1 C Standard Library Overview for Linux 1

1 CStandard Library Overview for Linux

14 Introduction

This collection provides a number of examples and cheatsheets for commonly used 1ibc func-
tions and system calls for the Linux operating system. It gives a short description of each func-
tion and provides examples for their usage.

Functions are grouped in several categories, which cover specific use cases, respectively. For
each category an overview of the involved functions and files is given followed by an example
for the typical usage of these functions. After the usage example, a more detailed description
of each function is given.

However, cheatsheets can not replace the thorough study of the corresponding manpages for
more detailed information. Manpages can be retrieved using the following command:

0
man [<section>] <function>

Please use the following compiler flags for your exercises. These are the flags used to compile
your Linux submissions.
CFLAGS = -std=cll -pedantic -D_XOPEN_SOURCE=700 -Wall -Werror -03

1.2 Cheatsheets (aka SPiC-Zettel)

« Errno Variable

Explanation of the errno variable.
* Memory

List of functions: malloc(), free()

Functions to (de-)allocate memory.
- Strings
List of functions: strlen(), strcpy(), strcat()

Functions to analyze and manipulate C strings.

« File System
List of functions:

- directory handling: opendir(), closedir(), readdir()

- file handling: fopen(), fclose(), stat(), Lstat()
Functions for file and directory handling (i.e., opening/closing files and retrieving meta-
data).
Input/Output
List of functions: printf(), fprintf(), fgetc(), fgets(), fputc(), fputs(), perror(), feof(), ferror()

Functions for (formatted) input and output.

O Systemnahe Programmierung in C (SPiC) ©ly

2 Module Documentation 2

+ Processes
List of functions: exit(), wait(), waitpid(), fork(), execl(), execv(), execlp(), execvp(), strtok()
Functions to create new processes and wait for the termination of processes. Furthermore,
functions to execute a new program in a process.

+ Signals
List of functions: kill(), sigemptyset(), sigfillset(), sigaddset(), sigdelset(), sigismember(),
sigprocmask(), sigaction(), sigsuspend()
Functions to deliver, synchronize, and wait for POSIX signals in Linux.

+ Threads
List of functions: pthread_create(), pthread_exit(), pthread_join(), pthread_mutex_init(),
pthread_mutex_lock(), pthread_mutex_unlock(), pthread_mutex_destroy()

Functions to create, synchronize, and wait for POSIX threads (pthreads).

2 Module Documentation

24 File System
Files

- file dirent.h
« file stdio.h

- file stat.h

- file types.h

Functions

+ DIR * opendir (const char xname)

Open a directory.
int closedir (DIR *dirp)

Close a directory.
« struct dirent x readdir (DIR *dirp)
Read an entry of a directory.
« FILE = fopen (const char #pathname, const char xmode)
Open a file.
int fclose (FILE *fp)
Close a file.
- int stat (const char =path, struct stat =buf)

Retrieve metadata of a file.
« int Istat (const char *path, struct stat xbuf)

Retrieve metadata of a file.

o Systemnahe Programmierung in C (SPiC) ©ly

24 File System

211 Detailed Description
Checking whether a regular file exists, open it, and close it:

0
char *file = "./testfile";

// get file metadata

struct stat sbuf;

if (lstat(file, &sbuf) == -1){
perror("lstat");

exit (EXIT_FAILURE);

// check file type
if (!S_ISREG(sbuf.st_mode)) {
fprintf(stderr, "%s is not a regular file.", file);

exit (EXIT_FAILURE);

// open file

FILE *fd = fopen(file, "r+");

if (fd == NULL) {
perror("fopen");

exit (EXIT_FAILURE);

// use file

/7 L...]

o Systemnahe Programmierung in C (SPiC)

Ol

241 File System

// close file, check for errors (like full disk)
if (fclose(fd) != 0) {
perror("fclose");

exit (EXIT_FAILURE);

Iterating over all entries of a directory. Be aware, that readdir() also returns hidden files (starting
with a .) including the two entries pointing to the current directory (.) and the parent directory

(..)
0
const char *path = "test/";

// open directory

DIR #dir = opendir(path);

if (dir == NULL) {
perror("opendir");

exit (EXIT_FAILURE);

// iterate over directory entries

struct dirent *dirent;

while (errno = 0, (dirent = readdir(dir)) != NULL) {
printf("%s\n", dirent->d_name);

¥

if (errno !'= 0) {

perror("readdir");

O Systemnahe Programmierung in C (SPiC)

Ol

24 File System 5

exit (EXIT_FAILURE);

// close directory

closedir(dir);

21.2 Function Documentation

21.2a opendir() DIR* opendir (

const char x mame)
The opendir() function opens a directory stream according to name. The stream is positioned at
the first entry of the directory. Opened directories must be closed by closedir().

Parameters

‘ name ‘ name of the directory to be opened

Return values

DIR* on success

NULL | on error, errno is set

24.2.2 closedir() int closedir (
DIR * dirp)
A directory opened by the opendir() function, can be closed by the closedir() function, which
frees all allocated resources.
We do not expect error handling when closing directories, so simply do:

0
closedir(dir);

Parameters

‘ dirp ‘ directory stream to be closed

o Systemnahe Programmierung in C (SPiC) ©ly

241 File System 6

21.2.3 readdir() struct direntx readdir (

DIR * dirp)
The readdir() function reads the next entry from an opened directory stream pointed to by dirp.
It allocates a struct dirent structure and returns a pointer to the allocated structure con-
taining the information about the next directory entry. The caller of readdir() must not provide
(or free) memory for the struct dirent structure.
readdir() returns NULL if an error occurs or if the end of the directory stream is reached. To be
able to distinguish these two events, a caller must set the errno variable to O before each call
of readdir(). If errno is still O after readdir() returned NULL the end of the directory stream has
been reached, otherwise an error has occurred.
The struct dirent contains information about a directory entry. The most important infor-
mation are the inode number and the name of the entry:

0
struct dirent {

ino_t d_ino; // Inode number

[...]

char d_name[256]; // Null-terminated filename
};
Parameters

‘ dirp ‘ directory stream to read next entry from

Return values

dirent= | pointer to the next directory entry

NULL | on error (errno is set) or if the end of the directory stream is reached

21.2.4 fopen() FILEx fopen (

const char * pathname,

const char * mode)
The fopen() (file open) function opens the file at pathname with the mode as specified in mode.
Opened files must be closed by fclose().

