Beispiel: Buddy
der Größe 25

gibt 2 × 24

32 Bytes
16 Bytes

16 Bytes
...01110000

...01100000...01100000

SP Anhang C – XII.2 / 33

Halbierungsverfahren: Allokation binary buddy

die Lochliste, repräsentiert als Tabelle verketteter Buddies:
1 static chain_t * holelist [NSLOT];

ein Loch als Buddy hervorbringen (breed):
2 void * breed (unsigned slot) {
3 chain_t *hole = 0;
4 if (slot < NSLOT) {
5 if (holelist [slot] != 0) {
6 hole = holelist [slot];
7 holelist [slot] = hole ->link;
8 } else {
9 if ((hole = breed (slot + 1)) != 0) {

10 chain_t *next = (chain_t *)((unsigned)hole ^ (1 << slot));
11 next ->link = 0;
12 holelist [slot] = next;
13 }
14 }
15 }
16 return hole;
17 }

einen Bedarf (need) an freien Speicher geltend machen:
18 void *need(unsigned size) {
19 unsigned slot;
20 for (slot = 0; (1 << slot) < size; slot ++);
21 return breed (slot);
22 }

SP Anhang C – XII.2 / 34

Vereinigung hälftiger Löcher binary buddy

vgl. auch die Belegung von S. 40 (v. li.): fünf Gebrauchsstücke A–E
1. free(D, 256), kein freier Buddy, verbleibt als Loch D von 256 Bytes
2. free(B, 64), kein freier Buddy, verbleibt als Loch B von 64 Bytes
3. free(A, 64), freier Buddy B, verschmilzt zu Loch AB von 128 Bytes
4. free(C, 128), freier Buddy AB, verschmilzt zu Loch ABC von 256 Bytes

freier Buddy D, verschmilzt zu Loch ABCD von 512 Bytes

5. free(E, 512), freier Buddy ABCD, verschmilzt zum Loch von 1024 KiB

64 64 128 256 512 KiB
1 64 64 128 256 512 KiB
2 64 64 128 256 512 KiB
3 128 128 256 512 KiB
4 256 256 512 KiB
4 512 512 KiB
5 1024 KiB

SP Anhang C – XII.2 / 35

	Einführung
	Rekapitulation

	Platzierungsstrategie
	Freispeicherorganisation
	Verfahrensweisen

	Speicherverschnitt
	Fragmentierung
	Verschmelzung
	Kompaktifizierung

	Zusammenfassung
	Bibliographie

	Anhang
	Platzierungsstrategie

