
Aufgabe 5: Implementierung des Chatservers

Bisher wurde Ihnen der Chatserver für alle Aufgaben als Node-RED Flow bereitgestellt. In dieser Aufgabe sollen
alle Funktionen dieses Servers als Node.js Anwendung auf Basis von Express (siehe Tafelübung) implementiert
werden. Der Webserver nginx 1 kommt dabei als Reverse Proxy (siehe Tafelübung) zum Einsatz. Zusätzlich
beinhaltet der Chatserver eine MongoDB Instanz, um Daten persistent halten zu können. Am Ende der Auf-
gabe sollen diese Komponenten in Docker-Containern auf einer virtuellen Maschine (VM) in der vom RRZE
betriebenen OpenStack2 (siehe Tafelübung) ausgeführt werden.

5.1 Lokale Ausführung des Servers und Vorbereitung

NodeJS Client

MongoDB

Studentcloud

:27017

:3000

Abbildung 1: Deployment des Chatservers während der Entwicklung

In Ihrem Repository finden Sie im Ordner 05 server/chat server mehrere Dateien, auf deren Basis Sie den
Chatserver implementieren sollen. Wie in Abbildung 1 dargestellt, soll während der Implementierung nur die
MongoDB-Instanz in der VM laufen. Wenn Sie die Aufgabe auf Ihren eigenen Rechner bearbeiten, müssen sie
die OpenStack VM nicht für die MongoDB verwenden, starten Sie dazu den entsprechenden Docker Container
lokal.

• Installieren Sie alle benötigten Abhängigkeiten mit dem Befehl npm install und starten Sie anschließend
den Server mit npm start.

• Verifizieren Sie durch Aufruf von http://localhost:3000, dass der Server die Datei im Ordner public/
korrekt ausliefert.

• Entfernen Sie die ausgelieferte Datei public/index.html aus dem Repository und legen Sie stattdessen
symbolische Links (abgekürzt Symlinks, siehe man ln unter Linux bzw mklink unter Window) an, sodass
der Server den von Ihnen in den letzten Aufgaben implementierten Client ausliefert. Die auszuliefernden
Dateien sollen nicht kopiert werden! Fügen Sie die Symlinks auch ihrem git Repository hinzu!

Zusätzliche Hinweise:

• Verwenden Sie keine Hard Links (siehe man ln)!

• Verwenden Sie relative Pfade für die symbolischen Links!

5.2 Einrichtung des Back-Ends in der OpenCloud

Die quelloffene Software OpenStack stellt eine Architektur für das sogenannte Cloud-Computing zur Verfügung.
Damit lassen sich unter anderem virtuelle Maschinen schnell zugänglich machen. Das RRZE betreibt eine eigene
OpenStack Instanz die wir verwenden werden. Beantragen Sie als erstes den Service3.

5.2.1 Start einer virtuellen Maschine und Zugriff

Wie bereits beschrieben soll zunächst die MongoDB Instanz und später der Chatserver auf einer virtuellen
Maschine (VM) in der OpenCLoud ausgeführt werden (siehe Aufgabe 5.4).

1https://nginx.org/
2https://cc.rrze.de
3https://www.idm.fau.de/go/application/cloud

https://nginx.org/
https://cc.rrze.de
https://www.idm.fau.de/go/application/cloud


• (Optional) erstellen Sie einen SSH-Schlüssel. Benutzen Sie dafür ssh-keygen.

• Starten Sie eine VM, indem Sie unter Compute → Instances auf + Launch Instance klicken. Wählen Sie
als Source bitte Debian 13 aus. Als Variante (Flavor), wählen Sie SCS-2V-4-20s aus. Fügen Sie vor Start
der VM unter dem Reiter “Key Pair” einen öffentlichen SSH-Schlüssel hinzu, der in Ihrer VM hinterlegt
werden soll.

• Starten Sie die Instanz. Loggen Sie sich anschließend mit dem Kommando ssh debian@<floating-ip>

ein. Die Floating IP und weitere Eigenschaften Ihrer VM können Sie jederzeit der Tabelle “Instances”
entnehmen.

