Web-basierte Systeme

11: Caching

Wintersemester 2025

Riidiger Kapitza

O Lehrstuhl fiir Informatik 4

Systemsoftware

=AU

Friedrich-Alexander-Universitat
Technische Fakultéat

Vorlaufiger Vorlesungsplan

16. Oktober Einfiihrung und Darstellung von Webseiten
22. Oktober HTML und CSS
29. Oktober Hypertext Transfer Protocol
5. November
12. November Browser Schnittstellen
19. November Kommunikationsschnittstellen im Browser
26. November WebAssembly
3. Dezember Architektur moderner Browser
10. Dezember Clientseitige Architekturmuster
17. Dezember Serverseitige Implementierung
von Web-basierten Systemen
Vorbereitung Papieranalyse
7. Januar Lastverteilung durch Zwischenspeicher
14. Januar Papieranalyse
21. Januar Aspekte von Web Sicherheit
28. Januar Web3
5. Februar Zusammenfassung und Ausblick

Caching

Zielsetzung der Lerneinheit

m Verstehen, warum die Zwischenlagerung von Daten in
webbasierten Systemen sinnvoll und notwendig ist

m Kennenlernen der verschiedenen Moglichkeiten der
Zwischenlagerung auf Client- und Serverseite.

m Basiskenntnis von Ansatzen und Strategien zur Lagerung

Voriiberlegungen

m Daten einer Webanwendung sollen zwar durch einen Dienst
bereitgestellt und durch Clients aktualisiert werden konnen -
aber eben auch

= eine moglichst geringe Zugriffszeit besitzen
= und skalierbar verfiigbar sein.

Caching im Browser - Voriiberlegungen

Voruberlegungen

m Antwortzeiten und die menschliche Wahrnehmung

Delay User Reaction
0-100 ms Instant
100-300 ms Small perceptible delay
300-1000 Ms Machine is working
1000+ ms Likely mental context switch

10,000+ ms Task is abandoned

Caching im Browser - Voriiberlegungen

Voruberlegungen

m Antwortzeiten und die menschliche Wahrnehmung

Delay User Reaction
0-100 ms Instant
100-300 ms Small perceptible delay
300-1000 ms Machine is working
1000+ ms Likely mental context switch
10,000+ ms Task is abandoned

m Minimale Antwortzeiten unter Einbezug der Dateniibertragung

Route Distance Time, light in vacuum Time, light in fiber
NYC to SF 4,148 km 14 ms 21 ms
NYC to London 5,585 km 19 ms 28 ms
NYC to Sydney 15,993 km 53 ms 80 ms
Equatorial circumference 40,075 km 133.7 ms 200 ms

m Natlirlich ist die Latenz in der Regel hoher, was auf die
Vermittlung und andere Faktoren zuriickzufiihren ist.

Warum sollte man einen Cache verwenden?

m Ein Cache ist eine Komponente, die Daten transparent
speichert, so dass wiederholte Anfragen nach den gleichen
Daten schneller beantwortet werden konnen.

Warum sollte man einen Cache verwenden?

m Ein Cache ist eine Komponente, die Daten transparent
speichert, so dass wiederholte Anfragen nach den gleichen
Daten schneller beantwortet werden konnen.

Wo konnen im Prinzip Daten zwischengelagert werden?

Beim Endnutzer im Browser
Vor den Diensten im 'Netzwerkpfad’

= Verwendung eines Content Delivery Networks (CDN)
= Verwendung eines Proxies (abnehmend in der Bedeutung))

Key/Value Dienste

Im Anwendungsserver

In der Datenbank (Anfrage-Cache)

Wie passt das mit der Edge Computing zusammen?

Caching im Browser

Wann und warum cached der Browser Daten?

m Es gibt eine Reihe von HTTP-Headern, die festlegen, wie und ob
eine Zwischenspeicherung erfolgt.

m Zwischenlagerung kann sowohl vom Server zum Client als auch
umgekehrt definiert werden.

m Wir konzentrieren uns auf die Direktiven des Servers.

Caching im Browser

Wann und warum cached der Browser Daten?

m Es gibt eine Reihe von HTTP-Headern, die festlegen, wie und ob
eine Zwischenspeicherung erfolgt.

m Zwischenlagerung kann sowohl vom Server zum Client als auch
umgekehrt definiert werden.

m Wir konzentrieren uns auf die Direktiven des Servers.

