
Web-basierte Systeme – Übung
06: Node.js, MongoDB und Aufgabe 5

Wintersemester 2026

Arne Vogel, Maxim Ritter von Onciul

Lehrstuhl für Informatik 4
Systemsoftware

Übersicht

Node.js

Überblick

Non-blocking I/O

Module

Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

2

Node.js

Übersicht

Node.js

Überblick

Non-blocking I/O

Module

Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

3

Node.js: Überblick

Node.js ist eine serverseitige Laufzeitumgebung für JavaScript

Node.js = V8 + Event Loop + Async. I/O API

npm: Packetmanager für Node.js

Alle I/O Operationen non-blocking möglich

4

Node.js: Event Loop

Ein Thread führt JS des Entwicklers + Event Loop aus

Anfragen werden direkt vom OS oder von Worker Threads
bearbeitet

Quelle: https://www.timcosta.io/the-node-js-event-loop/

5

https://www.timcosta.io/the-node-js-event-loop/

Node.js: non-blocking I/O (Übersicht)

Alle I/O Operation haben synchrone und asynchrone Versionen
Synchron: Direkter Aufruf mit Argumenten
Asynchron: Zusätzliches Callback Argument

Beispiel aus der Node.js API:
fs.readFileSync(path[, options])
fs.readFile(path[, options], callback)

Callback Funktionen
Konvention: Error Objekt ist immer der erste Parameter
Bsp. für readFile: function(err, data) {...}
Je nach API Call mehr/andere Parameter möglich!

Promises-basierte API
Gleiche API-Aufrufe, aber Promise wird returnt
z.B. fs.promises

6

Node.js: non-blocking I/O (Beispiel)

Synchrones Lesen einer Datei:

1 const fs = require('fs');
2 const data = fs.readFileSync('file.md'); // blocks here
3 console.log(data);
4 moreWork(); //will run after console.log

Asynchrones Lesen einer Datei:

1 const fs = require('fs');
2 fs.readFile('file.md', (err, data) => { // does NOT block here
3 if (err) throw err;
4 console.log(data);
5 });
6 moreWork(); //will run before console.log
7

7

Node.js Module

Node.js bietet viele Module, welche unterschiedliche
Funktionen implementieren, Beispiele (built-in):

Datei- und Netzwerkzugriff: fs und net
Netzwerkprotokolle: http, dns, ...
Kyptographie: crypto, tls
Kompression: zlib
...

Quasi Libraries für Node.js
Hunderttausende zusätzliche Pakete in npm

Module werden mit dem Schlüsselwort require eingebunden

1 var net = require('net');
2 var client = new net.Socket();
3 client.connect(1337, '127.0.0.1', function() {
4 client.write('Hello, server! Love, Client.');
5 });

8

Eigene Node.js Module

Module exportieren JavaScript Objekte
Zum Beispiel Funktionen:

1 // bar.js
2 module.exports.bar = function () {
3 console.log('bar!');
4 }

Eigene Module können dann auch mit require verwendet
werden:

1 // app.js
2 var lib = require('./bar.js');
3 lib.bar();

9

Events

Mit Node.js lassen sich Event-getriebene (event-driven)
Anwendungen bauen

Events werden von Emittern ausgesendet

Listener sind Funktionen, die bei Events ausgeführt werden

Dazu müssen Listener mit der .on() Methode registriert
werden

1 const EventEmitter = require('events');
2 class MyEmitter extends EventEmitter {}
3

4 const myEmitter = new MyEmitter();
5 myEmitter.on('event', () => {
6 console.log('an event occurred!');
7 });
8 myEmitter.emit('event');
9

10

Node.js Events: Beispiel Webserver

Server hört auf Port 8081

GET Requests werden mit dem String Hello World!
beantwortet

Alle anderen Requests werden ignoriert

Dokumentation: https://nodejs.org/api/http.html

1 var http = require('http');
2 var server = http.createServer().listen(8081);
3
4 server.on('request', function (request, response){ //Behandlung des Events 'request'
5 if (request.method==='GET'){
6 response.writeHead(200, {'Content-Type': 'text/html'});
7 response.end("Hello World!\n");
8 }
9 });

11

https://nodejs.org/api/http.html

Node.js: Express

Meistgenutztes Web-Framework für Node.js

Bereits als Abhängigkeit des Servers vorgegeben
Installierbar mit npm install (siehe Übungblatt)

Antworten auf HTTP Requests werden über Routen definiert

Das app-Objekt stellt .get(), .post(), ... zur Verfügung

1 var express = require('express');
2 var app = express();
3

4 // GET method route
5 app.get('/', function (req, res) {
6 res.send('GET request to the homepage')
7 })
8

9 // POST method route
10 app.post('/', function (req, res) {
11 res.send('POST request to the homepage')
12 })

12

Node.js: Express

Pfade der Route können natürlich angepasst werden

1 app.get('/', function (req, res) {
2 res.send('root')
3 })
4

5 app.get('/about', function (req, res) {
6 res.send('about')
7 })
8

9 app.get('/users/:userId/', (req, res) => {
10 res.send(req.params) // /user/vogel => req.params: { "userId": "vogel" }
11 })

Dabei sind auch reguläre Ausdrücke möglich:
/ab?cd→ acd und abcd
/ab+cd→ abcd, abbcd, abbbcd, ...
/ab*cd→ abcd, abxcd, abRANDOMcd, ab123cd, ...
...

