ZLeit

Dr.-Ing. Volkmar Sieh

Department Informatik 4
Systemsoftware
Friedrich-Alexander-Universitat Erlangen-Niirnberg

WS 2025,/2026

O V. Sieh Zeit (WS25/26) 1-29

Leit

Soll ein Rechner korrekt simuliert werden, sind viele Zeitbedingungen
korrekt zu simulieren:

Anzahl der ausgefiihrten CPU-Instruktionen pro Zeiteinheit
Anzahl der ausgefiihrten Grafik-Operationen pro Zeiteinheit
Dauer einer Platten-Schreib- bzw. -Lese-Operation

Dauer einer Netzwerk-Sende- bzw. -Empfangs-Operation
Ticken des Uhrenbaustein

Ticken des Timer-Baustein

O V. Sieh Zeit (WS25/26) Zeit 2-29

Leit

~Anzahl der ausgefiihrten CPU-Instruktionen pro Zeiteinheit” ist
keine Konstante:

verschiedene Instruktionen brauchen u.U. unterschiedlich lang
Caching (GroBe, Strategien, ...)

Pipelining (Hazards)

Sprungvorhersage (GroBe Cache, Vorhersage-Strategie, . . .)
Super-Skalar-CPU (Anz. Execution-Einheiten, ...)

variabler Takt (z.B. Taktreduktion bei Hitze)
Multi-Threading (mit gegenseitigem Behindern)

Multi-Core (mit gegenseitigem Behindern)

nebenlaufiges DMA

O V.Sieh Zeit (WS25/26) Zeit 3-29

Leit

Problem: Infos dazu stehen in keinem Handbuch.

,Losung”: Wenn die Infos in keinem Handbuch stehen,

ist jede Art von CPU-Zeitverhalten , korrekt”,

miissen sich

= Betriebssysteme und

= Applikationen

auf unterschiedliche Geschwindigkeiten einstellen kénnen
=> Timeouts sind i.A. schlechter Programmierstil!

O V. Sieh Zeit (WS25/26) Zeit 4-29

Leit

Zeitverhalten der |/O-Komponenten dhnlich unspezifiziert.
=> (Fast) jede Art von |/O-Zeitverhalten ist , korrekt".

=> Betriebssysteme sind entsprechend programmiert.

O V.Sieh Zeit (WS25/26) Zeit 5-29

Leit

Das Zeitverhalten der Uhren- und Timer-Bausteine ist i.A. genau
beschrieben und einfach.

=> Genaue Simulation im Prinzip mdglich.

Aber: Simulation dauert u.U. zu lang.

O V.Sieh Zeit (WS25/26) Zeit 6-29

Leit

Zwei Aspekte der , Zeit":

Events in der virtuellen Maschine sollen

® in der korrekten Reihenfolge auftreten (kausale Reihenfolge)
(das reicht fiir laufende Applikationen meist aus),

m in korrekten Zeitabstanden auftreten
(das ist fur den realen User, fiir die reale Umgebung wichtig).

O V. Sieh Zeit (WS25/26) Zeit 7-29

Zeit — Problembeispiel

Praktisch alle Komponenten reagieren in der Realitat nicht ,sofort”,
wenn die CPU sie mit in- oder out-Instruktionen aufruft.

O V.Sieh Zeit (WS25/26) Zeit 8-29

Zeit — Problembeispiel

void
disk_out (uintl16_t port, uint8_t val)
{

switch (port) {

case 0: buf = val; break;

case 1: pos = val; break;

case 2:

if (pos < SIZE) {
if (val) disk[pos] = buf;
else buf = disk[pos];

status = 0K; <--- Problematisch!
interrupt (); <--- Problematisch!
} else {
status = BAD;
}
break;

}

0 V.Sieh Zeit (WS25/26) Zeit

9-29

Zeit — Problembeispiel

void
disk_out (uintl16_t port, uint8_t val)
{

else buf = disk[pos];
status = BUSY;
delay = 1000;
} else {
status = BAD;

X

void
disk_step ()
{
if (delay)
if (--delay == 0) {
status = 0K;
interrupt ();

}

0 V. Sieh Zeit (WS25/26) Zeit 10-29

Zeit — Problem

VM z.T. langsamer, z.T. schneller als reale Maschine.

m VM z.T. zu langsam:

Simulation der VM aufwéandig
nebenldufige Prozesse auf Host-OS

B VM z.T. zu schnell:

= im Speicher simulierte Platten schneller als echte Hardware
= auf einem realen Host simulierte Rechner kommunizieren lokal schneller

als iiber's Netz

m Power-off- oder Halt-Zustand sehr einfach simulierbar

. Sieh Zeit (WS25/26) Zeit

11-29

Zeit — Problem

Lauft die VM zu langsam, kénnen Timeouts auftreten, die in der
Realitat nicht aufgetreten waren.

