Aufgabe 4 — Erweiterung um
Just-in-Time-Compiler

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Nirnberg

WS 2025,2026

O V. Sieh Erweiterung um JIT (WS25/26) 1-17

Einfihrung

Entwickelt werden soll ein virtuelles (vereinfachtes) SPiC-Board mit
ATmega32-Mikrokontroller mit JIT-Compiler.

O V. Sieh Erweiterung um JIT (WS25/26) Programmieraufgaben 2-17

SPiC-Board — Aufbau (vereinfacht)

Aufgabe 4 (unverandert gegeniiber Aufgabe 3):

! LEDT
— wmo | p—— L
LED3
S ;1
He Tiew ——— &5
[EDG
———— o7
——| Port & —
P —--| Port B —— sutTOoMg
BUTTONI
——| Port C —
———— ran
={ PonD ——— LGHTsENSOR
__| ADC —

7-SEGMENTO-ANODE
——— rsccmentianon:
FLASH f——— 7-SEGMENTO/1-A
E— 2
——— 7secMenTonC
I — N
——— rstamenmone
e
——— rseemenmane

O V. Sieh Erweiterung um JIT (WS25/26) SPiC-Board — Aufbau 3-17

Geforderte Funktionalitat

m Der CPU-Teil des Mikrokontrollers soll jetzt als
Just-in-Time-Compiler ausgefiihrt werden.

m Basisblocke sollen einmal am Stiick compiliert und nachfolgend ggf.
mehrfach ausgefiihrt werden kénnen.

m Optimierungen (Block-Verkettungen, Lazy-Flags-Berechnungen u.3.)
sind nicht gefordert.

m Bestehende Unterprogramme (z.B. zur Berechnung eine
Additions-Ergebnisses mit seinen Flags) diirfen vom JIT-Code aus
verwendet werden.

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 4-17

Geforderte Funktionalitat

Getestet werden soll die neue CPU mit den bisherigen
Testprogrammen. Diese sollen lauffahig bleiben.

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 5-17

Bewertung

m Die Performance des alten Interpreters und die des neuen
JIT-Ansatzes soll verglichen werden.

B Berechnen Sie den Speedup.

m |dentifizieren Sie die noch bestehenden Flaschenhélse.

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat

6-17

Hinweise

Im Folgenden:

(Gedankliche) Schritte, um von einem Interpreter zu einem
Just-in-Time-Compiler zu kommen...

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 7-17

Hinweise

void step(struct state *s) {
/* 1. Pipeline-Stufe: Instruktion holen */
inst = fetch(s->pc++);

switch (inst_format(inst) {

case ALU_REG_REG:
/* 2. Pipeline-Stufe: Operanden holen */
opl = reg_read(s, (inst >> 0) & 0xf);
op2 = reg_read(s, (inst >> 4) & 0xf);

Basisblock:

16: add %r0, %rl

/* 3. Pipeline-Stufe: Rechnen */
res = alu(s, (inst >> 24) & Oxf, opl, op2);

/* 4. Pipeline-Stufe: Ergebnis speichern */ 16: sub $13, %rl

reg_write(s, (inst >> 20) & Oxf, res); 17: mov Y%rl, %r8

break; 18: cmp $0, %8
19: jne 25

case ALU_REG_IMM:
/* 2. Pipeline-Stufe: Operanden holen */ .
opl = reg_read(s, (inst >> 0) & 0xf); Wie sehe entsprechende

op2 = (inst >> 4) & Oxffff; .
C-Funktion aus?
/* 3. Pipeline-Stufe: Rechnen */

res = alu(s, (inst >> 24) & Oxf, opl, op2);
/* 4. Pipeline-Stufe: Ergebnis speichern */
reg_write(s, (inst >> 20) & Oxf, res);

break;

case ...

3
O N. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 8-17

Hinweise

void step(struct state *s) {

/* 1. Pipeline-Stufe: Instruktion holen */ 15: add %r0, %ri
inst = fetch(s->pc++); 16: sub $13, Yri
17: mov %ri, %r8
switch (inst_format(inst) { 18: cmp $0, %r8
case ALU_REG_REG: 19: jne 25
/* 2. Pipeline-Stufe: Operanden holen */
opl = reg_read(s, (inst >> 0) & Oxf); void block(struct state *s) {
op2 = reg_read(s, (inst >> 4) & 0xf); opl = reg_read(s, 0);
op2 = reg_read(s, 1);
/* 3. Pipeline-Stufe: Rechnen */ res = alu(s, ADD, opl, op2);
res = alu(s, (inst >> 24) & O0xf, opl, op2); reg_write(s, 1, res);
/* 4. Pipeline-Stufe: Ergebnis speichern */ opl = reg_read(s, 1);
reg_write(s, (inst >> 20) & Oxf, res); op2 = 13;
break; res = alu(s, SUB, opl, op2);

reg_write(s, 1, res);
case ALU_REG_IMM:

/* 2. Pipeline-Stufe: Operanden holen */ opl = reg_read(s, 1);
opl = reg_read(s, (inst >> 0) & 0xf); res = opl;

op2 = (inst >> 4) & Oxffff; reg_write(s, 8, res);
/* 3. Pipeline-Stufe: Rechnen */ opl = reg_read(s, 8);
res = alu(s, (inst >> 24) & 0xf, opl, op2); op2 = 0;

alu(s, SUB, opl, op2);
/* 4. Pipeline-Stufe: Ergebnis speichern */

reg_write(s, (inst >> 20) & Oxf, res); if (1 s—>z) {
break; s->pc = 25;
} else {
case ... s->pc = 20;