O Systemnahe Programmierung in C (SPiC) ©ly

24 File System

The path in pathname can specify a relative (based on the

absolute path.
Valid file modes are:

current working directory) or an

Mode Description
r read only
r+ read and write
w write only, create file if it does not exist yet
w+ read and write file, create file if it does not exist yet
a write only, append only, create file if it does not exist yet
a+ write append only, read from beginning only, create file if it does not exist yet
Parameters
pathname | path to file
mode file mode

Return values

FILEx | on success

NULL | on error, errno is set

21.2.5 fclose() int fclose (

FILE * fp)

Afile opened by the fopen() function, can be closed with the fclose() (file close) function, which
writes all remaining buffered operations to the file and frees all allocated resources.

Parameters

‘ fp ‘ file stream to be closed

Return values

(0] on success

EOF | on error, errno is set

21.2.6 stat() int stat (

const char * path,

O

Systemnahe Programmierung in C (SPiC)

Ol

241 File System

struct stat = buf)
The stat() function retrieves information about the file pointed to by path. If path is a symbolic
link, stat() returns information about the underlying file instead of the link itself. Be aware that
the caller is responsible to provide the memory for the struct stat structure pointed to by

buf!

The struct stat contains, amongst others, the following information:

0
struct stat {

[...]
ino_t st_ino;
mode_t st_mode;

nlink_t st_nlink;

uid_t st_uid;
gid_t st_gid;
[...]
off_t st_size;
[...]

// Inode number

// File type and mode
// Number of hard links
// User ID of owner

// Group ID of owner

// Total size, in bytes

The st_mode field encodes the file type and permissions. In order to check whether a file is
regular file, a symbolic link, or a directory, some macros exist:

0
struct stat buf;

stat (pathname, &buf);

[...] // error handling

if (S_ISREG(buf.st_mode)) { printf("regular file"); }

if (S_ISDIR(buf.st_mode)) { printf("directory "); }

if (S_ISLNK(buf.st_mode)) { printf("link"); } // only with 1lstat()

Systemnahe Programmierung in C (SPiC)

Ol

2.2 Errno Variable 9

Parameters

path | file to be analyzed

buf pointer to a buffer storing the retrieved information

Return values

(0] on success

-1 | on error, errno is set

2427 lstat() int 1stat (

const char * path,

struct stat * buf)
The (stat() function retrieves information about the file pointed to by path. If path is a symbolic
link, Istat() returns information about the link itself instead of the underlying file. Be aware that
the caller is responsible to provide the memory for the struct stat structure pointed to by
buf!
For more details see the stat() function.

Parameters

path | file to be analyzed

buf pointer to a buffer storing the retrieved information

Return values

(0] on success

-1 | on error, errno is set

2.2 Errno Variable
Files

« file errno.h

Variables

- interrno

Error code set by various library functions.

o Systemnahe Programmierung in C (SPiC) ©ly

2.2 Errno Variable 10

2.21 Detailed Description

The errnovariable is an integer variable and set by system calls and library functions to indicate
the source of an error. The errno is undefined, except when a system call or library function
indicates an error (e.g., by a special return value) and the corresponding manpage states that
in case of an error the errno variable is set. From this follows that the value of the errno is
undefined after a successful call to a system call or library function. Furthermore, no system call
or library functions sets the errno to 0.

There are rare cases, where the errno is not only used to indicate the source of an error, but
is also used to detect an error (e.g., readdir()). If the errno is used to detect an error (and not,
as usually, the return value) it is explicitly stated in the manpages. In this case the errno must
be manually set to O before calling the function to be able to check if the function changed the
value. Except for these rare cases setting the errno manually is never correct, unless one is
writing a library function (e.g., malloc()).

The errno variable is a thread-local variable, which means every POSIX thread has a separate
errno. Hence, the access of errno must not be synchronized against other POSIX threads.
Wrong usage of errno:

0
char *s = malloc(1024);

if (s == NULL) {

fprintf(stderr, "malloc: ");

// now the errno is undefined, because of a successful

// or unsuccessful call to fprintf()

// wrong: strerror() uses an undefined value to generate the string
fprintf(stderr, "%s\n", strerror(errno));

exit (EXIT_FAILURE);

0
char *s = malloc(1024);

if (s == NULL) {

// wrong: original errno value is overwritten!

