Advanced Configuration and Power
Interface (ACPI) Specification

Version 6.2 Errata A
September 2017

ACPI Specification

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property
owned or controlled by any of the authors or developers of this material or to any contribution thereto.
The material contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by
applicable law, this information is provided AS IS AND WITH ALL FAULTS, and the authors and developers
of this material hereby disclaim all other warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of
fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike
effort, of lack of viruses and of lack of negligence, all with regard to this material and any contribution
thereto. Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." The Unified EFlI Forum, Inc. reserves any features or instructions so marked
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2017 Unified EFI Forum, Inc. All Rights Reserved.

Version 6.2 Errata A Page ii

http://www.uefi.org/about

ACPI Specification

Revision History

ACPI Mantis Number / Description Affected Sections

Revision

6.2 A 1839 Missing space in title of ACPI RAS Feature Table (RASF) Section 5.2
Section 5.2.20
Table 5-30

6.2 A 1837 Typos in Extended PCC subspaces (types 3 and 4) Section 14.1.6

6.2A 1831 Add a new NFIT Platform Capabilities Structure Section 5.2.25.1
Figure 5-33
Table 5-128
Section 5.2.25.9

6.2 A 1827 PPTT ID Type Structure offsets Section 5.2.29.3

6.2A 1825 Remove bits 2-4 in the Platform RAS Capabilities Bitmap Section 5.2.20.4

table

6.2 A 1820 Region Format Interface Code description Section 5.2.25.6

6.2 A 1819 Remove support for multiple GICD structures Section 5.2.12
Section 5.2.12.1

6.2A 1814 PDTT typos and PPTT reference Revision History
Section 5.2
Section 5.2.28

6.2A 1812 Minor correction to Trigger Action Table Section 18.6.4

6.2 A 1811 General Purpose Event Handling flow Section 5.6.4

6.2 1795 ACPI Table Signature Reservation Table 5-31

6.2 1780 Add DescriptorName to PinFunction and PinConfig Macros | Section 19.6.103 and
Section 19.6.104

6.2 1770 Update Revision History Revision History

6.2 1769 FADT Format: ACPI Version update to reflect 6.2 versus 6.1 | Table 5-34

6.2 1755 Deprecate PCC Platform Async Notifications Section 14.4, and Section 14.5.1

6.2 1743 PinGroupFunctionConfig resource descriptors update Section 6.4.3.11,
Section 6.4.3.12,
Section 6.4.3.13,

6.2 1738 PCIEXP_WAKE Bits description updates Table 4-16, Table 4-17, and
Table 5-35

6.2 1731 Software Delegated Exception HW error notitication Section 18-384

6.2 1725 NVST Updates - NFIT ARS Error Injection Section 9.20.7.9,
Section 9.20.7.10,and
Section 9.20.7.11

6.2 1724 NVST Updates - Platform RAS Capabilities Updates Section 5.2.20.4

6.2 1723 NVST Updates - Translate SPA DSM Interface Section 2.1, Section 9.20.7.8

Version 6.2 Errata A

Page iii

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
6.2 1722 NVST Updates - ARS Updates Section 2.1, Section 9.20.7.2,
Section 9.20.7.4,
Section 9.20.7.5,and
Section 9.20.7.6
6.2 1721 NVST Updates - Labels Section 2.1, Section 5-181,and
Section 6.5.10
6.2 1717 ASL Grammar Update for Reference Operators Section 19.2
6.2 1714 Reserve the table name "SDEI" Table 5-31
6.2 1705 Add Heterogeneous Memory Attributes Tables (HMAT) Section 5.2, Section 5.6.6,
Section 5.6.8, Section 6.2,
Section 6.2.18, and Section 17.4
6.2 1703 Time & Alarm Device _ GCP new bits Section 9.18.2
6.2 1680 Pin Group, Pin Group Function and Pin Group Configuration | Table 6-222 and Section 6.4.3.10
Descriptors and Macros
6.2 1679 Pin Configuration Descriptor and Macro Table 6-222 and Section 6.4.3.10
6.2 1677 CPPC Registers in System Memory Section 6.2.11.2 and
Section 8.4.7.1
6.2 1674 GHES_ASSIST Proposal Section 18.3.2
6.2 1669 FADT HEADLESS flag should be valid for Section 5.2.9
HW_REDUCED_ACPI platforms
6.2 1667 Processor Properties Topology Table (PPTT) Section 5.2.29
6.2 1659 Master Slave PCC channels Chapter 14, Platform
Communications Channel (PCC)
6.2 1656 SRAT Support for ITS Section 5.2.16
6.2 1650 CPPC Support for Multiple PCC Channels Table 6-195 and
Section 8.4.7.1.9
6.2 1649 ECR: Minor updates to IA-32 Architecture Deferred Machine | Section 18.3.2.10
Check
6.2 1645 Add _STR Support for Thermal Zones Section 6.1, Section 6.1.10,
Section 11.4, Section 11.4.14,
and Section 11.7.1
6.2 1632 Secure Devices Table (SDEV) Table 5-31
6.2 1611 Add a _PPL object to processor devices Section 8.4.7
6.2 1597 ASL For() Conditional Loop Macro Section 19.6.51, Section 19.2.5,
Section 19.2.6, and
Section 19.3.4
6.2 1588 Clarification on Interrupt Descriptor Usage for "Interrupt Section 6.2.11.2, Section 6.4.3.6,
Combining" Section 19.6.62
6.2 1585 Reserve table signature “WSMT,” with reference to ACPI Table 5-31
links page for more details
6.2 1583 Diverse Highest Processor Performance Table 5-155 and Table 6-195
6.2 1578 Function Config Descriptor and Macro Table 6-211 and Section 6.4.3.9

Version 6.2 Errata A

Page iv

ACPI Specification

ACPI Mantis Number / Description Affected Sections

Revision

6.2 1576 Platform Debug Trigger Table (PDTT) Section 5.2.28

6.2 1573 Extensions to the ASL Concatenate operator Section 19.2.6 and
Section 19.6.12

6.2 1569 Add new introduction (background) section Background chapter

6.1 Errata | 1796 Clarify that Type 1 can never support Level triggered Section 14.1.4

A platform interrupt

6.1 Errata | 1785 Lack of clarity on use of System Vector Base on GICD Section 5.2.12.15

A structures

6.1 Errata | 1783 Clarification on Interrupt Descriptor Usage for Bit [0] Table 6-235

A Consumer/Producer

6.1 Errata | 1760 Typo - incorrect bit offsets in the PM1 Enable Registers Table 4-17

A Fixed Hardware Feature Enable Bits table.

6.1 Errata | 1758 Minor Errata in ERST tables, Serialization Instruction Entry | Table 18-389 and Table 18-395

A and Injection Instruction Entry.

6.1 Errata | 1756 Errata: Ensure non-secure timers are accesible to non- Table 5-123

A secure in the Flag Definitions: Common Flags table.

6.1 Errata | 1740 Errata in section 9.13: wrong reference Section 9.13

A

6.1 Errata | 1715 0 is a valid GSIV for the secure EL1 physical timer in GTDT | Table 5-117

A

6.1 Errata | 1687 Typo in the Reserved field of the GIC ITS Structure table. Table 5-67

A

6.1 Errata | 1686 Clarification of the FADT HW_REDUCED_ACPI flag Table 5-34

A description in the FADT Format table.

6.1 Errata | 1676 Clarifications for the ASL Buffer (Declare Buffer Object) Section 19.6.10

A

6.1 Errata | 1671 Typo in Memory Affinity Structure table Section 5-73

A

6.1 Errata | 1670 Update for _OSI return value Section 5.7.2

A

6.1 Errata 1664 Clarification of the RSDP Structure table, Revision Table 5-67

A description.

6.1 Errata | 1662 Clarification of the Generic Communications Channel Table 14-360

A Command Field table.

6.1 Errata | 1661 typos in the Generic Communications Channel Status Field | Table 14-361 and Section 14.5

A table and the Platform Notification section.

6.1 Errata | 1660 type in the Generic Communications Channel Shared Table 14-359

A Memory Region table

6.1 Errata | 1651 LPI Clarifications Section 8.4.4.3

A

6.1 Errata | 1644 Mismatch of mantis number 1449 vs. change description Revision History

A

Version 6.2 Errata A

Page v

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision

6.1 Errata | 1643 Incorrect row order in Table 18-387

A GET_EXECUTE_OPERATION_TIMINGS table

6.1 Errata | 1642 Clarifications and fixes to _PSD and _TSD Table 5-181

A

6.1 Errata | 1639 _WPC and _WPP are missing in the Predefined ACPI Table 5-161

A Names table.

6.1 Errata | 1616 Clarify which processor ID to use in the EINJ for ARM Table 18-393

A

6.1 Errata | 1606 Errata: typos in the Interrupt Resource Descriptor Macro Section 19.6.62

A definition

6.1 Errata | 1602 Updates to the PMC Method Result Codes table Table 10-328

A

6.1 Errata | 1601 Typos in the _CPC Implementation Example Section 8.4.7.1.11

A

6.1 Errata | 1600 Typos in PCC Subspace Structure Type 1 and Type 2. Table 14-356 and Table 14-357
A

6.1 Errata | 1599 Add clarification to existing text (_OSC Control Field via Table 6-197

A arg3)

6.1 Errata | 1591 ASL grammar clarification for “executable” AML opcodes Section 5.4

A

6.1 Errata 1589 Wireless Power Calibration Device ACPI ID not defined Section 10.5 (Table 10-292
A removed) and Table 5-160
6.1 Errata | 1582 Clarification for Time and Alarm wake description Section 9.18.1

A

6.1 Errata | 1581 Processing Sequence for Graceful Shutdown Request - Table 5-163 and Section 6.3.5.1
A need to update section 6.3.5.1 to reflect change

6.1 Errata | 1579 typos Table 5-127 and Table 5-128
A

6.1 Errata | 1577 BGRT Image Orientation Offset Table 5-104

A

6.1 Errata | 1572 Update ASL grammar to support multiple Definition Blocks | Section 19.2.3

A

6.1 Errata | 1571 Update AML Filename description for ASL DefinitionBlock Section 19.6.28

A operator

6.1 Errata | 1552 GIC Redistributor base address language in GICC leaves Table 5-61

A room for ambiguity

6.1 Errata | 1549 Errata: wrong offset in Generic Communications Channel Table 14-359

A Shared Memory Region table.

6.1 1527 Qualcomm feedback on ACPI 6.1 draft 2 Throughout

6.1 1524 Strange hotlink Section 5.7.5

6.1 1514 Comments against 6.1 Draft from HPE Throughout--draft corrections and

typos, but especially
Section 9.20.7.2

Version 6.2 Errata A

Page vi

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
6.1 1512 Microsoft feedbacks on ACPI 6.1 draft 2 Section 5.2.25, Section 9.20.7,
Section 18.3.2
6.1 1503 Editorial comments against 6.1 Draft 1 Throughout--draft corrections &
typos
6.1 1500 ACPI 6.1 - Graceful Shutdown (Device Object Notification) | Table 5-163
6.1 1499 FIT and _MAT ASL nits in 6.0 and 6.1 Draft Section 6.2.10, Section 6.5.9
6.1 1490 ACPI Version update to reflect 6.1 versus 6.0 Table 5-34
6.1 1483 NFIT SPD extensions and clarifications Section 5.2.25x, Section 6.5.9,
Section 9.20x
6.1 1478 Wireless Power Calibration ACPI Device Section 10.5 & Section 10.6
6.1 1427 Addition to Memory Device State Flags in NFIT Table 5-130
6.1 1395 _DSM interfaces associated with NVDIMM-N objects Section 9.20.2x through
Section 9.20.7
6.1 1384 ERST/EINJ max wait time Table 18-387, Table 18-394
6.1 1367 Interrupt-signaled Events Section 4.1.1.1 Section 5.6, ,
Section 5.6.10, Section 5.6.4,
Section 5.6.5 Section 5.6.5.2,
Section 6.2.11.2, Section 7.3.13,
Section 18.3.2.7.2, Section 18.4
Added Section 5.6.9, through
Section 5.6.9.4
6.1 1356 ARM APEI extensions Section 18.3.2.7,
Section 18.3.2.8,
Section 18.3.2.9
6.1 1344 Sharing of Connection Resources Section 5.5.2.4.6 through
NOTE: The changes were included in ACPI 6.0, but was missed Section 5.5.2.4.6.3.9
in the ACPI 6.0 Revision History Section 19.6.15
6.1 1326 Section 2.2, Table 5-38,
Section 7.4.2.5, Section 15,
Table 15-364, Section 16.1.4
6.0 Errata | 1488 Typo on description of PkgLength encoding (ACPI v6.0, Section 5.4
section 5.4)
6.0 Errata | 1487 The Length of GIC ITS Structure is wrong Table 5-67
6.0 Errata | 1470 Region Format Interface Code clarification Table 5-134
6.0 Errata | 1462 5.2.21 Errata Section 5.2.21
6.0 Errata | 1461 5.2.21.10 Clarification Section 5.2.21.10

Version 6.2 Errata A

Page vii

ACPI Specification

Types

ACPI Mantis Number / Description Affected Sections
Revision
6.0 Errata | 1449 Graceful Shutdown Request (Device Object Notification Section 2.1, Table 5-45,
Values) Section 5.2.12.6,Table 5-52,
Section 5.2.12.9,
Section 5.2.12.14 through
Section 5.2.12.18,
Section 5.2.25, Section 5.6,
Table 6-190, Table 6.2.10,
Table 6-247, Table 6.5.9
6.0 Errata | 1445 Section 19.6.99 "Package" of the specification needs Section 19.6.101
updating
6.0 Errata | 1444 GTDT CntReadBase Physical address should be optional Section 5.2.24
6.0 Errata | 1433 Time and Alarm _GCP changes in support of wakes from Section 9.18.2
S4/S5
6.0 Errata | 1432 Errata - Explicit Data Type Conversions Section 19.3.4, Section 19.3.5.2,
Section 19.3.5.3
6.0 Errata | 1406 NFIT RAMDisk Update Section 5.2.25.2
6.0 Errata | 1403 Two distinct definitions of the MADT have the same revision | Table 5-44
number
6.0 Errata | 1393 In FADT: if X_DSDT field is non-zero, DSDT field should be | Table 5-34
ignored or deprecated
6.0 Errata | 1392 Incorrect length in the GIC ITS Structure Table 5-67
6.0 Errata | 1386 Clarify APEI vs UEFI runtime variable support Table 18-387
6.0 Errata | 1385 ACPI 6.0 typo and table misnumbering Section 18.5.2.1,
6.0 Errata | 1380 Unnecessary restrictions to FW vendors in ordering of GIC | Section 5.2.12.14
structures in MADT
6.0 Errata | 1378 Duplication of table 5-155/156, section mismatch in GIC duplicates of Table 5-172 &
redistributor Table 5-177 removed;
Section 5.2.12.17
6.0 Errata | 1374 section mismatch: _CCA method belongs to section 6.2 Table 6-186/Table 6-190
Device Configuration Objects?
6.0 Errata | 1372 Fix inconsistency for _PXM method in section 17 Section 17.2.1, Section 17.3.2
6.0 Errata | 1368 Various errata fixes and clarifications in chapter 18 APEI Section 18.3.1,.Section 18.3.2.7.
1, Section 18.5.1, Section 18.6.1,
Section 18.6.2 , Section 18.6.4
6.0 Errata | 1361 Clarify _PIC Method on ARM Section 5.8.1
6.0 Errata | 1289 replace use of the term "BIOS" with more accurate Throughout
descriptions
6.0 Errata | 1154 Ensure that ACPI and UEFI specs agree on the treatment of | Section 15.4
"holes" in the memory map
6.0 1370 Changes needed for ACPI 6.0: persistent memory S4 Section 16.3.4
behavior
6.0 1359 Vendor Range for E820 Address Types and UEFI memory | Table 15-364

