Web-basierte Systeme - Ubung
06: Node.js, MongoDB und Aufgabe 5

Wintersemester 2026

Arne Vogel, Maxim Ritter von Onciul

EE Friedrich-Alexander-Universitat
O Lehrstuhl filr Informatik 4 | Technische Fakultat
Systemsoftware " /=\\

Ubersicht

Node.js
Uberblick
Non-blocking 1/0
Module
Events

Express

MongoDB

mongoose

Virtualisierung & Docker

OpenStack

Aufgabe 5

Node.js

Ubersicht

Node.js
Uberblick
Non-blocking 1/0
Module
Events

Express

Node.js: Uberblick

Node.js ist eine serverseitige Laufzeitumgebung fiir JavaScript

Node.js = V8 + Event Loop + Async. 1/0 API

npm: Packetmanager fiir Node.js

Alle I/0 Operationen non-blocking maglich

Node.js: Event Loop

THE NODE.JS SYSTEM

NODE.JS
BINDINSS

m Ein Thread fiihrt JS des Entwicklers + Event Loop aus

m Anfragen werden direkt vom OS oder von Worker Threads
bearbeitet

Quelle: https://www.timcosta.io/the-node-js-event-loop/

https://www.timcosta.io/the-node-js-event-loop/

Node.js: non-blocking 1/0 (Ubersicht)

Alle 1/0 Operation haben synchrone und asynchrone Versionen

= Synchron: Direkter Aufruf mit Argumenten
= Asynchron: Zusatzliches Callback Argument

Beispiel aus der Node.js API:

« fs.readFileSync(path[, options])
= fs.readFile(path[, options], callback)

Callback Funktionen
= Konvention: Error Objekt ist immer der erste Parameter
= Bsp. fiir readFile: function(err, data) {...}
= Je nach API Call mehr/andere Parameter moglich!

Promises-basierte API

= Gleiche API-Aufrufe, aber Promise wird returnt
= z.B. fs.promises

Node.js: non-blocking 1/0 (Beispiel)

Synchrones Lesen einer Datei:

const fs = require('fs');

const data = fs.readFileSync('file.md'); // blocks here
console.log(data);

moreWork(); //will run after console.log

N N e

Asynchrones Lesen einer Datei:

const fs = require('fs');

fs.readFile('file.md', (err, data) => { // does NOT block here
if (err) throw err;
console.log(data);

1)

moreWork(); //will run before console.log

N o ok W N e

Node.js Module

m Node.js bietet viele Module, welche unterschiedliche
Funktionen implementieren, Beispiele (built-in):

= Datei- und Netzwerkzugriff: fs und net
= Netzwerkprotokolle: http, dns, ...

= Kyptographie: crypto, tls

= Kompression: z1ib

m Quasi Libraries fiir Node.js
® Hunderttausende zusatzliche Pakete in npm

= Module werden mit dem Schliisselwort require eingebunden

var net = require('net');

1

2 var client = new net.Socket();

3 client.connect(1337, '127.0.0.1"', function() {

4 client.write('Hello, server! Love, Client.');
5 1);

Eigene Node.js Module

m Module exportieren JavaScript Objekte
m Zum Beispiel Funktionen:

1 // bar.js

2 module.exports.bar = function () {
3 console.log('bar!");
4

}

m Eigene Module konnen dann auch mit require verwendet
werden:

1 // app.js
2 var lib = require('./bar.js');
3 lib.bar();

= Mit Node.js lassen sich Event-getriebene (event-driven)
Anwendungen bauen

= Events werden von Emittern ausgesendet
m Listener sind Funktionen, die bei Events ausgefiihrt werden

m Dazu miissen Listener mit der .on() Methode registriert
werden

1 const EventEmitter = require('events');
class MyEmitter extends EventEmitter {}

V)

const myEmitter = new MyEmitter();
myEmitter.on('event', () => {

console.log('an event occurred!"');
b

myEmitter.emit('event');

