Aufgabe 5: Implementierung des Chatservers

Bisher wurde Thnen der Chatserver fiir alle Aufgaben als Node-RED Flow bereitgestellt. In dieser Aufgabe sollen
alle Funktionen dieses Servers als Node.js Anwendung auf Basis von Ezpress (siche Tafeliibung) implementiert
werden. Der Webserver ngmzﬂ kommt dabei als Reverse Prozy (siehe Tafeliibung) zum Einsatz. Zusétzlich
beinhaltet der Chatserver eine MongoDB Instanz, um Daten persistent halten zu kénnen. Am Ende der Auf-
gabe sollen diese Komponenten in Docker-Containern auf einer virtuellen Maschine (VM) in der vom RRZE
betriebenen OpenStackf?] (siche Tafeliibung) ausgefithrt werden.

5.1 Lokale Ausfithrung des Servers und Vorbereitung

________________________________________________________

Studentcloud
8 MongoDB
i A 5
; 27017 |
:3000 -
NodeJS < v) Client

Abbildung 1: Deployment des Chatservers wiahrend der Entwicklung

In Threm Repository finden Sie im Ordner 05_server/chat_server mehrere Dateien, auf deren Basis Sie den
Chatserver implementieren sollen. Wie in Abbildung [If dargestellt, soll wihrend der Implementierung nur die
MongoDB-Instanz in der VM laufen. Wenn Sie die Aufgabe auf Ihren eigenen Rechner bearbeiten, miissen sie
die OpenStack VM nicht fiir die MongoDB verwenden, starten Sie dazu den entsprechenden Docker Container
lokal.

e Installieren Sie alle benotigten Abhingigkeiten mit dem Befehl npm install und starten Sie anschliefflend
den Server mit npm start.

e Verifizieren Sie durch Aufruf von http://localhost:3000, dass der Server die Datei im Ordner public/
korrekt ausliefert.

e Entfernen Sie die ausgelieferte Datei public/index.html aus dem Repository und legen Sie stattdessen
symbolische Links (abgekiirzt Symlinks, siche man 1n unter Linux bzw mklink unter Window) an, sodass
der Server den von Thnen in den letzten Aufgaben implementierten Client ausliefert. Die auszuliefernden
Dateien sollen nicht kopiert werden! Fiigen Sie die Symlinks auch ihrem git Repository hinzu!

Zusitzliche Hinweise:

e Verwenden Sie keine Hard Links (siehe man 1n)!

e Verwenden Sie relative Pfade fiir die symbolischen Links!

5.2 Einrichtung des Back-Ends in der OpenCloud

Die quelloffene Software OpenStack stellt eine Architektur fiir das sogenannte Cloud-Computing zur Verfiigung.
Damit lassen sich unter anderem wirtuelle Maschinen schnell zugénglich machen. Das RRZE betreibt eine eigene
OpenStack Instanz die wir verwenden werden. Beantragen Sie als erstes den Servicd’}

5.2.1 Start einer virtuellen Maschine und Zugriff

Wie bereits beschrieben soll zunéchst die MongoDB Instanz und spiter der Chatserver auf einer virtuellen
Maschine (VM) in der OpenCLoud ausgefiihrt werden (siehe Aufgabe [5.4)).

Ihttps://nginx.org/
%https://cc.rrze.de
Shttps://www.idm.fau.de/go/application/cloud


https://nginx.org/
https://cc.rrze.de
https://www.idm.fau.de/go/application/cloud

(Optional) erstellen Sie einen SSH-Schliissel. Benutzen Sie dafiir ssh-keygen.

e Starten Sie eine VM, indem Sie unter Compute — Instances auf + Launch Instance klicken. Wéhlen Sie
als Source bitte Debian 13 aus. Als Variante (Flavor), wéhlen Sie SCS-2V-4-20s aus. Fiigen Sie vor Start
der VM unter dem Reiter “Key Pair” einen 6ffentlichen SSH-Schliissel hinzu, der in Threr VM hinterlegt
werden soll.

e Starten Sie die Instanz. Loggen Sie sich anschliefend mit dem Kommando ssh debian@<floating-ip>
ein. Die Floating IP und weitere Eigenschaften Threr VM koénnen Sie jederzeit der Tabelle “Instances”
entnehmen.