Version 6.2 Errata A

Page viii

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
6.0 1354 Disambiguation of _REV Section 5.7.4
6.0 1343 Comments against v6.0 Final Draft Section 18.6.2; Section 18.6.4
6.0 1340 comment against the Final Draft: Minor errata in register Section 8.4.4.3.4
fields of LPl example
6.0 1332 Fixes for ACPI 6.0 Draft March 2 Table 5-38;
Section 5.2.25.2Table 5-129
6.0 1328 ACPI 6.0 Draft feedback - Mantis 1228 Table 5-63
6.0 1337 Missing reference in Extended Address Space Descriptor Section 6.4.3.5.4
Definition, Section 6.4.3.5.4
6.0 1333 ACPI 6.0 March2 Draft Feedback - Bits and NFIT related NFIT throughout
6.0 1329 ACPI 6.0 Feb 18 Draft - Follow consistent notation for Bits throughout
and Bytes ranges
6.0 1327 ACPI 6.0 Feb 18 draft feedback - NFIT related NFIT throughout
6.0 1324 ACPI 6.0 Feb 5 Draft1 Feeback?2 - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1Sect
ion 5.6.6
6.0 1320 ACPI 6.0 Feb 5 Draft1 Feedback - Mantis 1250 Section 5.2;
Section 5.2.25;;Section 6.1.1Sect
ion 5.6.6
6.0 1319 Comment against ACPI 6.0 Draft 1 concerning Mantis 1279 | Section 19.1;Section 19.6.3;Secti
on 19.6.5;Section 19.6.26;;Sectio
n 19.6.31;Section 19.6.60;Sectio
n 19.6.61Section 19.6.69 -
Section 19.6.75;
Section 19.6.79Section 19.6.86S
ection 19.6.87Section 19.6.93
6.0 1312 Add USB-C Connection support to _UPC Table 9-291;Section 9.14
6.0 1306 New ACPI Version Placeholder Table 5-34
6.0 1302 Errata on reference in section 6.2.11.2 Platform-Wide Section 6.2.11.2
OSPM Capabilities
6.0 1294 Typo in section 5.7.2: "Section" used when "Table" was Section 5.7.2
meant
6.0 1293 Reserve "STAQ" and "XENV" table signatures Table 5-31
6.0 1292 A Missing space in first paragraph of Section 2.4 Section 2.4
6.0 1284 Battery ACPI ECR Section 5-181
Section 10.2.2.7;Table 10-319
;Section 10.2.2;Table 10-321
6.0 1282 AML: Improve Disassembly of Control Method Invocations Section 19.6.44;Section 20.2.5.2;
Section 20-430
6.0 1281 ASL Printf and Fprintf Debug MacrosTable 10-321Table 10- | Section 19.2.5;Section 19.2.6;Se
321 ction 19.3.4;Section 19.3.5.2;Sec
tion 19.3;Section 19.4;Section 19
.6.52;Section 19.6.108;

Version 6.2 Errata A

Page ix

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
6.0 1280 ASL Helper Macro for _PLD (Physical Location of Device) - | Section 19.2.6;Section 19.3.4;Se
ToPLD() ction 19.3.5.2;Section 19.4;Sectio
n 19.5;Section 19.6.141
6.0 1279 ASL Extensions for Symbolic Operators and Expressions Section 19.1;Section 19.6.3;Secti
(ASL 2.0) on 19.6.5;Section 19.6.26;;Sectio
n 19.6.31;Section 19.6.60;Sectio
n 19.6.61Section 19.6.69 -
Section 19.6.75;
Section 19.6.79Section 19.6.86S
ection 19.6.87Section 19.6.93
6.0 1265 Missing word in figure 1-1 Figure 1-6
6.0 1264 Device Power Management Clarifications Section 2.3;Section 2.3.1;Section
3.3.1;
Section 3.3;Section 3.4Section 3.
4.2Section 3.4.3Section 3.4.3Sec
tion 3.4.4x); Section 7;
Section 7.1Section 7.2x;
Section 7.3
6.0 1262 New Thermal Zone Objects Table 5-
181;Section 11.1.5.1;Section 11.
4.8;Section 11.4.21
6.0 1261 _OSC, add OS-->Platform information to communicate >16 | Table 6-195
p-states are supported
6.0 1258 Standby Thermal Trip Section 11.4.5
6.0 1253 Clarification of S5 (Soft-Off) and S1~S4 Sleeping States Section 2.4;Section 3.9.4;Section
4.7;Section 4.8.2.3;Section 4.8.3
.2.1;Section 7.3.1
6.0 1252 Incorrect Indentation in first page of Section 3 Section 3
6.0 1250 Support for Non-Volatile Memory Firmware Interfaces Section 5.2;
Section 5.2.25;;Section 6.1.1Sect
ion 5.6.6
6.0 1241 PCC and level interrupts for HW reduced platforms Section 14.1.2;Section 14.1.5
6.0 1232 Deprecate Processor Keyword Table 5-47;Table 5-
53;Section 5.2.12.10;Section 5.2.
12.12;Section 8.4;
;Section 11.7.1;Section 11.7.2;
;Section 19.6.30;Section 19.6.10
9
6.0 1231 Adjust max p-states Section 2.6
6.0 1230 Adding Support for Faster Thermal Sampling Table 6-195; Table 5-181
:Section 11.4.17
Section 11.4.22;Section 11.6
6.0 1229 Reserve IORT and support for ARM GICv3/4 ITS in MADT | Table 5-30; Table 5-46;

Section 5.2.12.18

Version 6.2 Errata A

Page x

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
6.0 1206 Clarify _HID/_CID/_CLS usage model Section 6.1;Section 6.1.5;Section
6.2x
6.0 1203 CPPC heterogeneous performance capabilities Section 8.4.7;Section 8.4.7.1.10;
6.0 1197: MADT Efficiency Classes and wording change for MP Table 5-61
Parking update
6.0 1176 FADT Hypervisor Vendor Identification Support Table 5-34
6.0 1171 Extend Address Ranger Types and UEFI Memory Type to Table 5-
comprehend persistent memory. 38;Section 6.4.3.5.4.1;Section 15
; Table 15-369,Section 15.4
Table 15-370
6.0 1152 Support for Platform-specific device reset Section 7.3.25 and
Section 7.3.26 t; Table 7-253
Table 7-254
6.0 1132 Generic Button(s) Abstraction Table 5-180; Add new
Section 9.19 and following.
6.0 1125 ACPI Low Power Idle Table (LPIT) and _LPD proposal Section 5.6.7;Section 5.6.8;
Table 6-195;
Section 7.1;Section 7.2.5;
Section 7.4.2.1;Section 8.4;Secti
on 8.4.1;
Section 8.4.2;Section 8.4.2.1;
Section 8.4.3.1
5.1 Errata | 1265 Missing word in figure 1-1 Figure 1-6
5.1 Errata | 1252 Incorrect Indentation in first page of Section 3 Section 3
5.1 Errata | 1243 Clarify whether or not the FACS is optional or not Section 5.2.9; Table 5-34
5.1 Errata | 1233 Fix broken Link and Example for CLS Section 6.1.3
5.1 Errata | 1228 Present GIC version in MADT table Table 5-63
5.1 Errata | 1196 Table reference in Section 9.8.3.2 is Incorrect Section 9.9.3.2
5.1 Errata | 1193 Parking protocol field link is incorrect Section 5.2.12.14;
Table 5-61
5.1 Errata | 1190 Table references in Section 18 - ACPI Platform Error Table 18-373; Table 18-375
Interfaces (APEI) are incorrect
5.1 Errata | 1189 _CCA attribute default value description does not work for Section 6.2.17
ARM systems
5.1 1181 MADT GICC table definition is wrong Table 5-61; 5.2.12.14
51 1180 FADT minor version byte length is wrong 5-34
5.1 1179 Errors in GTDT Section of 5.1 draft 5.2.24,5.2.24.1;Tables 5-115, 5-
118, 5-121, 5-122
5.1 1175 Bad section reference in ACPI 5.1 19.2.3
5.1 1164 Modifications to UEFI Forum ownership of PNP ID and 6.1.5
ACPI ID Registry

Version 6.2 Errata A

Page xi

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
5.1 1161 Misc typos in draft documents 5.2.1.6;
5.2.16.4;5.2.24;5.2.12.14;
5.2.24.1.1; Table 5-74;Table 5-
115-116;Table 5-118-119; Table
5-121; Table 5-61; 5-61 8.4.5.1,
8.4.5.1.2.3 Table 6-162, Table 8-
229; RM duplicates from 1123/
1130:8.4.5.1.31.1
5.1 1160 ACPI 5.1 draft corrections related to _DSD (SEE 1126 6.2.5;Was Table 5-133 & 6-142
BELOW) now-->5-148 & 6-157
5.1 1157 Reserve ACPI Low Power Idle Table Signature "LPIT" Table 5-31
5.1 1155 Updates to M1133 MADT Table 5-63, 5-64
51 1151 Bug in ASL example code PRT3 code example following
Figure 9-49
5.1 1149 GTDT changes for new GT Configurations 5.2.24,5.24 1x
5.1 1136 Add a Notification Type for System Resource Affinity Table 5-119 Device Object
Change Event Notifications,
new 17.2.2
5.1 1134 FADT changes for PSCI Support on ARM platforms Table 5-34, 5-36, New table 5-37
5.1 1135 PCC Doorbell Protocol for HW-Reduced Platforms 14.1.1,14.1.2-4,14.2.1-2, 14.3-4
5.1 1133 MADT Updates for new GICs 5.2.12.15-17, Table 5-43, 5.2.12
table 5-45, 5-60, 5-61, 5-63, 5-66
5.1 1131 Per-device Cache-coherency Attribute 6.2, 6.2.16; Was Table 6-142--
>Table 6-153
5.1 1126 Add _DSD Predefined Object-- “DeviceSpecific Data” Was Table 5-133 & 6-142 now--
properties >5-148 & 6-157
5.1 1123 CPPC Performance Feedback Counter Change Tables 5-126, 8.4.5, 8.4.5.1x
1130 CPPC2 8.4.5.1,8.4.5.1.3.1-4; Was Table
[overlapping/duplicate tickets] 8-218-->8-229
5.1 1116 Add x2APIC and GIC structure for MAT method 6.2.10
50B 1145 Support GICs in proximity domain 5.2.16 5.2. new section 16.4 new
tables, 6.2.13 Table 5-65
50B 1144 Fix the gap for Notify value description 5.6.6, new tables: Table 5-132, 5-
133
50B 1142 Error Source Notifications 18.3.2.6.2, 18.4, Table 18-290
50B 1117 Move http://acpi.info/links.htm content to UEFI Forum 1.10,5.2.4,5.2.22.3, 5.2.24,
Website 5.6.7,9.8.3.2, 13, 13.2.2 A.2 4,
A.2.5; Tables 5-31, 5-60, 5-133
5.0B 1113 Typos in ACPI 5.0a Table 6-184
50B 1148 Inconsistent BIX object description/example Was Table 10-234-->10-250
5.0B 1143 Typos in ACPI 5.0a 6.1.8,8.4.1

Version 6.2 Errata A

Page xii

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
50B 1102 Clarify Use of GPE Block Devices in Hardware-Reduced 3.11.1,4.1,9.10
ACPI
5.0B Mantis 1114 Lack of description on Bit 4 of STA 6.3.7
50A dJira 51 incorrect type information Table 19-322
50A Jira 50 Misspelling of “management” 3.10
50A Jira 49 Updated description of DerefOf to specify behavior when | 19.5.29
attempt is made to de-reference a reference (via Index) to a NULL
(empty) package element.
50A Jira 48 Text changes to change PM Timer from required to 48.1.4,4.8.2.1,4.8.3.3,5.2.9
optional
50A Jira 46 Figure 5-29 is a printer killer Fig 5-29
50A Jira 45 Typos in Figure 5-30 Fig 5-30
50A Jira 44 Link issues in table 5-133 Table 5-133
50A Jira 43 Invalid AddressSpaced keywords in example ASL code, 6.5.4
orphan REG
50A Jira 42 Serious bug in ASL example code for _OSC 6.2.10.4
50A Jira 41 Fix problems with PCC address space description 14.5
50A Jira 40 Issues with _GRT and _SRT Buffer description 9.18.3,9.18.4
50A Jira 39 Clarification needed for _CST Table 8-206
50A Jira 38 Incorrect field name in "Generic Register Descriptor". 6.4.3.7
50A Jira 37 Clarifications for _CPC method 8.4.5.1.2.1-2
50A Jira 36 Restore legality of module-level executable AML code. 19.1.3
50A Jira 35 ASL grammar: "UserTerm" is confusing 19.1
50A Jira 34 Description of _GTM has a bad line with very large font 9.8.2.1.1
50A Jira 33 Missing information in _CPC description 8.4.5.1
50A Jira3 2 Error in description of _REG method 6.5.4
50A Jira 31 Clarify length field for Serial resource descriptor 6.4.3.8.2
Table 6-190
50A Jira 30 Argument descriptions in incorrect order for resource 19.5.41,19.5.101
descriptors
50A Jira 29 Issues with memory descriptors (grammar and macros) 19.1,19.5
50A Jira 28 Problems with ASL grammar entry for DWordMemory 19.1.8
50A Jira 27 Problems with Unicode description for _MLS method 6.1.7
50A Jira 26 Incorrect grammar for "32-bits" and "64-bits" throughout
50A Jira 25 Incorrect table reference in 19.2.5.4 19.2.54
50A Jira 24 Resource Descriptor tables -- formatting issues 6.4
50A Jira 23 Interrupt Descriptors: Wake bit should be split from Share | 6.4
bit
50A Jira 22 ASL grammar for ObjectType operator is incorrect 19.1.6
50A Jira 21 ASL grammar is missing description of type 6 opcodes 19.1.5

Version 6.2 Errata A

Page xiii

ACPI Specification

14)

ACPI Mantis Number / Description Affected Sections

Revision

50A Jira 20 Problems with table 5-31 (reserved ACPI table signatures) | Table 5-31

50A Jira 19 Clarify description of _BQC method B.5.4

50A Jira 18 Fix for EC OpRegion availability example 5.2.15

50A Jira 17 Clarify meaning of BGRT status field Table 5-97

50A Jira 16 Correction to _DSM example 9.14.1

50A Jira 15 Clarify _DSM backward compatibility requirement and 9.15.1
example

50A Jira 14 Description of _CPC is missing definition of unsupported 8.4.5.1
optional registers

50A Jira 13 Incorrect PLD name expansion Table 5-133, 6.1.8

50A Jira 12 PLD description needs clarification 6.1.8

50A Jira 11 Errata forwarded from HP 5.2.2456.5.3

50A Jira 10 More issues with ACPI table 5-133 Table 5-133

50A Jira 7 Error in QWordlO, ExtendedlO descriptions 19.5.41,19.5.101

50A Jira 6 Appendix A is now misnamed in ACPI 5.0 Appendix A

50A Jira 5 PARTIAL--Need group agreement--Method _GTS and 7.3,7.3.3,16.1, 16.1.6-7, fig. 7-
_BFS are unused, should be removed from ACPI spec. 204

50A Jira 4 Table 5-133 - issues with _Sx methods Table 5-133

50A Jira 3 Issues with predefined names table (table 5-133) Table 5-133

50A Jira 2 Description of new sleep control register incorrect Table 4-24

50A Jira 1 SystemCMOS keyword inconsistencies Table 5-114,5.5.2.4.1,6.5.4

19.,56.96, 9.15.1 - 2, 19.5.96,
20.2.5.2

5.0 Ptec-002 5.2.6

Dec. 2,

2011

5.0 MSFT-020 Enumeration Power Controls 7.2.7,7.212,

5.0 MSFT-019 GTDT table 5.2.24

5.0 MSFT_0018 Locking Targets from AML 575

5.0 MSFT-0017 PLD clarification for handhelf form factors 51.8

5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3

5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1,7.2.18 through 7.2.22

5.0 MSFT-0014 5.2.23

5.0 MSFT-0013_ADR for SIO 6.2

5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6,9.16
MSFT-010 Reserved Table Signatures 5.2.6

5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18

5.0 MSFT-0008 Collaborative Processor Performance Control 8.45

5.0 MSFT-0007 Platform Communications Channel added (new ch. Ch 14 (new)

Version 6.2 Errata A

Page xiv

ACPI Specification

ACPI Mantis Number / Description Affected Sections
Revision
5.0 MSFT-0007-0008 - (new) 14
Platform_Communication_Channel_and_CPPC_changes
5.0 MSFT-0006 SPB Abstraction 3.11.3,5.5.2.4.5.x,6.4.3.8.2,
6.5.8,18.1.3, 18.1.6, 18.1.7,
18.5.44,18.5x,19.2.5.2
5.0 MSFT-0005 GPIO Abstraction 5.5.2.4.x,5.6,5.6.5.x, 6.4.3,
6.3.8.x, 18.5.51, 18.5.52, 18.5.89
5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50
5.0 MSFT-0003 Device identification 6.1,6.1.3,6.1.5,6.1.6,6.1.9
5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt Controller 5.2.11,5.2.14-15
5.0 MSFT-0001 HW-reduced ACPI 3.11.x,4,4.1x,4.3.7,5.2.9,
5.2.9.1,6.4.21,6.4.3.6,7.2.11,
7.34,96,12,12.1,12.6, 12.11,
12.11.1, 15, 15.1.x, 15.3,
15.3.1.x, 18.5.55, 18.5.57
5.0 INTC-0014 Remove a line (reference) not needed A23
5.0 INTC-0013
5.0 INTC-0012 fix AML opcode table 19.3
5.0 INTC-0011 fix table offsets 18.6.x (tables)
5.0 INTC-0010 Update Constant Descriptions 18.5.88,
18.5.89,18.5.104,18.5.136
5.0 INTC0009 RASF 5.2.20.x
5.0 INTC-008 5.2.6
5.0 INTC-006 Fixed Example 6.2.10.4
5.0 INTC-005 Update Package Description 18.5.92
5.0 INTC-004 Table Definition Language 20, 21.x
5.0 INTC-003 MPST 6.1,6.1.3,6.1.5,6.1.6,6.1.9
5.0 INTC-002 EINJ 17.6.1,17.6.3, 17.6.5
5.0 INTC-001 (0.8) Firmware Performance Data Table (FPDT) 5.2.20.4,5.2.20.6
5.0 INTC-001 Firmware Performance Data Table (FPDT) (0.4) 5.2.19-5.2.20.6
5.0 HP-0002 Additional Hardware Error Notification Types 18.3.2.7
5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5,6.3.5
5.0 ACPI4.0 _DSM function O clarification 9.14.1
5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3
4.0a Errata corrected and clarifications added.
Apr. 2010 | Removed text concerning government requirement of mechanical | 2.2
off 5.2.6
Clarified URL update document, Corrected section references for
APIC, SLIT, SRAT in Table 5-5, Update URLs and reformated 52124
Table 5-6 5.2.18

Version 6.2 Errata A

Page xv

ACPI Specification

ACPI
Revision

Mantis Number / Description

Affected Sections

Removed “TODO” note. Updated example

Repaired diagram that would not display properly Figure 15-1
Corrected error conditions from “fatal” to “corrected

Corrected several incorrect section references, Clarified number
of Generic Error Data Entry structures is >=1 (not Zero)
Clarified number of Generic Error Data Entry structures is >=1
(not Zero)

Added new section clarifying SCI notification for generic error
sources

Added new section describing Firmware First error handling
Clarified purpose of the codes Table 17-17

Added reference to table of COMMAND_STATUS codes Table
17-23

Clarified purpose of the command status codes in Table 17-27
and the error type definitions in Table 17-28

Added _ATT resource descriptor field name

Clarified rules for Buffer vs. Integer return types from a field unit
Corrected section/page reference

10.4.1

10.5
15.1
17.1
17.3.1

17.3.2.6.1
17.3.2.6.2
17.4
17.5.11
17.6.1
17.6.3

18.1.8
18.5.44,89
18.5.101

4.0
June 2009

Major specification revision. Clock Domains, x2APIC Support,
Logical Processor Idling, Corrected Platform Error Polling Table,
Maximum System Characteristics Table, Power Metering and
Budgeting, IPMI Operation Region, USB3 Support in _PLD, Re-
evaluation of _PPC acknowledgement via _OST, Thermal Model
Enhancements, _OSC at\ SB, Wake Alarm Device, Battery
Related Extensions, Memory Bandwidth Monitoring and
Reporting, ACPI Hardware Error Interfaces, D3hot.