© ® N o o oa W

10

Node.js Events: Beispiel Webserver

m Server hort auf Port 8081

m GET Requests werden mit dem String Hello World!
beantwortet

m Alle anderen Requests werden ignoriert

m Dokumentation: https://nodejs.org/api/http.html

var http = require('http');
var server = http.createServer().listen(8081);

server.on('request', function (request, response){ //Behandlung des Events 'request’
if (request.method==="GET"'){
response.writeHead(200, {'Content-Type': 'text/html'});
response.end("Hello World!\n");

0N DU W N

©
-

"

https://nodejs.org/api/http.html

Node.js: Express

0 N oA W N R

[
N o= O ©

m Meistgenutztes Web-Framework fiir Node.js

m Bereits als Abhangigkeit des Servers vorgegeben

= Installierbar mit npm install (siehe Ubungblatt)

m Antworten auf HTTP Requests werden iiber Routen definiert

m Das app-Objekt stellt .get (), .post(), ... zur Verfligung

var express = require('express');
var app = express()

// GET method route
app.get('/', function (req, res) {
res.send('GET request to the homepage')

b

// POST method route
app.post('/", function (req, res) {
res.send('POST request to the homepage')

b

Node.js: Express

m Pfade der Route kdnnen natiirlich angepasst werden

app.get('/"', function (req, res) {
res.send('root")

b

app.get('/about', function (req, res) {
res.send('about")

b

© W N O A W N

app.get('/users/:userId/', (req, res) => {
res.send(req.params) // /user/vogel => req.params: { "userId": "vogel" }

b

e
= o

m Dabei sind auch regulare Ausdriicke moglich:
= /ab?cd — acd und abcd
= /ab+cd — abcd, abbcd, abbbcd, ...
= /abxcd — abcd, abxcd, abRANDOMcd, ab123cd, ...

Node.js: Express

m Zur Erhéhung der Ubersichtlichkeit konnen die Definitionen von
Routen in externe JavaScript-Dateien ausgelagert werden:

const index = require('./routes/index.js')
const service = require('./routes/service.js")

app.use('/', index);
app.use('/service', service);

L N

Node.js: express-ws

m Das NPM Paket express-ws bietet Endpunkte von WebSockets
flr Express

B var router = express.Router();

router.ws('/ws', function(ws, req) {
ws.on('message', function(msg) {
ws.send("message received!");
;i
b

© W N U A W N

app.use("/", router);

Node.js: Umgebungsvariablen

® Mit Umgebungsvariablen kann man einfach Paramter an
Node.js Anwendungen weitergeben

m Die Variable wird in der Bash gesetzt:

1 $ TESTVAR="hello" nodejs app.js

m Und kann in Node.js ausgelesen werden:

1 const testvar = process.env.TESTVAR;

m Auch Standardwerte konnen definiert werden:

1 const testvar = process.env.TESTVAR || 'default_value';

16

MongoDB

Ubersicht

MongoDB

mongoose

17

MongoDB

m MongoDB ist eine quelloffene NoSQL-Datenbank

= Abgeleitet vom engl. humongous, ,gigantisch”

= NoSQL: nicht relational!

= Keine Festlegung auf Tabellenschemata

= Stattdessen werden Daten als Dokumente abgelegt

m Ablage von JSON-ahnlichen Objekten

= Erweiterung von JSON — Binary JSON (BSON)
= Vorteile: geringere Speicherbelegung, schneller zu parsen

m Bekannt fir hohe Skalierbarkeit

m Oft eingesetzt in Webanwendungen

= MEAN-Stack: MongoDB, Express, Angular, Node.js
= MERN-Stack: MongoDB, Express, React, Node.js

18

MongoDB: mongoose ODM

Mongoose ist ein ODM Tool fiir MongoDB
ODM: Object Document Mapper
= Objekt im Code — Dokument in Datenbank

Schema: Mapping von Objekten zu MongoDB

Schemas werden zu Models kompiliert
Models bieten verschiedene Methoden:
= Neues Dokument erzeugen: new Model()
= Neues Dokument speichern: Model.save()
= Alle Vorkommen finden: Model. find()
= Einzelnen Eintrag loschen; Model.deleteOne()
= Einzeln Eintrag dandern: Model.updateOne()

19

MongoDB: mongoose ODM (Beispiel)

1 const mongoose = require('mongoose’);