• VMs unterliegen gewissen Zugriffsbeschränkungen auf der Basis von Ports. Diese werden in Security
Groups definiert. Erstellen Sie eine Security Group (Network → Security Groups). Erlauben sie das SSH-
Potokoll (Port 22), indem Sie entsprechende Regeln zu einer neuen “neuen” Sicherheitsgruppe hinzufügen.
Verwenden Sie als Remote den IP Bereich (CIDR) das Netz 0.0.0.0/0. Außer SSH sollen Sie keine
weiteren Ports öffnen.

• Erlauben Sie schließlich auch SSH-Zugriff für Ihr Teammitglied. Erstellen Sie dazu die Datei
~/.ssh/authorized keys auf der VM und fügen Sie eine Zeile hinzu, welche den entsprechenden öffentlichen
Schlüssel der folgende Form enthält:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDQx... user@host

Den öffentlichen Schlüssel Ihres Teammitglieds finden Sie üblicherweise in der Datei ~/.ssh/id rsa.pub

im entsprechenden Home-Verzeichnis.

Zusätzliche Hinweise:

• Wenn Sie eine Instanz terminieren / beenden geht sämtlicher Zustand verloren. Wählen Sie stattdessen
abschalten bzw. shut off. Wenn Sie Ihre Maschine doch terminieren möchten, sollten sie vorher eine(n)
Snapshot / Schattenkopie erstellen, um den Zustand zu sichern.

• Sie können Dateien mit scp oder rsync auf Ihre VM kopieren.

5.2.2 Start der MongoDB Instanz

Klonen Sie Ihr git Repository in der VM, um Ihre aktuelle Implementierung auf dem Server bereitzustellen.
Am einfachsten ist hierbei ein git clone über HTTPS, da hier kein SSH-Key benötigt wird. Führen Sie im
Ordner 05 server den Befehl sudo docker-compose up mongodb aus, um die MongoDB Instanz zu starten.
Dies ist erfolgreich, wenn Sie eine Ausgabe ähnlich zu waiting for connections on port 27017 sehen. Diese
Nachricht ist nicht notwendigerweise die letzte Nachricht von MongoDB.

5.3 Implementierung des Servers mit Node.js

In dieser Teilaufgabe sollen Sie die aus den vorherigen Übungen bekannten Serverfunktionalitäten selbst mit
Node.js implementieren.

5.3.1 Persistente Datenhaltung mit MongoDB

Der Chatserver muss den gespeicherten Chatverlauf persistent halten können, d.h. die Daten dürfen nach einem
Neustart des Servers nicht verloren gehen. Verwenden Sie dazu die in der Tafelübung vorgestellte quelloffene
NoSQL-Datenbank MongoDB4.

• Implementieren Sie in der Datei models/message.js ein Node.js Modul, welches das Objekt Message

exportiert. Dieses Objekt soll ein Mongoose5 Model (siehe Tafelübung) sein.

• Die URL, unter der die MongoDB erreichbar ist muss von außen konfigurierbar sein, werten Sie daher
den Inhalt der Umgebungsvariable (siehe Tafelübung) DB URL aus, um eine Verbindung zur MongoDB
herzustellen.

4https://www.mongodb.com/
5https://mongoosejs.com/

https://www.mongodb.com/
https://mongoosejs.com/


5.3.2 Implementierung eines REST Interfaces

Es soll ein REST Interface erstellt werden, das JSON-basiert ist. Dementsprechend nimmt das Interface aus-
schließlich JSON-Objekte an und gibt ausschließlich JSON-Objekte zurück. Das im Repository hinterlegte
“Gerüst” des Servers enthält die Datei routes/chat.js; legen Sie hier alle Routen (siehe Tafelübung) an.
Dabei soll routes/chat.js ein Node.js Modul (siehe Tafelübung) implementieren!

• Erweitern Sie den Server um eine Express Route für HTTP POST Requests mit der Location /chat. Hier
erwartet der Server im Body des Requests ein JSON-Objekt mit der Nachricht. Der Inhalt des Objekts
soll über das Message Objekt (siehe Aufgabe 5.3.1) in der MongoDB hinterlegt werden.

• Erweitern Sie den Server um eine Express Route für HTTP GET Requests mit der Location /savedMessages.
Die HTTP Reply soll alle in der MongoDB hinterlegten Nachrichten als JSON-Objekt zurückgeben. Das
Format des JSON-Objekts soll dabei kompatibel zu den vorherigen Aufgaben sein.

Zusätzliche Hinweise:

• routes/chat.js soll ein Node.js Modul (siehe Tafelübung) implementieren!