HTTP Header (Auswahl)

m Cachebarkeit: cache-control
= Policy: no-store, no-cache, max-age, public |
private
m etag
last-modified
if-none-match
if-modified-since

Caching im Browser

cache-control: no-store

m Indiziert dem Browser und evtl. vermittelnden Proxies
= die Daten nicht persistent zu speichern
= bzw. jegliche Kopien aus ihrem Speicher unmittelbar zu l6schen.
m Anmerkung: Browser halten evtl. dennoch eine Kopie im
Arbeitsspeicher vor, um eine Vorwarts-/Riickwartsnavigation zu
ermoglichen.

m Im Allgemeinen wird dieser Header verwendet, um 'sensible’
Daten zu kennzeichnen.

Caching im Browser

cache-control: no-cache

m |ndiziert dem Browser und evtl. vermittelnden Proxies

= die gelagerten Daten sollten auf ihre Aktualitat uberprift werden,
bevor sie erneut ausgeliefert werden.

m Nitzlich, um den Browser und Proxies zu zwingen, die Aktualitat
der Daten zu uberprufen.

cache-control: private

m Die Zwischenspeicherung der Daten wird dem Browser
uberlassen - Proxies sollten die Daten nicht speichern.

cache-control: public

m Kennzeichen, dass die Antwort von jedem Cache
zwischengelagert werden kann.

Caching im Browser

cache-control: max-age=<seconds>

m Spezifiziert die maximale Zeitdauer, die eine Ressource als
aktuell betrachtet wird.

® Im Gegensatz zu Expires, ist diese Direktive relativ zum
Zeitpunkt der Anfrage.

cache-control: must-revalidate

m Abgelaufene Ressourcen sollten nicht verwendet werden und
missen vor der Verwendung Uberpriift werden

10

Caching im Browser

Beispiel: Caching komplett verhindern

m Cache-Control: no-cache, no-store,
must-revalidate

Beispiel: Statische Assets cachen

m Dateien einer Anwendung, die sich nicht andern, konnen
langfristig zwischengespeichert werden

= Bspw. statische Assets wie Bilder, CSS- und JavaScript-Dateien

m Cache-Control: public, max-age=31536000
(Lagerung von bis zu einem Jahr)

"

Caching im Browser

ETag: "<etag_value>"

m Ein ETag ist ein eindeutiger Identifikator fiir die Version einer
Ressource und wird mit der Ressource ausgeliefert.

m Fiir jede neue Version der Ressource wird ein neuer ETag
erzeugt (und zwischengespeichert).

if-none-match:"<etag_value>"

m Wenn in einer HTTP-Anfrage if-none-match: angegeben wird,
kann der Server uberpriifen, ob die Ressource noch aktuell ist.

m |m Post-Fall wird eine Fehlermeldung zuriickgegeben, wenn der
ETag nicht mit der ETag-Version des Servers libereinstimmt:
412 Precondition Failed

Caching im Browser

if-none-match:"<etag_value>"

m Fir eine lokal moglicherweise veraltete Version kann in einer
GET-Operation auch if-none-match angegeben werden.

m |n diesem Fall wird, wenn die Ressource auf der Serverseite
nicht geandert wurde, 304 Not Modified zurlickgegeben,
ohne die Ressource erneut auszuliefern.

m Wenn sich der ETag und damit die Ressource geandert hat, wird
sie normal an den Browser libertragen.

Ein ahnliche Vorgehensweise kann mit last-modified und
if-modified-since verfolgt werden.

Caching im Browser

Reusable response?

[no-store] [Revalidate each time?]
No

Cacheable by
[intermediate caches?]‘_[no-cache]
[private] [public]

maximum cache
lifetime?

Add ETag header

Caching auf der Serverseite

Voruberlegungen

m Webserver beantworten Anfragen einer Vielzahl von
verschiedenen Clients

m Jede Antwort erfordert in der Regel Rechenzeit und
I/O-Operationen.

m Oft sind Antworten recht ahnlich.

m Fiir das Caching auf Client-Seite sind wir von identischen
Antworten ausgegangen — nun schwachen wir das ab und
betrachten auch ahnliche Antworten.

Caching auf der Serverseite

Welche HTTP-Antworten bezogen auf einen einzelnen Webserver
kénnten ahnlich/gleich sein?

m Finzelne View-Elemente der Webseite

= Zum Beispiel: Kopf- oder FuBelement, Sidebar oder auch Listen
die ofters eingeblendet werden.

m Selten modifizierte Datenobjekte

= Zum Beispiel: Zugriffsrechte, Konfigurationsparameter,
Produktdaten - alles was selten aktualisiert wird.