2 mongoose.connect('mongodb://localhost:27017/test', {useNewUrlParser: true});
3

4 //new schema

5 var catSchema = new mongoose.Schema({

6 name: String

7 };

8

9

10 //new model:

11 const Cat = mongoose.model('Cat', catSchema);

12

13 //create new cats

14 const catl = new Cat({ name: 'Simon' });

15 const cat2 = new Cat({ name: 'Garfield' });

16

17 //save cats

18 catl.save();

19 cat2.save().then(function(){

20 console.log("cat2 saved!");

21 Cat.find({}, function(err, cats){ //{} is an empty Conditions Object
22 console.log(cats)

23 mongoose.connection.close();

24 console.log("connection closed");
25 b;

26 b

20

Virtualisierung & Docker

Ubersicht

Virtualisierung & Docker

OpenStack

21

Virtualisierung

= Schaffung virtueller Ressourcen auf Basis von physischen
= Analog zu multitasking Betriebssystemen
= Virtual Machine Monitor (VMM), Hypervisor
— Virtuelle Maschine (VM)

m Ziele von Virtualisierung
= Bessere Ausnutzung existierender Ressourcen
= Erhohung von Verlasslichkeit und Sicherheit
= Hohere Skalierbarkeit von Systemen
= Zentralisierung von Systemadministration
= Betrieb von Altsystemen ohne alte Hardware

m Problem: Hoher Ressourcenbedarf — Containervirtualisierung

22

Containervirtualisierung

Gleiche Ziele wie normale Virtualisierung

Es werden nur einige Betriebsmittel isoliert

m Bspw. gemeinsame Nutzung des Betriebssystemkerns

Bekannteste Implementierung: Docker

Problem: Schwache Isolation ggii. normaler Virtualisierung

23

Virtualisierung vs. Docker

Guest OS Guest OS [l Guest OS

oot [v
Bins/Libs [l Bins/Libs

Hyperviso Docker Engine
Operating System

Infrastructure

Host Operating System

Infrastructure

Quelle: https://www.stratoscale.com/blog/compute/linux-containers-benefits-and-market-trends/

24

https://www.stratoscale.com/blog/compute/linux-containers-benefits-and-market-trends/

Docker: Interface

(Client)—————— (DOCKER_HOST

docker build - ,,){ Docker daemon |

=
~

. ‘\4
dockeEULINN I! Containers |— \

N Images};:—

\ g
\,\
I'Q |
¢ /
~]

N

docker run —

0oeg
¢

Quelle: https://docs.docker.com/engine/docker-overview/

25

https://docs.docker.com/engine/docker-overview/

Docker als Deployment Tool

Durch die Kapselung von Anwendung und Bibliotheken eignet
sich Docker sehr gut als Deployment Tool

Anwendungen konnen mit allen Abhangigkeiten gebiindelt als
Dockercontainer vertrieben werden

Anwendungen mit mehreren Kompententen beinhalten dann
mehrere Dockercontainer

m Die Kommunikation zwischen diesen kann mit
docker-compose konfiguriert werden

26

Docker: docker-compose

m Mit docker-compose konnen Anwendungen bestehend aus
mehreren Docker Containern definiert und ausgefiihrt werden

m Konfiguration Uiber YAML-Datei docker-compose.yml:

1 services:

2 mongodb:

3 restart: always

4 image: mongo:latest

5 ports:

6 - "27017:27017" # this is dangerous! Dont do this in a production system
7

8 node:

9 restart: always

10 build: ./chat_server

11 environment:

12 - DB_URL= mongodb://mongodb/chatDB
13 links:

14 - mongodb

15 command: npm start

27

docker-compose: Wichtige Befehle

docker-compose up -d Initial, um die Container zu
instantiieren.

docker-compose start Pausierte Container wieder starten

docker-compose stop Laufende Container pausieren

docker-compose down Bestehende Container herunterfahren
und léschen(!)

docker-compose kill Bestehende Container gewaltsam
herunterfahren und 6schen(!)

