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Abstract
New heterogeneousmemory architectures are emergingwith the in-
creasing availability of different memory technologies. The growing
number of byte-addressable memory technologies (e.g., NVRAM
and CXL) make the selection of components for concrete systems
increasingly difficult, as each memory technology has specific ad-
vantages and disadvantages. Currently, decisions are made based
on a variety of performance measurements and recommendations
with respective implementation guidelines. However, traditional
performance metrics often overlook the unique energy-demand dy-
namics of each specific memory technology, especially with diverse
memory access patterns and workloads.

This paper highlights the importance of memory utilization
with different technologies and their environmental impact (i.e.,
energy demand). To this end, we present meBench – a benchmark
generator that systematically quantifies the (non-uniform) energy
demand of different memory types. We reveal the relevance of the
generated results by contrasting them with the assumptions made
in previous research on carbon-aware memory allocation.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems; • Hardware→ Power estimation and optimization.
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1 Introduction
The continuing rise in global energy consumption [9, 25] is a major
challenge for our environment and economy. In this context, data
centers and the momentum associated with artificial intelligence
(AI), in particular, contribute a non-negligible part [21] to this.
According to the International Energy Agency (IEA), their share
of global energy consumption currently amounts to approximately
2% and is estimated to further double by 2026 [9]. Making matters
worse, data centers are also exhausting power grids regionally.
At the same time, some of these grids are already limiting their
growth [10]. To mitigate this, cloud providers are investing in,
or have already implemented, on-site power generation [23, 27].
However, in order to solve the structural problems in the long term,
we need to reduce the energy demand of computer systems and
data centers.

System memory, particularly dynamic random access memory
(DRAM), represents a significant factor in server infrastructure and
accounts for up to 50% of total energy consumption in modern
computing systems [7, 19, 32]. Modern memory technologies in-
clude several DRAM alternatives with varying properties, enabling
system heterogeneity. In addition, there are new memory types
such as non-volatile random access memory (NVRAM) [15, 31],
high bandwidth memory (HBM) [22] as well as other upcoming
memory technologies such as the memory-semantic solid state
drives (SSDs), which uses the emerging compute express link (CXL)
standard [26]. Careful planning of a system’s memory composi-
tion prior to its procurement, and memory placement strategies for
existing systems, reduce the energy consumption and, therefore,
carbon emissions [18].

Understanding memory technologies’ power consumption pat-
terns is crucial for aiding this intricate decision-making process.
However, the performance benchmarks available today [2, 11, 14]
are inadequate for this purpose because they do not take into ac-
count varying loads or even idle consumption. As a result, and
in order to provide tools for answering this question, we propose
meBench, a tool to trace the energy behavior of different memory
technologies. meBench generates minimal but configurable syn-
thetic benchmarks and allows for selective examination of energy
consumption behavior for specific memory access patterns with-
out requiring expertise with workload internals. Instead, meBench
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quantifies performance data and provides energy measurement
results for individual workloads that are more practical than theo-
retical numbers from vendor datasheets.

The contributions of this paper are as follows: We propose
meBench, a practical tool to analyze the performance and energy
demand of different memory technologies. With meBench, we aim
to answer the following core questions that help system designers
make use of different memory types. 1.) Do performance optimiza-
tions consistently reduce energy consumption? 2.) Which memory
technology consumes more energy under typical workloads? We
solicit further research on systems with heterogeneous memory by
supplying actual measurement data as generated with meBench.

The rest of the paper is organized as follows: Section 2 discusses
related work on benchmarking different memory types. Next, Sec-
tion 3 provides the background with regard to the system’s ar-
chitecture and the unique differences of a selection of memory
technologies initially supported by our benchmarking tool. Sec-
tion 4 gives further insights into design and implementation of
meBench. Continuing, Section 5 discusses the results and utilizes
these to refine existing theoretic research. Finally, we summarize
our results in Section 6.

