
Aufgabe 4 – Erweiterung um
Just-in-Time-Compiler

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware

Friedrich-Alexander-Universität Erlangen-Nürnberg

WS 2025/2026

V. Sieh Erweiterung um JIT (WS25/26) 1 – 17

Einführung

Entwickelt werden soll ein virtuelles (vereinfachtes) SPiC-Board mit
ATmega32-Mikrokontroller mit JIT-Compiler.

V. Sieh Erweiterung um JIT (WS25/26) Programmieraufgaben 2 – 17

SPiC-Board – Aufbau (vereinfacht)

Aufgabe 4 (unverändert gegenüber Aufgabe 3):

V. Sieh Erweiterung um JIT (WS25/26) SPiC-Board – Aufbau 3 – 17

Geforderte Funktionalität

Der CPU-Teil des Mikrokontrollers soll jetzt als
Just-in-Time-Compiler ausgeführt werden.
Basisblöcke sollen einmal am Stück compiliert und nachfolgend ggf.
mehrfach ausgeführt werden können.
Optimierungen (Block-Verkettungen, Lazy-Flags-Berechnungen u.ä.)
sind nicht gefordert.
Bestehende Unterprogramme (z.B. zur Berechnung eine
Additions-Ergebnisses mit seinen Flags) dürfen vom JIT-Code aus
verwendet werden.

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 4 – 17

Geforderte Funktionalität

Getestet werden soll die neue CPU mit den bisherigen
Testprogrammen. Diese sollen lauffähig bleiben.

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 5 – 17

Bewertung

Die Performance des alten Interpreters und die des neuen
JIT-Ansatzes soll verglichen werden.
Berechnen Sie den Speedup.
Identifizieren Sie die noch bestehenden Flaschenhälse.

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 6 – 17

Hinweise

Im Folgenden:

(Gedankliche) Schritte, um von einem Interpreter zu einem
Just-in-Time-Compiler zu kommen...

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 7 – 17

Hinweise
void step(struct state *s) {

/* 1. Pipeline-Stufe: Instruktion holen */
inst = fetch(s->pc++);

switch (inst_format(inst) {
case ALU_REG_REG:

/* 2. Pipeline-Stufe: Operanden holen */
op1 = reg_read(s, (inst >> 0) & 0xf);
op2 = reg_read(s, (inst >> 4) & 0xf);

/* 3. Pipeline-Stufe: Rechnen */
res = alu(s, (inst >> 24) & 0xf, op1, op2);

/* 4. Pipeline-Stufe: Ergebnis speichern */
reg_write(s, (inst >> 20) & 0xf, res);
break;

case ALU_REG_IMM:
/* 2. Pipeline-Stufe: Operanden holen */
op1 = reg_read(s, (inst >> 0) & 0xf);
op2 = (inst >> 4) & 0xffff;

/* 3. Pipeline-Stufe: Rechnen */
res = alu(s, (inst >> 24) & 0xf, op1, op2);

/* 4. Pipeline-Stufe: Ergebnis speichern */
reg_write(s, (inst >> 20) & 0xf, res);
break;

case ...
...

}
}

Basisblock:
15: add %r0, %r1
16: sub $13, %r1
17: mov %r1, %r8
18: cmp $0, %8
19: jne 25

Wie sehe entsprechende
C-Funktion aus?

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 8 – 17

Hinweise
void step(struct state *s) {

/* 1. Pipeline-Stufe: Instruktion holen */
inst = fetch(s->pc++);

switch (inst_format(inst) {
case ALU_REG_REG:

/* 2. Pipeline-Stufe: Operanden holen */
op1 = reg_read(s, (inst >> 0) & 0xf);
op2 = reg_read(s, (inst >> 4) & 0xf);

/* 3. Pipeline-Stufe: Rechnen */
res = alu(s, (inst >> 24) & 0xf, op1, op2);

/* 4. Pipeline-Stufe: Ergebnis speichern */
reg_write(s, (inst >> 20) & 0xf, res);
break;

case ALU_REG_IMM:
/* 2. Pipeline-Stufe: Operanden holen */
op1 = reg_read(s, (inst >> 0) & 0xf);
op2 = (inst >> 4) & 0xffff;

/* 3. Pipeline-Stufe: Rechnen */
res = alu(s, (inst >> 24) & 0xf, op1, op2);

/* 4. Pipeline-Stufe: Ergebnis speichern */
reg_write(s, (inst >> 20) & 0xf, res);
break;

case ...
...

