
Parallele Simulation

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware

Friedrich-Alexander-Universität Erlangen-Nürnberg

WS 2025/2026

V. Sieh Parallele Simulation (WS25/26) 1 – 16

Parallele Simulation

Typischer Desktop-PC hat z.Z. Quad-Core-CPU.

Gute Nutzung der Cores könnte Virtuelle Maschine um Faktor 4
beschleunigen...

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 2 – 16

Threads

Zwei Möglichkeiten:

Es existiert ein Pool von (z.B. 4) Threads, die sich jeweils aus einem
Pool von Aufträgen (auszuführende „step”-Funktionen der einzelnen
Komponenten) Aufträge herausnehmen und diese abarbeiten.
Nach der Abarbeitung aller Aufträge wird die Zeit erhöht.
Danach werden wieder alle „step”-Funktionen einmal aufgerufen, usw.
...

Problem: Threads müssen sich nach der Abarbeitung der Aufträge
jeweils synchronisieren (=> Performance-Problem)

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 3 – 16

Threads

...
Für jede Komponente existiert genau ein Thread der die
„step”-Funktion der Komponente immer wieder aufruft.
Die Uhr ist auch eine Komponente und schaltet in ihrer
„step”-Funktion mit Hilfe ihres Threads die Uhr weiter.

Probleme:

Komponenten können zeitlich „auseinander driften” aufgrund
unterschiedlicher Verdrängungen der einzelnen Threads.
Relative Performance der Komponenten schwierig einzuhalten.

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 4 – 16

Parallele Simulation

Parallelisierung auf verschiedene Ebenen denkbar:

jeder PC hat eigenen Thread
...
jede Komponente hat eigenen Thread
...
jeder Chip hat eigenen Thread
...
(jedes Gatter hat eigenen Thread)

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 5 – 16

Ein Thread pro PC

Im folgenden: jeder Thread simuliert einen PC

Vorteile:

Koordinierung/Synchronisierung der echten Cores nur selten
notwendig

Nachteile:

ggf. nur wenige echte Cores nutzbar

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 6 – 16

Problem: kritische Abschnitte

Angenommen, PC 1 sendet Netzwerk-Nachricht zu PC 2.
Dann führt Thread von PC 1 (grob) folgende Funktionen aus:

Innerhalb von PC 1:

CPU-Simulation
Bus-Write-Funktion
Callback-Funktion in Sender-Netzwerkkarte
Callback-Funktion im Netzwerk-Kabel

Netzwerk-Kabel-Simulation transferiert Kontrollfluss zu PC 2(!)...

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 7 – 16

Problem: kritische Abschnitte

... und in PC 2 werden folgende Funktionen ausgeführt:

Callback-Funktion in Empfänger-Netzwerkkarte
(schreibt per DMA Speicher, setzt Interrupt im Status-Register
=> kritischer Abschnitt!)
Callback-Funktion im PIC
(setzt IRR, ISR, ...
=> kritischer Abschnitt!)
Callback-Funktion in CPU
(setzt Interrupt-Pending-Flag
=> kritischer Abschnitt!)

=> viele kritische Abschnitte

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 8 – 16

Ein Thread pro Komponente

Im folgenden: jeder Thread simuliert eine Komponente

Problem:
noch mehr kritische Abschnitte; Beispiele

Platte führt gerade Auftrag aus; bekommt parallel neuen Auftrag
Grafikkarte liest gerade Speicher aus; Speicher wird parallel
beschrieben
Uhr tickt gerade; CPU liest Zeit parallel aus
zwei CPUs führen gleichzeitig ein cmpxchg aus
...

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 9 – 16

Ein Thread pro Komponente

kritische Abschnitte entsprechen den „Problem”-Zonen in echter
Hardware

Beispiele:

das Status-Register einer echten seriellen Schnittstelle muss
ausgelesen werden können, obwohl sich gleichzeitig der Status ändert
wenn der PIC von der CPU gefragt wird, welchen Interrupt er gerade
signalisiert, muss er zum gleichen Zeitpunkt einen weiteren Interrupt
entgegennehmen können
zwei Cores müssen serialisiert werden, wenn sie zum gleichen
Takt-Zeitpunkt auf den Bus zugreifen wollen
...

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 10 – 16

Problem Buszyklen

In Wirklichkeit werden CPU-Cores über den Bus synchronisiert.

Beispiel x86: Lock-Prefix (z.B. lock addl $1, counter)

Eigentlich:
bus_lock (bus);
tmp0 = load(counter);
tmp1 = 1;
tmp2 = add(tmp0 , tmp1);
store (counter , tmp2);
bus_unlock (bus);

Bisher nur:

tmp0 = load(counter);
tmp1 = 1;
tmp2 = add(tmp0 , tmp1);
store (counter , tmp2);

Problem: ein simuliertes Bus-Locking (Spinlock, Mutex, ...) dauert
viel zu lang.

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 11 – 16

Problem Buszyklen

Problem: ein echtes Bus-Locking (Spinlock, Mutex, ...) dauert viel zu
lang.

Idee(?): bus_lock- und bus_unlock-Aufrufe nur bei Lock-Prefix.

Problem (Beispiel):

spinlock_lock :
l: movl $0 , %eax

movl $1 , %edx
lock cmpxchgl %edx , lock
jne l
ret

spinlock_unlock :
movl $0 , lock
ret

Zugriff nur zum Teil mit Lock-Prefix!

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 12 – 16

Problem Buszyklen

Idee: Mit Lock-Prefix versehene Instruktionen mit cmpxchg
nachbilden.

addl $1, counter:

tmp0 = load(counter);
tmp1 = 1;
tmp2 = add(tmp0 , tmp1);
store (counter , tmp2);

lock addl $1, counter:

do {
tmp0 = load(counter);
tmp1 = 1;
tmp2 = add(tmp0 , tmp1);

} while (! cmpxchg (counter , tmp0 , tmp2));

Hinweis: Idee funktioniert nur mit direkt gemapptem Speicher!

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 13 – 16

Problem JIT
JIT legt compilierten Code in einem CPU-Simulations-internen Cache
ab.

Angenommen, zu simulieren sei eine Quad-Core-CPU.

Zwei Möglichkeiten:

jeder Core hat eigenen Code-Cache
alle Cores haben gemeinsamen Code-Cache

Probleme:

Ggf. Nebenläufigkeit beim Code-Eintragen bzw. -Invalidieren.
Pages mit compilierte Blöcken müssen in allen TLBs als „geschützt”
eingetragen werden.
Was passiert, wenn ein Core gerade einen Block compiliert, den eine
andere gerade im Speicher überschreibt?
...

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 14 – 16

Problem Synchronisierung

Existieren für alle Komponenten Threads (=> viele Threads), muss
das Host-OS häufig Kontext-Wechsel durchführen (nicht genügend
echte Cores vorhanden).

Daher maximal nur soviele Threads (Cores) verwenden, wie die
Host-Hardware besitzt.

Algorithmus-Idee: jeder Thread führt folgende Schleife aus:
while (true) {

while (step_func_pool_not_empty ()) {
func = remove_step_func_from_pool ();
execute (func);

}
last = barrier ();
if (last) {

increase_time ();
}

}

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 15 – 16

Problem Synchronisierung

Synchronisierung schwierig:

Synchronsierung i.A. ein System-Call (teuer)
ggf. ein Thread z.Z. verdrängt (=> alle anderen warten)

(2. Punkt z.Z. Forschungsgegenstand)

V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 16 – 16

	Parallele Simulation

