
Profiling

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware

Friedrich-Alexander-Universität Erlangen-Nürnberg

WS 2025/2026

V. Sieh Profiling (WS25/26) 1 – 8

Profiling

Profiling unabdingbar, da höchstmögliche Performance erwünscht.

Aber: normales Profiling schwierig:

Profiling-Option verhindert i.A. Compiler-Optimierungen
(z.B. Inlining)
Compiler-Optionen für die Code-Generierung u.U. unabdingbar
(z.B. für die Generierung der JIT-Code-Schnipsel)
für das Profiling eingefügter Code verfälscht ggf. das
Profiling-Ergebnis
Profiling von JIT-generiertem Code generell unmöglich

normales Profiling unmöglich => eigenes Profiling notwendig

V. Sieh Profiling (WS25/26) Profiling 2 – 8

Profiling

Zeitmessungen:

gettimeofday: POSIX-System-Call
Genauigkeit: ca. 1 Mikrosekunde
(aber: System-Call, jeder Aufruf teuer)

rdtsc: CPU-Instruktion
Genauigkeit: ca. 1 Takt
(aber: Out-of-Order-Execution, variabler Takt, siehe:
„How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures”)

Vorsicht: VM wird ggf. (mehrfach) verdrängt!

V. Sieh Profiling (WS25/26) Profiling 3 – 8

Profiling

Event-Zählungen:

Beispiele

Anzahl der ausgeführten Instruktionen
Anzahl der ausgeführten Basisblöcke
...

V. Sieh Profiling (WS25/26) Profiling 4 – 8

Profiling

Statistisches Profiling:

zu profilendes Programm setzt Signal-Handler für SIGPROF-Signal:
struct sig_action sa;

sa.sa_sigaction = sigprof_handler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset (&sa.sa_mask);
sigaction(SIGPROF , &sa, NULL);

V. Sieh Profiling (WS25/26) Profiling 5 – 8

Profiling

... und startet selbst Profiling-Timer
struct itimerval it;

it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / 31;
it.it_value.tv_sec = 0;
it.it_value.tv_usec = 1000000 / 31;

setitimer(ITIMER_PROF , &it, NULL);

V. Sieh Profiling (WS25/26) Profiling 6 – 8

Profiling

... und kann dann im periodisch aufgerufenen Signal-Handler
nachschauen, wohin der %rip der VM gerade zeigt (Beispiel für
Linux/x86_64):
void
sigprof_handler(int sig , siginfo_t *si , void *uc)
{

mcontext_t *regs = &uc->uc_mcontext;
int enosave = errno;

fprintf(stderr , "PROFILE␣%016lx\n",
regs ->gregs[REG_RIP]);

errno = enosave;
}

V. Sieh Profiling (WS25/26) Profiling 7 – 8

Profiling

Nach einem (längeren) Lauf der VM kann man die statistischen
Profile-Daten in das Disassembler-Listing der VM eintragen. Beispiel:

1840 0040819d <chip_intel_80686_klamath_cache2_line>
...

24/ 1% 004081f9: ... movslq %edx,%rcx
8/ 0% 004081fc: ... imul $0x50,%rcx,%rax

31/ 1% 00408200: ... lea 0xedee90(%rax,%r8,1),%rax
30/ 1% 00408208: ... add %rdi,%rax
40/ 2% 0040820b: ... cmp %rsi,(%rax)

1129/61% 0040820e: ... jne 408225 ...
4/ 0% 00408210: ... lea 0xedefd0(%rdi,%r8,1),%rdx

69/ 3% 00408218: ... movzbl (%rdx),%esi
280/15% 0040821b: ... mov 0x7fea00(%rcx,%rsi,4),%cl
32/ 1% 00408222: ... mov %cl,(%rdx)
20/ 1% 00408224: ... retq
20/ 1% 00408225: ... inc %edx
57/ 3% 00408227: ... cmp $0x4,%edx
3/ 0% 0040822a: ... jne 4081f9 ...
0/ 0% 0040822c: ... jmp 4081b3 ...

V. Sieh Profiling (WS25/26) Profiling 8 – 8

	Profiling