2 Related Work
There is only limited research addressing the topic of energy con-
sumption of different memory technologies available for server
systems. Specifically, in 2015, Vandierendonck et al. compared the
energy consumption of the non-volatile spin-transfer-torque ran-
dom access memory (STT-RAM) and resistive random access mem-
ory (RRAM) with DRAM and proposed an energy model to help
with design decisions regarding energy efficiency [30]. In addition,
they concluded that hybrid memory hierarchies can help improve
energy efficiency depending on the respective memory size. How-
ever, none of the evaluated NVRAM solutions are available as of
today, and their energy model is mostly theoretical and not sup-
ported by actual measurements.

Vogelsang concretely addressed DRAM’s energy consumption
characteristics and also proposed an energy consumption model
while fully considering DRAM’s inner workings [32]. However,
Ghose et al. argue that, due to its complexity, DRAM’s consump-
tion cannot be modeled accurately only using the manufacturer’s
specifications and instead supplement their own energy model with
additional measurements [7]. In this regard, they further state that
the energy required for reads and writes of DRAM correlates with
the data being written. Continuing, Katsaragakis et al. explicitly
measured the energy consumption of Intel Optane using a selec-
tion of B+ tree indexing implementations designed for persistent
memory [17]. They identify read-heavy workloads to be generally
less energy-demanding than write-heavy workloads. In addition,
Peng et al. and Weiland et al. both noted, that Intel Optane exhibits
a high idle energy consumption in comparison to DRAM [24, 33].

Other research from the field of memory technologies mainly
focuses on measuring performance characteristics and creating
performance models of various available or upcoming technolo-
gies. For instance, there exist various generic benchmarks such
as, e.g., Intel’s Memory Latency Checker [14], Intel’s Performance
Counter Monitor [11] or SPEC [2]. Furthermore, Izraelevitz et al.,

Yang et al. as well as Zhang and Swanson analyzed basic perfor-
mance characteristics of Intel Optane Persistent Memory – a byte-
addressable NVRAM [16, 35, 36]. As such, they all observed the
memory’s bandwidth and latency under varying loads, access pat-
terns, and operations in order to provide meaningful insights at
the micro and macro level, which can then be used to purposefully
optimize software for DRAM respectively Intel Optane Persistent
Memory. Analogously, Friesel et al. provided a performance model
for evaluating and optimizing workloads towards HBM [6].

With regard to the relatively new but uprising CXL standard,
Wu et al. provided a generic performance evaluation emphasizing
different memory topologies enabled by the technology [34]. In con-
trast, Liu et al. present SupMario, a characterization framework for
systematically analyzing and modeling memory performance [20].
The work also addresses latency and throughput of CXL, which
is inherited from its underlying PCIe hardware interface. In addi-
tion, they proposed a performance model allowing for performance
predictions of concrete workloads in order to provide recommen-
dations for software optimizations. Last but not least, Tang et al.
also analyzed performance on concrete CXL memory expansions,
effectively formulating latency, throughput, and cost models [28].

However, almost all of the aforementioned work focus on mea-
suring the energy consumption behavior inherent to the respective
technologies. As such, we currently have to mostly rely on theoretic
energy models using data provided by the respective manufacturers
– if available. Consequently, this paper aims to provide a workload
generator to comprehensively measure the energy consumption
behavior of current and emerging memory technologies.

3 Fundamentals
In this section, we will first go over relevant constraints defined
by the underlying architecture that need to be regarded for the
different workloads to be generated. Afterwards, we will further
go into detail about the subtle differences between the memory
technologies supported by our tool and how they do affect their
respective energy consumption.

3.1 Architectural Specifics
With regard to our intended goal, this subsection provides some
basic information about architectural specifics as a consequence
of targeting x86-64 as the underlying platform. In addition to the
constraints defined by the instruction set architecture (ISA), we also
need to regard non-uniform memory access (NUMA) as one further
potential factor influencing energy consumption in the same way
it influences performance.