3.0b
Oct. 2006

Errata corrected and clarifications added.

3.0a
Dec. 2005

Errata corrected and clarifications added.

3.0
Sept. 2004

Major specification revision. General configuration
enhancements. Inter-Processor power, performance, and
throttling state dependency support added. Support for > 256
processors added. NUMA Distancing support added. PCI
Express support added. SATA support added. Ambient Light
Sensor and User Presence device support added. Thermal model
extended beyond processor-centric support.

2.0c
Aug. 2003

Errata corrected and clarifications added.

2.0b
Oct. 2002

Errata corrected and clarifications added.

2.0a
Mar. 2002

Errata corrected and clarifications added. ACPI 2.0 Errata
Document Revision 1.0 through 1.5 integrated.

Version 6.2 Errata A

Page xvi

ACPI Specification

ACPI
Revision

Mantis Number / Description

Affected Sections

ACPI 2.0
Errata
Doc. Rev.
1.5

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc. Rev.
1.4

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc. Rev.
1.3

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc. Rev.
1.2

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc. Rev.
1.1

Errata corrected and clarifications added.

ACPI 2.0
Errata
Doc. Rev.
1.0

Errata corrected and clarifications added.

2.0
Aug. 2000

Major specification revision. 64-bit addressing support added.
Processor and device performance state support added.
Numerous multiprocessor workstation and server-related
enhancements. Consistency and readability enhancements
throughout.

1.0b
Feb. 1999

Errata corrected and clarifications added. New interfaces added.

1.0a
Jul. 1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec. 1996

Original Release.

Version 6.2 Errata A

Page xvii

ACPI Specification

Table of Contents

ReViSioN HiStOry...... .o s s s e r s nnman iii
L =T 1
T INErodUCHION. ... ———————— 9
S T T T o = 1 € T = LSRR 9
1.2 Power Management RatioNale............c..uuiiiiiiiiiiie e 10

LIRS Yo F= Toy VS 10 o] o Yo o AP PPP I 11

1.4 OEM Implementation SIrategyuuuiiiiiiiiiiiiiiiiiiieeeeeeeeeee e e e e e 11
1.5 Power and SIEEP BULIONSuuuiiiiiiiiiiiiiiiiiiiiiee et e e e e ee e e e e e e e eeeeeeeeeeeeeeeeeaaees 12
1.6 ACPI Specification and the Structure of ACPIovviiiiiiiiiiiiiiiiiieeeeeeevveeeeeeeeeeeee e 12

1.7 OS and Platform COMPIANCEuuuuiiiiiiiiiiieiiiiiiieeeeeeeeee ettt ettt e e e e e e e e e e e e e aeaaaaaaaes 14
1.7.1 Platform Implementations of ACPI-defined Interfacesccccccc . 14

1.7.2 OSPM Implementationsccooviiiiiiiiiiiiiiieee e 18

1.7.3 OS ReQUIrEMENTES....cooiiiiiiiiiiieeee e, 18

R T = 1o 1= U T 1= o Lot R 19

1.9 Document Organizationoooooiiiiiiiiiiiei e 19
1.9.1 ACPI Introduction and OVEIrVIEWcooiiviiiiiiiiiiiiiiee e 20

1.9.2 Programming MOGEISccooiiiiiiiiiiiii e 20

1.9.3 Implementation Details............ccooii i 20

1.9.4 Technical REfErENCEcooiiiiiiee e 22

1.10 Related DOCUMENTSuuiiiiiiiiiiiieiiieeeiee ettt et et et e e e e e eeeeeeeeeeeeeeeeeeaeeeeeeeeeaaaaeees 22

2 Definition Of TErMS ... s mmmnnnnes 25
2.1 General ACPI TermMiNOIOQYccceeiiiiiiiiiieiiie ettt e e e 25
2.2 Global System State Definitionsc..ueiiiiiiiii e 35
2.3 Device Power State DefinitioNS............ueiiiiiiiiiiiiiiiiiiieeeeeeeeeeer ettt 37
2.3.1 Device Performance States ... 39

2.4 Sleeping and Soft-off State DefinitioNSeevviiiiiiiiiiiii 39
2.5 Processor Power State Definitionscooviiiiiiiiiiiiee e 40
2.6 Device and Processor Performance State Definitions ... 40

3 ACPI CONCEPLS ...cceiiiieiimnnncrcisess s s e s s s e s s e s s e ensssssssss s s s s sees s e e e e e e e s s nnnnnsnnsssssssssssnssnnnnnnnns 43
3.1 System Power Management............uuiiiiiiiiiii e 45
3.2 POWET SEAES...uuiiiiiiiiiiiiiiiii et e et e et e e e et e e e e et aa e e e e e e e et aaaaaaaaaaaaaaaaaaaas 45
3.2.1 PoOWer BUHON. ...ttt eneee 46

3.2.2 Platform Power Management CharacteristiCs..........ccccccuuvruiiiuriimuiiiiiiiiiiiiiinnnnnnns 46

3.3 Device PoOWer ManagemeENnt.......ccooioiiiiiiiiiiiis et e e e e e e e e e e e e e e e aeeeees 47
3.3.1 Device Power Management Model ... 48

3.3.2 Power Management Standards.............eeeveiiiiiiiiiiie e 49

3.3.3 Device Power Statesccooiiiiiiiieecc e 49

3.3.4 Device Power State Definitions............oeeiiiiiiiiiieee e 49

3.4 CoNtrolling DEVICE POWETuuieiiiiiiiiiiieiieeeeeeeeee ettt ettt ettt a e e e e e e e e e e e e e e e e e aaaaaaas 50
3.4.1 Getting Device Power Capabilities.............cooooiiiiiiiin i 50

Version 6.2 Errata A Page xix

ACPI Specification

3.4.2 Setting Device Power States...........ooooooiiiiiii s 51

3.4.3 Getting Device Power Status ... 51
3.4.4Waking the System ..., 51

3.4.5 Example: Modem Device Power Managementccooooviieeiiiiiiniiiiiiieeee e 52

3.5 Processor Power Management.............ooiiiiiiiiiiiiiiee et 55
3.6 Device and Processor Performance States ... 55
3.7 Configuration and “Plug and Play’oooeiiiiiiiiiiieeeeeeee e, 56
3.7.1 Device Configuration Example: Configuring the Modemccccceiiiiiicinnnnnn, 56

3. 7.2 NUMA NOGES ...ttt ee e e e e e e e et e e e e e e e e s s nsnneeeaaeeeans 56

3.8 SYSEM EVENTS ... 57
3.9 Battery Management...........oooo i 57
3.9.1 Battery COMMUNICAtIONSuiiiiiiiiiiiiii e 58
3.9.2 Battery Capacity......ccooviiiiiiie 58
3.9.3Battery Gas GauQgeooooiiiiiiiiie e, 59
3.9.4 LoW Battery LEVEIS.....cco oo 59

3.9.5 Battery Calibration............ooiiiiiiii 61

3.10 Thermal Management...........ooo i ea e e 62
3.10.1 Active and Passive Cooling MOESccooiiiiiiiiiiiiiiiieeee e 62
3.10.2 Performance vs. Energy Conservationoooooiiiiiiiiiicciiccccec e 63
3.10.3 AcoUSEICS (NOISE) ..ccooeiiieeeeeeeeee e, 63
3.10.4 Multiple Thermal ZONES. oot eeeeeeeeeeeeseeeeeeeeees 63

3.11 Flexible Platform Architecture SUupport ... 63
3.11.1 Hardware-reduced ACPIt eeeeeeeseeeeeeeeees 64
312 Low-Power Idle ... 64
3.11.3 CoNNECHION RESOUICESiiiiiiiiiee et 64

4 ACPI Hardware Specification...........couveeuiiiiiiicecirie s rrsnes s s ressss s e s s s mmmann s 67
4.1 Hardware-RedUCEA ACPI ...ttt e e e e e e e e e nneeeees 67
4.1.1 Hardware-Reduced Eventsoooviiiiiiiiiii 68

4.2 Fixed Hardware Programming MOlcoooiiimiiiiiiiiiiie e 68
4.3 Generic Hardware Programming MOdelccuuuiiiiiiiiiiiiicee e 69
v R B T F=To | = o ¢ T = To 1= oL £ SR 71
4.5 Register Bit NOtatioNvuve e e e e e 72
4.6 The ACPI Hardware MOElcoooiiiiiiiieie et 72
4.6.1 Hardware Reserved BitScoooviiiiiiiiiiiiii 77
4.6.2 Hardware Ignored BilSoooiiiiiiiiii e 77
4.6.3 Hardware Write-Only BitS.........c..uuiiiiiiiiiiiiee e 77
4.6.4 Cross Device DEPENAENCIES.........coovveeiiiiiiiiiiieeee e 77

4.7 ACPI Hardware FEAtUIESuuiiii ettt e e e e e e 78
4.8 ACPI REGISIEN IMOUEIuuviiiiiiiiiiiiiiiiiiiitiiiti ettt ee e e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeaeeeaaeeaaaaaaaas 80
4.8.1 ACPI RegiSter SUMMANYoouiiiiieiie et 83
4.8.2 Fixed Hardware Features. ... 85
4.8.3 Fixed Hardware RegiSters...........uuiiiiiiiiiiiiiiiee e 95
4.8.4 Generic Hardware Registers..........ccccvvvviiiiiiiii 104

Version 6.2 Errata A Page xx

ACPI Specification

5 ACPI Software Programming Model ... 111
5.1 Overview of the System Description Table Architecture, 111
5.1.1 Address Space Translationoooooiiiiiiiiii i 114

5.2 ACPI System Description Tables........c.cooovviiiiiiiiiiii 114
5.2.1 Reserved Bits and Fields ... 115
5.2.2 ComPatiDility......cooeeieieieeee e 115
5.2.3 Address FOrmat...........ooooiiiii e 115
5.2.4 Universally Unique Identifiers (UUIDS)..........ccooiiiiiiiiii e 118
5.2.5 Root System Description Pointer (RSDP).......c.coooiiiiiiiieaes 118
5.2.6 System Description Table Headerccooiiiiiiiiiiicii s 120
5.2.7 Root System Description Table (RSDT)cooiiiiiiiiiiiiiiiieieeeeeeeeeee e 125
5.2.8 Extended System Description Table (XSDT)ccuuviiiiiiiiiiiiiieeeeeeeiieeeeen 126
5.2.9 Fixed ACPI Description Table (FADT)ouuiiiiiiieeeeeieeeeee e 127
5.2.10 Firmware ACPI Control Structure (FACS)........ccoiiiiiiias 142
5.2.11 Definition BIOCKS.......cooiiiiiiiiieiiie et 148
5.2.12 Multiple APIC Description Table (MADT)......cccoooiiiiiiii e 151
5.2.13 Global System INTEIrTUPLS.........ceiiiiiiiiii e 168
5.2.14 Smart Battery Table (SBST)ccoiiiiiiiieiei e 169
5.2.15 Embedded Controller Boot Resources Table (ECDT)cccccvvuvvvrivrneinnnnnnnns 170
5.2.16 System Resource Affinity Table (SRAT)cccoiiiiiiic s 172
5.2.17 System Locality Distance Information Table (SLIT)ccccccceviiiiiiinnnnnninnnnnnns 177
5.2.18 Corrected Platform Error Polling Table (CPEP) ... 178
5.2.19 Maximum System Characteristics Table (MSCT)oooooiiiieiiiiiiiiiiiieeeeeen 180
5.2.20 ACPI RAS Feature Table (RASF) ..o 182
5.2.21 Memory Power State Table (MPST)ccooiiiiiiiiiic s 186
5.2.22 Boot Graphics Resource Table (BGRT).......cccooeiiiiiiiiiiiias 204
5.2.23 Firmware Performance Data Table (FPDT)cccooiciiiiiiiiiiiiians 207
5.2.24 Generic Timer Description Table (GTDT)cccuviiiiieiiiieeeeeeeeeeeee e 213
5.2.25 NVDIMM Firmware Interface Table (NFIT) ... 219
5.2.26 Secure Devices (SDEV) ACPI Table ... 236
5.2.27 Heterogeneous Memory Attribute Table (HMAT).......ccccooiiiiiiniiiniiiiiiiiiiinns 240
5.2.28 Platform Debug Trigger Table (PDTT)cccoooiiiiiieieec s 249
5.2.29 Processor Properties Topology Table (PPTT) ... 253

I N O o I A= 0 =T o = Lo SR 259
5.3.1 Predefined ROOt NameESPaACESuuuuuuiiuiiiiiiiiiiiiiiieieeeeeeeeeeeee et e e e 262
LR I O o1 o1 T PP PPRR 262

5.4 Definition BIOCK ENCOAINGevviiiiiiiiiiiiieieeeeeeeeeeeeee e, 262
LT 3 N |V I = Vo o 1 Vo S 263
5.4.2 Definition Block Loading..........cooooiiiiiiiiiiiii e 263

5.5 Control Methods and the ACPI Source Language (ASL)........coooiiiiiiiiiiiiiiiiiiiieeeeeen 265
B5.5.1 ASL S atementst e e e e e e e e e eees 266
5.5.2 Control Method EXeCULION..........coooiiiiiii i 266

5.6 ACPI Event Programming MOdelooovviiiiiiiiiiiiii 291
5.6.1 ACPI Event Programming Model Components...........ccccccecuvunrirnninnnninnininnnnnns 291
5.6.2 Types Of ACPIEVENTS ..o 292
5.6.3 Fixed Event Handlingouiiiiiiiiiiee e 292

Version 6.2 Errata A Page xxi

ACPI Specification

5.6.4 General-Purpose Event Handlingcooooiiiiiiii i 293
5.6.5 GPIO-signaled ACPIEVENLSccoooiiiiiiiii i 297
5.6.6 Device Object Notificationsooooiiiiiiiiii i 300
5.6.7 Device Class-SpecCific ODJECLSccuviiiiiiiiiiie e 306
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources...................... 309
5.6.9 Interrupt-signaled ACPI @VENLScccuuuiiiiiiiiiii e 321
5.6.10 Managing a Wake Event Using Device PRW Objectscccccvvrrrrrnrnnnnns 324

5.7 Predefined ODJECESouviiiiiieeeeeeeeeeeeeeeee e, 324
5.7.1 _GL (Global LOCK MUEEX)eeeiiiiiiiieiiiiiie e 325
5.7.2 _OSI (Operating System INterfaces)ccccoouiiiiiiiiiiiiiiie e 325
5.7.3 1\ _OS (OS Name ODJECE)uueeiiiiiiiieiiiie e 328
5.7.4_REV (Revision Data ObJECt)........ccouiiuiiiiiiiiiiiiiiiieeee e 328
5.7.5 DLM (DeviceLock MULEX)......ccooiiiiiiiiii e 329

