
Web-basierte Systeme
11: Caching

Wintersemester 2025

Rüdiger Kapitza

Lehrstuhl für Informatik 4
Systemsoftware



Vorläufiger Vorlesungsplan

16. Oktober Einführung und Darstellung von Webseiten
22. Oktober HTML und CSS
29. Oktober Hypertext Transfer Protocol

5. November
12. November Browser Schnittstellen
19. November Kommunikationsschnittstellen im Browser
26. November WebAssembly

3. Dezember Architektur moderner Browser
10. Dezember Clientseitige Architekturmuster
17. Dezember Serverseitige Implementierung

von Web-basierten Systemen
Vorbereitung Papieranalyse

7. Januar Lastverteilung durch Zwischenspeicher
14. Januar Papieranalyse
21. Januar Aspekte von Web Sicherheit
28. Januar Web3
5. Februar Zusammenfassung und Ausblick

2



Caching



Caching

Zielsetzung der Lerneinheit

Verstehen, warum die Zwischenlagerung von Daten in
webbasierten Systemen sinnvoll und notwendig ist
Kennenlernen der verschiedenen Möglichkeiten der
Zwischenlagerung auf Client- und Serverseite.
Basiskenntnis von Ansätzen und Strategien zur Lagerung

3



Caching

Vorüberlegungen

Daten einer Webanwendung sollen zwar durch einen Dienst
bereitgestellt und durch Clients aktualisiert werden können –
aber eben auch

eine möglichst geringe Zugriffszeit besitzen
und skalierbar verfügbar sein.

4



Caching im Browser – Vorüberlegungen

Vorüberlegungen

Antwortzeiten und die menschliche Wahrnehmung

Delay User Reaction
0-100 ms Instant

100-300 ms Small perceptible delay
300-1000 ms Machine is working

1000+ ms Likely mental context switch
10,000+ ms Task is abandoned

Minimale Antwortzeiten unter Einbezug der Datenübertragung
Route Distance Time, light in vacuum Time, light in fiber
NYC to SF 4,148 km 14 ms 21 ms
NYC to London 5,585 km 19 ms 28 ms
NYC to Sydney 15,993 km 53 ms 80 ms
Equatorial circumference 40,075 km 133.7 ms 200 ms

Natürlich ist die Latenz in der Regel höher, was auf die
Vermittlung und andere Faktoren zurückzuführen ist.

5



Caching im Browser – Vorüberlegungen

Vorüberlegungen

Antwortzeiten und die menschliche Wahrnehmung

Delay User Reaction
0-100 ms Instant

100-300 ms Small perceptible delay
300-1000 ms Machine is working

1000+ ms Likely mental context switch
10,000+ ms Task is abandoned

Minimale Antwortzeiten unter Einbezug der Datenübertragung
Route Distance Time, light in vacuum Time, light in fiber
NYC to SF 4,148 km 14 ms 21 ms
NYC to London 5,585 km 19 ms 28 ms
NYC to Sydney 15,993 km 53 ms 80 ms
Equatorial circumference 40,075 km 133.7 ms 200 ms

Natürlich ist die Latenz in der Regel höher, was auf die
Vermittlung und andere Faktoren zurückzuführen ist.

5



Caching

Warum sollte man einen Cache verwenden?

Ein Cache ist eine Komponente, die Daten transparent
speichert, so dass wiederholte Anfragen nach den gleichen
Daten schneller beantwortet werden können.

Wo können im Prinzip Daten zwischengelagert werden?

Beim Endnutzer im Browser
Vor den Diensten im ’Netzwerkpfad’

Verwendung eines Content Delivery Networks (CDN)
Verwendung eines Proxies (abnehmend in der Bedeutung))

Key/Value Dienste
Im Anwendungsserver
In der Datenbank (Anfrage-Cache)

Wie passt das mit der Edge Computing zusammen?

6



Caching

Warum sollte man einen Cache verwenden?

Ein Cache ist eine Komponente, die Daten transparent
speichert, so dass wiederholte Anfragen nach den gleichen
Daten schneller beantwortet werden können.

Wo können im Prinzip Daten zwischengelagert werden?

Beim Endnutzer im Browser
Vor den Diensten im ’Netzwerkpfad’

Verwendung eines Content Delivery Networks (CDN)
Verwendung eines Proxies (abnehmend in der Bedeutung))

Key/Value Dienste
Im Anwendungsserver
In der Datenbank (Anfrage-Cache)

Wie passt das mit der Edge Computing zusammen?