O :
> 3
N. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 9-17

Hinweise

void block(struct state *s) {
int opil;
int op2;
int res;

opl = reg_read(s, 0);
op2 = reg_read(s, 1);
res = alu(s, ADD, opl, op2);
reg_write(s, 1, res);

opl = reg_read(s, 1);
op2 = 13;

res = alu(s, SUB, opl, op2); Wie sehe entsprechender

reg_write(s, 1, res);
Assembler-Code aus?
opl = reg_read(s, 1);

res = opl;
reg_write(s, 8, res);

opl = reg_read(s, 8);
op2 = 0;
alu(s, SUB, opl, op2);

if (1 s->z) {

s->pc = 25;
} else {
s->pc = 20;

}
}

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 10-17

Hinweise

void block(struct state *s) {
int opil;
int op2;
int res;

opl = reg_read(s, 0);
op2 = reg_read(s, 1);
res = alu(s, ADD, opl, op2);
reg_write(s, 1, res);

block: // s in %rdi
pushq %rbp

movq
subq

movq
movl
call
movl

movq
movl
call
movl

movq
movl
movl
movq
call
movl

movq
movl
movl
call

addq
Popq

rot

%rdi, %rbp
$16, Yrsp

%rbp, %rdi
$0, %esi
reg_read
%heax, 0(%rsp)

%rbp, %rdi
$1, Yesi
reg_read
%heax, 4(%rsp)

%rbp, %rdi
$ADD, Yesi
0(%rsp), %edx
4(%rsp), %hecx
alu

%heax, 8(%rsp)

%rbp, %rdi
$1, %esi
8(%rsp), %hedx
reg_write

$16, Yrsp
%rbp

O V. Sieh Erweiterung um JIT (WS25/26)

Geforderte Funktionalitat

11-17

Hinweise

void block(struct state *s) {

int opil;
int op2;
int res;
if (! s=>z) {
s->pc = 25;
} else {
s->pc = 20;
}

block: // s in Yrdi

11:

pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

cmpb $0, off_z(Jrbp)
jne 11

movl $25, off_pc(%rbp)
jmp 12;

movl $20, off_pc(Y%rbp)

addq $16, %rsp
popq %rbp
ret

O V. Sieh Erweiterung um JIT (WS25/26)

Geforderte Funktionalitat

12-17

Hinweise

block: // s in %rdi
pushq %rbp
movq %rdi, %rbp
subq $16, %rsp

movq %rbp, %rdi
movl $0, %esi
call reg_read
movl Y%eax, O(%rsp)

Wie sehe Binar-Code aus?

cmpb $0, off_z(%rbp)
jne 11
movl $25, off_pc(%rbp)
jmp 123

11: movl $20, off_pc(%rbp)

addq $16, %rsp

popq %rbp
ret

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 13-17

Hinweise

block: // s in %rdi

. 55 push %rbp
pushq. /.r‘t.>p . 48 89 fd mov ‘%rdi,%rbp
movq %rdi, %rbp 48 83 ec 10 sub $0x10,%rsp
subq $16, Y%rsp

. o 48 89 ef mov %rbp, %rdi
movq %rbp, %rdi be 00 00 00 00 mov $0x0,%esi
movl $0, Zesi e8 (reg_read - labl) callg reg_read
call reg read labl: 89 04 24 mov ‘heax, (Yrsp)
movl %eax, O0(%rsp)

. 80 7d 05 00 cmpb $0x0,0x5 (%rbp)
cmpb $0, 0x5(%irbp) 75 (1ab3 - 1ab2) jnz 1ab3 "
jne 11 . 1ab2: c7 45 12 19 00 00 00 movl $0x19,0x12(%rbp)
movl $25, 0x12(%rbp) eb (lab4 - 1ab3) jmp lab4
Jmp 12; 1ab3: 7 45 12 14 00 00 00 movl $0x14,0x12(%rbp)

11: movl $20, 0x12(%rbp)

12: . lab4: 48 83 c4 10 add $0x10,%rsp
addq $16, %rsp 54 pop Yrbp
Popq %rbp c3 retq

ret

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 14-17

Hinweise

Damit Bytes im Speicher ausfiihrbar sind, muss der entsprechende
Speicherbereich in der MMU als ,ausfithrbar” markiert sein.

In der MMU werden alle Speicherbereiche als Seiten verwaltet. Seiten
missen an Adressen liegen, die durch die SeitengréBe teilbar sind.

Unter Linux/gcc:

#include <sys/mman.h>

_attribute__((aligned(4096))) ;

char jit_buf [256%4096]
int ret;

ret = mprotect(jit_buf, sizeof (jit_buf),
PROT_READ | PROT_WRITE | PROT_EXEC);
assert(0 <= ret);

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 15-17

Hinweise

Hinweise x86_64-Programmierung:

https://de.wikipedia.org/wiki/AMD64

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 16-17

Hinweise

Bei Problemen gerne/rechtzeitig melden!

O V. Sieh Erweiterung um JIT (WS25/26) Geforderte Funktionalitat 17-17

	Programmieraufgaben
	SPiC-Board – Aufbau
	Geforderte Funktionalität