5.8 System Configuration ObJECLScoovviiiiiiiiiiiii 331
5.8.1 _PIC MELhOM ...t 331

6 Device Configuration...........ccccciiiiiiiiiiiiisiccccerrrr s s e s s e e e e e e e e e e nnns 333
6.1 Device Identification ODJECES.........c..uiiiiiiiiie e 333
B.1.1 _ADR (AQAIrESS) ...eeeieiiiiiie ettt et e e ettt e e e e e e e e anne e e e e e anreeaeens 334
6.1.2 _CID (Compatible ID)ccoiiiiiiiiiiic e 335
6.1.3 _CLS (Class COUE)coeeeiii i e 336
6.1.4 DDN (DOS DeVvice NamME).......cooeiiiiiiiii i 337
6.1.5 _HID (Hardware ID)cooiiiiiiiiieiie et 337
6.1.6 _HRV (Hardware ReViSIiON)cccoiiiiiiiiiiiie e 338
6.1.7 _MLS (Multiple Language StriNg)........ccuueeeeiiioiiiiiiiieeee e 338
6.1.8 _PLD (Physical Location of DEVICE)........cceeeiiiiiiieiic e 339
B.1.9 _SUB .. 347
6.1.10 _STR (SHNG) ..ttt 348
6.1.11 _SUN (SIot USer NUMDET).......cooiiiiiiiiiiiiii et 348
6.1.12 _UID (UNIQUE D).ttt 349

6.2 Device Configuration ODJECLSuuiiiiiiiii e 349
6.2.1 _CDM (Clock DOMAIiN)ccoooiiiiiiie e 350
6.2.2 CRS (Current Resource Settings)........ccoooeiiiiiiiiiiiicc s 351
6.2.3 _DIS (DiIS@DIE).......eeieiiieie e 351
6.2.4 _DMA (DireCt MEmOIrY ACCESS)ccciiiiiiriiiiiiie ettt 352
6.2.5 _DSD (Device Specific Data)ccouiuumiiiiiiiiiiiiiieeee e 353
6.2.6 _FIX (Fixed Register Resource Provider)cccueeveiiiiiiiiiiieeeee e 356
6.2.7 _GSB (Global System Interrupt Base)cccoooiiiiiiiiii 358
6.2.8 HPP (Hot Plug Parameters) ...t 359
6.2.9 HPX (Hot Plug Parameter EXtENSIONS)cccoeiiiiiiiii e 361
6.2.10 _MAT (Multiple APIC Table ENtry)coooiiiiiiiiiee e 366
6.2.11 _OSC (Operating System CapabilitieS)...........ccccuumriieiiiiiiiiiieeeeee e 367
6.2.12 _PRS (Possible Resource Settings) ... 377
6.2.13 _PRT (PCI RoUtiNg TaAbIE)coiiiiiiiiiiiiiiieeee e 377
6.2.14 _PXM (PrOXimity) ...coocueeie ettt 380
6.2.15 _SLI (System Locality Information)oooiiiiiiiiiiiii e 380

Version 6.2 Errata A Page xxii

ACPI Specification

6.2.16 _SRS (Set Resource Settings)........ccoooiiiiiiiiii i 383
6.2.17 CCA (Cache Coherency Attribute)ccoooeiiiiiiii s 384
6.2.18 HMA(Heterogeneous Memory Attributes)ccooeeiiiiiiiiiciiiis 385

6.3 Device Insertion, Removal, and Status Objects..........ccccciiii 386
6.3.1 _EDL (EjeCt DeVice LiSt)cc.uuuiiiiiiiiiiiieeee e 388
6.3.2 _EJD (Ejection Dependent DEVICE)..........uuuuiiiiiiiiiiiiiieeeiieiiiieeee e 388
6.3.3 _EJIX (EJECL) i 390
LI 0 I Qo o3« SRR 391
6.3.5 OST (OSPM Status Indication)ooooiiiiiiiiiii s 391
6.3.6 _RMV (REMOVE) ...t e e 396
B.3.7 _STA (StAtUS) e ieeeiee ettt e e e e e e e enne e e 396

6.4 Resource Data Types fOr ACPI..... ..o e 398
6.4.1 ASL Macros for Resource DesCriptors...........cooiiiiiiiiiciiiceans 398
6.4.2 Small Resource Data TYPEeoooooiiiiiiiii e 398
6.4.3 Large Resource Data TYPEc.uuuuiiii it e e e e eeees 404

6.5 Other Objects and Control Methods ... 450
B.5.1 INT (INIL) 1erriieeeeeeeeee e e e e e e e e e e e e e e s e aaae s 450
6.5.2 DCK (DOCK) ...ttt ettt e e e e e e e e e e e e e e e e e aaaaeas 451
6.5.3 _BDN (BIOS DOCK NAME)uuiiiiiiiieiiiiiiiiiee ettt a e 451
6.5.4 REG (REQION). ..ot 452
6.5.5 _BBN (Base Bus NUMDEI)coiiiiiiiiii e 454
6.5.6 _SEG (SEIMENL)eiiiiiiiiiiiie e 454
6.5.7 _GLK (GIOD@I LOCK)......uteeeeiiiiiie et ee e 455
6.5.8 DEP (Operation Region Dependencies)ccccceeicciiiinnrnneiiniiniiineininnnnnnes 456
6.5.9 FIT (Firmware Interface Table)coooiiiiiiii i 457
6.5.10 NVDIMM Label Methodscoiiiiiiiiiiiiieee et 457

7 Power and Performance Management..............cccccoiiiiiiimiieesccccmsssssssssssssessseeesennns 461
7.1 Power Resource Objects and the Power Management Modelsccccoooiiiiinennenn. 461
7.2 Declaring a Power Resource ODJECT..........ooiiiiiiiiiiiie e 462
7.2.1 Defined Methods for a Power RESOUICEuvviiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee e 464
A © | o PSPPI 464

725 T © PRSPPI 464

F A R S N N () = LU SR 465
7.2.5 Passive POWETr RESOUICES ...ttt e ee e e eeeeeeeeeeeeeeeeeeas 465

7.3 Device Power Management ODJECES.........ooiiiiiiiiiiiciiecee e 465
7.3.1 _DSW (DeVice SIEEP WaKE)cccoiiiiiiiiiieiee et 467
7.3.2 _PS0 (PoWer State 0)uuuueiiiiiiiiiiietie et ee e ee e e e e e e e e eeeeeeeeeeeeeeeeeees 468
7.3.3 _PS1 (POWET Sat 1) uuuieiiit et e e e e e e e e e e e e e e e eeeeeeees 468
7.3.4 PS2 (POWET STAtE 2) ...uuuiiiiititii ettt vee e e e eeesseeeeeseeeseeeeeeeeeeeeeeeeeees 468
7.3.5 _PS3 (POWEr SHate 3) oo 468
7.3.6 _PSC (Power State CUIMTENT).......ccoiiiiiiiiiiiee e 469

7.3.7 _PSE (Power State for Enumeration) ..o 469

7.3.8 _PRO (Power Resources for DO)..........ccccuuuuuiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeee e eeeeeeeeeees 469
7.3.9 _PR1 (Power ReSoUrces for D1).........uuuuiiuiiiiiiiiiiiiiieeeeieeeeeee e eee e ee e e e 470
7.3.10 _PR2 (Power Resources for D2)...........uuuuuiuiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 470

Version 6.2 Errata A Page xxiii

ACPI Specification

7.3.11 PR3 (Power Resources for D3hot)............uuuviiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeee e 471
7.3.12 _PRE (Power Resources for Enumeration)ceuvveieeiiiiiiieiiieeieeeeeeeeeeeee, 471
7.3.13 _PRW (Power Resources for Wake)...........uuuuviiiiiiieieiieeiieeeeeeeeeeeeeeeeee e 472
7.3.14 _PSW (Power State WakKe).......ccooiiiiiiiiiei e 473
7.3.15 _IRC (IN RUSH CUITENL) ... 474
7.3.16 _S1D (S1 DeViCe State)eueeiiiiiiiiiiiiiiiee e 474
7.3.17 _S2D (S2 DeViCe State)uuuuuiueiiiiiiiiiiiiiiiiiiteieettee e 475
7.3.18 _S3D (S3 DEViICE StAle) ...uuuuuuiiiiiiiiiiiiiiiiiiiiiiitieetttee e 476
7.3.19 _S4D (S4 DeViCe STate)uuuuuiiiiiiiiiiiiiiiiiiittettee e 476
7.3.20 _SOW (SO Device Wake State)cuueeiiieiiiiiiiieiieeee e 477
7.3.21 _S1W (S1 Device Wake State)ccueveiiiiiiiiiiie e 477
7.3.22 _S2W (S2 Device WaKe State)ccuuueeiiiiiiiiiiieeee e 477
7.3.23 _S3W (S3 Device Wake State)ccccvvivuiiriiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeeeee e 478
7.3.24 SAW (S4 Device Wake State)cvvuriiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 478
7.3.25 RST (DEVICE RESEL)uuuiie ettt e e e e e e e e e e e e e eeeeeeeees 479
7.3.26 _PRR (Power Resource for RESet) ... 479

7.4 OEM-Supplied System-Level Control Methodsccccoooeii 479
741N\ _PTS (Prepare TO SIEEP).. .. ccuuuiuiiueiiuiiniiiieeereerereeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeees 480
7.4.2 System _SX STAteS ... 480

7.4.3 _SWS (System WaKe SOUIMCE)ccuuuiiiiiiiiiiiiiiiiiiirreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 485
7.4.4_TTS (Transition TO State).......cccoiiiiiiiiiiiiiii e 486
7.4.5_ WAK (SyStem WaKe)cuuiiiiiiiiiiiie et 487

7.5 OSPM usage of _PTS, _TTS,and _WAK ..., 488
8 Processor Configuration and Control.............ccccoiiinniicciniiee 489
8.1 Processor POWET StAtesScooiiiiiiiiiiiiiiee e 489
8.1.1 Processor Power State CO.........ccoiiiiiiiiiiiiiiiie e 491
8.1.2 Processor POWer State C1........ooiiiiiiiiiiii e 493
8.1.3 Processor Power State C2........oooiiiiiiiii e 493
8.1.4 Processor Power State C3 ... 493
8.1.5 Additional Processor Power States..........coooviiiiiiiicccccc s 494

8.2 FIUSNING CACRESoeeeeiieieeeeeeeeee e, 495
8.3 Power, Performance, and Throttling State Dependencies.....................c..ccc. 495
8.4 DECIariNg PrOCESSOIScuuuuuiiiiieeiieetiiie e e e e et e e et ee e e e e e e e eeeeat e e e eaeeeeeasaanaeeaeaaeennnes 496
8.4.1 _PDC (Processor Driver Capabilities) ..o 496
8.4.2 Processor Power State Control...........cooooiiiiiiiiii i 498
8.4.3 Processor HIierarChy.........oooouuiiiiiiiiiiie et 503
8.4.4 Lower Power Idle Statesooviiiiiiiiiiiiee e 505
8.4.5 Processor Throttling Controls.............cooooiiiiiiiiiiicc s 530
8.4.6 Processor Performance COoNntrol...........c..uuueiiieiiiiiiiiiieee e 538
8.4.7 Collaborative Processor Performance Control...........ccccccooiioiiiiiiiiiiiiiiiiine 546
8.4.8 _PPE (Polling for PIatform Errors)ueeeviiiiiiiiiiieee e 564

8.5 Processor Aggregator DEVICEuuuiiiiiiiiiiiieee et 564
8.5.1 Logical Processor IdliNgGccuuuuuuiiii et e e e e e e e e e e eeeeees 564
8.5.2 OSPM _OST EVAlIUGLION ...ttt 565

Version 6.2 Errata A Page xxiv

ACPI Specification

9 ACPI-Defined Devices and Device-Specific Objectscccovviiiimmemmrnnnnnnneennn, 567
9.1 Device Object Name ColliSIONcoviiiiiiiiiiiiiiiiiiieeeeeee e, 567
9.1.1 _DSM (Device Specific Method)ccoooiiiiiiiiiiic s 567

9.2\ S| SyStemM INAICAIOrSeviiiiiiiiiieeeeeeeeeeeeeeee e, 570
9.2.1 _SST (SyStem Status)......coiiiiiiiiiiieeee e 570
9.2.2 _MSG (MESSAQGE) -..eeeeeieeeiiiiiiiiee ettt e e e e aaeeas 570
9.2.3 _BLT (Battery Level Threshold)ccuuiiiiiiiiiiiiiiieeeeee e 571

9.3 Ambient Light SENSOr DEeVICe......coccvvviiiiiiiiiii 571
O.3.1 OVEIVIBW ..ttt ettt e e e ettt e e e e e e et e e e e e e e e s nnsteeeeeeeeaaannnnneeeaaens 572
9.3.2 _ALI (Ambient Light lluminance)cooooiiiiiiiiiiccc s 572
9.3.3 _ALT (Ambient Light Temperature)...........cccccoiriiiiiiiiiiiee e 573
9.3.4 _ALC (Ambient Light Color Chromaticity)cccuvieeeiiiiiiiie e 573
9.3.5 _ALR (Ambient Light RESPONSE).......cccuuiiiiiiiiiiii e 574
9.3.6 _ALP (Ambient Light POIING)ccueieiiiiiiiiii e 578
9.3.7 Ambient Light SENSOr EVENLS.......ccoooiiiiiiiiiiie e 578
9.3.8 Relationship to Backlight Control Methodsccccciiiiiiiiiiiii, 579

9.4 BAtEry DEVICE......eeeiiieiiiieee ettt e e e 579
9.5 Control Method Lid DEVICE.........eeiiiiiiiiiiieeeeeeeeee et 579
S T | PSPPI 579

9.6 Control Method Power and Sleep Button Devices..........cccccoeeiiii, 580
9.7 Embedded CoNntroller DEVICEuuuiiiiieee et e e e e e e 580
9.8 GeneriC CoNtaiNEr DEVICEuuuiiiiiiiiiieeeeeeeee ettt 580
R N N O] ol (o] | [=T DTV o SR 581
9.9.1 Objects for Both ATA and SATA Controllers.............eeeeeiiiiiiiiiieeeieeiiiiieeeen 581
9.9.2 IDE CoNtroller DEVICE.........ciiiiieieie ettt 582
9.9.3 Serial ATA (SATA) Controller DeViCe..........ccooeiiieiiiec s 585

9.10 Floppy Controller Device ObJECEScoovviiiiiiiiiiiii 587
9.10.1 _FDE (Floppy Disk ENUMErate)c.cuviiiiiiiiiieieee e 587
9.10.2 _FDI (Floppy Disk INfOrmation)eeeieiiiiiiiiiiee e 588
9.10.3 _FDM (Floppy Disk Drive MOde)...........uueiiiiiiiiiiiiiieee e 589

9.11 GPE BIOCK DEVICE.......ieeieeiiee ettt e e e e e e e s aeeeaeens 589
9.11.1 Matching Control Methods for Events in a GPE Block Device...............c........ 590

S B D2 oY U1 T I = T = 591
9. 13 MEMOIY DEVICES ...ttt e e e e e e e e e e ns 594
9.13.1 AdAresSs DECOAINGceiiiiiiiiiiiieiii ettt 594
9.13.2 Memory Bandwidth Monitoring and Reporting ..o, 594
9.13.3 _OSC Definition for Memory DevViCecccooiiiiiiiiccc s 596
9.13.4 Example: MemOry DEVICEuuuiiiiieeii ettt e et e e e e e e eeees 597

9.14 _UPC (USB Port CapabilitieS)uuuerieeeeiiiiiiiiiiie e e e 597
9.14.1 USB 2.0 Host Controllers and _UPC and _PLDcccooiiiiiiiieiieeee 602

9.15 PC/AT RTC/CMOS DEVICESccoeeiiiiiiiieeeeeeeiiteeeee e e e eteea e e e e e e e snneeeeeeaeeaaannnnnnaeeaaaens 604
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOBO00)..........ccccereiiieeeeriiiieaaene 604
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0OBO02) 606

9.16 User Presence Detection DeViCecoooovviiiiiiiiiiii 606
9.16.1 _UPD (User Presence Detect)ccooooiiiiiiiiiiii i 606
9.16.2 _UPP (User Presence POIliNG).......ccoouuiiiiiiieiiiiieeee e 607

Version 6.2 Errata A Page xxv

ACPI Specification

9.16.3 User Presence Sensor EVENtS ... 607

S I VL@ I Y e (O I TV o SR 607
9.18 Time and Alarm DEVICE.........ui i 608
9.18.2 _GCP (Get Capability)ccuuriiiiie e 612
9.18.3 _GRT (Get REAI TIME)iiiiiieiee ettt a e 612
9.18.4 _SRT (Set Real TiME)....cciiiiiiiiiie e 613
9.18.5 GWS (Get Wake alarm status)............cooooeiiiiiiiiiiccc 614
9.18.6 _CWS (Clear Wake alarm status)oooeiieiiiiiiiiiiiii s 615
9.18.7 _STP (Set Expired Timer Wake POlICY)ccooeiiiieiii e 615
9.18.8 _STV (Set TIMEr ValU@)coeiiiiiiiiiiiiiii et 615
9.18.9 _TIP (Expired Timer Wake POlICY)uueriiiiiiiiiieeee e 616
9.18.10 _TIV (TIMEr ValUES) ...ttt 616
9.18.11 ACPI Wakeup Alarm EVentsoooooiiiiiiiiii e 616
9.18.12 Relationship to Real Time Clock Alarmcccooiiiiiiiiiiiiiaaes 617
9.18.13 Time and Alarm device as a replacement to the RTCcccccvviiiiiiinnnn. 617
9.18.14 Relationship to UEFI time SOUrCe..........cooi oo 617
9.18.15 EXample ASL COUEcoooiiiiiiiii i 617