6



Caching im Browser

Wann und warum cached der Browser Daten?

Es gibt eine Reihe von HTTP-Headern, die festlegen, wie und ob
eine Zwischenspeicherung erfolgt.
Zwischenlagerung kann sowohl vom Server zum Client als auch
umgekehrt definiert werden.
Wir konzentrieren uns auf die Direktiven des Servers.

HTTP Header (Auswahl)

Cachebarkeit: cache-control
Policy: no-store, no-cache, max-age, public |
private

etag
last-modified
if-none-match
if-modified-since

7



Caching im Browser

Wann und warum cached der Browser Daten?

Es gibt eine Reihe von HTTP-Headern, die festlegen, wie und ob
eine Zwischenspeicherung erfolgt.
Zwischenlagerung kann sowohl vom Server zum Client als auch
umgekehrt definiert werden.
Wir konzentrieren uns auf die Direktiven des Servers.

HTTP Header (Auswahl)

Cachebarkeit: cache-control
Policy: no-store, no-cache, max-age, public |
private

etag
last-modified
if-none-match
if-modified-since

7



Caching im Browser

cache-control: no-store

Indiziert dem Browser und evtl. vermittelnden Proxies
die Daten nicht persistent zu speichern
bzw. jegliche Kopien aus ihrem Speicher unmittelbar zu löschen.

Anmerkung: Browser halten evtl. dennoch eine Kopie im
Arbeitsspeicher vor, um eine Vorwärts-/Rückwärtsnavigation zu
ermöglichen.
Im Allgemeinen wird dieser Header verwendet, um ’sensible’
Daten zu kennzeichnen.

8



Caching im Browser

cache-control: no-cache

Indiziert dem Browser und evtl. vermittelnden Proxies
die gelagerten Daten sollten auf ihre Aktualität überprüft werden,
bevor sie erneut ausgeliefert werden.

Nützlich, um den Browser und Proxies zu zwingen, die Aktualität
der Daten zu überprüfen.

cache-control: private

Die Zwischenspeicherung der Daten wird dem Browser
überlassen – Proxies sollten die Daten nicht speichern.

cache-control: public

Kennzeichen, dass die Antwort von jedem Cache
zwischengelagert werden kann.

9



Caching im Browser

cache-control: max-age=<seconds>

Spezifiziert die maximale Zeitdauer, die eine Ressource als
aktuell betrachtet wird.
Im Gegensatz zu Expires, ist diese Direktive relativ zum
Zeitpunkt der Anfrage.

cache-control: must-revalidate

Abgelaufene Ressourcen sollten nicht verwendet werden und
müssen vor der Verwendung überprüft werden

10



Caching im Browser

Beispiel: Caching komplett verhindern

Cache-Control: no-cache, no-store,
must-revalidate

Beispiel: Statische Assets cachen

Dateien einer Anwendung, die sich nicht ändern, können
langfristig zwischengespeichert werden

Bspw. statische Assets wie Bilder, CSS- und JavaScript-Dateien

Cache-Control: public, max-age=31536000
(Lagerung von bis zu einem Jahr)

11



Caching im Browser

ETag: ”<etag_value>”

Ein ETag ist ein eindeutiger Identifikator für die Version einer
Ressource und wird mit der Ressource ausgeliefert.
Für jede neue Version der Ressource wird ein neuer ETag
erzeugt (und zwischengespeichert).

if-none-match:”<etag_value>”

Wenn in einer HTTP-Anfrage if-none-match: angegeben wird,
kann der Server überprüfen, ob die Ressource noch aktuell ist.
Im Post-Fall wird eine Fehlermeldung zurückgegeben, wenn der
ETag nicht mit der ETag-Version des Servers übereinstimmt:
412 Precondition Failed

12



Caching im Browser

if-none-match:”<etag_value>”

Für eine lokal möglicherweise veraltete Version kann in einer
GET-Operation auch if-none-match angegeben werden.
In diesem Fall wird, wenn die Ressource auf der Serverseite
nicht geändert wurde, 304 Not Modified zurückgegeben,
ohne die Ressource erneut auszuliefern.
Wenn sich der ETag und damit die Ressource geändert hat, wird
sie normal an den Browser übertragen.

Ein ähnliche Vorgehensweise kann mit last-modified und
if-modified-since verfolgt werden.