13

Node.js: Express

Zur Erhöhung der Übersichtlichkeit können die Definitionen von
Routen in externe JavaScript-Dateien ausgelagert werden:

1 const index = require('./routes/index.js');
2 const service = require('./routes/service.js');
3

4

5 app.use('/', index);
6 app.use('/service', service);

14

Node.js: express-ws

Das NPM Paket express-ws bietet Endpunkte von WebSockets
für Express

1 var router = express.Router();
2

3 router.ws('/ws', function(ws, req) {
4 ws.on('message', function(msg) {
5 ws.send("message received!");
6 });
7 });
8

9 app.use("/", router);

15

Node.js: Umgebungsvariablen

Mit Umgebungsvariablen kann man einfach Paramter an
Node.js Anwendungen weitergeben
Die Variable wird in der Bash gesetzt:

1 $ TESTVAR="hello" nodejs app.js

Und kann in Node.js ausgelesen werden:

1 const testvar = process.env.TESTVAR;

Auch Standardwerte können definiert werden:

1 const testvar = process.env.TESTVAR || 'default_value';

16

MongoDB

Übersicht

Node.js

Überblick

Non-blocking I/O

Module

Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

17

MongoDB

MongoDB ist eine quelloffene NoSQL-Datenbank
Abgeleitet vom engl. humongous, „gigantisch“
NoSQL: nicht relational!
Keine Festlegung auf Tabellenschemata
Stattdessen werden Daten als Dokumente abgelegt

Ablage von JSON-ähnlichen Objekten
Erweiterung von JSON → Binary JSON (BSON)
Vorteile: geringere Speicherbelegung, schneller zu parsen

Bekannt für hohe Skalierbarkeit

Oft eingesetzt in Webanwendungen
MEAN-Stack: MongoDB, Express, Angular, Node.js
MERN-Stack: MongoDB, Express, React, Node.js

18

MongoDB: mongoose ODM

Mongoose ist ein ODM Tool für MongoDB
ODM: Object Document Mapper

Objekt im Code → Dokument in Datenbank

Schema: Mapping von Objekten zu MongoDB
Schemas werden zu Models kompiliert
Models bieten verschiedene Methoden:

Neues Dokument erzeugen: new Model()
Neues Dokument speichern: Model.save()
Alle Vorkommen finden: Model.find()
Einzelnen Eintrag löschen; Model.deleteOne()
Einzeln Eintrag ändern: Model.updateOne()

19

MongoDB: mongoose ODM (Beispiel)

1 const mongoose = require('mongoose');
2 mongoose.connect('mongodb://localhost:27017/test', {useNewUrlParser: true});
3
4 //new schema
5 var catSchema = new mongoose.Schema({
6 name: String
7 });
8
9

10 //new model:
11 const Cat = mongoose.model('Cat', catSchema);
12
13 //create new cats
14 const cat1 = new Cat({ name: 'Simon' });
15 const cat2 = new Cat({ name: 'Garfield' });
16
17 //save cats
18 cat1.save();
19 cat2.save().then(function(){
20 console.log("cat2 saved!");
21 Cat.find({}, function(err, cats){ //{} is an empty Conditions Object
22 console.log(cats)
23 mongoose.connection.close();
24 console.log("connection closed");
25 });
26 });

20

Virtualisierung & Docker

Übersicht

Node.js

Überblick

Non-blocking I/O

Module

Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

21

Virtualisierung

Schaffung virtueller Ressourcen auf Basis von physischen
Analog zu multitasking Betriebssystemen
Virtual Machine Monitor (VMM), Hypervisor

→ Virtuelle Maschine (VM)

Ziele von Virtualisierung
Bessere Ausnutzung existierender Ressourcen
Erhöhung von Verlässlichkeit und Sicherheit
Höhere Skalierbarkeit von Systemen
Zentralisierung von Systemadministration
Betrieb von Altsystemen ohne alte Hardware

Problem: Hoher Ressourcenbedarf → Containervirtualisierung

22

Containervirtualisierung

Gleiche Ziele wie normale Virtualisierung

Es werden nur einige Betriebsmittel isoliert

Bspw. gemeinsame Nutzung des Betriebssystemkerns

Bekannteste Implementierung: Docker

Problem: Schwache Isolation ggü. normaler Virtualisierung

23

Virtualisierung vs. Docker

Quelle: https://www.stratoscale.com/blog/compute/linux-containers-benefits-and-market-trends/

24

https://www.stratoscale.com/blog/compute/linux-containers-benefits-and-market-trends/

Docker: Interface

Quelle: https://docs.docker.com/engine/docker-overview/

25

https://docs.docker.com/engine/docker-overview/

Docker als Deployment Tool

Durch die Kapselung von Anwendung und Bibliotheken eignet
sich Docker sehr gut als Deployment Tool