e VMs unterliegen gewissen Zugriffsbeschrinkungen auf der Basis von Ports. Diese werden in Security
Groups definiert. Erstellen Sie eine Security Group (Network — Security Groups). Erlauben sie das SSH-
Potokoll (Port 22), indem Sie entsprechende Regeln zu einer neuen “neuen” Sicherheitsgruppe hinzufiigen.
Verwenden Sie als Remote den IP Bereich (CIDR) das Netz 0.0.0.0/0. Aufler SSH sollen Sie keine
weiteren Ports 6ffnen.

e Erlauben Sie schliellich auch SSH-Zugriff fiir Thr Teammitglied. Erstellen Sie dazu die Datei
~/ .ssh/authorized keys auf der VM und fiigen Sie eine Zeile hinzu, welche den entsprechenden 6ffentlichen
Schliissel der folgende Form enthélt:

ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAABAQDDQx... user@host

Den offentlichen Schliissel Thres Teammitglieds finden Sie iiblicherweise in der Datei ~/.ssh/id_rsa.pub
im entsprechenden Home-Verzeichnis.

Zusitzliche Hinweise:

e Wenn Sie eine Instanz terminieren / beenden geht sdmtlicher Zustand verloren. Wihlen Sie stattdessen
abschalten bzw. shut off. Wenn Sie Thre Maschine doch terminieren mochten, sollten sie vorher eine(n)
Snapshot / Schattenkopie erstellen, um den Zustand zu sichern.

e Sie konnen Dateien mit scp oder rsync auf Ihre VM kopieren.

5.2.2 Start der MongoDB Instanz

Klonen Sie Thr git Repository in der VM, um Ihre aktuelle Implementierung auf dem Server bereitzustellen.
Am einfachsten ist hierbei ein git clone iiber HTTPS, da hier kein SSH-Key benétigt wird. Fiihren Sie im
Ordner 05_server den Befehl sudo docker-compose up mongodb aus, um die MongoDB Instanz zu starten.
Dies ist erfolgreich, wenn Sie eine Ausgabe #hnlich zu waiting for connections on port 27017 sehen. Diese
Nachricht ist nicht notwendigerweise die letzte Nachricht von MongoDB.

5.3 Implementierung des Servers mit Node.js

In dieser Teilaufgabe sollen Sie die aus den vorherigen Ubungen bekannten Serverfunktionalitiiten selbst mit
Node.js implementieren.

5.3.1 Persistente Datenhaltung mit MongoDB

Der Chatserver muss den gespeicherten Chatverlauf persistent halten kénnen, d.h. die Daten diirfen nach einem
Neustart des Servers nicht verloren gehen. Verwenden Sie dazu die in der Tafelitbung vorgestellte quelloffene
NoSQL-Datenbank MongoDBE[

e Implementieren Sie in der Datei models/message.js ein Node.js Modul, welches das Objekt Message
exportiert. Dieses Objekt soll ein Mongooseﬂ Model (siehe Tafeliibung) sein.

e Die URL, unter der die MongoDB erreichbar ist muss von auflen konfigurierbar sein, werten Sie daher
den Inhalt der Umgebungsvariable (siehe Tafeliibung) DB_URL aus, um eine Verbindung zur MongoDB
herzustellen.

4https://www.mongodb. com/
Shttps://mongoose]js.com/


https://www.mongodb.com/
https://mongoosejs.com/

5.3.2 Implementierung eines REST Interfaces

Es soll ein REST Interface erstellt werden, das JSON-basiert ist. Dementsprechend nimmt das Interface aus-
schlieBllich JSON-Objekte an und gibt ausschliefilich JSON-Objekte zuriick. Das im Repository hinterlegte
“Geriist” des Servers enthilt die Datei routes/chat. js; legen Sie hier alle Routen (siehe Tafeliibung) an.
Dabei soll routes/chat. js ein Node.js Modul (siehe Tafeliibung) implementieren!

e Erweitern Sie den Server um eine Express Route fiir HT'TP POST Requests mit der Location /chat. Hier
erwartet der Server im Body des Requests ein JSON-Objekt mit der Nachricht. Der Inhalt des Objekts
soll iiber das Message Objekt (sieche Aufgabe|5.3.1)) in der MongoDB hinterlegt werden.

e Erweitern Sie den Server um eine Express Route fiir HI'TP GET Requests mit der Location /savedMessages.
Die HTTP Reply soll alle in der MongoDB hinterlegten Nachrichten als JSON-Objekt zuriickgeben. Das
Format des JSON-Objekts soll dabei kompatibel zu den vorherigen Aufgaben sein.

