Bibliotheks-basierte Virtualisierung

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Niirnberg

WS 2025/2026

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) 1-11




Bibliotheks-basierte Virtualisierung

Idee:

Will man eine bestimmte Applikation laufen lassen, muss ,nur” das
ABI fiir das Programm korrekt vorhanden sein.

Application Binary Interface (,ABI"):
CPU-Instruktionen

Memory-Layout

(Shared-) Library-Interface

Betriebssystem-Interface

Werden System-Calls (iber die Library abgewickelt, entfallt der letzte
Punkt.

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 2-11




Bibliotheks-basierte Virtualisierung —
CPU-Instruktionen

CPU-Instruktionen:

Es miissen die CPU-Instruktionen vorhanden sein, die das Programm
nutzt.

=> CPU muss ,,stimmen”

Beispiel: Windows-Programm auf einer Sparc-Prozessor-basierten
Workstation auszufiihren funktioniert daher mit dieser Methode nicht!

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 3-11




Bibliotheks-basierte Virtualisierung — Memory-Layout

Memory-Layout:

Da, wo das zu startende Programm seinen Programm-Code erwartet,
muss das Code-Segment liegen.

Da, wo das zu startende Programm sein Daten-Segment erwartet,
muss Read/Write-Memory sein.

Da, wo das zu startende Programm sein Stack-Segment erwartet
(i.A. dort, wo %esp hinzeigt), muss Read/Write-Memory sein.

Verhindert es das Host-OS, an die entsprechende Stelle Speicher zu
mappen, ist diese Virtualisierungs-Methode nicht anwendbar!

Beispiele:

Windows verhindert Mappings unterhalb von 1MB und oberhalb von
2GB.

Linux verhindert Mappings oberhalb von 3GB.

V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 4-11



Bibliotheks-basierte Virtualisierung

Guest
App Host

- "

Host Libs Host Libs

Host OS

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 5-11




Bibliotheks-basierte Virtualisierung

m  Vorteile:

= hohe Performance (nahe 100%)

m geringe Ressourcen-Anforderungen (z.B. kein zweites OS)

m Gast-Applikation lauft im Fenster parallel zu anderen
Native-Applikationen

m  Nachteile:

= ein Update der Original-Libraries erfordert ein Update der
nachprogrammierten Libraries

= neue Original-Libraries erfordern neue nachprogrammierte Libraries

= Nachprogrammieren der Libraries u.U. schwierig (keine Dokumentation,
kein Source-Code)

= nachprogrammierte Libraries u.U./i.A. fehlerbehaftet

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 6-11




Bibliotheks-basierte Virtualisierung

I.A. existieren viele Libraries (Beispiel: Linux/Windows je ca. 100).

m hohere Schichten kénnen ggf. unverandert bleiben

m niedrigere Schichten werden ersetzt

Z.B. wiirde es reichen, die 1ibc zu ersetzen, wenn man
Linux-Programme auf anderen Plattformen ablaufen lassen wollte.
(Beispiel: cygwin)

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 7-11




Bibliotheks-basierte Virtualisierung

App App
Libl ||Lib2 Libl ||Lib2
Lib4 Lib4
Lib3 Lib3
LibS LibS’ ‘
oS 0s’
Hardware Hardware

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 8-11



Bibliotheks-basierte Virtualisierung

Kennt das Betriebssystem den Applikation-Typ nicht, kann es ihn
nicht laden und mit den Libraries linken.

Moglichkeiten:

m  Betriebssystem erweitern (Beispiel Linux: binfmt_*-Module laden,
linken und starten entsprechende Applikationen)

m Betriebssystem startet Extra-Programm, dass die eigentliche
Applikation 1adt, linkt und startet (Beispiel: wine-Programm ladt,
linkt und startet Windows-Applikation unter Linux)

Entspricht Funktionalitat eines Shared-Library-Linkers.

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 9-11




Bibliotheks-basierte Virtualisierung

Problem:

Programme, die System-Calls enthalten (z.B. statisch gebundene
Programme)

Losung:

Betriebssystem muss ,fremde” System-Calls bereitstellen
(,Personality”, , Execution Domain”).

Beispiel: FreeBSD-Kernel kennt , Linux Personality” =>
Linux-Programme unter FreeBSD lauffahig.

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung 10-11



Bibliotheks-basierte Virtualisierung

App

App

Personality
,»0S”
O S O S b
Hardware Hardware

O V. Sieh Bibliotheks-basierte Virtualisierung (WS25/26) Bibliotheks-basierte Virtualisierung

11-11



	Bibliotheks-basierte Virtualisierung

