Profiling

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Niirnberg

WS 2025/2026

O V. Sieh Profiling (WS25/26) 1-8




Profiling

Profiling unabdingbar, da hochstmogliche Performance erwiinscht.

Aber: normales Profiling schwierig:

m  Profiling-Option verhindert i.A. Compiler-Optimierungen
(z.B. Inlining)

m  Compiler-Optionen fiir die Code-Generierung u.U. unabdingbar
(z.B. firr die Generierung der JIT-Code-Schnipsel)

m fiir das Profiling eingefiigter Code verfalscht ggf. das
Profiling-Ergebnis

m  Profiling von JIT-generiertem Code generell unmoglich

normales Profiling unmoglich => eigenes Profiling notwendig

O V. Sieh Profiling (WS25/26) Profiling 2-8




Profiling

Zeitmessungen:

gettimeofday: POSIX-System-Call
Genauigkeit: ca. 1 Mikrosekunde
(aber: System-Call, jeder Aufruf teuer)

rdtsc: CPU-Instruktion
Genauigkeit: ca. 1 Takt

(aber: Out-of-Order-Execution, variabler Takt, siehe:

~How to Benchmark Code Execution Times on Intel
[A-32 and IA-64 Instruction Set Architectures”)

Vorsicht: VM wird ggf. (mehrfach) verdrangt!

O V. Sieh Profiling (WS25/26) Profiling




Profiling

Event-Zahlungen:
Beispiele

®m  Anzahl der ausgefiihrten Instruktionen

B Anzahl der ausgefiihrten Basisblocke

O V. Sieh Profiling (WS25/26) Profiling




Profiling

Statistisches Profiling:

zu profilendes Programm setzt Signal-Handler fiir SIGPROF-Signal:

struct sig_action sa;

sa.sa_sigaction = sigprof_handler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset (&sa.sa_mask);

sigaction (SIGPROF, &sa, NULL);

O V. Sieh Profiling (WS25/26) Profiling




Profiling

. und startet selbst Profiling-Timer

struct itimerval it;

it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000 / 31;
it.it_value.tv_sec = 0;

it.it_value.tv_usec = 1000000 / 31;

setitimer (ITIMER_PROF, &it, NULL);

0 V. Sieh Profiling (WS25/26) Profiling




Profiling

. und kann dann im periodisch aufgerufenen Signal-Handler
nachschauen, wohin der %rip der VM gerade zeigt (Beispiel fiir
Linux/x86_64):

void
sigprof_handler (int sig, siginfo_t *si, void *uc)
{

mcontext_t *regs = &uc->uc_mcontext;

int enosave = errno;

fprintf (stderr, "PROFILE_,%0161x\n",
regs->gregs [REG_RIP]);

errno = enosave;

0 V. Sieh Profiling (WS25/26) Profiling 7-8




Profiling

Nach einem (langeren) Lauf der VM kann man die statistischen
Profile-Daten in das Disassembler-Listing der VM eintragen. Beispiel:

1840

24/ 1%
8/ 0%
31/ 1%
30/ 1%
40/ 2%
1129/61%
4/ 0%
69/ 3%
280/15%
32/ 1%
20/ 1%
20/ 1%
57/ 3%
3/ 0%
0/ 0%

0040819d <chip_intel_80686_klamath_cache2_line>

004081£9:
004081fc:
00408200:
00408208:
0040820b:
0040820e:
00408210:
00408218:
0040821b:
00408222:
00408224 :
00408225
00408227 :
0040822a:
0040822c:

. movslq %edx,%rcx
.. imul $0x50, %rcx, hrax
.. lea Oxedee90 (%rax,%r8,1) ,%rax
. add %rdi,%rax
.. cmp hrsi, (hrax)
.. Jjne 408225 ...
. lea Oxedefd0 (%rdi,%r8,1),%rdx
.. movzbl (%rdx),%esi
.. mov 0x7feal0 (%rcx,%rsi,4) ,%cl
. mov %el, (Yrdx)
. retq
.. inc fhedx
.. cmp $0x4, hedx
. jne 4081f9 ...
. jmp  4081Db3 ...

O V. Sieh

Profiling (WS25/26)

Profiling 8-8




	Profiling