}
}

15: add %r0, %r1
16: sub $13, %r1
17: mov %r1, %r8
18: cmp $0, %r8
19: jne 25

void block(struct state *s) {
op1 = reg_read(s, 0);
op2 = reg_read(s, 1);
res = alu(s, ADD, op1, op2);
reg_write(s, 1, res);

op1 = reg_read(s, 1);
op2 = 13;
res = alu(s, SUB, op1, op2);
reg_write(s, 1, res);

op1 = reg_read(s, 1);
res = op1;
reg_write(s, 8, res);

op1 = reg_read(s, 8);
op2 = 0;
alu(s, SUB, op1, op2);

if (! s->z) {
s->pc = 25;

} else {
s->pc = 20;

}
}

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 9 – 17

Hinweise

void block(struct state *s) {
int op1;
int op2;
int res;

op1 = reg_read(s, 0);
op2 = reg_read(s, 1);
res = alu(s, ADD, op1, op2);
reg_write(s, 1, res);

op1 = reg_read(s, 1);
op2 = 13;
res = alu(s, SUB, op1, op2);
reg_write(s, 1, res);

op1 = reg_read(s, 1);
res = op1;
reg_write(s, 8, res);

op1 = reg_read(s, 8);
op2 = 0;
alu(s, SUB, op1, op2);

if (! s->z) {
s->pc = 25;

} else {
s->pc = 20;

}
}

Wie sehe entsprechender
Assembler-Code aus?

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 10 – 17

Hinweise

void block(struct state *s) {
int op1;
int op2;
int res;

op1 = reg_read(s, 0);
op2 = reg_read(s, 1);
res = alu(s, ADD, op1, op2);
reg_write(s, 1, res);

...
}

block: // s in %rdi
pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

movq %rbp, %rdi
movl $0, %esi
call reg_read
movl %eax, 0(%rsp)

movq %rbp, %rdi
movl $1, %esi
call reg_read
movl %eax, 4(%rsp)

movq %rbp, %rdi
movl $ADD, %esi
movl 0(%rsp), %edx
movq 4(%rsp), %ecx
call alu
movl %eax, 8(%rsp)

movq %rbp, %rdi
movl $1, %esi
movl 8(%rsp), %edx
call reg_write

...

addq $16, %rsp
popq %rbp
ret

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 11 – 17

Hinweise

void block(struct state *s) {
int op1;
int op2;
int res;

...

if (! s->z) {
s->pc = 25;

} else {
s->pc = 20;

}
}

block: // s in %rdi
pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

...

cmpb $0, off_z(%rbp)
jne l1
movl $25, off_pc(%rbp)
jmp l2;

l1: movl $20, off_pc(%rbp)
l2:

addq $16, %rsp
popq %rbp
ret

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 12 – 17

Hinweise

block: // s in %rdi
pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

movq %rbp, %rdi
movl $0, %esi
call reg_read
movl %eax, 0(%rsp)

...

cmpb $0, off_z(%rbp)
jne l1
movl $25, off_pc(%rbp)
jmp l2;

l1: movl $20, off_pc(%rbp)
l2:

addq $16, %rsp
popq %rbp
ret

Wie sehe Binär-Code aus?

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 13 – 17

Hinweise

block: // s in %rdi
pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

movq %rbp, %rdi
movl $0, %esi
call reg_read
movl %eax, 0(%rsp)

...

cmpb $0, 0x5(%rbp)
jne l1
movl $25, 0x12(%rbp)
jmp l2;

l1: movl $20, 0x12(%rbp)
l2:

addq $16, %rsp
popq %rbp
ret

55 push %rbp
48 89 fd mov %rdi,%rbp
48 83 ec 10 sub $0x10,%rsp

48 89 ef mov %rbp,%rdi
be 00 00 00 00 mov $0x0,%esi
e8 (reg_read - lab1) callq reg_read

lab1: 89 04 24 mov %eax,(%rsp)

...

80 7d 05 00 cmpb $0x0,0x5(%rbp)
75 (lab3 - lab2) jne lab3

lab2: c7 45 12 19 00 00 00 movl $0x19,0x12(%rbp)
eb (lab4 - lab3) jmp lab4

lab3: c7 45 12 14 00 00 00 movl $0x14,0x12(%rbp)

lab4: 48 83 c4 10 add $0x10,%rsp
5d pop %rbp
c3 retq

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 14 – 17

Hinweise

Damit Bytes im Speicher ausführbar sind, muss der entsprechende
Speicherbereich in der MMU als „ausführbar” markiert sein.

In der MMU werden alle Speicherbereiche als Seiten verwaltet. Seiten
müssen an Adressen liegen, die durch die Seitengröße teilbar sind.

Unter Linux/gcc:

#include <sys/mman.h>

char jit_buf[256*4096] __attribute__((aligned(4096)));
int ret;

ret = mprotect(jit_buf, sizeof(jit_buf),
PROT_READ | PROT_WRITE | PROT_EXEC);

assert(0 <= ret);

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 15 – 17

Hinweise

Hinweise x86_64-Programmierung:

https://de.wikipedia.org/wiki/AMD64

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 16 – 17

Hinweise

Bei Problemen gerne/rechtzeitig melden!

V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalität 17 – 17

	Programmieraufgaben
	SPiC-Board – Aufbau
	Geforderte Funktionalität