13



Caching im Browser

14



Caching auf der Serverseite

Vorüberlegungen

Webserver beantworten Anfragen einer Vielzahl von
verschiedenen Clients
Jede Antwort erfordert in der Regel Rechenzeit und
I/O-Operationen.
Oft sind Antworten recht ähnlich.
Für das Caching auf Client-Seite sind wir von identischen
Antworten ausgegangen – nun schwächen wir das ab und
betrachten auch ähnliche Antworten.

15



Caching auf der Serverseite

Welche HTTP-Antworten bezogen auf einen einzelnen Webserver
könnten ähnlich/gleich sein?

Einzelne View-Elemente der Webseite
Zum Beispiel: Kopf- oder Fußelement, Sidebar oder auch Listen
die öfters eingeblendet werden.

Selten modifizierte Datenobjekte
Zum Beispiel: Zugriffsrechte, Konfigurationsparameter,
Produktdaten – alles was selten aktualisiert wird.

Aufwendig zu berechnende Daten
Dinge die man evtl. sowieso auslagert
Beispiel: Diff zwischen zwei Commits bei GitHub oder die
Kontaktliste von LinkedIn.

16



Caching auf der Serverseite

Wo könnten Zwischenergebnisse auf der Serverseite gespeichert
werden?

1. Direkt im Hauptspeicher des Anwendungs- bzw. Webservers
2. Im lokalen Dateisystem
3. In einem anderen System

17



Caching auf der Serverseite

Numbers Every Programmer Should Know (2018)

Zahlen die ursprünglich von Jeff Dean (Google) erarbeitet
wurden in aktualisierter Form:

Ressource Time
L1 cache reference 1ns
Branch mispredict 3ns
L2 cache reference 4ns
Mutex lock/unlock 17ns

Main memory reference 100ns
Compress 1KB wth Zippy 2,000ns ≈ 2µs

Send 2,000 bytes over commodity network 88ns
SSD random read 16,000ns ≈ 16µs

Read 1,000,000 bytes sequentially from memory 5,000ns ≈ 5µs
Round trip in same datacenter 500,000ns ≈ 500µs

Read 1,000,000 bytes sequentially from SSD 78,000ns ≈ 78µs
Disk seek 3,000,000ns ≈ 3ms

Read 1,000,000 bytes sequentially from disk 1,000,000ns ≈ 1ms
Packet roundtrip CA to Netherlands 150,000,000ns ≈ 150ms

18



Caching auf der Serverseite

Abbildung dieser Zahlen auf serverseitiges Caching

Zwischenspeichern von Daten im Arbeitsspeicher für den
späteren Zugriff ist schnell!

Lesen einer zufälligen Stelle im Arbeitsspeicher dauert < 0.1 µs

Ablegen von Daten auf einer Festplatte (wenn es sich nicht um
eine SSD handelt) ist langsam

Positionieren eines Lesekopfes dauert 4000 µs
Anschließendes Lesen 1 MB dauert weitere 2000 µs

SSDs zu nutzen macht Sinn
Lesen einer zufälligen Speicherstelle dauert 16 µs
Lesen von einem 1 MB dauert 156 µs

Speichern von Daten auf einem Rechner innerhalb des gleichen
Datenzentrums ist eine Alternative:

Round-trip im Datenzentrum dauert 500 µs

19



Caching auf der Serverseite

Zusammenfassung

Im Speicher unter hundert µs
Auf der SSD speichern hunderte von µs
Auf einer klassischen Festplatte speichern tausende von µs
Auf einer entfernten Maschine: zusätzlich hunderte von µs

Fazit

Arbeitsspeicher < SSD < entfernter Rechner

Reicht das schon aus als Daumenregel?

20



Caching auf der Serverseite

Hit rate bzw. Trefferquote in Abhängigkeit des Speicherortes

Werden die Daten im Arbeitsspeicher abgelegt, kann in der
Regel nur der lokale Prozess davon profitieren
Werden die Daten auf der lokalen SSD gespeichert, können alle
Prozesse der Maschine zugreifen
Im Falle eines entfernten Rechners können alle Rechner des
Clusters darauf zugreifen

Fazit

Man sollte zwischen Zugriffszeit und Trefferquote abwägen!