3.1.1 x86-64. Depending on the underlying CPU’s ISA, different
assembly instructions are available to perform memory accesses.
Intel’s x86-64 provides a multitude of instructions for different
memory access granularity [12]. Specifically, Intel’s x86-64 provides
instructions for accessing memory in granularities of 1 (BYTE), 2
(WORD), 4 (DWORD), 8 (QWORD) and 16 (DQWORD) bytes length.
With ISA extensions such as advanced vector extensions (AVX),
even coarser granularities of up to 64 bytes are possible. For all
these instructions, both aligned and unaligned variants exist.

In addition, there exist variants of most of these instructions that
allow to load or store directly to memory, bypassing caches. Under
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x86-64, they are referred to as non-temporal loads respectively
stores. They allow optimizations such as preventing the loading
of rarely used data to pollute the caches or, with NVRAM in mind,
to directly write back to memory in order to avoid potential data
losses or data inconsistencies.

x86-64 also provides the instruction clflush for explicitly flush-
ing the cache line1 associated with a given address. This instruction
can be used to ensure that modified data, at any level of the cache
hierarchy, is written back to memory [12].

3.1.2 Non-Uniform Memory Architecture. As a result of NUMA,
memory accesses can vary in cost depending on their destination [5].
Commonly, this can be observed on multi-processor hardware
where every CPU can access the entire memory whilst only being
directly connected to a subset thereof. As a consequence, some
memory is more local than others, affecting its latency and band-
width. In addition, with heterogeneous memory architectures in
mind, NUMA increases in relevance as different memory technolo-
gies also possess different access characteristics, which is further
reinforced by the upcoming CXL standard (see Section 3.2.3) [3].

3.2 Memory Technologies
As mentioned in the introduction, there is a multitude of different
memory technologies available nowadays. However, due to avail-
ability, we currently only support the generation of workloads for
DRAM and Intel Optane Persistent Memory as exemplary NVRAM
technology as a starting point. As such, we will briefly outline the
specifics thereof. Nonetheless, we kept our tool as generic as pos-
sible to easily incorporate benchmarking of other memory types,
like the emerging CXL-based memory.

3.2.1 DRAM. Being installed in virtually every server, and espe-
cially every x86-64-based system, DRAM is a commodity main
memory technology. Internally, it comprises multiple matrices con-
taining cells of capacitors and transistors. Each row is interleaved
over multiple DRAM chips and ensues the granularity of read and
write operations. This is typically 64 bytes and also equals the cache
line size. The capacitors’ electric charge represents binary 1s or
0s and, due to the inherent leakage of capacitors, require frequent
refresh cycles in order to maintain their stored state. Consequently,
DRAM is volatile as stored information will be lost without a con-
tinuous power supply. Furthermore, reading a row’s contents is
a destructive process as it entails measuring the capacitors’ cur-
rent electric charge by discharging them. Subsequently, a write
operation is required in order to restore their previous state [7, 32].

3.2.2 Intel Optane. In contrast to DRAM, Intel’s Optane Persistent
Memory – specifically the 200 series – is marketed as non-volatile,
byte-addressable NVRAM [15–17, 35]. It is based on the 3D-XPoint
architecture and can be categorized as a new memory tier between
DRAM and block-based storage. As such, it exhibits higher latencies
with simultaneously greater available storage capacity than DRAM.
However, due to its non-volatile nature, Intel Optane logically does
not rely on periodic operations to retain its contents. Addition-
ally, Intel Optane provides persistency guarantees by means of an
asynchronous DRAM refresh (ADR) domain, which denotes that

1x86-64 uses cache lines with 64 bytes granularity.

any CPU-issued write operation that reaches it will endure a power
failure. 3D-XPoint has an access granularity of 256 bytes – smaller
write operations are stored in a designated write-combining buffer
to mitigate write amplification. Last but not least, Intel Optane
offers two operation modes. On the one hand, in Memory Mode, it
uses the existing DRAM as cache to hide access latencies whilst
effectively expanding available main memory. Here, non-volatility
is not granted. In the other mode, namely App Direct, Intel Optane is
directly accessible (DAX) as persistent memory device without ad-
ditional, volatile cache. This mode also allows optional interleaving
memory across DIMMs for potential speedup.