O Systemnahe Programmierung in C (SPiC) ©ly

2.2 Errno Variable

1

errno = ENOMEM;
perror("malloc");

exit (EXIT_FAILURE);

0
errno = 0; // wrong: setting errno has no effect here

char *s = malloc(1024);

if (errno != 0) {
// wrong: errno can be != 0 even if malloc() is successful
// NOTE: There are rare exceptions (e.g., readdir()).
perror("malloc");

exit (EXIT_FAILURE);

Correct usage of errno:

0
char *s = malloc(1024);

if (s == NULL) {
perror("malloc");

exit (EXIT_FAILURE);

0
errno = 0;

struct dirent *entry = readdir(dirp);

if (entry != NULL) {

o Systemnahe Programmierung in C (SPiC)

Ol

2.3 Threads

12

// process entry
} else if (errnmo != 0) { // explicitly stated in man page
perror("readdir");

exit (EXIT_FAILURE) ;

2.3 Threads
Files

« file pthread.h

Functions

- int pthread_create (pthread_t *thread, const pthread_attr_t =*attr, void =(xstart_—

routine)(void *), void =arg)
Create a thread.
+ void pthread_exit (void =#retval)

Exit a thread.
int pthread_join (pthread_t thread, void *xretval)

Wait for a thread.
« int pthread_detach (pthread_t thread)

Detach a thread.
« int pthread_mutex_init (pthread_mutex_t s*mutex, const

t «mutexattr)

Create a mutex.

« int pthread_mutex_lock (pthread_mutex_t #mutex)
Lock a mutex.

int pthread_mutex_unlock (pthread_mutex_t #mutex)

Unlock a mutex.
+ int pthread_mutex_destroy (pthread_mutex_t *mutex)

Destroy a mutex.

pthread_mutexattr_

O Systemnahe Programmierung in C (SPiC)

Ol

2.3 Threads 13

2.31 Detailed Description

This page shows a simplified interface for POSIX threads (pthreads). Threads are a more
lightweight method to use the concurrency potential of modern multi-core processors, com-
pared to the process concept of Linux.

Disclaimer: Some parts of the interface are simplified. This page does not replace a thorough
study of the manpages for the respective functions!

The pthread_= () function family does not set the errno variable to indicate the error cause,
but instead returns an error value (or O on success). Thus, the return value of pthread_x()
functions can be usually assigned to errno (except otherwise stated) and in case of an error
perror() can be used to print a meaningful error message. Be aware, that the errno is not a
global but a thread-local variable, hence each thread has its own errno.

If you intend to use this library, make sure to run your gcc with the appropriate flags.
-pthread -std=cll -Werror -Wall -pedantic -D_XOPEN_SOURCE=700 -03
Minimal pthread example:

0
static int counter = 0;

// Function the threads execute
void *thread_func(void *arg) {

pthread_mutex_t *mutex = (pthread_mutex_t *) arg;

// do stuff concurrently

for (unsigned int i = 0; i < 1000; i++) {
pthread_mutex_lock(mutex);
counter++;

pthread_mutex_unlock(mutex) ;

pthread_exit (NULL);

o Systemnahe Programmierung in C (SPiC) ©ly

2.3 Threads 14
int main(int argc, char *argv[]) {
// create mutex
pthread_mutex_t mutex;
errno = pthread_mutex_init(&mutex, NULL);
if (errno != 0) {
perror("pthread_mutex_init");
exit (EXIT_FAILURE);
}
// create and start threads
pthread_t threads[4];
for (unsigned int i = 0; i < 4; i++) {
errno = pthread_create(&(threads[i]), NULL, thread_func,
(void *) &mutex);
if (errno !'= 0) {
perror("pthread_create");
exit (EXIT_FAILURE);
¥
}
// wait until threads terminate
for (unsigned int i = 0; i < 4; i++) {
errno = pthread_join(threads[i], NULL);
if (errno != 0) {
perror("pthread_join");
exit (EXIT_FAILURE);
0 Systemnahe Programmierung in C (SPiC) ©lg

2.3 Threads 15

pthread_mutex_destroy(&mutex) ;

printf("counter: %i\n", counter);

2.3.2 Function Documentation

2.3.21 pthread_create() int pthread_create (

pthread_t * thread,

const pthread_attr_t * attr,

void (%) (void %) start_routine,

void * arg)
The pthread_create() function creates and starts a new thread within the calling process. The
new thread will initially execute the function specified in start_routine, which receives a
void = pointer as parameter and returns a void # pointer. The argument handed over to the
new thread is specified in arg.
The pthread_create() function uses the pointer in thread to store the thread id in the underlying
pthread_t variable, which can be used to identify a thread in further pthread_x function
calls.
The attributes for the new thread are specified in attr. For default attributes NULL can be used.
A thread that has been created with pthread_create() must be joined with pthread_join() or
marked as detached using pthread_detach() in order to free the resources associated with the
thread. This is similar to fork() and waitpid() for processes.

Parameters
thread pointer to the thread id
attr thread attributes (NULL for default attributes)

start_routine | function the thread initially executes

arg argument for start_routine

o Systemnahe Programmierung in C (SPiC) ©ly

2.3 Threads 16

Return values

o on success

=0 | on error

2.3.2.2 pthread_exit() void pthread_exit (

void * retwal)
The pthread_exit() function terminates the calling thread with the return value in retval.
This function never returns.

Parameters

‘ retval ‘ return value visible to a pthread_join() caller ‘

2.3.2.3 pthread_join() int pthread_join (

pthread_t thread,

void #x retwal)
The pthread_join() function waits for the thread in thread to terminate. If the thread has al-
ready been terminated, the pthread_join() function returns immediately. The return value of the
terminated thread can be retrieved by retval.
Be aware that threads marked as detached (pthread_detach()) can not be joined anymore!
Example code
0

void *retval;

errno = pthread_join(thread, &retval);
if (errno !'= 0) {
perror("pthread_join");

exit (EXIT_FAILURE);

printf("Exit code of thread: %p\n", retval);

O Systemnahe Programmierung in C (SPiC) ©ly

2.3 Threads 17

Parameters

thread | thread to wait for
retval buffer for a pointer to the return value

Return values

o on success

=0 | on error

2.3.2.4 pthread_detach() int pthread_detach (

pthread_t thread)
The pthread_detach() function marks the thread in thread detached. This automatically frees
all resources, when the threads exits. Once a thread is marked as detached it can not be joined
using pthread_join() anymore!