28

OpenStack

m OpenStack ist eine quelloffene Software, die eine Architektur
fiir das sogenannte Cloud-Computing zur Verfiigung stellt

m U.a. schnelles erstellen von virtuellen Maschinen (VMs)

m Das RRZE betreibt eine Instanz unter https://cc.rrze.de

= Zugriff: https://www.idm.fau.de/go/application/cloud
= https://www.anleitungen.rrze.fau.de/
serverdienste/cc/compute-cloud-faq/

m Ablauf fir Aufgabe 5:

= Start einer VM liber das Webinterface
= Zugriff per ssh
= Kopieren von Dateien mit scp oder rsync

29

https://cc.rrze.de
https://www.idm.fau.de/go/application/cloud
https://www.anleitungen.rrze.fau.de/serverdienste/cc/compute-cloud-faq/
https://www.anleitungen.rrze.fau.de/serverdienste/cc/compute-cloud-faq/

ssh ist ein Programm zur sicheren Verbindung zu einem
entfernten Rechner

Allgemein: ssh <user>@<host>

Beispiel: ssh vogel@i4wbs.cs.fau.de

m rsync

= Dateien Kopieren

= rsync *.pdf
vogel@iswbs.cs.fau.de:/proj/iswp/extern/lehre/ws25/wbs/

30

OpenStack: Webinterface

Project

API Access

Compute

Overview

Instances

Images

Key Pairs

Server Groups

Volumes

Container Infra

Network

Object Store

Identity

Project / Compute

Overview

Limit Summary

Compute

Instances

Used 10f 10

Volume

Volumes

Used 40f 10

Network

Floating IPs
Allocated 0 of 1

VCPUs

Used 2 of 20

Volume S

Used 0.of 10

Security Groups

Used 2 of 10

4

RAM

Used 468 of 50GB

4

Volume Storage

Used 80GB of 100068

y

Security Group Rules

Used 9 of 100

jorks

Used 0 of 100

31

Aufgabe 5

Ubersicht

Aufgabe 5

32

Aufgabe 5: Endgiiltiges Deployment

Studentcloud

:3000 P80
NodeJS < nginx 15 @ Client

m ssh -L 80:localhost:80 <user>@<ip>
= http://localhost:80 im Browser
Implementierung des Chatservers, der bisher vorgegeben war
Komponenten: Node.js (mit Express), nginx, MongoDB
Jede Komponente lauft in Docker Container
Docker Container laufen auf Virtueller Maschine (VM)
Eine VM pro Team in der OpenStack

33

Aufgabe 5: Deployment wahrend Entwicklung

:3000

d&i Client

N

NodeJS

m ssh -L 27017:1localhost:27017 <user>@<ip>
= mongodb://localhost:27017 fiir die Verbindung zur MongoDB

m Wahrend der Entwicklung muss Servercode laufend angepasst
werden
m Nur die MongoDB soll in der OpenStack ausgefiihrt werden

34

m nginx ist eine bekannte offene Webserver-Implementierung
m Hier: Einsatz als Reverse Proxy

m Griinde fiir einen Reverse Proxy:

= Verstecken der Existenz/Charakteristik des eigentlichen Servers

= Einsatz von Caching zur Entlastung der eigentlichen Server
Lastverteilung auf mehrere Server ohne Konfiguration des Clients
= Hinzufligen von TLS Verschliisselung

HTTP Authentifizierung

example.com

Internet Proxy Web server ,.:

Internal network

Quelle: https://de.wikipedia.org/wiki/Reverse_Proxy

35

https://de.wikipedia.org/wiki/Reverse_Proxy

m http://expressjs.com/en/guide/routing.html
m https://www.npmjs.com/package/express-ws

m https://developer.mozilla.org/en-US/docs/Web/
HTTP/Proxy_servers_and_tunneling

36

http://expressjs.com/en/guide/routing.html
https://www.npmjs.com/package/express-ws
https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling
https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling

const myPromise = new Promise((resolve, reject) => {
setTimeout(() => {
resolve('foo');
}, 300);
});
myPromise
.then(handleResolvedA)
.then(handleResolvedB)
.then(handleResolvedC)
10 .catch(handleRejectedAny);

N

© o N o o

37

	Node.js
	Überblick
	Non-blocking I/O
	Module
	Events
	Express

	MongoDB
	mongoose

	Virtualisierung & Docker
	OpenStack

	Aufgabe 5