9.19 GeNeriC BUONS DEVICEoooviiiiiiiiiiieeeeeeeeeeee et 621
9.19.1 BUHON INteITUPES..ceee e e e e e eeees 621
9.19.2 Button Usages and ColleCtionSccooioiiiiiiiiiiicc e 622

0. 19.3 EXAMPIE e 623

9.20 NVDIMM DEVICES.....cceietieeieee et ettt e e e e e ettt e e e e e e et e e e e e e e s sastseeeeeaeeaaaansssaeeeaaens 624
90.20.1 OVEIVIEW ...t nnnnnnne 624
9.20.2 NVDIMM ROOt DEVICE ...ttt 624
9.20.3 NVDIMM DEVICE.....eeeeeieeiiiiiiiietee e e ettt e et e e e e e e e e e e e e e e e e nnenneeeeaeeas 625

L I OB = T g o [YR 625
9.20.5 Loading NVDIMM ArIVETScoiiiiiiiiiiiieieee et 625
9.20.6 HOt PIUGQ SUPPOIt .. .o 626
9.20.7 NVDIMM RoOt DeVice _DSMSccuviiiiiiee ettt 628

10 Power Source and Power Meter DevVicCes.........cceuucciiiiiiiiiniinnnnnnssssssssssssssssnns 641
10.1 Smart Battery SUDSYSIEMSuuuiiiiiiiiiiiiiiiiii et e e e e e e e e e e e e e eeeeeeees 641
10.1.1 ACPI Smart Battery Status Change Notification Requirements..................... 643
10.1.2 Smart Battery ObjJECtScoooviiiiiiiiiiiiiei 644
10.1.3 _SBS (Smart Battery SubSyStemM)ccceuiiiiiiiiiiii e 644

10.2 Control Method Batteriesuuueuiiiiiiiiiiiieiiiei ettt e e e e e e e e eeeeeeeees 647
10.2.1 Battery EVENTS ... 648
10.2.2 Battery Control Methodsooovvviiiiiiiiiiii 648

10.3 AC Adapters and Power Source ODJECESuuuviiiiiiiiiieiiiieieeieeeeeeee e 662
10.3.1 PSR (POWEI SOUICE)...cciiiiiiiiiiiiiiiiieeeeeee e, 663
10.3.2 _PCL (Power ConSUMEr LiSt)ccouiiiiiiiiiiiiieee e 663
10.3.3 _PIF (Power Source INformation)...........ccuuveiiiiiiiiiiiieeeeeeeee e 663
10.3.4 _PRL (Power Source Redundancy List) ... 664

LR o 1Yo oY (T PP 665
10.4.1 _PMC (Power Meter Capabiliti€s)...........ccoovveeieeiiii e, 665
10.4.2 _PTP (Power Trip POINES) coooviiiiiiiiiii 667

Version 6.2 Errata A Page xxvi

ACPI Specification

10.4.3 _PMM (Power Meter Measurement) ..., 667
10.4.4 PAI (Power Averaging Interval).........cccccco 668
10.4.5 GAIl (Get Averaging Interval).........ccccii 668
10.4.6 _SHL (Set Hardware Limit)oooiioiiiiiiieie e 669
10.4.7 _GHL (Get Hardware Limit)coooiiiiiiiiiieeeeeeee e 669
10.4.8 _PMD (Power Metered DEeVICES).......ccuuiuuiiiiiiiae it 669

10.5 Wireless POWeEr CONTrOIIEIS.......cooii i 670
10.5.1 Wireless Power Calibration DeVICeueeeeeieiiiiiiiiiiieieeeeeeee e 670
10.5.2 Wireless Power Calibration (WPC) ..., 671
10.5.3 Wireless Power Polling (LWPP)ooo i 671

10.6 Wireless Power Calibration EVent ... 671
10.7 Example: Power Source and Power Meter Namespace..........ccoeevvvevveevieeiieeeieeeeeenennn. 672
11 Thermal Management...........ccccimmmimiiii s 675
11.1 Thermal CONIIOLooiiii e e e e e e e e e e e e e e e nnneneees 675
11.1.1 Active, Passive, and Critical POlICIESoveeeieeee e 676
11.1.2 Dynamically Changing Cooling Temperature Trip Pointsooooe. 677
11.1.3 Detecting Temperature Changesccuvieiiiiiiiiiiiiiiccee e 678
11.1.4 ACEIVE COOIING .ot 680
11.1.5 PasSIVE COOIINGoovviiiiiiiiieieeeeeeeeeeeeeee e 681
11.1.6 Critical SNUIAOWNoeiiiiiie e 682

11.2 COOlING PreEfEr&NCESeeiii et e e e e e e e eeeeeeeeeeeseeeeeeeeeeeeeeeeees 683
11.2.1 Evaluating Thermal Device LiStS..........ccccuiiiiiiiiiiiii e 684
11.2.2 Evaluating Device Thermal Relationship Informationcccccciiinnnn. 685

G T =TT T o P 685
T1.3.1 FAN ODJECES ..o, 686

L I T g g = T @ o= Yo £ 689
11.4.1 _ACX (Active COoOlING) ..coiiiiiiiiiiiiiiieeeee e 690
11.4.2 ALX (ACHVE LiSt) .t 691
11.4.3 _ART (Active Cooling Relationship Table)............cccciriiiiiiiiiii 691
11.4.4 _CRT (Critical TemMPerature) ... 693
11.4.5 CR3 (Warm/Standby Temperature)cccooeeeeeiiii e, 694
11.4.6 _DTI (Device Temperature Indication)..............cccccoe . 694
11.4.7 _HOT (Hot TEMPErature)ccooovvvviiiiiiiiiiii, 694
11.4.8 _MTL (Minimum Throttle Limit) ... 695
11.4.9 _NTT (Notification Temperature Threshold)ccceeeiiiiiiiiii 695
11.4.10 _PSL (PaSSIVE LiSt)....cciiiiiiiiiiiiieee ettt 695
T1.4.11 _PSV (PASSIVE) ..ottt e e 696
11.4.12 _RTV (Relative Temperature Values)cccccccoe e, 696
11.4.13 _SCP (Set Cooling POIICY) ...ccooviiiiiiiiiiii 697
11.4.14 _STR (SHING) ceieeeiiiiiiiiie ettt e e e e e e e e e s e e e e e e e e e nnneeees 700
11.4.15 _TC1 (Thermal Constant 1)oooooiiiiiiieee e 700
11.4.16 _TC2 (Thermal CoNStant 2) ... 700
11.4.17 _TFP (Thermal fast Sampling Period) ..., 701
11.4.18 _TMP (TE€MPEratUre).....ccovvieiiiiiiieeieeeeeee e, 701
11.4.19 _TPT (Trip Point Temperature) ..., 701

Version 6.2 Errata A Page xxvii

ACPI Specification

11.4.20 _TRT (Thermal Relationship Table).......cccccccoii . 702
11.4.21 _TSN (Thermal Sensor DevViCe)cccovvvviiiiiiii, 703
11.4.22 TSP (Thermal Sampling Period) ..., 703
11.4.23 _TST (Temperature Sensor Threshold)oocciiiiiieiiiiiiiiiee 703
11.4.24 _TZD (Thermal Zone DEVICES)......ccciiiiiuiiiiiiiiee it 704
11.4.25 _TZM (Thermal Zone Member).........ooocuiiiiiiiiiiiiiieeee e 704
11.4.26 _TZP (Thermal Zone Polling).........covvvviiiiiiiii 704

11.5 Native OS Device Driver Thermal Interfacesccccccoviiiiiiiiiiiie i, 705
11.6 Thermal Zone Interface REQUIrEMENLESuuuiuiiiiiiiieiiieiieeieeeeeeee e 705
11.7 Thermal Zone EXamPIESttt eeeeee e e e e eeeeeeeeeeeeees 706
11.7.1 Example: The Basic Thermal Zone.........cccccevviiiiii, 706
11.7.2 Example: Multiple-Speed Fans ..., 708
11.7.3 Example: Thermal Zone with Multiple Devicescccvvveeiiiiciiii i, 710

12 ACPI Embedded Controller Interface Specificationccccccoormrremcciiiirieeccinnnns 717
12.1 Embedded Controller Interface DeSCriptionueevueeiiiiiieiiiiieeieeeeeeeeeeeeeeeeeeeeeeeee e 717
12.2 Embedded Controller Register DescriplionsS.............eeuveiiieiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 720
12.2.1 Embedded Controller Status, EC_SC (R)ccooiiiiiiiiiiiiiiiiieeecceeeee 720
12.2.2 Embedded Controller Command, EC_SC (W)......cccuuviiiiiiiiiiiieeeeee 722
12.2.3 Embedded Controller Data, EC_DATA (R/W).....ooooiiii, 722

12.3 Embedded Controller Command Set..........cooiiiiiiiiiiiiieiicee e 722
12.3.1 Read Embedded Controller, RD_EC (0Xx80)ccooeiiiiiiiiiiii, 722
12.3.2 Write Embedded Controller, WR_EC (0X81)......cooiiiimiiiiiiiiiiiieeee e 722
12.3.3 Burst Enable Embedded Controller, BE_EC (0X82).........cccooiiviiiiiiiiiiiiiinee. 723
12.3.4 Burst Disable Embedded Controller, BD_EC (0X83)........ccooiiuviiiiiiiiiiiiiiinen. 723
12.3.5 Query Embedded Controller, QR_EC (0X84)........ccuvviieiieiiiiiiiieeee e 723

12.4 SMBus Host Controller Notification Header (Optional), OS_ SMB_EVT 724
12.5 Embedded Controller FIrMWareoooiiieiiiiiieeee e 724
P23 L (=5 U] 101 o Yo 1= 725
12.6.1 Event Interrupt Model ... 725
12.6.2 Command Interrupt Modelcooovviiiiiiiii 725

12.7 Embedded Controller Interfacing Algorithmsooeviiiiiiiiiiiiiieeeeeeeeeeeeeeeee 726
12.8 Embedded Controller Description Informationoevviiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee 726
12.9 SMBus Host Controller Interface via Embedded Controller.............cccccccveeeeeniinnneen. 727
12.9.1 Register DEeSCrIPHIONcoiiiiiiiieeee e 727
12.9.2 Protocol DeSCrPONcoviiiiiiiiiieiieeeeee e 731
12.10 SIMBUS DEBVICES.... ..ttt sesseeeeeesseeeseeeeeeeeeeeaeeeeeeeeeeeeeeeeees 737
12.10.1 SMBus Device Access Restrictionsccooveiiiiiiiiiiiiiiii e 737
12.10.2 SMBus Device Command Access Restrictioncccccooviiiiiiiiie i, 737
12.11 Defining an Embedded Controller Device in ACPI Namespaceccccccceveeveeennn.. 737
12.11.1 Example: EC Definition ASL COdeccovviiiiieie, 738
12.12 Defining an EC SMBus Host Controller in ACPl Namespace...........ccccccceeeeviiiiiinnen. 739
12.12.1 Example: EC SMBus Host Controller ASL-Codeccooviiiiiiiiiiiiiiniiieee. 739

13 ACPI System Management Bus Interface Specificationcccceeeeeeeciccccnnnn. 741
13.1 SMBUS OVEIVIEWceiiiiiiiiiiiiieii ettt e e e e e e e sttt e e e e e e e s eeeeaeeeeennneeeees 741

Version 6.2 Errata A Page xxviii

ACPI Specification

13.1.1 SMBUS Slave AdAreSSES.uuiiiiiieeeiiiiiiieiee e 741
13.1.2 SMBUS PrOtOCOIS.ceiiiiiiiee et e e e 742
13.1.3 SMBUS Status COAEScceeeiiiiiiiiiiie e 743
13.1.4 SMBuUs Command ValUEscooviiiiiiiiiiieeeeee e, 743

13.2 Accessing the SMBuUS from ASL COdecoooiiiiiiiiiiiiiiieeeee e 743
13.2.1 Declaring SMBus Host Controller ObjJectscccueiviiiiiiiiiiiii, 743
13.2.2 Declaring SMBUS DEVICES........coovviiiiiiiiiiiiieieeee e, 744
13.2.3 Declaring SMBus Operation RegQIiONS ..., 744
13.2.4 Declaring SMBUS FieldS.........coooviiiiiiiiiiiiii 746
13.2.5 Declaring and Using an SMBus Data Buffer..............cccccciiiii 748

13.3 Using the SMBUS ProtOCOISoooiiiiiiiiiiiieeiee e 749
13.3.1 Read/Write QUICk (SMBQUICK)......cceeeeiiiiiiiiiiiiee e 749
13.3.2 Send/Receive Byte (SMBSendReceive)..........ccccooeeeiiii, 750
13.3.3 Read/Write Byte (SMBBYLE)...c.oovvviiiiiiii 751
13.3.4 Read/Write Word (SMBWOrd) ... 751
13.3.5 Read/Write Block (SMBBIOCK)ccviiiiiiiiiiiiiiiee e 752
13.3.6 Word Process Call (SMBProcessCall) ... 753
13.3.7 Block Process Call (SMBBIlockProcessCall)ccuveveeiiiiiiiiiiiiiiiiieeeei 754

14 Platform Communications Channel (PCC)........ccccoiimmmmmmmrrrrreee s 755
14.1 Platform Communications Channel Tableoooiiiiiiiiiiii e 755
14.1.1 Platform Communications Channel Global Flagsccccce. 756
14.1.2 Platform Communications Channel Subspace Structures 756
14.1.3 Generic Communications Subspace Structure (type 0)ccccvveveeeiiiiiiiinnnn. 756
14.1.4 HW-Reduced Communications Subspace Structure (type 1).........cceeeeeeeennn. 757
14.1.5 HW-Reduced Communications Subspace Structure (type 2).............ceeeennn. 758
14.1.6 Extended PCC subspaces (types 3 and 4)cccccooiii e, 760

14.2 Generic Communications Channel Shared Memory Regioncccccccvvvvvieiiieeeennnn.. 763
14.2.1 Generic Communications Channel Command Field..........................c. 764
14.2.2 Generic Communications Channel Status Fieldl. 764

14.3 Extended PCC Subspace Shared Memory Regioncceevevviiiiiiiiiiiieieeeeeie, 765
LR B ToToTy o1 | I o) (oo o] P 766
14.5 Platform NOtIfiCationeeiiieee e 768
14.5.1 Platform Notification for Subspace Types 0, 1Tand 2...............cccceeeeeiinn. 768
14.5.2 Platform Notification for slave PCC subspaces (type 4)ccccoeveeeiiiiiiiinnnn. 768

14.6 Referencing the PCC addreSs SPACE.......ccuiiiiiiiiiiiiiiee ettt 770
15 System Address Map Interfaces.........cccccviiiiiiiiiiininnns 771
15.1 INT 15H, E820H - Query System AdAress Mapccoooiiiieeiiiiiiiiiieeeeee e 772
15.2 E820 Assumptions and LimitationS...........ccoovieiiiiiiion e 774
15.3 UEFI GetMemoryMap() Boot Services FUNCHioNn.............ovvveeiiiiiiiiiiiiiieeeieeeeeeeeeeeee e, 774
15.4 UEFI Assumptions and Limitationscoooviiiiiiiiiii e 775
15.5 EXamPle AdAreSS Map ...ttt e et ettt et e e e e ee e e e e eeeeeeeeeeeees 776
15.6 Example: Operating System USagecouuiiiiiiiiiiiiii e 777

Version 6.2 Errata A Page xxix

ACPI Specification

16 Waking and SIeeping.......ccccccemmmmmmmmmmmiiiiiiiiiissssssssssssss s 779
LT IS =TT o e RS = (= 3 780
16.1.1 S1 Sleeping State ..ooovvveiiiieei 782
16.1.2 S2 Sleeping State ..oovvvveiiiiieeeee 783
16.1.3 S3 Sleeping STateooiiiiiiiiie e 783
16.1.4 S4 Sleeping STatecooiiiiiiii e 784
16.1.5 S5 Soft Off Stateuvviiiiieeec e 786
16.1.6 Transitioning from the Working to the Sleeping State..................................L. 786
16.1.7 Transitioning from the Working to the Soft Off State....................................... 787

16.2 FIUSNING CACNES ...ttt e et e e e e s e e e e e essasseseeeesseeseeeeeeeseeeeeeeeees 787
ST 3N 71 =1 1= 1 4[] PR 788
16.3.1 Placing the System in ACPIMOdEccuuiiiiiiiiiiii e 791
16.3.2 Platform Boot Firmware Initialization of Memory...........cccccooiiiiiiiiniiiee. 791
16.3.3 OS LOAAING c.eieiiiiiiieeeeeeeeee e 793
16.3.4 EXitiNg ACPI MOAEoeeiiiieeeeeee ettt e e 795

17 Non-Uniform Memory Access (NUMA) Architecture Platforms........................ 797
A% T NN 18 11 N o o = SRRSO 797
17.2 SYSEEM LOCAITY ... e e 797
17.2.1 System Resource Affinity Table Definition ... 798
17.2.2 System Resource Affinity Update ..., 798

17.3 System Locality Distance Information..............cccvviiemiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 798
17.3.10NHMNE HOL PIUQ ..o 798
17.3.2 Impact to ExXisting LOCAlIEScoviiiiiiiiieee e 799

