Paravirtualisierung (1)

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Niirnberg

WS 2025,/2026

O V. Sieh Paravirtualisierung (1) (WS25/26) 1-17

Paravirtualisierung

Guest
App

Guest
App

Host
App

Host OS

Hardware

Unter Gast-OS laufende Applikationen sehen Gast-OS-ABI.
Gast-OS selbst sieht als ,,Hardware” das Gastgeber-OS.

Portierung eines Betriebssystems auf besondere , Hardware”

(Gastgeber-0S)

O V. Sieh Paravirtualisierung (1) (WS25/26)

Paravirtualisierung (1)

2-17

Paravirtualisierung

Supervisor-Instuktionen nicht nutzbar. Diese miissen ersetzt werden.
Gast-OS kann nutzen
m CPU im User-Modus

m Speicher
m System-Calls des Gastgeber-OS

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 3-17

Paravirtualisierung

Supervisor-Instruktionen am Beispiel der x86-Architektur:

in{b,w,1}, out{b,w,1} (Ein-/Ausgabe)

mov ..., %cr3 (Pointer auf Page-Tabelle laden)
cli, sti (Disable/Enable Interrupts)

pushf, popf (Interrupt Status speichern/laden)
1idt (Pointer auf Interrupt-Tabelle laden)

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 4-17

Paravirtualisierung — Beispiel

Abbildung der x86-Supervisor-Instruktionen auf Unix/Linux
System-Calls.

Idee:

phys. Speicher: eine Datei
virt. Speicher: eine gemappte Datei
Interrupts: Signale
Real-Time-Clock/Timer: System-Clock, Timer
Konsole: Terminal oder GUI
Netzwerkkarte: Socket
Sound-Karte: Sound-System

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 5-17

Paravirtualisierung — 1/0

in- und out-Befehle in Geratetreibern.
Geratetreiber werden ersetzt.

Im Geratetreiber z.B. nutzbar:

read- /write-System-Calls (non-blocking)
send-/recv-System-Calls (non-blocking)

Grafik-Ausgabe
Sound-Ausgabe

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 6-17

Paravirtualisierung — MMU

mmap- und munmap-System-Calls:

void x*

mmap (void *addr, /* virt. Adresse */
size_t length, /* 4096 */
int prot, /* read/write/execute */
int flags, /* shared *x/
int f£d, /* File-Descriptor x/

off _t offset); /* File-Offset (phys. Adresse) x/

int
munmap (void *addr, /* virt. Adresse */
size_t length); /* 4096 x/

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 7-17

Paravirtualisierung — MMU

Mit mmap- und munmap-System-Calls kann eine MMU nachgebildet
werden.

Probleme:

m = Viele System-Calls fur einen Kontext-Wechsel notwendig.
= System-Calls langsam.
= Nicht beliebig viele Mappings moglich.
=> Nur gerade benétigte Teile des Adressraumes ,,on demand”
mappen (dhnlich TLB).

B Host-OS belegt Teil des virtuellen Adressraums.
=> Guest-OS muss i.A. verschoben werden.

Guest—App Guest-0S Host—0OS

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 8-17

Paravirtualisierung — MMU

B Guest-OS lauft im User-Modus
B Guest-Applikationen laufen im User-Modus
=> keine Kernel-Protection!

=> fiir Protection Unterstiitzung des Host-OS notwendig
(,,Kontextwechsel” zwischen Guest-OS und Guest-Applikationen)

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 9-17

Paravirtualisierung — Interrupts

Zum Nachbilden der Interrupts kdnnen statt dessen Linux-Signale
verwendet werden:

B Programmieren der Signale: sigaction
m Setzen des Signal-/Supervisor-Stacks: sigstack

m Enable/Disable der Signale: sigprocmask

sigstack notwendig. Signal-Ursache kdnnte Page-Fault bei
Stack-Zugriff sein!

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 10-17

Paravirtualisierung — Interrupts

Problem:

® Interrupts werden sehr haufig disabled/enabled.

m Aufruf des sigprocmask-System-Calls langsam.

Idee:

Signale immer zulassen; zugehorigen Signal-Handler aber nur
aufrufen, wenn er enabled ist. Wenn Signal-Handler disabled ist,
Signal als ,,deferred” vormerken.

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 11-17

Paravirtualisierung — Interrupts

void sig_handler () {
if (enabled)
sig_handler2();
else
deferred = 1;
}

void sig_enable() { /* Muesste atomar sein! */
while (deferred) {
deferred = 0;
sig_handler2();
¥
enabled = 1;
}

void sig_disable () {
enabled = 0;
}

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 12-17

Paravirtualisierung — Interrupts

Compilierte sig_enable-Prozedur:

sig_enable:
jmp .L3
olhil 8
movl $0, deferred
call sig_handler2
o1L& 3
cmpl $1, deferred
je .L1
movl $1, enabled
ret
sig_enable_end:

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 13-17

Paravirtualisierung — Interrupts

Idee: Im Interrupt-/Signal-Handler liegt %eip auf Stack.

sig_enable <= Yeip < sig_enable_end: setze %eip auf .L1.
sonst (enable=0): setze deferred auf 1.

sonst (enable=1): rufe sig_handler2() auf.

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 14-17

Paravirtualisierung — Exceptions/System-Calls

Exceptions:

m Exceptions gehen standardmassig zunachst an das Host-OS.
m Sollen eigentlich an das Guest-OS (Host-Applikation) gehen.

®m Normalerweise sendet ein OS Exceptions an Applikation weiter (Unix:
Signal-Mechanismus)

System-Calls:

B System-Calls gehen an das Host-OS.

B Werden nicht wie Exceptions weitergeleitet.

=> Spezieller Mechanismus im Host-OS notwendig!

Umleitung unter Linux mittels ptrace-Mechanismus (Teil der
Debug-Schnittstelle) méglich (aber langsam).

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 15-17

Paravirtualisierung — Uhr

gettimeofday-System-Call des Host-OS benutzt Real-Time-Clock
nur einmal beim Booten (Start-Time). Ansonsten werden
Timer-Ticks gezahlt (Run-Time).

Paravirtualisierung geht dhnlich vor.

Real-Time-Clock: gettimeofday-System-Call

Timer-Ticks: setitimer-System-Call

B gettimeofday-System-Call unproblematisch (nur einmal verwendet).

B setitimer-System-Call auch unproblematisch (nur ein Aufruf;
danach kommen SIGALRM-Signale).

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 16-17

Paravirtualisierung — Uhr

setitimer-System-Call kann nur Signale mit einer maximalen
Frequenz von 100Hz bzw. 1000Hz zustellen.

=> virtuelle System-Clock ungenau.

Hohere Auflésungen aber auch nicht sinnvoll. Guest-OS kann
ge-scheduled werden!

=> Zeitmessungen in paravirtualisierten Systemen
problematisch!

O V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 17-17

	Paravirtualisierung (1)