Parameters

‘ thread ‘ thread to detach ‘

Return values

o on success

=0 | on error

2.3.2.5 pthread_mutex_init() int pthread_mutex_init (

pthread_mutex_t * mutez,

const pthread_mutexattr_t % mutezattr)
The pthread_mutex_init() function initializes a pthread mutex. It receives a pointer to a
pthread_mutex_t type and a pointer to the attributes in mutexattr. For default attributes
NULL can be used formutexattr. If a mutex should be destroyed the pthread_mutex_destroy()
function can be used.

0
pthread_mutex_t mutex;

errno = pthread_mutex_init(&mutex, NULL);
if (errno !'= 0) {
perror("pthread_mutex_init");

exit (EXIT_FAILURE);

o Systemnahe Programmierung in C (SPiC) ©ly

2.3 Threads 18

Parameters

mutex mutex to be initialized
mutexattr | attributes for mutex (NULL for default)

Return values

O | on success
I= | onerror

2.3.2.6 pthread_mutex_lock() int pthread_mutex_lock (

pthread_mutex_t * mutez)
The pthread_mutex_lock() function blocks the current thread, until it successfully acquired the
mutex in mutex. When this function returns, the thread can safely assume to be the only thread
inside of the critical section guarded by mutex.

Parameters

‘ mutex ‘ mutex to lock ‘

2.3.27 pthread_mutex_unlock() int pthread mutex_unlock (
pthread_mutex_t * mutez)

The pthread_mutex_unlock() function releases the mutex in mutex.

Parameters

‘ mutex ‘ mutex to unlock ‘

2.3.2.8 pthread_mutex_destroy() int pthread_mutex_destroy (

pthread_mutex_t * mutez)
The pthread_mutex_destroy() function destroys the mutex in mutex. After this function returns,
pthread_mutex_lock() and pthread_mutex_unlock() must not be called with this mutex as argu-
ment anymore.

O Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 19

Parameters

’ mutex ‘ mutex to destroy

2.4 Signals

Files

- file signal.h

Data Structures

struct sigaction

Functions

int kill (pid_t pid, int sig)
Send signal to a process.

int sigemptyset (sigset_t *set)
Empty signal set.

int sigfillset (sigset_t *set)
Fill signal set.

int sigaddset (sigset_t *set, int signum)
Add signal to set.

int sigdelset (sigset_t *set, int signum)
Remove signal from set.

int sigismember (const sigset_t =set, int signum)

Test signal's membership.
int sigprocmask (int how, const sigset_t *set, sigset_t =oset)

Change signal mask of a process.
int sigaction (int sig, const struct sigaction *act, struct sigaction *oact)

Set action for a signal.
int sigsuspend (const sigset_t xmask)

Wait for a signal.

Systemnahe Programmierung in C (SPiC) Ol

2.4 Signals 20

2.42 Detailed Description

This set of functions and system calls control the signal handling of processes in Linux. A signal
asynchronously interrupts the execution of a process and has great similarities with interrupts as
known from the microcontroller programming. This includes the arising problems of asymmetric
program interruption, for example, lost wake-up and synchronization problems.

A complete list of all signals and further information can be found atman 7 signal. Theaction
values mean, that the default action is either to terminate the process (Term), to terminate the
process and generate a core dump (Core) or to ignore a signal (Ign). An excerpt of the available
signals is shown here:

Signal Default Action Description
SIGINT Term interrupt from keyboard (Ctrl-C)
SIGQUIT Core quit from keyboard
SIGKILL Term kill signal (non blockable)
SIGSEGV Core invalid memory reference
SIGALRM Term timer signal
SIGTERM Term termination signal
SIGUSR1 Term user-defined signal 1
SIGUSR2 Term user-defined signal 2
SIGCLD/SIGCHLD Ign child stopped/terminated

The following examples show some typical use cases for the presented functions.
Install a new action for SIGINT

0
static void sigint_handler(int signum) { ... }

int main(int argc, char *argv[]) {

struct sigaction act, oldact;

// signal mask during handling of a signal
// (handled signal itself is automatically blocked)

sigemptyset (&act.sa_mask);

o Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 21
// set signal handler (also possible: SIG_DFL (default action)
// and SIG_IGN (ignoring))
act.sa_handler = sigint_handler;
// set flags
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, &oldact);
[...]
Block and unblock a signal:
0
sigset_t set, oldset;
// initialize set (first empty set, then add SIGINT)
sigemptyset (&set);
sigaddset(&set, SIGINT);
// block SIGINT and get previous signal mask
sigprocmask(SIG_BLOCK, &set, &oldset);
// SIGINT is blocked
[...]
// unblock SIGINT
sigprocmask (SIG_UNBLOCK, &set, NULL);
o Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 22

Only allow one signal

0
sigset_t set, oldset;

// initialize set (first add all signals, then remove SIGINT)
sigfillset(&set);

sigdelset(&set, SIGINT);

// install new signal mask and get previously installed signal mask

sigprocmask(SIG_SETMASK, &set, &oldset);

// all signals are blocked except for SIGINT

[...]

2.4.2 Data Structure Documentation

2.4.21 struct sigaction

Data Fields

« void(x sa_handler)(int)
» sigset_t sa_mask
« intsa_flags

Field Documentation

2.4.211 sa_handler void(+ sa_handler) (int)

Pointer to the function, which will be installed for the associated signal. The installed function
must have one parameter, where the incoming signal is encoded, and no return value. Instead
of a pointer to a handler function the two special values SIG_IGN (ignore occurences of this
signal) or SIG_DFL (restore the default action for this signal) can be used.

O Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 23

2.4.21.2 sa_mask sigset_t sa_mask

Specifies a signal mask with signals, which are blocked during the handling of the associated
signal. The signal itself will be implicitly added to the signal mask (except SA_NODEFER is used
in sa_flags). Usually, an empty signal mask can be used.

2.4.21.3 sa_flags int sa_flags
Specifies further options for the signal handling process. It is formed by a bitwise OR of zero or
more options. Usually, it is set to SA_RESTART.

2.4.3 Function Documentation

2.4.3a kill() int ki1l (

pid_t pid,

int sig)
The kill() system call can be used to send the signal specified in sig to the process specified in
pid. The kill() function can also be used to send the signal to multiple processes, see man 2
kill for more details.

Parameters

pid | pid of the receiving process

sig | signal to be sent

Return values

O | onsuccess

-1 | on error, errno is set

2.43.2 sigemptyset() int sigemptyset (
sigset_t * set)
The sigemptyset() function empties a given signal set.
We do not expect error handling when setting signal masks.

Parameters

‘ set ‘ pointer to the signal set

2.4.3.3 sigfillset() int sigfillset (

o Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 24

sigset_t * set)
The sigfillset() function fills a signal set, that is, all signals are included.
We do not expect error handling when setting signal masks.

Parameters

‘ set ‘ pointer to the signal set

2.4.3.4 sigaddset() int sigaddset (

sigset_t * set,

int signum)
The sigaddset() function adds the signal signum to the signal set in set.
We do not expect error handling when setting signal masks.

Parameters

set pointer to the signal set

signum | signal to be added

2.4.3.5 sigdelset() int sigdelset (

sigset_t * set,

int signum)
The sigdelset() function removes the signal signum from the signal set set.
We do not expect error handling when setting signal masks.

Parameters

set pointer to the signal set

signum | signal to be removed

2.4.3.6 sigismember() int sigismember (

const sigset_t * set,

int signum)
The sigismember() function determines whether the signal signum is a member of the signal
set set.

Parameters
‘ set ‘ pointer to the signal set
O Systemnahe Programmierung in C (SPiC) ©ly

2.4 Signals 25

Parameters

’ signum ‘ signal to be tested

Return values

1 | signal is a member

o | signal is not a member

2.4.3.7 sigprocmask() int sigprocmask (

int how,

const sigset_t x* set,

sigset_t * oset)
The sigprocmask() function is used to manipulate or get the currently installed signal mask. The
signal mask is the set of signals that are currently blocked.
The new installed signal mask is specified in the struct pointed to by act (act can be NULL if no
new signal mask should be installed). If oact is not NULL the previously installed signal mask
is saved.
Instead of setting a new signal mask, the current set can be manipulated by adding or removing
the signals specified in act depending on the value of how. The possible values for how are:

Value Description
SIG_BLOCK add signals in set to the set of currently blocked signals
SIG_UNBLOCK | remove signals in set from the set of currently blocked signals

SIG_SETMASK | set the set of currently block signals to the signals in set

We do not expect error handling when manipulating signal masks.

Parameters

how | determines how the signal mask is changed

set pointer to the signal set

oset | copy of previous signal set

2.4.3.8 sigaction() int sigaction (
int sig,
const struct sigaction * act,

struct sigaction * oact)

O Systemnahe Programmierung in C (SPiC) ©ly

2.5 Input/Output 26

The sigaction() function is used to change the action taken by a process, when receiving a specific
signal. For each signal a default action is specified, which can be overwritten by sigaction()
(except for SIGKILL and SIGSTOP).

The new installed action for the signal sig is specified in the struct pointed to by act (act can
be NULL if no new action should be installed). If oact is not NULL the previous action is saved.
For further information about the content of act and oact see the documentation of struct
sigaction.

We do not expect error handling when installing signal handlers.

Parameters

sig signal to change action for

act action to take

oact | copy of previous action

2.4.3.9 sigsuspend() int sigsuspend (

const sigset_t * mask)
The sigsuspend() function temporarily replaces the signal mask of the process with mask and
then suspends the execution of the process until it receives a signal in an atomic way.
If the signal terminates the process, this function does not return. If the signal is caught, this
function returns after the execution of the signal handler and the old signal mask is restored.
The return value of sigsuspend() is always -1 and can be ignored.

Parameters

’ masRk ‘ temporary signal mask ‘

2.5 Input/Output
Files

+ file stdio.h

Functions

« int printf (const char *format,...)
Print formatted data to stdout
« int fprintf (FILE *stream, const char *format,...)

Print formatted data to stream
« int fgetc (FILE *stream)

o Systemnahe Programmierung in C (SPiC) ©ly

2.5 Input/Output

27

Read a character.
char = fgets (char s, int size, FILE xstream)

Read a string.
int fputc (int ¢, FILE xstream)

Write a character.
int fputs (const char *s, FILE *stream)

Write a string.
void perror (const char x*s)

Print an error message.
int feof (FILE #stream)

Test end-of-file indicator of a file stream.
int ferror (FILE *stream)

Test error indicator of a file stream.

