
Zeit

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware

Friedrich-Alexander-Universität Erlangen-Nürnberg

WS 2025/2026

V. Sieh Zeit (WS25/26) 1 – 29

Zeit

Soll ein Rechner korrekt simuliert werden, sind viele Zeitbedingungen
korrekt zu simulieren:

Anzahl der ausgeführten CPU-Instruktionen pro Zeiteinheit
Anzahl der ausgeführten Grafik-Operationen pro Zeiteinheit
Dauer einer Platten-Schreib- bzw. -Lese-Operation
Dauer einer Netzwerk-Sende- bzw. -Empfangs-Operation
Ticken des Uhrenbaustein
Ticken des Timer-Baustein
. . .

V. Sieh Zeit (WS25/26) Zeit 2 – 29

Zeit

„Anzahl der ausgeführten CPU-Instruktionen pro Zeiteinheit” ist
keine Konstante:

verschiedene Instruktionen brauchen u.U. unterschiedlich lang
Caching (Größe, Strategien, . . .)
Pipelining (Hazards)
Sprungvorhersage (Größe Cache, Vorhersage-Strategie, . . .)
Super-Skalar-CPU (Anz. Execution-Einheiten, . . .)
variabler Takt (z.B. Taktreduktion bei Hitze)
Multi-Threading (mit gegenseitigem Behindern)
Multi-Core (mit gegenseitigem Behindern)
nebenläufiges DMA
. . .

V. Sieh Zeit (WS25/26) Zeit 3 – 29

Zeit

Problem: Infos dazu stehen in keinem Handbuch.

„Lösung”: Wenn die Infos in keinem Handbuch stehen,

ist jede Art von CPU-Zeitverhalten „korrekt”,
müssen sich

Betriebssysteme und
Applikationen

auf unterschiedliche Geschwindigkeiten einstellen können
=> Timeouts sind i.A. schlechter Programmierstil!

V. Sieh Zeit (WS25/26) Zeit 4 – 29

Zeit

Zeitverhalten der I/O-Komponenten ähnlich unspezifiziert.

=> (Fast) jede Art von I/O-Zeitverhalten ist „korrekt”.

=> Betriebssysteme sind entsprechend programmiert.

V. Sieh Zeit (WS25/26) Zeit 5 – 29

Zeit

Das Zeitverhalten der Uhren- und Timer-Bausteine ist i.A. genau
beschrieben und einfach.

=> Genaue Simulation im Prinzip möglich.

Aber: Simulation dauert u.U. zu lang.

V. Sieh Zeit (WS25/26) Zeit 6 – 29

Zeit

Zwei Aspekte der „Zeit”:

Events in der virtuellen Maschine sollen

in der korrekten Reihenfolge auftreten (kausale Reihenfolge)
(das reicht für laufende Applikationen meist aus),
in korrekten Zeitabständen auftreten
(das ist für den realen User, für die reale Umgebung wichtig).

V. Sieh Zeit (WS25/26) Zeit 7 – 29

Zeit – Problembeispiel

Praktisch alle Komponenten reagieren in der Realität nicht „sofort”,
wenn die CPU sie mit in- oder out-Instruktionen aufruft.

V. Sieh Zeit (WS25/26) Zeit 8 – 29

Zeit – Problembeispiel

void
disk_out (uint16_t port , uint8_t val)
{

switch (port) {
case 0: buf = val; break ;
case 1: pos = val; break ;
case 2:

if (pos < SIZE) {
if (val) disk[pos] = buf;
else buf = disk[pos];
status = OK; <--- Problematisch !
interrupt (); <--- Problematisch !

} else {
status = BAD;

}
break ;

}
}

V. Sieh Zeit (WS25/26) Zeit 9 – 29

Zeit – Problembeispiel

void
disk_out (uint16_t port , uint8_t val)
{

...
else buf = disk[pos];
status = BUSY;
delay = 1000;

} else {
status = BAD;

...
}

void
disk_step ()
{

if (delay)
if (-- delay == 0) {

status = OK;
interrupt ();

}
}

V. Sieh Zeit (WS25/26) Zeit 10 – 29

Zeit – Problem

VM z.T. langsamer, z.T. schneller als reale Maschine.