= Aufwendig zu berechnende Daten

= Dinge die man evtl. sowieso auslagert
= Beispiel: Diff zwischen zwei Commits bei GitHub oder die
Kontaktliste von LinkedIn.

16

Caching auf der Serverseite

Wo konnten Zwischenergebnisse auf der Serverseite gespeichert
werden?

1. Direkt im Hauptspeicher des Anwendungs- bzw. Webservers
2. Im lokalen Dateisystem

3. In einem anderen System

17

Caching auf der Serverseite

Numbers Every Programmer Should Know (2018)

m Zahlen die urspriinglich von Jeff Dean (Google) erarbeitet

wurden in aktualisierter Form:

Ressource Time

L1 cache reference 1ns

Branch mispredict 3ns

L2 cache reference 4ns

Mutex lock/unlock 17ns

Main memory reference 100ns

Compress 1KB wth Zippy 2,000NS & 24S

Send 2,000 bytes over commodity network 88ns

SSD random read
Read 1,000,000 bytes sequentially from memory
Round trip in same datacenter

16,000NSs ~ 1615
5,000NS = 5.5
500,000NS R 500145

Read 1,000,000 bytes sequentially from SSD
Disk seek

Read 1,000,000 bytes sequentially from disk
Packet roundtrip CA to Netherlands

78,000ns ~ 78S
3,000,000Ns & 3Ms
1,000,000NS &~ 1Ms
150,000,000NS =% 150MS

18

Caching auf der Serverseite

Abbildung dieser Zahlen auf serverseitiges Caching

m Zwischenspeichern von Daten im Arbeitsspeicher fiir den
spateren Zugriff ist schnell!

= Lesen einer zufalligen Stelle im Arbeitsspeicher dauert < 0.1 us

m Ablegen von Daten auf einer Festplatte (wenn es sich nicht um
eine SSD handelt) ist langsam

= Positionieren eines Lesekopfes dauert 4000 us
= AnschlieBendes Lesen 1 MB dauert weitere 2000 us

m SSDs zu nutzen macht Sinn

= Lesen einer zufalligen Speicherstelle dauert 16 us
= Lesen von einem 1 MB dauert 156 us

m Speichern von Daten auf einem Rechner innerhalb des gleichen
Datenzentrums ist eine Alternative:

= Round-trip im Datenzentrum dauert 500 us

19

Caching auf der Serverseite

Zusammenfassung

m Im Speicher unter hundert us

m Auf der SSD speichern hunderte von us

m Auf einer klassischen Festplatte speichern tausende von us
m Auf einer entfernten Maschine: zusatzlich hunderte von us

Fazit

m Arbeitsspeicher < SSD < entfernter Rechner

Reicht das schon aus als Daumenregel?

20

Caching auf der Serverseite

Hit rate bzw. Trefferquote in Abhangigkeit des Speicherortes

m Werden die Daten im Arbeitsspeicher abgelegt, kann in der
Regel nur der lokale Prozess davon profitieren

m Werden die Daten auf der lokalen SSD gespeichert, kénnen alle
Prozesse der Maschine zugreifen

m |m Falle eines entfernten Rechners konnen alle Rechner des
Clusters darauf zugreifen

Fazit

m Man sollte zwischen Zugriffszeit und Trefferquote abwagen!

21

Caching auf der Serverseite

Beipiel: Memcached’

Wird haufig zum zwischenlagern von Daten verwendet

Speichert alle verwalteten Daten im Arbeitsspeicher
m Hat eine einfache lber TCP ansprechbare Schnittstelle

Kann verteilt betrieben werden

Datengranularitat

= Schlussel konnen eine Lange von 250 byte haben
= Werte eine maximale GroBe von 1 MB

LRU (least recently used) wird verwendet, um sicherzustellen,
dass Platz flir neue Daten vorhanden ist

Alle wichtigen Methoden haben eine konstante Zugriffszeit!