2.51 Detailed Description
This code snippet illustrates the usage of fgetc() and fputc():

0
int ¢;

while ((c = fgetc(stdin)) != EOF) {
if (fputc((unsigned char) c, stdout) == EOF) {
perror("fputc");

exit (EXIT_FAILURE);

}

if (ferror(stdin)) {

// error

// no error; end of file reached

This code snippet illustrates the usage of fgets() and fputs():

o Systemnahe Programmierung in C (SPiC)

Ol

2.5 Input/Output

28

0
char buffer[1024];

char *check;

// reads at most 1023 characters per iteration
while ((check = fgets(buffer, 1024, stdin)) != NULL) {
if (fputs(buffer, stdout) == EOF) {
perror("fputs");

exit (EXIT_FAILURE);

if (ferror(stdin)) {

// error

// alternative to ferror():

// if (feof(stdin)) {

// // no error; end of file reached
// ¥} else {

// // error

// %}

2.5.2 Function Documentation

2.5.21 printf() int printf (
const char * format,

)

O Systemnahe Programmierung in C (SPiC)

Ol

2.5 Input/Output

29

The printf() (print formatted) function produces output according to a format string as specified
in format and writes it stdout. The format string defines the structure of the output (i.e., how
many and which additional arguments) and the additional parameter of the printf() function are
used to replace the arguments in the format string with actual data. It is important that the

number of additional parameter matches the number of arguments of the format string.

An argument in the format string starts with a %. The following table shows some important
arguments, however, there are several more options described in the manpage of printf() (man

3 printf):

Example:

0
int i = b;

char ¢ = ’a’;

void *p = &i;

printf("Hello
printf("$> i:

$> p:

0
// produces:

Hello world!
$> i: 5
$> c: a

$> f£: 3.140000

Type Description

i, d integer

u unsigned integer
f floating point

P pointer

s string

c character

%p\n", i, c, 3.14, p);

// no arguments
%i\n$> c: %c\n$> f: %f\n \

// including arguments

O

Systemnahe Programmierung in C (SPiC)

Ol

2.5 Input/Output

30

$> p: 0x7ffebebdbe34

We do not expect error handling for printf().

Parameters

format

format string

arguments

Return values

>=0

number of characters printed

<0

on error, errno is set

2522 fprintf()

int fprintf (

FILE * stream,

const char * format,

)

The fprintf() (file stream print formatted) function is very similar to printf(), except that it does
not write to stdout, but to stream.
For more details see printf().

0

// both lines write to stdout

fprintf(stdout, "Hello world!\n");

printf("Hello world!\n");

// write to stderr

fprintf(stderr, "Error in file ’%s’ at line %u\n"

FILE

We do not expect error handling for fprintf().

Parameters

‘ stream ‘ file stream to write ‘

LINE__);

O

Systemnahe Programmierung in C (SPiC)

Ol

2.5 Input/Output 31

Parameters

format | format string, see printf()

arguments

Return values

>=0 | number of characters printed

<0 | on error, errno is set

2.5.23 fgete() int fgetc (

FILE * stream)
The fgetc() (file stream get character) function returns an unsigned char casted to anintread
from a stream or returns EQF.
fgetc() returns EOF on error or when the end of the file is reached. To distinguish these two
events the feof() or ferror() function can be used. Be aware, that the return value of fgetc() must
be saved inan int (and notin anunsigned char)in order to distinguish EQF and oxFF (which
is the character § when interpreted as 1SO-8859-1).

Parameters

stream | file stream to read

Return values

EOF | on error or end of file, errno is set on error

I=EOF | unsigned char read from stream

2.5.2.4 fgets() charx fgets (

char * s,

int size,

FILE * stream)
The fgets() (file stream get string) function reads at most size-1 characters from stream and
saves them in the buffer pointed to by s. It terminates the string in s with a null byte (\0).
fgets() reads in characters until it finds a newline character (\n) or it has read size-1 charac-
ters. If an error occurred or the end of file was reached it returns NULL. The ferror() and feof()
functions can be used to distinguish these two events.

o Systemnahe Programmierung in C (SPiC) ©ly

2.5 Input/Output

32

Parameters

S

buffer to write to

size

size of the buffer

stream

file stream to read

Return values

NULL

on error or end of file, errno is set on error

I=NULL

pointerto s

2.5.2.5 fputc() int fputc (

The fputc() (file stream put character) function writes the character ¢ to stream.

int ¢,

FILE x stream)

We do not expect error handling when using fputc().

Parameters

C

char to print (casted to an int)

stream

file stream to write

Return values

1=EOF

printed char

EOF

on error, errno is set

2.52.6 fputs() int fputs (

The fputs() (file stream put string) function writes the string pointed to by s to stream.

const char * s,
FILE = stream)

We do not expect error handling when using fputs().

Parameters

S

string to be printed

stream

file stream to write

Systemnahe Programmierung in C (SPiC)

Ol

2.5 Input/Output 33

Return values

>=0 on success

EOF | on error, errno is set

2.5.2.7 perror() void perror (

const char = s)
The perror() (print error) function produces an error message on stderr printing the string in
s followed by a human-readable description of the value in errno. This is especially helpful
after a failed call to a system or library function, which sets the errno variable (e.g., malloc()).

Parameters

‘ s ‘ string printed before the actual error message

2.5.2.8 feof() int feof (
FILE % stream)
The feof() (file stream end of file) function tests the EOF indicator of stream.

Parameters

‘ stream ‘ file stream to test ‘

Return values

o | end-of-file indicator is not set

=0 | end-of-file indicator is set

2.5.2.9 ferror() int ferror (
FILE * stream)
The ferror() (file stream error) function tests the error indicator of stream.

Parameters

stream ‘ file stream to test ‘

Return values

o | error indicator is not set

=0 | errorindicator is set

o Systemnahe Programmierung in C (SPiC) ©ly

2.6 Memory 34
2.6 Memory
Files

« file stdlib.h

Functions

+ void * malloc (size_t size)
Allocate memory.
« void free (void *ptr)

Free allocated memory.

2.61 Detailed Description

With malloc() (memory allocation) a program can request memory from the operating system.
The allocated memory is usable until it is free()'d again. It is important, that programs always
check if a malloc() call was successful and free their memory after usage, otherwise a so-called
memory leak exists.