3.2.3 CXL. CXL [3] is an emerging communication protocol that
can be used to attach memory devices to a CPU over PCIe. CXL’s
requirements toward the attached memory are much more relaxed
than those of traditional memory connectors: Memory may be
physically placed far away from the CPU, DRAM of different gen-
erations can be attached to the same system, and the creation of
entirely new classes of memory devices becomes possible. This
includes devices such as Samsung’s CMM-H, which is able to act as
large persistent main memory and as an SSD simultaneously [26].

CXL is still in its infancy, and few CXL devices are available.
However, in the future, it will allow the creation of systems utilizing
highly heterogeneous memory, requiring informed decisions by
system builders.

4 meBench
meBench is a tool that can generate highly configurable workloads.
These workloads can then be used to independently analyze a
multitude of factors and their effect on energy consumption. In
the following, we outline our considerations regarding choices of
configurability and benchmark design with our available hardware
and compatibility with future ones in mind.

4.1 Configurability
In meBench, every workload configuration is designated to perform
only one single task in order to reduce any confounding factors
tainting the measurement result. In addition, the available config-
uration options were chosen based on the hardware nuances of
the x86-64 ISA and the initially supported DRAM and NVRAM.
Nonetheless, meBench is built to allow easy integration with up-
coming technologies, e.g., CXL.

System Topology: With NUMA in mind, meBench requires
the configuration of the system topology, including a set of
usable CPU cores for at least one NUMA domain. This is
necessary for creating worker threads and pinning them to
specific CPU cores. Depending on the memory to be bench-
marked, this topology can also be enhanced by setting ex-
plicit files to be memory-mapped. This enables support for
any direct access (DAX)-capable hardware, such as Intel Op-
tane in App Direct mode.

Memory Type: Selects the memory type to be stressed. De-
pending on its value, we allocate or map memory defined in
the system topology.

Memory per Thread: Defines the amount of memory exclu-
sively allocated per thread. Naturally, the total amount of
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allocated memory cannot exceed the size of the installed
memory (including some buffer for the operating system).

NUMA Distance: As NUMA affects performance depending
on the distance, the workload can be configured to enforce
the usage of either near or far accesses.

Load/Store Ratio: Defines the number of consecutive load
respectively store operations that are performed repeatedly.

Access/Chunk Size: Due to the availability of different access
granularities, we divide the allocated memory into chunks.
This option can then be used to define how many bytes per
chunk are accessed, allowing to simulate basic stride access.
See Section 3.1.1 for the supported memory granularities.

Access Pattern: As memory prefetching improves the perfor-
mance of sequential operations, this option enforces access
to memory chunks either sequentially or randomly.

Cache Optimizations: Allows substitution of load/store op-
erations with their non-temporal counterparts. Alternatively,
this option can also be used to enforce cache line flushes
after loads and stores.

Duration: Defines the runtime of a single workload execution.

4.2 Benchmark Design
Conceptually, we kept the code for the workloads minimal and
modular. For this reason, it is written in C to avoid unexpected
performance penalties as a result of abstractions. The configuration
for a specific workload is supplied as a C header file and validated
at compile time via C preprocessor macros. Furthermore, the use
of preprocessor macros prevents the introduction of additional
runtime overhead.

Payload contents for writes are randomized to prevent biases
concerning the distribution of stored 0s and 1s. For this reason,
meBench employs drandr48_r, a simple pseudorandom generator,
initialized with a constant, but configurable seed to maintain repro-
ducibility. This random generator is then used to initialize further
thread-local random generators to ensure deterministic payloads
and random access patterns (if configured).