• Da das von Ihnen zu implementierende REST Interface nur JSON spricht kann ein Browser nicht immer
verwendet werden. Nutzen Sie deshalb das Kommandozeilenprogramm curl bzw. die Entwicklertools von
Firefox oder Chrome.

5.3.3 WebSockets

Fügen Sie ihrer Implementierung Support für WebSockets hinzu, benutzen Sie dazu die in der Tafelübung
vorgestellte Bibliothek express-ws6.

• Erweitern Sie die Datei routes/chat.js um eine Route für WebSockets unter der Location /ws.

• Sorgen Sie dafür, dass eingehende Nachrichten in der MongoDB hinterlegt werden.

• Implementieren Sie das Broadcasting von Nachrichten: Eingehende Nachrichten sollen an alle verbundenen
Clients weitergleitet werden.

• Sie müssen Ihren Client-Code so ändern, dass er eine Verbindung zum Server für die WebSocket-Verbindung
herstellt, anstatt sich mit localhost zu verbinden.

5.3.4 Lokaler Test des Servers

Für die Verbindung zur MongoDB in der VM müssen Sie vorher ssh Port-Forwarding einrichten. Benutzen
Sie den Befehl ssh -L 27017:localhost:27017 user@<floating-ip> um auf ihren lokalen Rechner den Port
27017 auf den Port 27017 der VM zu mappen.

Testen Sie Ihre Serverimplementierung ausgiebig in der lokalen Konfiguration (siehe Abbildung 1), bevor Sie
mit Aufgabe 5.4 weitermachen. Starten Sie dazu den Server mit der in 5.3.1 erwähnten Umgebungsvariable:
DB URL=mongodb://localhost/chatDB npm start.

5.4 Deployment des Servers in OpenStack

In der letzten Teilaufgabe sollen alle Komponenten, wie in Abbildung 2 dargestellt, in der OpenCloud ausgeführt
werden.

• Stellen Sie zuerst Ihre Änderungen auf der VM über Ihr git Repository zur Verfügung.

• Es werden die folgenden drei Dockercontainer zur Verfügung gestellt:

– mongodb: Startet eine MongoDB Instanz, welche auf Port 27017 lauscht (bereits in Aufgabe 5.2.2
verwendet)

– nginx: Startet den Webserver nginx, konfiguriert als Reverse Proxy (leitet HTTP-Anfragen von Port
80 an Chatserver Port 3000 weiter)

– node: Startet den von Ihnen implementierten Server (führt npm start in chat server aus)

– port forwarding: Benutzen Sie auf ihren Rechner den Befehl ssh -L 80:localhost:80 user@<floating-ip>

um auf ihren lokalen Rechner den Port 80 auf den Port 80 der VM zu mappen.

6https://www.npmjs.com/package/express-ws

https://www.npmjs.com/package/express-ws


NodeJS nginx Client

MongoDB

Studentcloud

:27017

:3000 :80

Abbildung 2: Endgültiges Deployment des Chatservers mit nginx als Reverse Proxy

Diese Container sind in der Datei docker-compose.yml definiert. Erstellen Sie alle Container mit sudo
docker-compose up --no-start und starten Sie sie anschließend mit sudo docker-compose start.

• Testen Sie ihr Deployment!

Zusätzliche Hinweise:

• Die Docker-Container können sich untereinander durch Hostnames erreichen. Die Hostnames entsprechen
dabei dem Namen des Containers, der in der docker-compose.yml definiert ist.

• Mit sudo docker-compose build können Sie die Container neu bauen, nachdem sie an den Quelldateien
Änderungen gemacht haben.

Letzter Commit bis zum 27. Januar.

Präsentation der fertigen Lösung in der Woche der Abgabefrist in der Rechnerübung!

Rechnerübung zur Vorlesung Web-basierte Systeme
WS 2025/2026

Friedrich-Alexander-Universität
Lehrstuhl für Informatik 4


	Lokale Ausführung des Servers und Vorbereitung
	Einrichtung des Back-Ends in der OpenCloud
	Start einer virtuellen Maschine und Zugriff
	Start der MongoDB Instanz

	Implementierung des Servers mit Node.js
	Persistente Datenhaltung mit MongoDB
	Implementierung eines REST Interfaces
	WebSockets
	Lokaler Test des Servers

	Deployment des Servers in OpenStack