0
// allocate memory

char *s = malloc(strlen("Hello World\n") + 1);
if (s == NULL) {
perror("malloc");

exit (EXIT_FAILURE);

// use allocated memory
strcpy(s, "Hello World\n");

printf("%s", s);

// free allocated memory

free(s);

O Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 35

2.6.2 Function Documentation

2.6.21 malloc() void+ malloc (

size_t size)
The malloc() function allocates size bytes at the heap and returns a pointer to the allocated
memory or NULL if an error has been occurred. Be aware, that the memory is not initialized after
a successful call to malloc().

Parameters

‘ size ‘ number of bytes to be allocated

Return values

NULL | on error, errno is set

I=NULL | pointer to allocated memory

2.6.2.2 free() void free (

void * ptr)
The free() function frees the memory pointed to by ptr, which must have been returned by a
previous call to malloc(). Otherwise, or if free (ptr) has already been called before, undefined
behavior occurs. If ptr is NULL, no operation is performed.

Parameters

‘ ptr ‘ pointer to buffer

2.7 Processes
Files

- file stdlib.h

- file string.h
- file types.h

- file wait.h

- file unistd.h

Functions

« void exit (int status)

o Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 36

Terminate process.
char = strtok (char *str, const char xdelim)

Tokenize string.
+ pid_t wait (int *wstatus)
Wait for a child process.
pid_t waitpid (pid_t pid, int *wstatus, int options)

Wait for a child process.
pid_t fork (void)
Fork new process.
« int execl (const char *path, const char *argo,..., NULL)

Execute a program.
+ int execv (const char *path, char *const argv[1)
Execute a program.
int execlp (const char =file, const char =*argo,..., NULL)

Execute a program.
int execvp (const char =file, char xconst argv[])

Execute a program.

271 Detailed Description

Example of how to create a new process, which executes a program, and wait for the new process
to terminate.

0
// create new process

pid_t pid = fork();

if (pid == 0) {
// child executes new program
execlp("ls", "1s", "-A", NULL);
// execlp() only returns on error
perror("exec");
exit (EXIT_FAILURE);

} else if (pid < 0) {

// fork had an error

O Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 37

perror("fork");

exit (EXIT_FAILURE);

// parent waits for child to terminate

int status;

if (waitpid(pid, &status, 0) < 0) {
perror("waitpid");

exit (EXIT_FAILURE);

The execx () function family allows for the execution of a new executable within a process. The
differences are:

Function | Searches PATH | Array of Arguments | List of Arguments
execl() X X v
execlp() v X v
execv() X v X
execvp() v v X

2.7.2 Function Documentation

2721 exit() void exit (
int status)
The exit() function terminates the current process with the exit code as specified in status.
This function does not return.
Examples for typically used exit codes: EXIT_SUCCESS (0), EXIT_FAILURE.

Parameters

‘ status ‘ exit code

o Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 38

2.7.2.2 Stl’tOk() char* strtok (

char % str,

const char * delim)
The strtok() (string tokenize) function tokenizes the string pointed to by str. For the first call
the pointer to the string to be tokenized must be provided. For all subsequent tokens for the
same string NULL must be used for str. Be aware, that strtok() manipulates the parsed string
(e.g., inserts \0). Each call of strtok() returns a pointer to the next token or NULL if no more
tokens are available.
The strtok() function is especially useful to prepare the arguments for a execv() or execvp() sys-
tem call.
Example:

0

const char *delim = "|-";
strcpy(buffer, "This|is-an|example!";

printf("%s\n", buffer);

char *tok = strtok(buffer, delim);
while (tok != NULL) {

printf("%s ", tok);

tok = strtok(NULL, delim);
}

printf("\n");

0
// produces

$> This|is-an|example!

$> This is an example!

Parameters

str string to be tokenized

delim | delimiter

0 Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 39

Return values

NULL | no more token

I=NULL | pointer to next token

2723 wait() pid_t wait (

int * wstatus)
The wait() function blocks, until at least one child process has been terminated. The call of
wait (&status) is equivalent to waitpid(-1, &status, 0). For more information see
waitpid().

Parameters

‘ wstatus ‘ pointer to an integer value, where wait() will store further information

Return values

pid | of the terminated child process

-1 | on error, errno is set

27.2.4 waitpid() pid_t waitpid (

pid_t pid,

int % wstatus,

int options)
The waitpid() function blocks until the child process defined by pid terminates. The value of
pid can be one of the following values:

Value Description

< -1 | wait for any child process where the process group ID equals the absolute value of
pid

-1 wait for any child process

0 wait for any child process where the process group ID equals the ID of the calling
process

>0 wait for the child process with the defined pid

The value in options can be used to further manipulate the behavior of waitpid().

o Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 40

Value Description
WNOHANG do not block if no child has been terminated (immediately return)
WUNTRACED also return if a child has been stopped
WCONTINUED | also return if a child has been resumed (SIGCONT)

If wstatus is not NULL, waitpid() stores further information about the termination of the child
process in the underlying int. Be aware that the caller must provide the memory for the int
and only hands over a pointer! Some macros can be used to extract these information.