Last but not least, to enable comparability of results over a set
of executed workloads, they return the total number of accessed
bytes upon completion.

5 Evaluation
We executed a multitude of workloads generated with meBench
on an NVRAM-equipped server system running a minimal Debian
12 installation with a 6.1.0 Linux kernel. The system is equipped
with two Intel Xeon Gold 6330 processors, each with 28 cores and
hyper-threading enabled for a total of 112 logical cores. It contains
256 GB DRAM, consisting of 8 32 GB DDR4 DIMMs. In addition, our
system also contains 1024 GB of NVRAM, composed of 8 128 GB
Intel Optane Persistent Memory 200 DIMMs. The NVRAM is con-
figured in App Direct mode with interleave enabled to decouple
its usage from DRAM2. We utilize Intel’s running average power
limit (RAPL) [13] in conjunction with perf3 to take energy mea-
surements. It is capable of gauging the energy consumption of the

2Due to limitations of x86-64 and firmware, NVRAM can not be used without having
an identical number of DRAM DIMMs installed.
3https://perfwiki.github.io/main/
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Figure 1: Comparison of energy consumption in idle and
during an exemplary workload specifically caused by DRAM
respectively NVRAM.

installed memory with some limitations with regard to its accu-
racy [1, 4], but is sufficient for an initial assessment of meBench.

However, we estimate that future hardware will further improve
in accuracy. Furthermore, we turned off all background services
to prevent any potential noise from distorting our results. For the
following measurements, unless otherwise noted, we always em-
ploy both CPUs with 16 threads each for mixed operations without
cache optimizations whilst exclusively using near memory and
16-byte access and chunk sizes.

5.1 Idle Measurements
Initially, we measured our system’s idle energy consumption with
and without NVRAM being installed multiple times over 80 s to
determine respective baselines. With these values, we are able to
distinguish the actual energy consumption of each technology in
idle and under load, as visualized in Figure 1a. Given the installed
memory capacity of each technology, this results in an effective
consumption of 1.7 J/GiB for DRAM and 2.2 J/GiB for NVRAM (cf.
Figure 1b). Here, it is evident that Intel Optane consumes signif-
icantly more energy per GiB than DRAM, both at rest and even
more so under load. This observation matches earlier findings by
Katsaragakis et al. [17].

5.2 Access Type and Patterns
Regarding the ratio between read and write operations in conjunc-
tion with either sequential or random accesses to the respective
memory, we notice that – as before – DRAM requires several mag-
nitudes less energy than NVRAM, as visible in Figure 2a. In parts,
this also correlates with Intel Optane’s worse performance, result-
ing in fewer bytes written during the benchmarks’ executions (cf.
Figure 2b). Interestingly, this performance penalty is especially se-
vere for sequential mixed and write-only workloads. Consequently,
our NVRAM generally requires more energy per memory access,
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Figure 2: Comparison between DRAM and NVRAM depend-
ing on access type and access pattern.

as shown in Figure 2c. However, we must note that read-only and
generally random accesses are approximately in the same range.

5.3 NUMA Distance
As expected, NUMAdoes not significantly affect the energy demand
for DRAM and NVRAM as seen in Figure 3. However, please note
that we are only observing the raw consumption of the memory
itself; the CPU may still be penalized due to the incurred slowdown.

5.4 Cache Optimizations
Since neither DRAM nor Intel Optane supports non-temporal loads,
we are only examining write-only workloads for now. As in the
previous comparison, the influence of sequential and random access
patterns on the total energy consumption can be observed. At first
glance, sequential accesses are generally more expensive for normal
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Figure 3: Comparison of energy consumption of DRAM and
NVRAM between near and far NUMAs.
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Figure 4: Comparison of energy consumptions as a result of
optionally flushing or skipping caches during writes.

and non-temporal stores than for cache line flushes. Similarly, ran-
dom accesses seem more taxing in combination with non-temporal
stores (cf. Figure 4a). However, looking at the energy demand in
relation to the written data, as in Figure 4b, normal accesses are
the most and cache line flushes are the least efficient. For normal,
random accesses, Intel Optane approaches the efficiency of DRAM.
In general, uncached write accesses are predictably more taxing
and ensuring consistent non-volatility costly.