21



Caching auf der Serverseite

Beipiel: Memcached1

Wird häufig zum zwischenlagern von Daten verwendet
Speichert alle verwalteten Daten im Arbeitsspeicher
Hat eine einfache über TCP ansprechbare Schnittstelle
Kann verteilt betrieben werden
Datengranularität

Schlüssel können eine Länge von 250 byte haben
Werte eine maximale Größe von 1 MB

LRU (least recently used) wird verwendet, um sicherzustellen,
dass Platz für neue Daten vorhanden ist
Alle wichtigen Methoden haben eine konstante Zugriffszeit!

1https://memcached.org

22

https://memcached.org


Content Delivery Networks (CDN)

Motivation

Ein einziger Standort für die Bereitstellung sehr populärer
Inhalte bringt inhärente Probleme mit sich:

Skalierbarkeit, Zuverlässigkeit und Performanz

Flash crowd!
Spontane Popularität

Zwischenablage von Ressourcen an den Rändern des Netzes
Zugriffe auf den primären Server reduzieren
Schnellerer Zugriff für Nutzer da näher

Was sollte ausgelagert werden?

Vor allem statische Inhalte – da sie den größten Teil des
Datenverkehrs ausmachen

Z.B. Bilder, Videos, CSS und andere statische Seitenbestandteile

23



Content Delivery Networks (CDN)

Motivation

Ein einziger Standort für die Bereitstellung sehr populärer
Inhalte bringt inhärente Probleme mit sich:

Skalierbarkeit, Zuverlässigkeit und Performanz

Flash crowd!
Spontane Popularität

Zwischenablage von Ressourcen an den Rändern des Netzes
Zugriffe auf den primären Server reduzieren
Schnellerer Zugriff für Nutzer da näher

Was sollte ausgelagert werden?

Vor allem statische Inhalte – da sie den größten Teil des
Datenverkehrs ausmachen

Z.B. Bilder, Videos, CSS und andere statische Seitenbestandteile

23



Vorüberlegungen zu CDNs

Bisherige Möglichkeiten im Überblick

Jede initiale Anfrage muss
vom Server beantwortetServing & Consuming Content

5

Web server

Browser

Internet

Browser

Browser

Browser

Every request goes to the server.
Repeated requests from one client may be optimized by browser-based caching

– but that cached data is local to the browser

ca
ch

e
ca

ch
e

ca
ch

e
ca

ch
e

November 26, 2017 © 2014-2017 Paul Krzyzanowski

Caching innerhalb einer
InstitutionCaching Proxies

6

Web server

Browser

Internet

Browser

Browser

Browser

C
ac

hi
ng

 P
ro

xy
C

ac
hi

ng
 P

ro
xy

Caching proxy in an organization.
Take advantage of what others before you have recently accessed.

November 26, 2017 © 2014-2017 Paul Krzyzanowski

24



Vorüberlegungen zu CDNs

Bisherige Möglichkeiten im Überblick

Eine andere Möglichkeit wäre, die Serverseite mit einem Load
Balancer skalierbarer zu machen
Anbindung an das Netzwerk kann jedoch einen Engpass
darstellen
Latenz zwischen Client und Server ist nach wie vor hoch

Load Balancing

7

Web server

Browser

Internet

Browser

Browser

Browser

Web server

Web server Lo
ad

 B
al

an
ce

r

Increase capacity at the server.
Internet connectivity can be a bottleneck … + latency from client to server.

November 26, 2017 © 2014-2017 Paul Krzyzanowski

25



Vorüberlegungen zu CDNs

Weitere MöglichkeitenInternet End-to-End Packet Delivery

8

Web server

BrowserRouter

Router

Router

Router

Router

Network edges: applications & hosts

Network core: routers

Router
Browser

Browser

Local ISP
Tier 2 ISP

Tier 2 ISP
Local ISP

Tier 1 ISP

Router

Tier 1 ISP

November 26, 2017 © 2014-2017 Paul Krzyzanowski

26



Vorüberlegungen zu CDNs

Multihoming

Etablierung von Netzwerkverbindungen zu verschiedenen ISPs
Eine IP, aber mehrere Links, über die sie erreicht werden kann
Adressen werden über Border Gateway Protocol (BGP) vermittelt
Clients können nun verschiedene Routen nutzen und Ausfall
eines ISPs kann toleriert werden

Multihoming
• Get network links from multiple ISPs
• Server has one IP address but multiple links
• Announce address to upstream routers via BGP:

Provides clients with a choice of routes and fault tolerance for a server’s ISP going down