VM z.T. zu langsam:
Simulation der VM aufwändig
nebenläufige Prozesse auf Host-OS
...

VM z.T. zu schnell:
im Speicher simulierte Platten schneller als echte Hardware
auf einem realen Host simulierte Rechner kommunizieren lokal schneller
als über’s Netz
Power-off- oder Halt-Zustand sehr einfach simulierbar
...

V. Sieh Zeit (WS25/26) Zeit 11 – 29

Zeit – Problem

Läuft die VM zu langsam, können Timeouts auftreten, die in der
Realität nicht aufgetreten wären.

Linux, Windows, usw. garantieren für ihre System-Calls keine
Zeitbedingungen. Aber Linux-, Windows-, usw. -Betriebssysteme
kennen intern Timeouts für

Hardware,
Netzwerk-Protokolle.

Werden diese Timeouts verletzt, werden Fehlermeldungen produziert
(„Platte reagiert nicht”, „Server down” u.ä.).

V. Sieh Zeit (WS25/26) Zeit 12 – 29

Zeit – Problem

Moderne Desktop-Betriebssysteme garantieren i.A. keine
Antwortzeiten. Moderne CPUs sind vom Timing her extrem schwer
einzuschätzen. Trotzdem benutzen immer wieder Programmierer
Timeouts.

Dies kann auf virtuellen Rechnern (und langsamen realen Rechnern!)
zu Problemen führen.

Beispiel GNOME:

GNOME startet beim Einloggen seine Applets. Melden sich diese
nach dem Start nicht rechtzeitig als „laufend”, fragt GNOME ob es
das Applet für die Zukunft disablen soll.

=> Timeouts sind generell von Applikation-Programmierern zu
vermeiden!

V. Sieh Zeit (WS25/26) Zeit 13 – 29

Zeit – Problem

Läuft die VM zu schnell können ebenfalls Probleme auftreten, die in
der Realität nicht aufgetreten wären.

Beispiel aus Linux-2.5:

OS schickt erst ein Kommando an das Keyboard und setzt dann den
Interrupt-Handler auf.

In der Realität funktioniert dies, da die Kommunikation mit dem
Keyboard über eine langsame serielle Leitung geschieht und die CPU
damit genügend Zeit hat, ihren Interrupt-Handler aufzusetzen.

Kommt jedoch die Antwort des Keyboards und damit der Interrupt
zu früh, geht die Antwort verloren (=> „No keyboard detected.”).

V. Sieh Zeit (WS25/26) Zeit 14 – 29

Zeit – Problem

Denkbare Lösungen:

1. virtuelle Zeit läuft gemäß dem Simulationsfortschritt in der VM
2. virtuelle Zeit entspricht der realen Zeit
3. Kombination aus 1 und 2

V. Sieh Zeit (WS25/26) Zeit 15 – 29

Zeit – Virtuelle Zeit gemäß realer Zeit

„Virtuelle Zeit gemäß realer Zeit”:

Nachteile:

Interaktion der Komponenten untereinander schwierig (einzelne
Komponenten u.U. zu langsam (Scheduling des Hosts!) oder zu
schnell).
Real-Zeit-Bedingungen i.A. nicht einzuhalten.

Vorteile:

Interaktion mit der realen Umwelt (User, Internet, ...) u.U. möglich.
Mischen von VMs und realen Maschinen möglich.

V. Sieh Zeit (WS25/26) Zeit 16 – 29

Zeit – Virtuelle Zeit gemäß realer Zeit

V. Sieh Zeit (WS25/26) Zeit 17 – 29

Zeit – Virtuelle Zeit gemäß Simulationsfortschritt

„Virtuelle Zeit gemäß Simulationsfortschritt”:

Nachteile:

Interaktion mit der realen Umwelt (User, Internet, ...) unmöglich
(Timeouts).
Reale Umwelt muss durch virtuelle Umwelt (virt. User, virt. Internet,
...) ersetzt werden (Aufwand).

Vorteile:

VM kann deterministisch laufen (Reproduzierbarkeit).
Zeitbedingungen in Hard- und Software sind kein Problem
(Exaktheit).
Simulation kann angehalten/fortgesetzt werden (Debugging).