Anwendungen können mit allen Abhängigkeiten gebündelt als
Dockercontainer vertrieben werden

Anwendungen mit mehreren Kompententen beinhalten dann
mehrere Dockercontainer

Die Kommunikation zwischen diesen kann mit
docker-compose konfiguriert werden

26

Docker: docker-compose

Mit docker-compose können Anwendungen bestehend aus
mehreren Docker Containern definiert und ausgeführt werden

Konfiguration über YAML-Datei docker-compose.yml:
1 services:
2 mongodb:
3 restart: always
4 image: mongo:latest
5 ports:
6 - "27017:27017" # this is dangerous! Dont do this in a production system
7
8 node:
9 restart: always

10 build: ./chat_server
11 environment:
12 - DB_URL= mongodb://mongodb/chatDB
13 links:
14 - mongodb
15 command: npm start

27

docker-compose: Wichtige Befehle

docker-compose up -d Initial, um die Container zu
instantiieren.

docker-compose start Pausierte Container wieder starten

docker-compose stop Laufende Container pausieren

docker-compose down Bestehende Container herunterfahren
und löschen(!)

docker-compose kill Bestehende Container gewaltsam
herunterfahren und löschen(!)

28

OpenStack

OpenStack ist eine quelloffene Software, die eine Architektur
für das sogenannte Cloud-Computing zur Verfügung stellt

U.a. schnelles erstellen von virtuellen Maschinen (VMs)

Das RRZE betreibt eine Instanz unter https://cc.rrze.de
Zugriff: https://www.idm.fau.de/go/application/cloud
https://www.anleitungen.rrze.fau.de/
serverdienste/cc/compute-cloud-faq/

Ablauf für Aufgabe 5:
Start einer VM über das Webinterface
Zugriff per ssh
Kopieren von Dateien mit scp oder rsync

29

https://cc.rrze.de
https://www.idm.fau.de/go/application/cloud
https://www.anleitungen.rrze.fau.de/serverdienste/cc/compute-cloud-faq/
https://www.anleitungen.rrze.fau.de/serverdienste/cc/compute-cloud-faq/

ssh

ssh ist ein Programm zur sicheren Verbindung zu einem
entfernten Rechner
Allgemein: ssh <user>@<host>
Beispiel: ssh vogel@i4wbs.cs.fau.de
rsync

Dateien Kopieren
rsync *.pdf
vogel@i4wbs.cs.fau.de:/proj/i4wp/extern/lehre/ws25/wbs/uebung

30

OpenStack: Webinterface

31

Aufgabe 5

Übersicht

Node.js

Überblick

Non-blocking I/O

Module

Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

32

Aufgabe 5: Endgültiges Deployment

NodeJS nginx Client

MongoDB

Studentcloud

:27017

:3000 :80

ssh -L 80:localhost:80 <user>@<ip>
http://localhost:80 im Browser

Implementierung des Chatservers, der bisher vorgegeben war
Komponenten: Node.js (mit Express), nginx, MongoDB
Jede Komponente läuft in Docker Container
Docker Container laufen auf Virtueller Maschine (VM)
Eine VM pro Team in der OpenStack

33

Aufgabe 5: Deployment während Entwicklung

NodeJS Client

MongoDB

Studentcloud

:27017

:3000

ssh -L 27017:localhost:27017 <user>@<ip>
mongodb://localhost:27017 für die Verbindung zur MongoDB

Während der Entwicklung muss Servercode laufend angepasst
werden
Nur die MongoDB soll in der OpenStack ausgeführt werden

34

nginx

nginx ist eine bekannte offene Webserver-Implementierung

Hier: Einsatz als Reverse Proxy

Gründe für einen Reverse Proxy:
Verstecken der Existenz/Charakteristik des eigentlichen Servers
Einsatz von Caching zur Entlastung der eigentlichen Server
Lastverteilung auf mehrere Server ohne Konfiguration des Clients
Hinzufügen von TLS Verschlüsselung
HTTP Authentifizierung
...

Internet Proxy Web server

example.com

Internal network

Quelle: https://de.wikipedia.org/wiki/Reverse_Proxy

35

https://de.wikipedia.org/wiki/Reverse_Proxy

Quellen

http://expressjs.com/en/guide/routing.html

https://www.npmjs.com/package/express-ws

https://developer.mozilla.org/en-US/docs/Web/
HTTP/Proxy_servers_and_tunneling

36

http://expressjs.com/en/guide/routing.html
https://www.npmjs.com/package/express-ws
https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling
https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling

Promise

1 const myPromise = new Promise((resolve, reject) => {
2 setTimeout(() => {
3 resolve('foo');
4 }, 300);
5 });
6 myPromise
7 .then(handleResolvedA)
8 .then(handleResolvedB)
9 .then(handleResolvedC)

10 .catch(handleRejectedAny);

37

	Node.js
	Überblick
	Non-blocking I/O
	Module
	Events
	Express

	MongoDB
	mongoose

	Virtualisierung & Docker
	OpenStack

	Aufgabe 5