17.4 Heterogeneous Memory Attributes Information ... 799
17.4.10NINE HOt PIUG ... 799
17.4.2 Impact to Existing Localities..........coeuuiueeeiiiiiiic e 800

18 ACPI Platform Error Interfaces (APEI) ... 801
18.1 Hardware Errors and Error SOUICEScouiiiiiiiiiiiiieeee e 801
18.2 Relationship between OSPM and System Firmwareccccevveeeieeiiieiiieiieeeeeeeeeeeeee, 802
18.3 Error SOUICE DISCOVEIYueiiiiiiiiiiiite ettt 802
18.3.1 BOOt EFrOr SOUICE ..o, 802
18.3.2 ACPI EFTOr SOUICE ..ottt 803

18.4 Firmware First Error Handlinguueoiii i e e e ee e 820
18.4.1 Example: Firmware First Handling Using NMI Notification 820

18.5 Error SerialiZationooooiiiiiiie et 821
18.5.1 Serialization Action Table..........oooiiiiiii 822
RS R TP O] 01T = 1110] o I TR 828

18.6 EFrOr INJECHON 832
18.6.1 Error Injection Table (EINJ).......cooovviiiiiiiiii, 832
18.6.2 Injection Instruction ENtriescoovveeiiiici e 834
18.6.3 Injection INSIrUCLIONSouveiii e 835
18.6.4 Trigger ACtion TabIe.........ccooiiiiiii e 837

Version 6.2 Errata A Page xxx

ACPI Specification

19 ACPI Source Language (ASL) Referenceccccovviimmmmmmmmmnnnnsnssssssnns 841
19.1 ASL 2.0 Symbolic Operators and EXPreSSionSevvvviieeeeieiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeen 841
19.2 ASL Language GramMIMar.............uuuuuuuuuuruuneeunrssursuesrereesessesseeeesereseeeeeeeeeeereerreeerr 842

19.2.1 ASL Grammar NOtationccuuiiiiiiee e 843
19.2.2 ASL Name and Pathname Termsooooviiiiiiiiiie e, 844
19.2.3 ASL Root and Secondary TEIrMSccooiuiiiiiiiiii e 845
19.2.4 ASL Data and Constant TErMScoovvviiiiiiiiii, 846
19.2.5 ASL OPCOAE TOIMIS...coiiiiiiiiieeeeeeeeeee e 849
19.2.6 ASL Primary (Terminal) TEMMScooooiiiiiiiiiii, 851
19.2.7 ASL Parameter Keyword TEermscccccvviiiiiiiiii, 868
19.2.8 ASL Resource Template Terms ..o, 870
LS TRC 3N | I 0o To =T o) £ 881
19.3.1 ASL NAMES ...ceeiie ittt e e e e e e e e e e e e e e ae e e e e e e e e e eanrneees 881
19.3.2 ASL Literal CoNStantscoooiiiiiiiiiiei e 882
19.3.3 ASL Resource Templates ... 884
LS TR | I 1V = o7 o SRR 885
19.3.5 ASL Data TYPES ...ttt 886
19.4 ASL Operator SUMMAIYoooiiiiiiiiiiiiieeea ettt e e et e e e e e e s e e e e e e e e snneeees 898
19.5 ASL Operator SUMMAry DY TYPEuuuuuuiiiiiiiiiiiiiiiiiiieees 902
19.6 ASL Operator RETEFENCEuuuuiuiiiiiiiiiiiiiiiiiiiiee e e e e e e e e e ee e e e e eeeeeeeeeeeeeees 907
19.6.1 AccessAs (Change Field Unit ACCESS).......cooveiviiiiiiiiii, 907
19.6.2 Acquire (ACQUIre @ MULEX).........uuiiieiiiiiiiieie e 908
19.6.3 Add (INteger Add)uuiiiiieeeeeece e 908
19.6.4 Alias (Declare Name Ali@s)ueeeiiiiiiiiiiiiiiiee e 908
19.6.5 And (Integer Bitwise ANd)coooviiiiiiiiiiiii 909
19.6.6 Argx (Method Argument Data Objects)...........c.cc 909
19.6.7 BankField (Declare Bank/Data Field).................cccccccc . 909
19.6.8 Break (Break from WhIl€)..........uuiiiiiiiiiiieee e 910
19.6.9 BreakPoint (Execution Break Point).............oooeiiiiiiiiie e 911
19.6.10 Buffer (Declare Buffer ObJect)..........cooviiiiiiiiiiii 911
19.6.11 Case (Expression for Conditional Execution)..................ccccc, 912
19.6.12 Concatenate (Concatenate Data)ccooooeee 912
19.6.13 ConcatenateResTemplate (Concatenate Resource Templates) 914
19.6.14 CondRefOf (Create Object Reference Conditionally)ccceeeeeeiiiiiiiiinnn. 914
19.6.15 Connection (Declare Field Connection Attributes) ..o, 915
19.6.16 Continue (Continue Innermost Enclosing While) ..., 916
19.6.17 CopyObject (Copy and Store Object)........cccoovvviiiiiiii, 916
19.6.18 CreateBitField (Create 1-Bit Buffer Field)ccl, 916
19.6.19 CreateByteField (Create 8-Bit Buffer Field)l, 916
19.6.20 CreateDWordField (Create 32-Bit Buffer Field)ccccoiiiiiiiiiiiiiiiniinn. 917
19.6.21 CreateField (Create Arbitrary Length Buffer Field)cccoviiiiiiiniiiinnn. 917
19.6.22 CreateQWordField (Create 64-Bit Buffer Field)ccccccoviiiiiiiiiiii, 917
19.6.23 CreateWordField (Create 16-Bit Buffer Field)ool, 917
19.6.24 DataTableRegion (Create Data Table Operation Region)coe.... 918
19.6.25 Debug (Debugger OULPUL)......ooviiiiiiiii, 918
19.6.26 Decrement (Integer Decrement)cc.evvieieiiiiiiiiiiei e 919

Version 6.2 Errata A Page xxxi

ACPI Specification

19.6.27 Default (Default Execution Path in Switch) ... 919
19.6.28 DefinitionBlock (Declare Definition BIOCK)..............ccccooooi, 919
19.6.29 DerefOf (Dereference an Object Reference)ccccce, 920
19.6.30 Device (Declare Device Package)ccuueeviiiiiiiiiiiiiieieeeeieee e 920
19.6.31 Divide (Integer DiVIe)........oouuiiiiiiiieieeieee e 922
19.6.32 DMA (DMA Resource Descriptor Macro)occuueeieeieiiiiiiiieeee e 922
19.6.33 DWordlO (DWord IO Resource Descriptor Macro)cccoeeeeeeeieeenn. 923
19.6.34 DWordMemory (DWord Memory Resource Descriptor Macro)..................... 924
19.6.35 DWordSpace (DWord Space Resource Descriptor Macro) 926
19.6.36 EISAID (EISA ID String To Integer Conversion Macro)cccccceeevvivvennen. 928
19.6.37 Else (Alternate EXeCULION)..........cooiiiiiiiiiiiiiiie e 928
19.6.38 Elself (Alternate/Conditional EXeCUtion)............ooccuiiiiiiiiiiiiiiiiieccee e 929
19.6.39 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 929
19.6.40 Event (Declare Event Synchronization Object)......................c. 930
19.6.41 ExtendedlO (Extended IO Resource Descriptor Macro)................cccoeeeenen. 930
19.6.42 ExtendedMemory (Extended Memory Resource Descriptor Macro) 932
19.6.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro).... 933
19.6.44 External (Declare External ObjJects)...........cviiiiiiiiiiiiiiii e 935
19.6.45 Fatal (Fatal Error Check).......ooovvvviiiiiiii 936
19.6.46 Field (Declare Field ObJjects).........ccoovviiiiiiiiii, 936
19.6.47 FindSetLeftBit (Find First Set Left Bit).........ccoooiiiiiiiiiii 938
19.6.48 FindSetRightBit (Find First Set Right Bit)...........ccccoviiiiiiiiii 939
19.6.49 FixedDMA (DMA Resource Descriptor Macro)cccevviiiiiiieeieeiiiiiiieee, 939
19.6.50 FixedlO (Fixed 10 Resource Descriptor Macro)...........ccccceeeeeeeeieieeeee, 939
19.6.51 For (Conditional LOOP)cccevvvieiiiiiiiiiiieeeeeeeeeeeee e, 940
19.6.52 Fprintf (Create and Store formatted string)l 941
19.6.53 FromBCD (Convert BCD TO INteger)oovviiiiiiiiiiiiieeeeeeiieeee e 941
19.6.54 Function (Declare Control Method)cooiiiiiiiiiiiiiiieee e 941
19.6.55 Gpiolnt (GPIO Interrupt Connection Resource Descriptor Macro)................ 943
19.6.56 Gpiolo (GPIO Connection 10 Resource Descriptor Macro)ceeeee.. 944
19.6.57 12CSerialBusV2 (12C Serial Bus Connection Resource Descriptor (Version 2)
MACTO) ... —————————— 945
19.6.58 If (Conditional EXECULION)uiiiiiiiiiiiieee e 945
19.6.59 Include (Include Additional ASL File)couiiiiiiiiiiiiiieiiiiee e 946
19.6.60 Increment (Integer INCrement)...........oooiiiiiiiiiiiii e 946
19.6.61 Index (Indexed Reference To Member Object)..................c.cccl, 947
19.6.62 Interrupt (Interrupt Resource Descriptor Macro)ccccoeeeeeeee, 949
19.6.63 IndexField (Declare Index/Data Fields).................ccccc, 951
19.6.64 Interrupt (Interrupt Resource Descriptor Macro) ..., 952
19.6.65 10 (10 Resource Descriptor Macro)eeeeeeiiiiiiiiieieieeeieiieeeee e 953
19.6.66 IRQ (Interrupt Resource Descriptor Macro)c..eeeeveeiiiiiiiieeieeeeeiiee 953
19.6.67 IRQNoFlags (Interrupt Resource Descriptor Macro)cccccceveeeeeiniiinenen. 954
19.6.68 LANA (LOGICAl ANQ).....eiiiiiiiiiiiiiiieee et 954
19.6.69 LEqual (Logical Equal) ..., 955
19.6.70 LGreater (LogiCal Greater)o 955
19.6.71 LGreaterEqual (Logical Greater Than Or Equal) ..., 955
19.6.72 LLESS (LOGICAI LESS) ..eviiieiiiiiiiiieieee ettt 956

Version 6.2 Errata A Page xxxii

ACPI Specification

19.6.73 LLessEqual (Logical Less Than Or Equal)......................cccc, 956
19.6.74 LNot (Logical NOL) ...covviiiiiiiiiiiiiiie 957
19.6.75 LNotEqual (Logical Not Equal))......ccooooiiiiiiiii 957
19.6.76 Load (Load Definition BIOCK)ccooiiiiiiiiiieiiiiiie e 957
19.6.77 LoadTable (Load Definition Block From XSDT)ccvviiiiiiiiiiiiiieiiiiiiee, 958
19.6.78 Localx (Method Local Data Objects)ceueiiiiiiiiiiiiiiieiieee e 959
19.6.79 LOK (LOGICAI OF) .ottt 959
19.6.80 Match (Find Object MatCh) ... 959
19.6.81 Memory24 (Memory Resource Descriptor Macro)cccccoeeeeieninn. 960
19.6.82 Memory32 (Memory Resource Descriptor Macro)ccccoeeeeiiiiieen. 961
19.6.83 Memory32Fixed (Memory Resource Descriptor Macro)coeeeeeeeeeenn. 962
19.6.84 Method (Declare Control Method)............uueveiiiiiiiiiiiiie e 962
19.6.85 Mid (Extract Portion of Buffer or String) ..., 964
19.6.86 Mod (Integer MOAUIO)coovviiiiiiiiiiiiiieeeeeee 965
19.6.87 Multiply (Integer MUtiply)ooooriiiiii, 965
19.6.88 Mutex (Declare Synchronization/Mutex Object)..........ccccoiiiiiiiiiiiiiiinniiiieee, 965
19.6.89 Name (Declare Named ODJecCt)..........ooouuiiiiiiiiiiiiiiieeeee e 966
19.6.90 NANd (Integer Bitwise Nand)...........coouiiiiiiiiiiiiiiieeeee e 966
19.6.91 NoOp Code (No Operation)coovvviiiiiiiiii 966
19.6.92 NOr (Integer BitwisSe NOI)c.oooiiiiiiiiiiiiii, 967
19.6.93 Not (Integer Bitwise NOt)ouiiiiiiiiii e 967
19.6.94 Notify (Notify Object Of EVENL).......ccoiiiiiiiiiiei e 967
19.6.95 Offset (Change Current Field Unit Offset)........ccccccoooi 967
19.6.96 ObjectType (Get ObJect TYPE) covvvviveviiiiiiiiiee . 968
19.6.97 One (Constant One INteger)........coovvviiiiiiiiiii . 969
19.6.98 Ones (Constant Ones Integer) ..., 969
19.6.99 OperationRegion (Declare Operation Region)cccvvviiiiiiiiiieiiiniiiieee, 969
19.6.100 Or (Integer BitWiSE OF) ... 970
19.6.101 Package (Declare Package ObJect) ..o 971
19.6.102 Pin Configuration...........cooveiiiiiiiiiiiiiieeee e, 973
19.6.103 Pin FUNCLON ... 976
LS I 07 T o T o T o SRR 980
19.6.105 Pin Group Configuration..............ccooiiiiiiiiiie e 980
19.6.106 Pin Group FUNCHONoooiiiiiiiiiieieeee e, 985
19.6.107 PowerResource (Declare Power RESOUrCe)oeeeviiiiiiiiiiiiieeininiiieee 986
19.6.108 Printf (Create and Store formatted string)c.cccc L 986
19.6.109 Processor (Declare ProCessor)ooovvvvieeiiiiiiieeeeeee e, 987
19.6.110 QWordIO (QWord 10 Resource Descriptor Macro)...........ccccvveeeeeeeiiiiinnnen. 988
19.6.111 QWordMemory (QWord Memory Resource Descriptor Macro) 989
19.6.112 QWordSpace (QWord Space Resource Descriptor Macro)........................ 991
19.6.113 RawDataBuffer............oooviiiiiiiii 993
19.6.114 RefOf (Create Object Reference)........cccccevvviiiiii, 993
19.6.115 Register (Generic Register Resource Descriptor Macro)............................ 993
19.6.116 Release (Release a Mutex Synchronization Object)....................c.ooeil. 994
19.6.117 Reset (Reset an Event Synchronization Object)...........cccccoiiiiiiiiiiiniiinen. 994
19.6.118 ResourceTemplate (Resource To Buffer Conversion Macro)..................... 995
19.6.119 Return (Return from Method EXecution) ..., 995

Version 6.2 Errata A Page xxxiii

ACPI Specification

19.6.120 Revision (Constant Revision Integer).............ccccc 995
19.6.121 Scope (Open Named SCOPE)ccoovviiiiiiiiiii, 995
19.6.122 ShiftLeft (Integer Shift Left) ... 997
19.6.123 ShiftRight (Integer Shift Right)coooiiiiiiii e 997
19.6.124 Signal (Signal a Synchronization Event) ..o, 997
19.6.125 SizeOf (Get Data ODbjJect Size)covviuiiiiiiiiiiii e 998
19.6.126 Sleep (Milliseconds SIEEP).......ccvvvviiiiiiiiiieeee 998
19.6.127 SPISerialBusV2 (SPI Serial Bus Connection Resource Descriptor (Version 2)
MACTO) ... —————— 998
19.6.128 Stall (Stall for @ Short TiMe)ceeveeeiiiiiiiie e 999
19.6.129 StartDependentFn (Start Dependent Function Resource Descriptor Macro)....
1000
19.6.130 StartDependentFnNoPri (Start Dependent Function Resource Descriptor
MACTO) i 1000
19.6.131 Store (Store an ODbJECt)oovviiiiiii 1000
19.6.132 Subtract (Integer SUDract) ... 1001
19.6.133 Switch (Select Code To Execute Based On Expression)......................... 1001
19.6.134 ThermalZone (Declare Thermal Zone)...........oooccueiieiiiiiiiiiiiiiiiiee e 1004
19.6.135 Timer (Get 64-Bit Timer Value)ccccovviviiiiiii 1004
19.6.136 ToBCD (Convert Integer to BCD).......ooovvivviiiiiii 1005
19.6.137 ToBuffer (Convert Data to BUffer)ooeeiiiiiiiiiie 1005
19.6.138 ToDecimalString (Convert Data to Decimal String)...........cccccovveeeiinnnnnee. 1005
19.6.139 ToHexString (Convert Data to Hexadecimal String)cccccceveeiiininee. 1005
19.6.140 Tolnteger (Convert Data to Integer) ... 1006
19.6.141 ToPLD (Creates a _PLD Buffer Object) ... 1006
19.6.142 ToString (Convert Buffer To String) ... 1008
19.6.143 ToUUID (Convert String to UUID MaCro)ccccueiieeiiiiiiiiiiiieeeee s 1009
19.6.144 UARTSerialBusV2 (UART Serial Bus Connection Resource Descriptor
(Version 2) IMCIO)......coiiiiieeeee ettt e e e e et e e e e e e e 1009
19.6.145 Unicode (String To Unicode Conversion Macro).............ccccceeeeeeeeeeeeeeen. 1011
19.6.146 Unload (Unload Definition BIOCK)coooviiiiiiii 1011
19.6.147 VendorLong (Long Vendor Resource Descriptor)...........cccccoeeeeee. 1012
19.6.148 VendorShort (Short Vendor Resource Descriptor).........ccccooeeeeeeee. 1012
19.6.149 Wait (Wait for a Synchronization Event)ccocvieiiiiiiiii 1012
19.6.150 While (Conditional LOOP)........uueeeieiriiiiiiiiieee e 1013
19.6.151 WordBusNumber (Word Bus Number Resource Descriptor Macro)......... 1013
19.6.152 WordlO (Word 10 Resource Descriptor Macro)ccccoeeeeeeeeeee . 1014
19.6.153 WordSpace (Word Space Resource Descriptor Macro))......................... 1016
19.6.154 XOr (Integer BitWiS€ XOr)uuiiiiiiiiiiiiiieeee et 1017
19.6.155 Zero (Constant Zero INtEger) ... 1018
20 ACPI Machine Language (AML) Specificationccccceeiiiiiiiiiiiiiciiiciiissnnnnees 1019
20.1 Notation CONVENTIONS.........uuuiiiiiiiiiiiiiiiiiiiiiii et e e e e e e e e e eeeeeeeeeeeeeeeeeaaeeeaeaeaaeees 1019
20.2 AML Grammar Definitionoooiiiiiieiieee e 1020
20.2.1 Table and Table Header ENCOAINGcouuvuiiiiiiiiiir e 1020
20.2.2 Name Objects ENCodingcooooiiiiiiiiii e 1021