Linux, Windows, usw. garantieren fiir ihre System-Calls keine
Zeitbedingungen. Aber Linux-, Windows-, usw. -Betriebssysteme
kennen intern Timeouts fir

m Hardware,

m Netzwerk-Protokolle.

Werden diese Timeouts verletzt, werden Fehlermeldungen produziert
(,,Platte reagiert nicht”, ,Server down" u.3.).

O V. Sieh Zeit (WS25/26) Zeit 12-29

Zeit — Problem

Moderne Desktop-Betriebssysteme garantieren i.A. keine
Antwortzeiten. Moderne CPUs sind vom Timing her extrem schwer
einzuschatzen. Trotzdem benutzen immer wieder Programmierer
Timeouts.

Dies kann auf virtuellen Rechnern (und langsamen realen Rechnern!)
zu Problemen fiihren.

Beispiel GNOME:

GNOME startet beim Einloggen seine Applets. Melden sich diese
nach dem Start nicht rechtzeitig als ,laufend”, fragt GNOME ob es
das Applet fir die Zukunft disablen soll.

=> Timeouts sind generell von Applikation-Programmierern zu
vermeiden!

O V. Sieh Zeit (WS25/26) Zeit 13-29

Zeit — Problem

Lauft die VM zu schnell kdnnen ebenfalls Probleme auftreten, die in
der Realitat nicht aufgetreten waren.

Beispiel aus Linux-2.5:

OS schickt erst ein Kommando an das Keyboard und setzt dann den
Interrupt-Handler auf.

In der Realitat funktioniert dies, da die Kommunikation mit dem
Keyboard iiber eine langsame serielle Leitung geschieht und die CPU
damit geniigend Zeit hat, ihren Interrupt-Handler aufzusetzen.

Kommt jedoch die Antwort des Keyboards und damit der Interrupt
zu friih, geht die Antwort verloren (=> ,,No keyboard detected.”).

O V. Sieh Zeit (WS25/26) Zeit 14-29

Zeit — Problem

Denkbare Losungen:

1. virtuelle Zeit lduft gemaB dem Simulationsfortschritt in der VM
2. virtuelle Zeit entspricht der realen Zeit

3. Kombination aus 1 und 2

O V. Sieh Zeit (WS25/26) Zeit 15-29

Zeit — Virtuelle Zeit gemaB realer Zeit

WVirtuelle Zeit gemaB realer Zeit":

Nachteile:

m Interaktion der Komponenten untereinander schwierig (einzelne
Komponenten u.U. zu langsam (Scheduling des Hosts!) oder zu
schnell).

m Real-Zeit-Bedingungen i.A. nicht einzuhalten.
Vorteile:

m Interaktion mit der realen Umwelt (User, Internet, ...) u.U. méglich.

m Mischen von VMs und realen Maschinen moglich.

O V. Sieh Zeit (WS25/26) Zeit 16-29

Zeit — Virtuelle Zeit gemaB realer Zeit

virt.
Zeit

A

P4
fehlende

Zeit!

> —>
\\/—/ reale
Zeit
Schedule

O V. Sieh Zeit (WS25/26) Zeit 17-29

O V. Sieh Zeit (WS25/26) Zeit 18-29

Zeit — Virtuelle Zeit gemaB Simulationsfortschritt

WVirtuelle Zeit gemaB Simulationsfortschritt™:

Nachteile:

Interaktion mit der realen Umwelt (User, Internet, ...) unmoglich
(Timeouts).

Reale Umwelt muss durch virtuelle Umwelt (virt. User, virt. Internet,
...) ersetzt werden (Aufwand).

Vorteile:

VM kann deterministisch laufen (Reproduzierbarkeit).

Zeitbedingungen in Hard- und Software sind kein Problem
(Exaktheit).

Simulation kann angehalten /fortgesetzt werden (Debugging).

