
Paravirtualisierung (1)

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware

Friedrich-Alexander-Universität Erlangen-Nürnberg

WS 2025/2026

V. Sieh Paravirtualisierung (1) (WS25/26) 1 – 17

Paravirtualisierung

Unter Gast-OS laufende Applikationen sehen Gast-OS-ABI.
Gast-OS selbst sieht als „Hardware” das Gastgeber-OS.

Portierung eines Betriebssystems auf besondere „Hardware”
(Gastgeber-OS)

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 2 – 17

Paravirtualisierung

Supervisor-Instuktionen nicht nutzbar. Diese müssen ersetzt werden.

Gast-OS kann nutzen

CPU im User-Modus
Speicher
System-Calls des Gastgeber-OS

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 3 – 17

Paravirtualisierung

Supervisor-Instruktionen am Beispiel der x86-Architektur:

in{b,w,l}, out{b,w,l} (Ein-/Ausgabe)
mov ..., %cr3 (Pointer auf Page-Tabelle laden)
cli, sti (Disable/Enable Interrupts)
pushf, popf (Interrupt Status speichern/laden)
lidt (Pointer auf Interrupt-Tabelle laden)
...

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 4 – 17

Paravirtualisierung – Beispiel

Abbildung der x86-Supervisor-Instruktionen auf Unix/Linux
System-Calls.

Idee:

phys. Speicher: eine Datei
virt. Speicher: eine gemappte Datei

Interrupts: Signale
Real-Time-Clock/Timer: System-Clock, Timer

Konsole: Terminal oder GUI
Netzwerkkarte: Socket
Sound-Karte: Sound-System

...

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 5 – 17

Paravirtualisierung – I/O

in- und out-Befehle in Gerätetreibern.

Gerätetreiber werden ersetzt.

Im Gerätetreiber z.B. nutzbar:

read-/write-System-Calls (non-blocking)
send-/recv-System-Calls (non-blocking)
Grafik-Ausgabe
Sound-Ausgabe

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 6 – 17

Paravirtualisierung – MMU

mmap- und munmap-System-Calls:
void *
mmap(void *addr , /* virt. Adresse */

size_t length , /* 4096 */
int prot , /* read/ write / execute */
int flags , /* shared */
int fd , /* File - Descriptor */
off_t offset); /* File - Offset (phys. Adresse) */

int
munmap (void *addr , /* virt. Adresse */

size_t length); /* 4096 */

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 7 – 17

Paravirtualisierung – MMU

Mit mmap- und munmap-System-Calls kann eine MMU nachgebildet
werden.

Probleme:

Viele System-Calls für einen Kontext-Wechsel notwendig.
System-Calls langsam.
Nicht beliebig viele Mappings möglich.

=> Nur gerade benötigte Teile des Adressraumes „on demand”
mappen (ähnlich TLB).
Host-OS belegt Teil des virtuellen Adressraums.
=> Guest-OS muss i.A. verschoben werden.

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 8 – 17

Paravirtualisierung – MMU

Guest-OS läuft im User-Modus
Guest-Applikationen laufen im User-Modus

=> keine Kernel-Protection!

=> für Protection Unterstützung des Host-OS notwendig
(„Kontextwechsel” zwischen Guest-OS und Guest-Applikationen)

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 9 – 17

Paravirtualisierung – Interrupts

Zum Nachbilden der Interrupts können statt dessen Linux-Signale
verwendet werden:

Programmieren der Signale: sigaction

Setzen des Signal-/Supervisor-Stacks: sigstack

Enable/Disable der Signale: sigprocmask

sigstack notwendig. Signal-Ursache könnte Page-Fault bei
Stack-Zugriff sein!

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 10 – 17

Paravirtualisierung – Interrupts

Problem:

Interrupts werden sehr häufig disabled/enabled.
Aufruf des sigprocmask-System-Calls langsam.

Idee:

Signale immer zulassen; zugehörigen Signal-Handler aber nur
aufrufen, wenn er enabled ist. Wenn Signal-Handler disabled ist,
Signal als „deferred” vormerken.

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 11 – 17

Paravirtualisierung – Interrupts

void sig_handler () {
if (enabled)

sig_handler2 ();
else

deferred = 1;
}

void sig_enable () { /* Muesste atomar sein! */
while (deferred) {

deferred = 0;
sig_handler2 ();

}
enabled = 1;

}

void sig_disable () {
enabled = 0;

}

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 12 – 17

Paravirtualisierung – Interrupts

Compilierte sig_enable-Prozedur:
sig_enable :

jmp .L3
.L1:

movl $0 , deferred
call sig_handler2

.L3:
cmpl $1 , deferred
je .L1
movl $1 , enabled
ret

sig_enable_end :

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 13 – 17

Paravirtualisierung – Interrupts

Idee: Im Interrupt-/Signal-Handler liegt %eip auf Stack.

sig_enable <= %eip < sig_enable_end: setze %eip auf .L1.
sonst (enable=0): setze deferred auf 1.
sonst (enable=1): rufe sig_handler2() auf.

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 14 – 17

Paravirtualisierung – Exceptions/System-Calls

Exceptions:

Exceptions gehen standardmässig zunächst an das Host-OS.
Sollen eigentlich an das Guest-OS (Host-Applikation) gehen.
Normalerweise sendet ein OS Exceptions an Applikation weiter (Unix:
Signal-Mechanismus)

System-Calls:

System-Calls gehen an das Host-OS.
Werden nicht wie Exceptions weitergeleitet.

=> Spezieller Mechanismus im Host-OS notwendig!

Umleitung unter Linux mittels ptrace-Mechanismus (Teil der
Debug-Schnittstelle) möglich (aber langsam).

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 15 – 17

Paravirtualisierung – Uhr

gettimeofday-System-Call des Host-OS benutzt Real-Time-Clock
nur einmal beim Booten (Start-Time). Ansonsten werden
Timer-Ticks gezählt (Run-Time).

Paravirtualisierung geht ähnlich vor.

Real-Time-Clock: gettimeofday-System-Call
Timer-Ticks: setitimer-System-Call

gettimeofday-System-Call unproblematisch (nur einmal verwendet).
setitimer-System-Call auch unproblematisch (nur ein Aufruf;
danach kommen SIGALRM-Signale).

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 16 – 17

Paravirtualisierung – Uhr

setitimer-System-Call kann nur Signale mit einer maximalen
Frequenz von 100Hz bzw. 1000Hz zustellen.

=> virtuelle System-Clock ungenau.

Höhere Auflösungen aber auch nicht sinnvoll. Guest-OS kann
ge-scheduled werden!

=> Zeitmessungen in paravirtualisierten Systemen
problematisch!

V. Sieh Paravirtualisierung (1) (WS25/26) Paravirtualisierung (1) 17 – 17

	Paravirtualisierung (1)