Version 6.2 Errata A Page xxxiv

ACPI Specification

20.2.3 Data Objects ENCOdiNgcooooiiiiiiiiii e 1021

20.2.4 Package Length ENCOAING ...c.cuuvuiiiiiieiiieeci e 1022

20.2.5 Term Objects ENCOdiNg...........coooiiiiiiiiii e 1022

20.2.6 Miscellaneous Objects ENCOAINGuvviiiiiiiiiiiiiiieece e 1031

20.3 AML Byte Stream Byte ValUes.........cc.uuiiiiiiiiiiiiiecc e 1032
20.4 AML Encoding of Names in the Namespacecccccoviiiiiieiiiiiiiiieeee e 1037

21 ACPI Data Tables and Table Definition Language...........cccccoviiiiniiniiiiinnnnnnnns 1041
21.1 Types of ACPI Data TabIEsuuuviiiiiiiiiiiiiieiiieeeeeeeeeeeeeeee ettt 1041
21.2 ACPI Table Definition Language Specificationccccuvveeevveiiiiiieeeiieiieeeeeeeeeeeeeeeee, 1041
21.2.1 Overview of the Table Definition Language (TDL).........cccceeeiiiiiiiiiiiicicinnne, 1042

21.2.2 TDL Grammar SpecCification ... 1043

271.2.3 Data TYPES ettt 1045

21.2.4 Fields Set Automatically by the Compiler...........ccueveiiiiiiiiiiieen 1048

21.2.5 Special Fields ..., 1048

21.2.6 TDL Generic Data TYPESccoooeiiieiii e 1049

21.2.7 Defining a Known ACPI Table in TDLooooiiiiiiii i, 1049

21.2.8 Defining an Unknown or New ACPI table in TDL ..o 1050

21.2.9 Table Definition Language EXamples ... 1050

21.2.10 Minimal ECDT Definitioncccuviiiiiiiiiceeie e 1052

Device Class Specificationscccccciiiiiiiiiiiiiiiiiirnr s 1055
Video EXtENSIONS. ... e 1079

Version 6.2 Errata A Page xxxv

ACPI Specification

List of Tables

Table 1-1 Hardware Type vSs. OS Type INTEraCtioN.........coovininiesissssssiesssesssssessienses 11
Table 2-2 Summary of Global POWET STAtES ... 36
Table 2-3 Summary Of DeViCe POWEE STAES........cccccviirricrncsss s ssss s sssnees 38
Table 3-4 LOW BAttery LEVEIS ...ttt 60
Table 3-5 Implementable PIatform TYPES. ...t 65
Table 4-6 Feature/Programming Model SUMMANY ... 78
Table 4-7 PML EVENT REQISTEIS ...t 83
Table 4-8 PM1 CONTIOl REGISTETSvviiiiiisee s 83
Table 4-9 PM2 CONTIOI REQISTETc.cvieceicrre sttt sss st snens 83
Table 4-10 PM TIMEI REQISTEN ...ttt neas 83
Table 4-11 Processor CONrOl REQISTEIS ... 83
Table 4-12 General-Purpose EVENT REQISTENS ... 84
Table 4-13 POWET BUTEON SUPPOIT ..ot 87
Table 4-14 Sleep BULLON SUPPOIT.........ceresscreines sttt 89
Table 4-15 Alarm Field Decodings Within the FADT ..., 93
Table 4-16 PM1 Status Registers Fixed Hardware Feature Status BitS.........ccccccoeevvvinrciciniinns 96
Table 4-17 PM1 Enable Registers Fixed Hardware Feature Enable Bits...........cccccovvvivirinrinn. 98
Table 4-18 PM1 Control Registers Fixed Hardware Feature Control BitS...........ccccccevverrvnnnnn. 100
Table 4-19 PM TIMEE BilS ...ttt 101
Table 4-20 PM2 CoNtrol REGISTET BItS ... 101
Table 4-21 Processor CONtrol REGISTEr BItS ... 102
Table 4-22 Processor LVL2 REQISTEr BilS ... ssssssssssssessssssssessesssssnnes 102
Table 4-23 Processor LVL3 REQISIEN BIlS ... ssssssssssssssssssanes 102
Table 4-24 Sleep CONLrOol REGISTEL ..o 103
Table 4-25 Sleep STAtUS REGISTET ... 104
Table 5-26 Generic ADdress STrUCTUIE (GAS) ... 117
Table 5-27 AdAress SPACE FOIMIAL. ... 118
Table 5-28 RSDP STIUCTUIE.......ccoiiiriieieiieee et 119
Table 5-29 DESCRIPTION_HEADER FIEIAScccoviiiiiirensineiese s 120
Table 5-30 DESCRIPTION_HEADER Signatures for tables defined by ACPI...........ccccccocvevnne. 121
Table 5-31 DESCRIPTION_HEADER Signatures for tables reserved by ACPI..........c..ccccovvu. 122
Table 5-32 Root System Description Table Fields (RSDT)......cccccoeseeieens 125
Table 5-33 Extended System Description Table Fields (XSDT) ... 126
Table 5-34 FADT FOIMAL ..ottt 127
Table 5-35 Fixed ACPI Description Table Fixed Feature FIags ... 136
Table 5-36 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags................... 141
Table 5-37 Fixed ACPI Description Table ARM Boot Architecture FIags..........cccovnniniinns 142
Table 5-38 Firmware ACPI CoNtrol Structure (FACS) ... 142
Table 5-39 Firmware Control Structure Feature FIagsS ... 146
Table 5-40 OSPM Enabled Firmware Control Structure Feature Flags........cccoovvvvivncninnen, 146
Table 5-41 Global Lock Structure within the FACS...........cccssesseens 147
Table 5-42 Differentiated System Description Table Fields (DSDT)ccccovivivieininieienienenns 149
Table 5-43 Secondary System Description Table Fields (SSDT)........cccovnnnnieinns 150
Table 5-44 Multiple APIC Description Table (MADT) FOrMaLt ... 151
Table 5-45 MUIEIPIE APIC FIAGS. ... 152
Table 5-46 Interrupt Controller STrUCLUIE TYPES ..., 152
Table 5-47 Processor LOCal APIC STIUCTUIE ... sesesssssessens 154
Table 5-48 LOCAl APIC FIAQS. ...t 154
Table 5-49 [/0O APIC STIUCLUIE ..ot s sssses 154
Table 5-50 Interrupt Source OVErride STIUCTUIE ... 155
TabIE 5-51 MPS INTI FIAQS ...ttt sss st ssssesssessessssssessanes 156
Table 5-52 NMI SOUICE STIUCTUIEccooiiiirinniinineeie e 157
Table 5-53 Local APIC NMI STFUCTUIEcooiiiiienieiiess st esssssensees 157

Version 6.2 Errata A Page xxxvii

ACPI Specification

Table 5-54 Local APIC Address OVerride StrUCTUIEcovnnesssssssssessssieens 158
Table 5-55 1/0 SAPIC STIUCTUIE ..ottt 158
Table 5-56 Processor LOCal SAPIC STIUCLUIE ... sssssssssssssssssssnes 159
Table 5-57 Platform INterrupt SOUICE STIUCTUIE ..o sesssssssssssseseees 160
Table 5-58 Platform INterrupt SOUICE FIAgS ..., 161
Table 5-59 Processor Local X2APIC STIUCTUIE ... 161
Table 5-60 Local X2APIC NMI STIUCKUIE ... sssssssssens 162
TaDIE 5-61 GICC STIUCTUIE ...t 164
Table 5-62 GICC CPU INTErface FIagS ... esssssessees 166
TaDIE 5-63 GICD STIUCTUIE. ...t 166
Table 5-64 GIC MSI Frame STIUCTUIE ...t 167
Table 5-65 GIC MSI Frame FIAgS ...t ssssssssssssessssassessnes 167
TabIE 5-66 GICR STIUCTUIEoviiiiieiei bbb 168
TabIe 5-67 GIC ITS STIUCTUIE ...t 168
Table 5-68 Smart Battery Description Table (SBST) FOrmat ... 169
Table 5-69 Embedded Controller Boot Resources Table Format..........c.cccocovvvveviininnnneiens 170
Table 5-70 Static Resource Affinity Table FOrmat..........cccocoivvniincinincnsssssesss e, 172
Table 5-71 Processor Local APIC/SAPIC Affinity StrUCTUre.......c..ccoocvciveeiccnin s 173
Table 5-72 Flags — Processor Local APIC/SAPIC Affinity Structure.........ccccoevvvvivieieiercsnnns 174
Table 5-73 Memory AFfiNItY STTUCTUIE ..o s 174
Table 5-74 Flags — Memory Afinity STFUCTUIE ... 175
Table 5-75 Processor Local Xx2APIC AFfiNity StrUCTUIE ... 175
Table 5-76 GICC Affinity Structure i i aeaaaaaaan 176
Table 5-77 Flags — GICC Affinity Structure.o i i e e cececaanann 176
Table 5-78 Architecture Specific Affinity StrUCTUIE ..o e 177
TaADIE 5-79 SLIT FOIMALovviiciieiii bbb 178
Table 5-80 Corrected Platform Error Polling Table FOrmat.............ccccocovnninnnnenenns 179
Table 5-81 Corrected Platform Error Polling Processor StruCture ... 180
Table 5-82 Maximum System Characteristics Table (MSCT) Format...........cccccooconvivnininiinnns 180
Table 5-83 Maximum Proximity Domain Information Structurecevneninncnsennens 181
Table 5-84 RASF Table fOrMAL.........ccccoie s 182
Table 5-85 RASF Platform Communication Channel Shared Memory Region..............c....... 183
Table 5-86 PCC Command Codes used by RASF Platform Communication Channel 184
Table 5-87 Platform RAS CapabilitieS Bitmap.........c.ccooviie s 184
Table 5-88 Parameter Block Structure for PATROL_SCRUB ... 185
Table 5-89 MPST Table STIUCTUIE ... 188
Table 5-90 PCC Command Codes used by MPST Platform Communication Channel 189
Table 5-91 MPST Platform Communication Channel Shared Memory Region...................... 189
Table 5-92 POWET StALE VAIUEBS ..o s 191
Table 5-93 COMMAN STATUSccvirrre et 192
Table 5-94 Memory Power Node Structure definition ... 193
Table 5-95 FIag FOrMAL ...ttt 195
Table 5-96 Memory Power State Structure definition.........ccovvvinnssissss s 195
Table 5-97 Memory Power State Characteristics STrUCTUIE ... 196
Table 5-98 Flag format of Memory Power State Characteristics Structurecccocevvvvenn. 197
Table 5-99 Platform Memory Topology Table ... 199
Table 5-100 Common Memory Aggregator Device StrUCTUIE..........coovneeenesineseeens 201
Table 5-101 SOCKET STIUCTUIE ...t s 202
Table 5-102 Memory CONEroller STIUCTUIE ... s 202
Table 5-103 Physical Components Identifier StrUCtUre ... 204
Table 5-104 Boot Graphics Resource Table Fields...........coens 205
Table 5-105 Status DeSCription FIeld..........cosss s 206
Table 5-106 Image Type Description FIeld ... 206
Table 5-107 Firmware Performance Data Table (FPDT) FOrmat.........ccccccovevevinnninnensinnnennnn, 207
Table 5-108 Performance RECOId STrUCTUIE ... 208

Version 6.2 Errata A Page xxxviii

ACPI Specification

Table 5-109 Performance RECOIA TYPES. ..o ssssens 209
Table 5-110 Runtime Performance ReCOIrd TYPES ... ssssseees 209
Table 5-111 S3 Performance Table Pointer RECOrd ... 210
Table 5-112 S4 Performance Table Pointer RECOrd ... 210
Table 5-113 S3 Performance Table Header ... 211
Table 5-114 Basic S3 Resume Performance RECOId ... 211
Table 5-115 Basic S3 Suspend Performance RECOId ... 212
Table 5-116 Firmware Basic Boot Performance Table Headerccovovivneviinionenensnninnns 212
Table 5-117 Firmware Basic Boot Performance Data Record Structurecccooevvvrivninn. 213
Table 5-118 GTDT Table STIUCTUIE ...t 214
Table 5-119 Flag Definitions: Secure EL1 Timer, Non-Secure EL1 Timer, EL2 Timers, and Vir-

BUB THMIBT oo 215
Table 5-120 Platform Timer TYPE STIUCTUIES ..ottt ssnes 216
Table 5-121 GT BIOCK STruCture FOIMAL.........ccccovvriiiiieieneees st sssssssens 216
Table 5-122 GT Block Timer StruCture FOIMALc.coviininrnensnsnrnsssssssssssssssssssssssssessesssssenes 216
Table 5-123 Flag Definitions: GT Block Physical Timers and Virtual timers ..., 217
Table 5-124 Flag Definitions: COMMON FIAQS ... sssessessssennns 218
Table 5-125 SBSA Generic Watchdog Structure FOrmat ..., 218
Table 5-126 Flag Definitions: SBSA Generic Watchdog Timer ... 219
Table 5-127 NVDIMM Firmware Interface Table (NFIT) ... 221
Table 5-128 NFIT STIUCTUIE TYPES ..ottt 221
Table 5-129 SPA RANGE STIUCTUIE.........ccoiiiiie s 222
Table 5-130 NVDIMM Region Mapping STrUCTUIE ... 224
Table 5-131 Interleave Structure Index and Interleave Ways definition...........c...ccccccveevrrvnnen, 227
Table 5-132 INtErlEAVE STIUCTUIE........cc.vvriieeie s 228
Table 5-133 SMBIOS Management Information StruCture ... 228
Table 5-134 NVDIMM Control Region Structure Mark ... 229
Table 5-135 NVDIMM Block Data Windows Region StruCtUIe...........ccoonrneerneineesineieeeens 233
Table 5-136 FIush HiNt ADAress STIUCKTUIE ...t 234
Table 5-137 Platform CapabilitieS STrUCTUIE ... s, 234
Table 5-138 SDEV ACPI TADIE ..o 237
Table 5-139 PCle Endpoint Device Based Device Structure Example.......ccoovviviivvrinnnn. 239
Table 5-140 Heterogeneous Memory Attribute Table Header ..., 241
Table 5-141 HMAT SErUCTUIE TYPES ..ot 242
Table 5-142 Memory Subsystem Address Range StruCtUre ... 243
Table 5-143 System Locality Latency and Bandwidth Information Structure............cc.......... 244
Table 5-144 Memory Side Cache Information StrUCLUIE ... 248
TabIE 5-145 PDTT STIUCTUIE ..ot 250
Table 5-146 PDTT Platform Communication Channel Identifier Structure.............ccccooevvene. 250
Table 5-147 PCC Commands Codes used by Platform Debug Trigger Table.............cc........ 251
Table 5-148 PDTT Platform Communication Channel.............cccconnninnnneneneseseeees 251
Table 5-149 Example: Platform with 4 debug trHggers.........cicicnicine s 252
Table 5-150 Processor Properties Topology Table.......ccneesseeeseseenenne 253
Table 5-151 Processor Hierarchy NOde STrUCTUIE ... 254
Table 5-152 Processor StrUCTUIe FIAQS. ... 256
Table 5-153 CaChe TYPE STIUCTUIEcco.ivvreceee sttt sttt 257
Table 5-154 Cache STtrUCTUIE FIAgS. ...ttt sttt 258
Table 5-155 ID TYPE STTUCTUIE ..ottt 259
Table 5-156 Namespaces Defined Under the Namespace ROOL..........ccccvvvvrnrsrsrinnensssninns 262
Table 5-157 Operation Region Address Space Identifiers ... 269
Table 5-158 IPMI STAtUS COUEScvviviirinrsinisisissess s es 275
Table 5-159 ACCSESSOI TYPE VAIUES.........cciiiiiiesse s 278
Table 5-160 ACPI Event Programming Model COMPONENTS ... 291
Table 5-161 FiXed ACPI EVENTS.......o it 292
Table 5-162 Device Object Notification ValUES..........ccccoovicicicneicee e 300