Zusatzliche Hinweise:
e routes/chat. js soll ein Node.js Modul (siche Tafeliibung) implementieren!

e Da das von Thnen zu implementierende REST Interface nur JSON spricht kann ein Browser nicht immer
verwendet werden. Nutzen Sie deshalb das Kommandozeilenprogramm curl bzw. die Entwicklertools von
Firefox oder Chrome.

5.3.3 WebSockets

Fiigen Sie ihrer Implementierung Support fiir WebSockets hinzu, benutzen Sie dazu die in der Tafeliibung
vorgestellte Bibliothek express-w

e Erweitern Sie die Datei routes/chat.js um eine Route fiir WebSockets unter der Location /ws.
e Sorgen Sie dafiir, dass eingehende Nachrichten in der MongoDB hinterlegt werden.

e Implementieren Sie das Broadcasting von Nachrichten: Eingehende Nachrichten sollen an alle verbundenen
Clients weitergleitet werden.

e Sie miissen Ihren Client-Code so éndern, dass er eine Verbindung zum Server fiir die WebSocket-Verbindung
herstellt, anstatt sich mit localhost zu verbinden.

5.3.4 Lokaler Test des Servers

Fiir die Verbindung zur MongoDB in der VM miissen Sie vorher ssh Port-Forwarding einrichten. Benutzen
Sie den Befehl ssh -L 27017:1localhost:27017 user@<floating-ip> um auf ihren lokalen Rechner den Port
27017 auf den Port 27017 der VM zu mappen.

Testen Sie Thre Serverimplementierung ausgiebig in der lokalen Konfiguration (siehe Abbildung , bevor Sie
mit Aufgabe [5.4] weitermachen. Starten Sie dazu den Server mit der in [5.3.1] erwéihnten Umgebungsvariable:
DB_URL=mongodb://localhost/chatDB npm start.

5.4 Deployment des Servers in OpenStack

In der letzten Teilaufgabe sollen alle Komponenten, wie in Abbildung[2] dargestellt, in der OpenCloud ausgefiihrt
werden.

e Stellen Sie zuerst Thre Anderungen auf der VM iiber Thr git Repository zur Verfiigung.
e Es werden die folgenden drei Dockercontainer zur Verfiigung gestellt:

— mongodb: Startet eine MongoDB Instanz, welche auf Port 27017 lauscht (bereits in Aufgabe
verwendet)

— nginx: Startet den Webserver nginx, konfiguriert als Reverse Proxy (leitet HTTP-Anfragen von Port
80 an Chatserver Port 3000 weiter)

node: Startet den von Thnen implementierten Server (fiihrt npm start in chat_server aus)

um auf ihren lokalen Rechner den Port 80 auf den Port 80 der VM zu mappen.

Shttps://www.npmjs.com/package/express-ws

port forwarding: Benutzen Sie auf ihren Rechner den Befehl ssh -L 80:1localhost:80 user@<floating-ip>


https://www.npmjs.com/package/express-ws

8 MongoDB

A

Studentcloud

:27017

: 80

NodeJS < nginx G @ Client

Abbildung 2: Endgiiltiges Deployment des Chatservers mit nginx als Reverse Proxy

Diese Container sind in der Datei docker-compose.yml definiert. Erstellen Sie alle Container mit sudo
docker-compose up --no-start und starten Sie sie anschliefend mit sudo docker-compose start.

e Testen Sie ihr Deployment!

Zusitzliche Hinweise:

e Die Docker-Container kénnen sich untereinander durch Hostnames erreichen. Die Hostnames entsprechen
dabei dem Namen des Containers, der in der docker-compose.yml definiert ist.

e Mit sudo docker-compose build kénnen Sie die Container neu bauen, nachdem sie an den Quelldateien
Anderungen gemacht haben.

Letzter Commit bis zum 27. Januar.

Présentation der fertigen Losung in der Woche der Abgabefrist in der Rechneriibung!

Rechneriibung zur Vorlesung Web-basierte Systeme Friedrich-Alexander-Universitét
WS 2025/2026 Lehrstuhl fiir Informatik 4



	Lokale Ausführung des Servers und Vorbereitung
	Einrichtung des Back-Ends in der OpenCloud
	Start einer virtuellen Maschine und Zugriff
	Start der MongoDB Instanz

	Implementierung des Servers mit Node.js
	Persistente Datenhaltung mit MongoDB
	Implementierung eines REST Interfaces
	WebSockets
	Lokaler Test des Servers

	Deployment des Servers in OpenStack