Thttps://memcached.org

22

https://memcached.org

Content Delivery Networks (CDN)

Motivation

m Ein einziger Standort fiir die Bereitstellung sehr popularer
Inhalte bringt inharente Probleme mit sich:

= Skalierbarkeit, Zuverlassigkeit und Performanz
m Flash crowd!
= Spontane Popularitat
m Zwischenablage von Ressourcen an den Rdndern des Netzes

= Zugriffe auf den primaren Server reduzieren
= Schnellerer Zugriff fiir Nutzer da naher

23

Content Delivery Networks (CDN)

Motivation

m Ein einziger Standort fiir die Bereitstellung sehr popularer
Inhalte bringt inharente Probleme mit sich:

= Skalierbarkeit, Zuverlassigkeit und Performanz
m Flash crowd!
= Spontane Popularitat
m Zwischenablage von Ressourcen an den Rdndern des Netzes

= Zugriffe auf den primaren Server reduzieren
= Schnellerer Zugriff fiir Nutzer da naher

Was sollte ausgelagert werden?

m Vor allem statische Inhalte — da sie den groBten Teil des
Datenverkehrs ausmachen

= Z.B. Bilder, Videos, CSS und andere statische Seitenbestandteile

23

Voriiberlegungen zu CDNs

Bisherige Moglichkeiten im Uberblick

m Jede initiale Anfrage muss m Caching innerhalb einer
vom Server beantwortet Institution

Web server

24

Voriiberlegungen zu CDNs

Bisherige Moglichkeiten im Uberblick

m Eine andere Moglichkeit ware, die Serverseite mit einem Load
Balancer skalierbarer zu machen

m Anbindung an das Netzwerk kann jedoch einen Engpass
darstellen

m Latenz zwischen Client und Server ist nach wie vor hoch

*| Web server

:| Web server

;| Web server

25

Voriiberlegungen

Weitere Moglichkeiten
/ Network edges: applications & hosts

Browser

Browser

Browser

Network core: routers

26

Voriiberlegungen zu CDNs

Multihoming

Etablierung von Netzwerkverbindungen zu verschiedenen ISPs

Eine IP, aber mehrere Links, liber die sie erreicht werden kann

Adressen werden liber Border Gateway Protocol (BGP) vermittelt

Clients konnen nun verschiedene Routen nutzen und Ausfall
eines ISPs kann toleriert werden

Web server

Browser

Browser

27

Voriiberlegungen zu CDNs

Mirroring bzw. Replikation

m Synchronisation mehrerer Server

m Einbindung von verschiedenen ISPs ermoglicht Load Balancing
in Abhangigkeit Clients

m Fehlertoleranz gegeniiber Ausfallen von ISPs und Servern

[Local ISP ’
Web server ‘ Router ‘ Jier 2 ISP

Web server

Browser
Browser

28

Voriiberlegungen zu CDNs

Vorzuge der Ansatze

m Skalierbarkeit

= Replikation liber mehrere Server (Load Balancing)
= Nutzung verschiedener ISPs, falls das Netzwerk ein Engpass ist

m Verfligbarkeit

= Replikation der Server
= Nutzung verschiedener Datenzentren und ISPs

m Performanz
= Caching der Inhalte in der Nahe der Clients

29

Voriiberlegungen zu CDNs

Probleme der bisher diskutierten Ansatze

m Lokales Load Balancing
= Datenzentren konnen natirlich ausfallen
® Multihoming
= Es dauert einige Zeit bis neue Routen gefunden sind
m Mirroring
= Synchronisation ist nicht immer einfach
m Proxy Server

= Losung auBerhalb der Kontrolle des Dienstbetreibers mit oft
geringem Nutzen (Trefferquote)

30

Akamai als Beispiel fiir ein CDN

Akamai

m Entstand basierend auf Forschung am MIT
m Ziel ist es, eine Antwort auf das flash crowd Problem zu geben

m Aktuelle Daten der Firma 2
= Mehr als >345,000 Server in >1,300 Netzwerken
liber >135 Lander verteilt
= Liefert zwischen 15-30% der Web-Daten aus
= Akkumulierte Bandbreite betragt 30 Terabit pro Sekunde
(altere Daten von 2020)

m Ziele: Daten Uber Server bereitzustellen

= die bzgl. der Latenz am ndchsten sind,
= nicht tGberlastet sind
= und am wahrscheinlichsten die Daten auch vorhalten.

2https://www.akamai.com/uk/en/about/facts- figures.jsp

31

https://www.akamai.com/uk/en/about/facts-figures.jsp

Akamai als Beispiel fiir ein CDN

Das Internet besteht aus vielen autonomen Systemen

m Verknupfung der jeweiligen Netze beruht zumeist auf
vertraglichen Beziehungen

® |SPs sind vor allem an

= einer schnellen Verbindung zwischen Nutzer und ihrem Netzwerk
(sogenannte last mile), sowie
= einer schnellen Anbindung von Servern in ihrem Netz interessiert.