9

Web server

BrowserRouter

Router

Router

Router

Router

Router
Browser

Browser

Local ISP
Tier 2 ISP

Tier 2 ISP
Local ISP

Tier 1 ISP

Router

Tier 1 ISP

November 26, 2017 © 2014-2017 Paul Krzyzanowski

27



Vorüberlegungen zu CDNs

Mirroring bzw. Replikation

Synchronisation mehrerer Server
Einbindung von verschiedenen ISPs ermöglicht Load Balancing
in Abhängigkeit Clients
Fehlertoleranz gegenüber Ausfällen von ISPs und Servern

Mirroring (Replication)
• Synchronize multiple servers

• Use multiple ISPs: location-based load balancing, ISP & server fault tolerance

10

Web server

BrowserRouter

Router

Router

Router

Router

Router
Browser

Browser

Local ISP
Tier 2 ISP

Tier 2 ISP
Local ISP

Tier 1 ISP

Router

Tier 1 ISP

Web server

co
py

November 26, 2017 © 2014-2017 Paul Krzyzanowski

28



Vorüberlegungen zu CDNs

Vorzüge der Ansätze

Skalierbarkeit
Replikation über mehrere Server (Load Balancing)
Nutzung verschiedener ISPs, falls das Netzwerk ein Engpass ist

Verfügbarkeit
Replikation der Server
Nutzung verschiedener Datenzentren und ISPs

Performanz
Caching der Inhalte in der Nähe der Clients

29



Vorüberlegungen zu CDNs

Probleme der bisher diskutierten Ansätze

Lokales Load Balancing
Datenzentren können natürlich ausfallen

Multihoming
Es dauert einige Zeit bis neue Routen gefunden sind

Mirroring
Synchronisation ist nicht immer einfach

Proxy Server
Lösung außerhalb der Kontrolle des Dienstbetreibers mit oft
geringem Nutzen (Trefferquote)

30



Akamai als Beispiel für ein CDN

Akamai

Entstand basierend auf Forschung am MIT
Ziel ist es, eine Antwort auf das flash crowd Problem zu geben
Aktuelle Daten der Firma 2:

Mehr als >345,000 Server in >1,300 Netzwerken
über >135 Länder verteilt
Liefert zwischen 15-30% der Web-Daten aus
Akkumulierte Bandbreite beträgt 30 Terabit pro Sekunde
(ältere Daten von 2020)

Ziele: Daten über Server bereitzustellen
die bzgl. der Latenz am nächsten sind,
nicht überlastet sind
und am wahrscheinlichsten die Daten auch vorhalten.

2https://www.akamai.com/uk/en/about/facts-figures.jsp

31

https://www.akamai.com/uk/en/about/facts-figures.jsp


Akamai als Beispiel für ein CDN

Das Internet besteht aus vielen autonomen Systemen

Verknüpfung der jeweiligen Netze beruht zumeist auf
vertraglichen Beziehungen
ISPs sind vor allem an

einer schnellen Verbindung zwischen Nutzer und ihrem Netzwerk
(sogenannte last mile), sowie
einer schnellen Anbindung von Servern in ihrem Netz interessiert.

Basis von Akamai: Overlay Netzwerk

Verbund von Caching-Servern, die über eine Vielzahl von ISPs
verteilt sind
Alle Server sind untereinander verbunden

32



Akamai als Beispiel für ein CDN

1. Namensauflösung
Mittels eines Mapping Systems Abbildung
auf einen Server
Verwendung von eigenen DNS Servern

Zielsetzung Weiterleitung auf den
nächstgelegenen Edge Server

2. Vermittlung der Anfrage vom Browser zum
ausgewählten Server

Edge Server hat evtl. die benötigten Daten
schon lokal vorliegen
Falls nicht wird der Ursprungsdienst
angefragt

Overlay Network

1. Domain name lookup 
– Translated by mapping system 

to an edge server that can serve 
the content

– Use custom DNS servers
• Take requestor’s address into 

into account to find the nearest
edge

2. Browser sends request to 
the given edge server

– Edge server may be able to 
serve content from its cache

– May need to contact the origin 
server via the transport system

16

Origin server

Edge servers

Clients

Transport system

mapping 
system

November 26, 2017 © 2014-2017 Paul Krzyzanowski

33



Akamai als Beispiel für ein CDN

Abbildung von Anfragen auf Server durch dynamische Zuweisung
über DNS-Server

Ermittlung des zuständigen Servers unter Einbezug:
des Ursprungs der Anfrage
Verfügbarkeit und Last von Servern
Netzwerkbedingungen