V. Sieh Zeit (WS25/26) Zeit 18 – 29

Zeit – Virtuelle Zeit gemäß Simulationsfortschritt

V. Sieh Zeit (WS25/26) Zeit 19 – 29

Zeit – Dynamische Virtuelle Zeit

„Dynamische Zeit”:

Idee:

Soweit möglich soll virtuelle Zeit der realen Zeit entsprechen.

Aber:

Die Hardware soll aber pro realer Zeiteinheit eine Mindestanzahl von
virtuellen Zeiteinheiten simulieren.

Ggf. wird die virtuelle Zeit verlangsamt. Wenn möglich wird die
verlorene Zeit später wieder aufgeholt.

V. Sieh Zeit (WS25/26) Zeit 20 – 29

Zeit – Dynamische Virtuelle Zeit

V. Sieh Zeit (WS25/26) Zeit 21 – 29

Zeit – Dynamische Virtuelle Zeit

Nachteile:

Zeitverhalten schwer abzuschätzen.
Zeitverhalten abhängig von Load des Hosts.

Vorteile:

Interaktion mit der realen Umwelt (User, Internet, ...) u.U. möglich.
Mischen von VMs und realen Maschinen möglich.

V. Sieh Zeit (WS25/26) Zeit 22 – 29

Zeit – Real-Zeit-Ermittlung

Um die virtuelle Zeit der Real-Zeit anzupassen, muss die reale Zeit
häufig ermittelt werden.

Uhrzeit-Abfrage unter Windows/Linux (System-Call) sehr
zeitaufwändig...

=> Abfrage darf nur selten geschehen. Zeit zwischen gemessenen
Zeiten interpolieren.

V. Sieh Zeit (WS25/26) Zeit 23 – 29

Zeit – Dynamische Virtuelle Zeit

V. Sieh Zeit (WS25/26) Zeit 24 – 29

Zeit – Dynamische Virtuelle Zeit

Algorithmus: Update der virtuellen Zeit nach jeder ausgeführten
Instruktion:
void
update_time ()
{

icnt ++;
if (icnt == COUNT) {

r0 = r1;
r1 = gettime ();
icnt = 0;

}
}

unsigned int
virt_time ()
{

return r0 + icnt * (r1 - r0) / COUNT ;
}

V. Sieh Zeit (WS25/26) Zeit 25 – 29

Zeit – Dynamische Virtuelle Zeit

Vorteile des Algorithmus:

update_time() ist sehr schnell ausführbar.
gettime() wird selten aufgerufen.
virt_time() ist schnell ausführbar (mit COUNT Zweierpotenz).
Ein Scheduling des Host hat keinen (großen) Einfluss auf die Zeit.
Die virtuelle Zeit schreitet nur voran, wenn Instruktionen simuliert
werden.

V. Sieh Zeit (WS25/26) Zeit 26 – 29

Zeit – Zeitweise deterministische Zeit

Manchmal muss die virtuelle Zeit sehr gut mit dem
Simulationsfortschritt übereinstimmen. Z.B. wenn die CPU auf
Real-Zeit-abhängige Komponenten zugreift.
Manchmal muss die virtuelle Zeit gut mit der realen Zeit
übereinstimmen. Z.B. wenn ein realer User mit der virtuellen
Maschine kommunizieren will.

=> Umschalten zwischen „Dynamische Zeit” und „Zeit gemäß
Simulationsfortschritt”

V. Sieh Zeit (WS25/26) Zeit 27 – 29

Zeit – Zeitweise deterministische Zeit

V. Sieh Zeit (WS25/26) Zeit 28 – 29

Zeit – Zeitweise deterministische Zeit

Wechsel „Dyn. Zeit” → „Zeit gemäß Sim.-Fortschritt”, wenn
besondere Events auftreten (z.B. Zugriff auf Uhr oder I/O-Gerät)
Rückwechsel, wenn eine bestimmte Zeit kein besonderer Event mehr
aufgetreten ist

Heuristik:

Was gilt als „besonderer Event”?
Nach welcher Zeit erfolgt Rückwechsel?

V. Sieh Zeit (WS25/26) Zeit 29 – 29

	Zeit

