Parallele Simulation

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Niirnberg

WS 2025,/2026

O V. Sieh Parallele Simulation (WS25/26) 1-16

Parallele Simulation

Typischer Desktop-PC hat z.Z. Quad-Core-CPU.

Gute Nutzung der Cores konnte Virtuelle Maschine um Faktor 4
beschleunigen...

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 2-16

Threads

Zwei Moglichkeiten:

m Es existiert ein Pool von (z.B. 4) Threads, die sich jeweils aus einem
Pool von Auftragen (auszufithrende ,,step”-Funktionen der einzelnen
Komponenten) Auftrage herausnehmen und diese abarbeiten.

Nach der Abarbeitung aller Auftrage wird die Zeit erhoht.
Danach werden wieder alle ,,step”-Funktionen einmal aufgerufen, usw.

Problem: Threads miissen sich nach der Abarbeitung der Auftrage
jeweils synchronisieren (=> Performance-Problem)

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 3-16

Threads

B Fir jede Komponente existiert genau ein Thread der die
~Step”-Funktion der Komponente immer wieder aufruft.
Die Uhr ist auch eine Komponente und schaltet in ihrer
~Step”-Funktion mit Hilfe ihres Threads die Uhr weiter.

Probleme:

m Komponenten kénnen zeitlich ,,auseinander driften” aufgrund
unterschiedlicher Verdrangungen der einzelnen Threads.

m Relative Performance der Komponenten schwierig einzuhalten.

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 4-16

Parallele Simulation

Parallelisierung auf verschiedene Ebenen denkbar:

jeder PC hat eigenen Thread
jede Komponente hat eigenen Thread

jeder Chip hat eigenen Thread

(jedes Gatter hat eigenen Thread)

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 5-16

Ein Thread pro PC

Im folgenden: jeder Thread simuliert einen PC

Vorteile:

m Koordinierung/Synchronisierung der echten Cores nur selten
notwendig

Nachteile:

m ggf. nur wenige echte Cores nutzbar

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 6-16

Problem: kritische Abschnitte

Angenommen, PC 1 sendet Netzwerk-Nachricht zu PC 2.
Dann fithrt Thread von PC 1 (grob) folgende Funktionen aus:

Innerhalb von PC 1:

CPU-Simulation

Bus-Write-Funktion

Callback-Funktion in Sender-Netzwerkkarte
Callback-Funktion im Netzwerk-Kabel

Netzwerk-Kabel-Simulation transferiert Kontrollfluss zu PC 2(!)...

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 7-16

Problem: kritische Abschnitte

...und in PC 2 werden folgende Funktionen ausgefiihrt:

m Callback-Funktion in Empfanger-Netzwerkkarte
(schreibt per DMA Speicher, setzt Interrupt im Status-Register
=> kritischer Abschnitt!)
m Callback-Funktion im PIC
(setzt IRR, ISR, ...
=> kritischer Abschnitt!)
m Callback-Funktion in CPU
(setzt Interrupt-Pending-Flag
=> kritischer Abschnitt!)

—=> viele kritische Abschnitte

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 8-16

Ein Thread pro Komponente

Im folgenden: jeder Thread simuliert eine Komponente

Problem:
noch mehr kritische Abschnitte; Beispiele

m Platte fihrt gerade Auftrag aus; bekommt parallel neuen Auftrag

m Grafikkarte liest gerade Speicher aus; Speicher wird parallel
beschrieben

m Uhr tickt gerade; CPU liest Zeit parallel aus

m zwei CPUs fithren gleichzeitig ein cmpxchg aus

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 9-16

Ein Thread pro Komponente

kritische Abschnitte entsprechen den , Problem”-Zonen in echter
Hardware

Beispiele:

m das Status-Register einer echten seriellen Schnittstelle muss
ausgelesen werden kénnen, obwohl sich gleichzeitig der Status dndert

m wenn der PIC von der CPU gefragt wird, welchen Interrupt er gerade
signalisiert, muss er zum gleichen Zeitpunkt einen weiteren Interrupt
entgegennehmen koénnen

m zwei Cores miissen serialisiert werden, wenn sie zum gleichen
Takt-Zeitpunkt auf den Bus zugreifen wollen

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 10-16

Problem Buszyklen

In Wirklichkeit werden CPU-Cores liber den Bus synchronisiert.

Beispiel x86: Lock-Prefix (z.B. lock addl $1, counter)

Eigentlich: Bisher nur:

bus_lock (bus);
Ezgg : 1?ad(counter); tmpO = load(counter);

_ . tmpl = 1;
tmp2 = add(tmp0, tmpl); tmp2 = add(tmpO, tmpl);
store (counter, tmp2); S0 (CoTmEeE , Hmp2) §
bus_unlock (bus); ’ —

Problem: ein simuliertes Bus-Locking (Spinlock, Mutex, ...) dauert
viel zu lang.

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 11-16

Problem Buszyklen

Problem: ein echtes Bus-Locking (Spinlock, Mutex, ...) dauert viel zu
lang.

Idee(?): bus_lock- und bus_unlock-Aufrufe nur bei Lock-Prefix.
Problem (Beispiel):

spinlock_lock:
1: movl $0, %eax
movl $1, %edx
lock cmpxchgl %edx, lock
jne 1
ret

spinlock_unlock:
movl $0, lock
ret

Zugriff nur zum Teil mit Lock-Prefix!

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 12-16

Problem Buszyklen

Idee: Mit Lock-Prefix versehene Instruktionen mit cmpxchg

nachbilden.
addl $1, counter: lock addl $1, counter:
do {
tmp0 = load(counter); tmp0 = load(counter);
tmpl = 1; tmpl = 1;
tmp2 = add(tmpO, tmpl); tmp2 = add(tmpO, tmpl);
store (counter, tmp2); } while (! cmpxchg(counter, tmpO, tmp2

Hinweis: ldee funktioniert nur mit direkt gemapptem Speicher!

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 13-16

Problem JIT

JIT legt compilierten Code in einem CPU-Simulations-internen Cache
ab.

Angenommen, zu simulieren sei eine Quad-Core-CPU.

Zwei Moglichkeiten:

jeder Core hat eigenen Code-Cache
alle Cores haben gemeinsamen Code-Cache

Probleme:

Ggf. Nebenlaufigkeit beim Code-Eintragen bzw. -Invalidieren.
Pages mit compilierte Blocken miissen in allen TLBs als ,, geschiitzt”
eingetragen werden.

B Was passiert, wenn ein Core gerade einen Block compiliert, den eine
andere gerade im Speicher iiberschreibt?

0 V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 14-16

Problem Synchronisierung

Existieren fiir alle Komponenten Threads (=> viele Threads), muss
das Host-OS haufig Kontext-Wechsel durchfiihren (nicht gentigend
echte Cores vorhanden).

Daher maximal nur soviele Threads (Cores) verwenden, wie die
Host-Hardware besitzt.

Algorithmus-Idee: jeder Thread fiihrt folgende Schleife aus:

while (true) {
while (step_func_pool_not_empty()) {
func = remove_step_func_from_pool();
execute (func);
}
last = barrier();
if (last) {
increase_time ();
}
}

0 V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 15-16

Problem Synchronisierung

Synchronisierung schwierig:

® Synchronsierung i.A. ein System-Call (teuer)

m ggf. ein Thread z.Z. verdrangt (=> alle anderen warten)

(2. Punkt z.Z. Forschungsgegenstand)

O V. Sieh Parallele Simulation (WS25/26) Parallele Simulation 16-16

	Parallele Simulation