Macro Description
WIFEXITED (wstatus) True if child terminated by calling exit()
WEXITSTATUS (wstatus) | Returns the exit code if WIFEXITED is true
WIFSIGNALED (wstatus) | True if child terminated because of a signal
WTERMSIG(wstatus) Returns the signal number if WIFSIGNALED is true

Example:

0
int status;

if (waitpid(child, &status, WNOHANG) < 0) {
perror("waitpid");

exit(EXIT_FAILURE);

Parameters

pid defines child process to wait for

wstatus | pointer to an integer value, where waitpid() will store further information

options | further options

Return values

O | onsuccess

-1 | on error, errno is set

O Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes A

2725 fork() pid_t fork (

void)
fork() creates a new process by duplicating the calling process. Duplicating means it executes
the same program and has the same state (variable values, opened files, ...). The child and
parent process can be distinguished by the return value of fork(). For detailed information about
differences between the child and the parent see the manpage of fork() (man 2 fork).
Ifa child process terminates it must be collected by using wait() or waitpid(), otherwise it remains
in a zombie state and consumes system resources.

0
pid_t pid = fork();

if (pid == 0) printf("child\n");
if (pid < 0) printf("error\n");

if (pid > 0) printf("parent\n");

Return values

0 | child process

>0 | child's pid

<0 | onerror, errno is set

27.2.6 execl() int execl (

const char * path,

const char * arg0,

NULL)
The execl() function (exec arg list) replaces the currently executed program with the program
as specified in path. It hands over all parameters after the path parameter (i.e., arg0, argi,
...) as arguments for the newly executed program. By convention the first argument is the name
of the program itself and the last parameter must be a NULL pointer. Because all arguments
are handed over in a list, the number of arguments is fixed at compile time. This is the most
important difference to the execv() and execvp() function.
Any execx* () function only returns, if an error occurs. The errno is set appropriately, so call
perror ("exec") ; after the call to a exec* () function.
Example to execute the program 1s -1A:

0

o Systemnahe Programmierung in C (SPiC) ©ly

2.7 Processes 42

execl("/bin/1s", "/bin/1ls", "-1A", NULL);

u wy.
H
perror("exec")

Parameters

path | path to the executable

argo | first argument (by convention: executable file name)

all further arguments (terminated by a NULL pointer)

Returns

-1.0n error, errno is set

2.7.2.7 execv() int execv (

const char * path,

char *const argv[])
The execv() function (exec arg vector) replaces the currently executed program with the program
as specified in path. It hands over the argv parameter as arguments to the newly executed
program. By convention the first argument (argv [0]) is the name of the program itself and the
last parameter must be a NULL pointer. Because of the usage of a array for the arguments, the
number of arguments is not fixed at compile time, but can be determined at run time. This is the
most important difference to the execl() and execlp() function.
Any execx () function only returns, if an error occurs. The errno is set appropriately, so call
perror ("exec") ; after the call to a exec*() function.
Example to execute the program 1s -1A:

0
char *args[3];

args[0] = "/bin/1ls";

args[1] = "-1A";

args[2] NULL;

execv(args[0], args);

perror("exec");

0 Systemnahe Programmierung in C (SPiC) ©ly

2.8 Strings

Parameters

path | path to the executable

argv | array of arguments (terminated by NULL pointer)

Returns

-1.0n error, errno is set

2728 execlp() int execlp (
const char x file,
const char * arg0,

>

NULL)

Same as execl(), but also searches the PATH environment variable if file does not contain a

slash /. This means regular shell commands like 1s are available.
See execl() for further information.

Returns

-1.0n error, errno is set

2.7.29 execvp() int execvp (
const char x file,

char #const arguv[])

Same as execv(), but also searches the PATH environment variable if £ile does not contain a

slash /. This means regular shell commands like 1s are available.
See execv() for further information.

Returns

-10n error, errno is set

2.8 Strings
Files

- file string.h

o Systemnahe Programmierung in C (SPiC)

Ol

2.8 Strings

Functions

« size_t strlen (const char *s)

Calculate the length of a string.
« char = strcpy (char *dest, const char xsrc)

Copy a string.
« char = strcat (char =dest, const char ssrc)

Append a string to another string.

2.81 Detailed Description

The functionsin string.h allow for an easy manipulation of C strings. Always remember to allocate
the memory for the trailing \0 after a C string and be aware, that strlen() does not include the

terminating \0 in the string length.

0
// allocate some memory

char string_a[5+1], string_b[7+1];

char string[5+7+1];

// copy substrings into memory
strcpy(string_a, "Hello");

strcpy(string_b, " World!M);

// concatenate the two strings
strcpy(string, string_a);
strcat(string, string_b);

printf("%s", string); // $> Hello World!

// determine the length of the concatenated string

size_t siz = strlen(string); // siz = 12 (5+7)

O Systemnahe Programmierung in C (SPiC)

Ol

2.8 Strings 45

2.8.2 Function Documentation

2.8.21 strlen() size_t strlen (

const char * s)
The strlen() (string length) function calculates the length of the string pointed to by s, excluding
the terminating \0.

Parameters

’ s ‘ string under test

Returns

number of chars in s

2.8.2.2 strepy() chars strcpy (

char * dest,

const char * src)
The strcpy() (string copy) function copies the string pointed to by src, including the terminating
\0, to the buffer pointed to by dest.
The strings may not overlap, and the destination string dest must be large enough to receive
the copy.

Parameters

dest | buffer, where to copy to

src buffer to be copied

Returns

pointer to dest

2.8.2.3 strcat() charx strcat (

char * dest,

const char * src)
The strcat() (string concatenate) function appends the string pointed to by src to the string
pointed to by dest. Thereby, the terminating \O of dest is overwritten. The concatenated
string in dest is terminated by a \0 again.

O Systemnahe Programmierung in C (SPiC) ©ly

46

If dest is not large enough to include both strings, the program behavior is unpredictable.

Systemnahe Programmierung in C (SPiC)

Ol

3 File Documentation

47

Parameters

dest | buffer, where to append to
src buffer to be appended

Returns

pointer to dest

3 File Documentation

O Systemnahe Programmierung in C (SPiC) ©ly