Grundsätzlich ist ein Server im ISP-Netz des anfragenden
Clients zu bevorzugen

34



Akamai als Beispiel für ein CDN

Sammeln von wichtigen Monitoringinformationen

Abbildung der Netzwerktopologie
Nutzung von BGP und traceroute Informationen
Ermöglicht es Anzahl der Hops und Übertragungszeit
abzuschätzen

Server melden ihre aktuelle Belastung an eine zentrale
Monitoringanwendung
Diese vermittelt die Informationen weiter an Akamai DNS Server
Informationen werden verwendet, um den richtigen Server für
eine Anfrage auszuwählen
Sollten Server zu überlastet sein, werden diese erstmal nicht
weiter in Betracht gezogen

35



Akamai als Beispiel für ein CDN

Vorzüge eines CDNs

Daten werden bereits lokal vor Ort
vorgehalten
Dynamische Inhalte liegen immer
noch beim Ursprungsserver
Es ist auch möglich, eine Hierarchie
von Caches zu erstellen, um die
Trefferquote zu erhöhen

1. Caching

• Goal: Increase hit rate on 
edge servers
– Reduce hits on origin servers

• Static content can be served 
from caches
– Dynamic content still goes back 

to the origin

• Two-level caching
– If edge servers don’t have the 

data, check with parent servers

20

Origin server

Edge servers

Clients

Parent servers

November 26, 2017 © 2014-2017 Paul Krzyzanowski

36



Akamai als Beispiel für ein CDN

Welche Arten von Inhalten können/sollten zwischengelagert
werden?

Statische Inhalte
Sehr variable Lagerungszeiten

Dynamische Inhalte sind möglich
Proxies können dies nicht
Akamai setzt auf Edge Side Includes3

Zusammenführung von Inhalten kann in Edge Servern erfolgen
Konzept ähnlich zu Server Side Includes (SSI)

Streaming
Daten werden intern über das Akamai Netzwerk verteilt und an
mehrere Edge Server ausgeliefert

3https://www.w3.org/TR/esi-lang/

37

https://www.w3.org/TR/esi-lang/


Akamai als Beispiel für ein CDN

Vorzüge eines CDNs: Routing

Routen von Edge zu
Urspungsservern werden über
eigenes Overlay etabliert
Entscheidung der Route bezieht
eine Vielzahl von Faktoren ein
Zwischenknoten vermitteln die
Daten

2. Routing
• Route to parent servers or origin via the 

overlay network

• Routing decision factors:
– measured latency
– packet loss
– available bandwidth

• Results in ranked list of alternate paths
from edge to origin

• Each intermediate node acts as a forwarder
– Keep TCP connections active for efficiency

22

Edge servers

Origin server

D
ire

ct
 p

at
h

A
lt.

 P
at

h 
2

A
lt.

 P
at

h 
3

November 26, 2017 © 2014-2017 Paul Krzyzanowski

38



Akamai als Beispiel für ein CDN

Vorzüge eines CDNs: Sicherheit

Hohe Kapazität
Widerstandsfähig gegenüber DDoS

Expertise
Gehärtete Infrastruktur

Spezieller Netzwerkstack
Monitoring zum Erkennen von Angriffen

Schutz der Ursprungsdienste
Der Angreifer sollte die IP des eigentlichen Dienstes garnicht
kennen

39



Caching

Zusammenfassung

Rigorose Nutzung von Caching reduziert Last- und
Bandbreitenbedarf eines Websites
Vielzahl von Möglichkeiten mit unterschiedlicher Trefferquote
und Auswirkung auf die Anfragelatenz
Systemeigenschaften bei Auswahl der Verfahren im Blick haben!
Auch wenn Webseiten evtl. aktuell schwach besucht sind kann
sich dies spontan ändern . . .

40



Literatur

[1] John Dilley et al. “Globally Distributed Content Delivery”. In: IEEE
Internet Computing 6.5 (Sep. 2002), S. 50–58. issn: 1089-7801.

[2] Ilya Grigorik. High Performance Browser Networking: What every
web developer should know about networking and web
performance. O’Reilly Media, Inc., 2013.

41


	Caching
	Literatur