5.5 Case Study: Carbon-Aware Allocations
In their SIGENERGY publication, Köhler et al. demonstrate how
memory placement decisions can influence the carbon emissions
of a given system [18]. Due to the unavailability of accurate power
usage data from measurements or data sheets, the authors use
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estimated numbers in their case study. In this section, we will
verify the assumptions made in that work for DRAM and Optane4
to highlight the importance of measuring the actual energy usage
on the target system prior to any decision-making.

The work assumes DRAM consumes 0.4 W/GB5, independently
of how it is being used. This assumption does not hold, as we have
shown that writing into DRAM – the operation used in the work
– can consume more energy than reading or idling. Additionally,
our measurements indicate that they overestimate the energy con-
sumption quite significantly, which, in reality, is only ≈0.02 W/GB.

The assumptions for Optane need to be corrected, too. The work
assumes that Optane only consumes negligible amounts of energy
while idle. However, our measurements reveal that its power con-
sumption is quite significant. Consequently, for calculating the
carbon emissions of Optane, it is not sufficient to only take the
number of bytes written into account, as done in the work. Instead,
the lifetime of an allocation must factor into the calculation to ac-
count for the high idle power usage of Optane. Additionally, the
energy used by a write operation cannot be represented by a flat
cost per GB written. Our data shows that Optane’s energy usage for
writing heavily depends on the write operation’s access pattern.

Repeating the calculations of Köhler et al. leads to a significantly
different result: While the 𝐶𝑂2 emissions reported for DRAM stay
roughly in the same ballpark, the incorrect assumptions about Op-
tane’s idle energy consumption lead to a massive underestimation
of the carbon emissions by Optane. With the number we have mea-
sured, DRAM outperforms Optane in all workloads presented in
their work.

6 Conclusion and Future Work
Heterogeneous memory architectures present us with a multitude
of challenges. Both the vast spectrum of options and the inherent
environmental implications of each technology complicate the se-
lection of efficient hardware. To provide vital information for the
selection process, we present meBench, a synthetic workload gen-
erator to benchmark non-uniform energy demands systematically.
We demonstrate the fine-granular insights meBench provides by
benchmarking diverse workloads on DRAM and Optane. The re-
sults show that Optane, Intel’s NVRAM implementation, consumes
non-negligible amounts of energy, even while idling. Consequently,
the assumptions used in previous research do not hold and need to
be reiterated.

Initially, meBench only provides built-in support for DRAM and
DAX-capable memory such as Optane. However, the improving
availability of CXL may necessitate the addition of support for new
memory classes, such as CMM-H, which is facilitated by meBench’s
modular design.

Given the measurement inaccuracies of RAPL on current hard-
ware, we are planning to extend meBench to support other interest-
ing architectures, e.g., Apple’s ARM-based CPUs [8]. Furthermore,
we intend to implement more access patterns, e.g., reverse sequen-
tial access or gather-scatter.

4We cannot verify the data for Viking NVDIMMs, as we do not have access to those
DIMMs.
5We use GB in this section as that is the unit used by Köhler et al.

Complementing the focused benchmarks provided by meBench,
additional work needs to be done on benchmarks investigating het-
erogeneous systems in their entirety, in order to provide the best
insights possible to decision-makers. Moreover, the significantly
increased energy demand observed during sequential memory ac-
cesses requires further root cause analysis.

Finally, future research should also factor in embodied carbon
with regard to memory technologies to gauge their respective envi-
ronmental impact.

Availability
The source code is available under open source license on GitHub
at https://github.com/i4/meBench.
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