Basis von Akamai: Overlay Netzwerk

m Verbund von Caching-Servern, die lber eine Vielzahl von ISPs
verteilt sind

m Alle Server sind untereinander verbunden

32

Akamai als Beispiel fiir ein CDN

1. Namensauflosung
= Mittels eines Mapping Systems Abbildung

auf einen Server
= Verwendung von eigenen DNS Servern

— Zielsetzung Weiterleitung auf den
nachstgelegenen Edge Server
2. Vermittlung der Anfrage vom Browser zum
ausgewahlten Server
= Edge Server hat evtl. die benoétigten Daten
schon lokal vorliegen
= Falls nicht wird der Ursprungsdienst

angefragt

=~ - Origin server
I

Transport system

y - o -4) - o -
Clients
‘mapping
system

33

Akamai als Beispiel fiir ein CDN

Abbildung von Anfragen auf Server durch dynamische Zuweisung
uber DNS-Server

m Ermittlung des zustandigen Servers unter Einbezug:

= des Ursprungs der Anfrage
= Verfugbarkeit und Last von Servern
= Netzwerkbedingungen

m Grundsatzlich ist ein Server im ISP-Netz des anfragenden
Clients zu bevorzugen

34

Akamai als Beispiel fiir ein CDN

Sammeln von wichtigen Monitoringinformationen

m Abbildung der Netzwerktopologie
= Nutzung von BGP und traceroute Informationen
= Ermoglicht es Anzahl der Hops und Ubertragungszeit
abzuschatzen

Server melden ihre aktuelle Belastung an eine zentrale
Monitoringanwendung

Diese vermittelt die Informationen weiter an Akamai DNS Server

Informationen werden verwendet, um den richtigen Server fiir
eine Anfrage auszuwahlen

Sollten Server zu tberlastet sein, werden diese erstmal nicht
weiter in Betracht gezogen

35

Akamai als Beispiel fiir ein CDN

Vorziige eines CDNs

- Origin server
m Daten werden bereits lokal vor Ort M-
vorgehalten
m Dynamische Inhalte liegen immer a Parent servers

noch beim Ursprungsserver

m Esist auch moglich, eine Hierarchie

von Caches zu erstellen, um die 0 sorveis
Trefferquote zu erhohen é% %

Clients

36

Akamai als Beispiel fiir ein CDN

Welche Arten von Inhalten konnen/sollten zwischengelagert
werden?

m Statische Inhalte
= Sehrvariable Lagerungszeiten
m Dynamische Inhalte sind moglich

= Proxies konnen dies nicht
= Akamai setzt auf Edge Side Includes®
= Zusammenfiihrung von Inhalten kann in Edge Servern erfolgen

= Konzept ahnlich zu Server Side Includes (SSI)
= Streaming
= Daten werden intern liber das Akamai Netzwerk verteilt und an
mehrere Edge Server ausgeliefert

Shttps://www.w3.0org/TR/esi-lang/
37

https://www.w3.org/TR/esi-lang/

Akamai als Beispiel fiir ein CDN

Vorzuige eines CDNs: Routing

- 'Origin server

m Routen von Edge zu ~

. N

Urspungsservern werden uber ¢
eigenes Overlay etabliert Y

Direct path
Alt. Path 3

m Entscheidung der Route bezieht
eine Vielzahl von Faktoren ein

m Zwischenknoten vermitteln die
Daten

Edge servers

38

Akamai als Beispiel fiir ein CDN

Vorzlige eines CDNs: Sicherheit

m Hohe Kapazitat

= Widerstandsfahig gegeniiber DDoS
m Expertise
m Gehartete Infrastruktur

= Spezieller Netzwerkstack
= Monitoring zum Erkennen von Angriffen

m Schutz der Ursprungsdienste

= Der Angreifer sollte die IP des eigentlichen Dienstes garnicht
kennen

39

Zusammenfassung

m Rigorose Nutzung von Caching reduziert Last- und
Bandbreitenbedarf eines Websites

m Vielzahl von Moglichkeiten mit unterschiedlicher Trefferquote
und Auswirkung auf die Anfragelatenz

m Systemeigenschaften bei Auswahl der Verfahren im Blick haben!

m Auch wenn Webseiten evtl. aktuell schwach besucht sind kann
sich dies spontan andern ...

40

[1]

(2]

Literatur

John Dilley etal. “Globally Distributed Content Delivery”. In: IEEE
Internet Computing 6.5 (Sep. 2002), S. 50-58. ISSN: 1089-7801.

Ilya Grigorik. High Performance Browser Networking: What every
web developer should know about networking and web
performance. O'Reilly Media, Inc., 2013.

Al

	Caching
	Literatur