Zeit — Virtuelle Zeit gemaB Simulationsfortschritt

A
virt.
Zeit
schwierige
Simulation
Simulation
"Halt"
einfache
Simulation
— R o
schwierige
Simulation \WJ reale
Zeit
Schedule

O V. Sieh Zeit (WS25/26) Zeit 19-29

Zeit — Dynamische Virtuelle Zeit

~Dynamische Zeit":

Idee:

Soweit moglich soll virtuelle Zeit der realen Zeit entsprechen.
Aber:

Die Hardware soll aber pro realer Zeiteinheit eine Mindestanzahl von
virtuellen Zeiteinheiten simulieren.

Ggf. wird die virtuelle Zeit verlangsamt. Wenn moglich wird die
verlorene Zeit spéter wieder aufgeholt.

O V. Sieh Zeit (WS25/26) Zeit 20-29

Zeit — Dynamische Virtuelle Zeit

A
virt.

Zeit

> >
¥\/—/ reale
Zeit
Schedule

O V. Sieh Zeit (WS25/26) Zeit 21-29

Zeit — Dynamische Virtuelle Zeit

Nachteile:

m Zeitverhalten schwer abzuschatzen.

m Zeitverhalten abhéngig von Load des Hosts.
Vorteile:

® Interaktion mit der realen Umwelt (User, Internet, ...) u.U. moglich.

m Mischen von VMs und realen Maschinen moglich.

O V. Sieh Zeit (WS25/26) Zeit 22-29

Zeit — Real-Zeit-Ermittlung

Um die virtuelle Zeit der Real-Zeit anzupassen, muss die reale Zeit
haufig ermittelt werden.

Uhrzeit-Abfrage unter Windows/Linux (System-Call) sehr
zeitaufwandig. ..

=> Abfrage darf nur selten geschehen. Zeit zwischen gemessenen
Zeiten interpolieren.

O V. Sieh Zeit (WS25/26) Zeit 23-29

Zeit — Dynamische Virtuelle Zeit

A
virt.

Zeit

Y

reale
Zeit

O V. Sieh Zeit (WS25/26) Zeit 24-29

Zeit — Dynamische Virtuelle Zeit

Algorithmus: Update der virtuellen Zeit nach jeder ausgefiihrten
Instruktion:

void
update_time ()
{
icnt++;
if (icnt == COUNT) {
r0 = ri;
rl = gettime();
icnt = 0;
}
}

unsigned int
virt_time ()
{
return rO + icnt * (rl1 - r0) / COUNT;
}

0 V. Sieh Zeit (WS25/26) Zeit 25-29

Zeit — Dynamische Virtuelle Zeit

Vorteile des Algorithmus:

update_time () ist sehr schnell ausfiihrbar.
gettime () wird selten aufgerufen.
virt_time() ist schnell ausfiihrbar (mit COUNT Zweierpotenz).

Ein Scheduling des Host hat keinen (groBen) Einfluss auf die Zeit.
Die virtuelle Zeit schreitet nur voran, wenn Instruktionen simuliert
werden.

O V. Sieh Zeit (WS25/26) Zeit 26-29

Zeit — Zeitweise deterministische Zeit

m Manchmal muss die virtuelle Zeit sehr gut mit dem
Simulationsfortschritt libereinstimmen. Z.B. wenn die CPU auf
Real-Zeit-abhingige Komponenten zugreift.

B Manchmal muss die virtuelle Zeit gut mit der realen Zeit
ubereinstimmen. Z.B. wenn ein realer User mit der virtuellen
Maschine kommunizieren will.

=> Umschalten zwischen ,Dynamische Zeit” und ,,Zeit gemaB
Simulationsfortschritt”

O V. Sieh Zeit (WS25/26) Zeit 27-29

Zeit — Zeitweise deterministische Zeit

A
virt.
Zeit . '
Real-Zeit
Eventg :
; b —— -
Dynamische Zeit nach Dynamische

Zeit —

WS25/26) Zeit 28-29

O Zeit Sim.—Fortschritt Zeit reale
V. Sieh Zeit (

Zeit — Zeitweise deterministische Zeit

m Wechsel ,,Dyn. Zeit" — ,Zeit gemaB Sim.-Fortschritt”, wenn
besondere Events auftreten (z.B. Zugriff auf Uhr oder |/O-Gerat)

m Rickwechsel, wenn eine bestimmte Zeit kein besonderer Event mehr
aufgetreten ist

Heuristik:

B Was gilt als ,besonderer Event”?

m Nach welcher Zeit erfolgt Riickwechsel?

O V. Sieh Zeit (WS25/26) Zeit 20-29

	Zeit