Version 6.2 Errata A Page xxxix

ACPI Specification

Table 5-163 System Bus NOTIfication VAIUES ... 302
Table 5-164 Control Method Battery Device Notification Values.............cccovvvnvininninen. 302
Table 5-165 Power Source Object NOtIfication ValUes............ccocvninsneeens 302
Table 5-166 Thermal Zone Object Notification Values..............cccovvinnnseens 303
Table 5-167 Control Method Power Button Notification Values...........cccoovvninnnnninn. 303
Table 5-168 Control Method Sleep Button Notification Values ..., 303
Table 5-169 Control Method Lid Notification ValUES ... 303
Table 5-170 NVDIMM Root Device Notification ValUEs ... 304
Table 5-171 NVDIMM Device NOtification ValUES ... sseees 304
Table 5-172 Processor Device NOtIification VAlUES...........cccornninnnscse s 304
Table 5-173 User Presence Device Notification ValUues...........ccovnnnnnnnnnnnes 305
Table 5-174 Ambient Light Sensor Device Notification Values...........ccccovvvivninncninneinnnennnn, 305
Table 5-175 Power Meter Object Notification ValUEs ... 305
Table 5-176 Processor Aggregator Device Notification Values...........cccccocovvvnninneinineens 305
Table 5-177 Error Device NOtIfication VAIUES ... 306
Table 5-178 Fan Device NOUTICAtioN VAIUES ...t 306
Table 5-179 Memory Device NOtIfication ValUES ... 306
Table 5-180 ACPI DEVICE IDS ...ttt sesses 307
Table 5-181 Predefined ACPI NAIMES ...t sssssssessees 309
Table 5-182 Predefined ODJECT NAIMES.........cccoiiie s 325
Table 5-183 Predefined Operating System Vendor String Prefixes.........cvninnninns 326
Table 5-184 Standard ACPI-Defined Feature Group StringsS........ceeeen: 326
Table 5-185 DeviceLockINfo Package ValUEs..............cociie s 330
Table 6-186 Device Identification ODJECTES.........cccciiiicinc s 333
Table 6-187 ADR Object AAdress ENCOAINGS ... s 334
Table 6-188 Additional Language ID Alias StrNGS.......cccccuiinnnnsissinsssesssssese s 339
Table 6-189 PLD Back Panel Example SEttiNgS........ccouiesssssssssssssiesssieens 346
Table 6-190 Device Configuration ODJECTS ... 350
Table 6-191 HPP Package CONTENTS.........cccooiseseses s 359
Table 6-192 PCI Setting Record CONTENL ... sssessnans 363
Table 6-193 PCI-X Setting RECOrd CONTENT..........cccoiviiiiieicee s 363
Table 6-194 PCI Express Setting Record CONeNt..........cccvvvvvenisisiinsssssssissssess s 365
Table 6-195 Platform-Wide _OSC CapabilitieS DWORD 2.........cccooovviininnnesseeieens 371
Table 6-196 Interpretation of _OSC SUPPOrt Field.........ccoooiieeens 373
Table 6-197 Interpretation of _OSC Control Field, Passed in via Arg3.........ccccooonvininnineen. 374
Table 6-198 Interpretation of _OSC Control Field, Returned Value.........cccoooovevivviivrcncnnnnn, 375
Table 6-199 MapPPIiNG FIEIAS ... 378
Table 6-200 Example Relative Distances Between Proximity DOmainsccccccoevvvnrnninn. 381
Table 6-201 Example System Locality Information Table............cccnn, 382
Table 6-202 Example Relative Distances Between Proximity Domains - 5 Node.................. 383
Table 6-203 Device Insertion, Removal, and Status ObJECTS ... 388
Table 6-204 OST SOUICe EVENT COUES ..o 392
Table 6-205 General Processing Status COAES.........ccvvieiee s 392
Table 6-206 Operating System Shutdown Processing (Source Events : 0x100) Status Codes

392
Table 6-207 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status

COAEBS ... bRt 393
Table 6-208 Insertion Processing (Source Event: 0x200) Status Codes..........covvvvivrinennnens 393
Table 6-209 Small Resource Data Type Tag Bit Definitions ... 398
Table 6-210 SMall RESOUICE ITEIMS ..o 398
Table 6-211 IRQ Descriptor DEfiNITION ..o 399
Table 6-212 DMA DeSCriptor DefiNitiON. ... 400
Table 6-213 Start Dependent Functions Descriptor Definition..........ccoovvnnsnenns 400
Table 6-214 Start Dependent Function Priority Byte Definition..........cccccocovivnnicnicnncnsneen, 401
Table 6-215 End Dependent Functions Descriptor Definition...........ccocoieecssinenesssninnns 401

Version 6.2 Errata A Page xl

ACPI Specification

Table 6-216 1/0 Port Descriptor DefinitioN ... s 402
Table 6-217 Fixed-Location I/O Port Descriptor Definition ... 402
Table 6-218 Fixed DMA ReSOUICE DESCIIPTONcovviiiriiiieieiineisiieissisissei e 403
Table 6-219 Vendor-Defined Resource Descriptor Definition............cccovnnnnnncnnininnns 404
Table 6-220 ENd Tag DefiNitiON.........cccccviviiiiicnrcsss sttt sssssssesssssssessnes 404
Table 6-221 Large Resource Data Type Tag Bit Definitions..........c..ccovciviciniinnnninssinnensenens 404
Table 6-222 Large RESOUICE ITEIMS ...ttt 404
Table 6-223 24-bit Memory Range Descriptor Definition. ... 405
Table 6-224 Large Vendor-Defined Resource Descriptor Definition ..., 406
Table 6-225 32-Bit Memory Range Descriptor Definition ... 407
Table 6-226 32-bit Fixed-Location Memory Range Descriptor Definition ..., 409
Table 6-227 Valid combination of Address Space Descriptors fields ..., 410
Table 6-228 QWORD Address Space Descriptor Definition ..., 410
Table 6-229 DWORD Address Space Descriptor Definition...........coenneneens 414
Table 6-230 WORD Address Space Descriptor Definition..........cceeens 416
Table 6-231 Extended Address Space Descriptor Definition ... 418
Table 6-232 Memory Resource Flag (Resource Type = 0) Definitions.......c..ccovvevveniinnennne, 422
Table 6-233 1/0 Resource Flag (Resource Type = 1) Definitionsccccovvevievinncnrinnenniennnnn, 423
Table 6-234 Bus Number Range Resource Flag (Resource Type = 2) Definitions................. 423
Table 6-235 Extended Interrupt Descriptor Definition ... 424
Table 6-236 Generic Register Descriptor DefiNitioN ... 425
Table 6-237 GPIO Connection Descriptor DefinitioN..........cccvneseeeens 427
Table 6-238 GenericSerialBus CONNECtiON DESCIIPLONS.........cooviieiineesseeeee e 430
Table 6-239 12C Serial Bus ConNNection DESCIIPLON ... 433
Table 6-240 SPI Serial Bus CoONNECtioN DESCIIPLON.......cccciiecicsssese s ssssssssessssssssenes 435
Table 6-241 UART Serial Bus CoONNECtioN DESCIHPLON ... 436
Table 6-242 Pin Function Description DefiNItiON ... 440
Table 6-243 Pin Configuration Descriptor Definition ... 441
Table 6-244 Pin Group Descriptor DEfiNITION ... 443
Table 6-245 Pin Group Function Descriptor Definition ..., 445
Table 6-246 Pin Group Configuration Descriptor DesCription...........cccvniininrssrisnennnsnennns 447
Table 6-247 Other Objects and METNOAS ... s 450
Table 6-248 OSPM _INI ODJECT ACHIONS ... 451
Table 6-249 NVDIMM Label MENOAS...........ccovecrerceeeseseiseeseiss et seeees 458
Table 6-250 _LSI Return Package ValUES...........ccooinissse s 458
Table 6-251 LSR Return Package ValUESs ...t ssssssessssenes 460
Table 7-252 Power Resource Object Provisions for Information and Control 461
Table 7-253 Power RESOUICE MEtNOUS ... 464
Table 7-254 Device Power Management Child ODjJECTS. ... 466
Table 7-255 PSC DeViCe State COUES ...ttt 469
Table 7-256 Power Resource Requirements Package ... 470
Table 7-257 S1 Action / RESUITt TaBIE ... 475
Table 7-258 S2 Action / RESUIT TaDIE ...t 475
Table 7-259 S3 Action / ReSUIT TaDIE ... 476
Table 7-260 S4 Action / RESUIL TADIE ... 477
Table 7-261 BIOS-Supplied Control Methods for System-Level Functions..............cccccovc.. 479
Table 7-262 System State PACKAGE ... 481
Table 8-263 Cstate Package VAIUES ...t sssssssssssssssessnes 500
Table 8-264 CStateDependency Package ValUES..........ccvcccieeccee s 502
Table 8-265 Processor Container DeVvice ODJECTS........ccinnississsses e 505
Table 8-266 Valid Local State Combinations in Figure 2 example system ..., 507
Table 8-267 Extended LPI fIelds ... s 514
Table 8-268 FIags fOr LPI STALES ..o s 515
Table 8-269 Enabled Parent State values for example systeM.......ccccoevivivinncninnnnenenneens 516
Table 8-270 Entry Mmethod €XamMPIE.........ccocvviiiiiessee s 523

Version 6.2 Errata A Page xli

ACPI Specification

Table 8-271 PTC PaCKAQE VAIUESccovviesiesisisie s 531
Table 8-272 TState PaCKage VAIUES..........cccviiies s 533
Table 8-273 TStateDependency Package ValUues...........nnnnnsiesseseesenns 534
Table 8-274 PCT Package ValUES ... 539
Table 8-275 PState Package ValUES...........cccciiicss s ssssssessssessassessnes 540
Table 8-276 PStateDependency Package ValUES.........cneincncnss s, 543
Table 8-277 Continuous Performance Control Package Values...........cooievinenenesssnins 548
Table 8-278 Performance Limited Register Status BitS ... 559
Table 8-279 PCC Commands Codes used by Collaborative Processor Performance Control
561
Table 8-280 Processor Aggregator DeVvice ODJECTS........ceinicinseesse s 564
Table 9-281 System Indicator Control Methods...........cccocvincinccr e, 570
Table 9-282 Control Method Ambient Light SENSOr DEVICE. ..o 572
Table 9-283 Control Method Lid DEVICE. ... ssssens 579
Table 9-284 ATA SPECITIC ODJECTES........coviiiiic s 581
Table 9-285 GTM Method ReSUIT COUES.........coiiree st 584
Table 9-286 TAPE PrESENCE ... bbbt 588
Table 9-287 ACPI Floppy Drive INfOrmation..........cc.ccocvcncnscnsessseesseesssssssssesssssssssnnees 588
Table 9-288 MBM Package DEtailS.........cc.cccoviviiiiicceeee st ssssens 595
Table 9-289 MSM ReSUIT ENCOAING ..o 596
Table 9-290 Memory Device _OSC Capabilities DWORD numMber 2 ... 596
Table 9-291 UPC Return Package ValUES ... 598
Table 9-292 User Presence DeteCtion DEVICE...........ccvneneineseseseensssensssssessssssssessssssessessenes 606
Table 9-293 Time and Alarm DEVICE ... 608
Table 9-294 Generic Buttons Device Child ODJecCtS........c.ccvvivsiinscssss s 621
Table 9-295 Usage Types and INterrupt POIArItY ... 622
Table 9-296 CommON HID BUTLON USAQES.........cccniiiiissiessisissies s 622
Table 9-297 NVDIMM Roo0t Device FUNCLION INAEX.......ccoiiininrinineneneseeneiseinseseessessssssesssssssenes 628
Table 9-298 Status and Extended Status Field Generic Interpretations.............ccccovnvvineen. 630
Table 9-299 Query ARS Capabilities — INpULt BUTTEr ... 630
Table 9-300 Query ARS Capabilities — OQUtPUL BUFFET ... 631
Table 9-301 Start ARS — INPUL BUTTEI ... s 632
Table 9-302 Start ARS — OUEPUL BUTTET ... 632
Table 9-303 Query ARS Status — OUEPUL BUFFET ... 633
TaDIE 9-304 ARS DALA.........covreeririnieieies ettt 633
Table 9-305 ARS Error ReCOrd FOIMAL ... 634
Table 9-306 Clear Uncorrectable Error — INput BUFFEr ... 635
Table 9-307 Clear Uncorrectable Error — Qutput BUffer...........ccoovvincvcsseiscscsesssescssssis 635
Table 9-308 Translate SPA - Input Payload FOrMAL.............coovisesseeseins 636
Table 9-309 Translate SPA - Output Payload FOrMaL............ccccuinneesseseens 636
Table 9-310 Translate SPA — Translated NVDIMM Device List Output Payload Format....637
Table 9-311 ARS Error Inject — INPUL FOMMAL..........ccccoociiiincneccsse s ssssssessssesssnens 638
Table 9-312 ARS Error Inject — OULPUL FOMMAL ...t sensnns 638
Table 9-313 ARS Error Inject Clear — INPUL FOrMAL.........cc.cocoivinrnisiscinnssssssssssess s 639
Table 9-314 ARS Error Inject Clear — OULPUL FOIMAL ... 639
Table 9-315 ARS Error Inject Status Query — Output FOrmMat...........ccocvvnerinneeneneisneeens 640
Table 9-316 ARS Error Inject Status Query — Error Record Format...........ccocovevnvininiininenns 640
Table 10-317 Example SMBuUSs Device Slave AAreSSES.........ccomnnsiessssssssessesssssnnns 642
Table 10-318 Smart Battery ODJECES........ccccviicicceeee st ssns 644
Table 10-319 Battery Control MethOdS ... 649
Table 10-320 BIF Return PAackage ValUES............coiiinsissiesssisessssssssssssssssensees 650
Table 10-321 }BIX Return Package ValUES...........cnenesesessiseessesssssssssse s 652
Table 10-322 Control Method Battery _OSC Capabilities DWORD?2 Bit Definitions............ 654
Table 10-323 BST Return Package ValUES ... ssssssessssnsees 656
Table 10-324 BMD Return Package ValUES...........cccoviiieeeee s ssssnens 660

Version 6.2 Errata A Page xlii

ACPI Specification

Table 10-325 Power SOUICE ODJECLS ...t 663
Table 10-326 PIF Method ReSUIt COUES ... 664
Table 10-327 POWEr MEter ODJECTS.......ccoiiiriesie s 665
Table 10-328 PMC Method ReSUIL COUERS ... s 666
Table 10-329 Wireless Power CaliDration ... 670
Table 10-330 Wireless Power Control Notification Values: ... 672
Table 11-331 Fan SPECIfic ODJECTS ..o s 685
Table 11-332 FIF Package DetailS ... 686
Table 11-333 FPS FanPstate Package DetailS............ccoiniissessesssenessssiessnes 688
Table 11-334 FST Package DEtailS ... 689
Table 11-335 Thermal ObJECES. ...t 689
Table 11-336 Thermal Relationship Package ValUEes ... 692
Table 11-337 Thermal Relationship Package ValUEs ... 702
Table 12-338 Read only register table ... 720
Table 12-339 ReQISTEr AETAIISc.cccviviriie s 721
Table 12-340 Embedded Controller COMMAaNS ... 722
Table 12-341 Events for Which Embedded Controller Must Generate SCIs............ccccocneunee. 725
Table 12-342 Read COMMAN (3 BYLES) ...t ssssssssssssessssesssssnes 725
Table 12-343 Write ComMmand (3 BYLES) ... ssssens 725
Table 12-344 Query COmMmMAaNd (2 BYLES ...ttt ssassassessesssens 726
Table 12-345 Burst Enable Command (2 BYLES) ... 726
Table 12-346 Burst Disable Command (1 BYte) ... 726
Table 12-347 SMBUS STatuS COUES.......coirirriirree e 728
Table 12-348 SMB EC INTEITACE...........oorc et 736
Table 12-349 Embedded Controller Device Object Control Methods.........ccccocovvivcvivcncniine, 738
Table 12-350 EC SMBUS HC DeViCe ODJECES ... sssens 739
Table 13-351 SMBUS ProtOCOI TYPES ..o ssssssensees 742
Table 14-352 Platform Communications Channel Table (PCCT) ... 755
Table 14-353 Platform Communications Channel Global Flags.............ccconnnnininen. 756
Table 14-354 Generic PCC SUDSPACE STIUCTUIE........cccccoviviiviicricss e s sssss s 756
Table 14-355 PCC Subspace Structure type 0 (Generic Communications Subspace)........ 756
Table 14-356 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace)
757
Table 14-357 PCC Subspace Structure type 2 (HW-Reduced Communications Subspace) ...
758
Table 14-358 PCC Subspace Structure type 3 and type 4, master and slave respectively.......
760
Table 14-359 Generic Communications Channel Shared Memory Region............cccceevevnnn. 763
Table 14-360 Generic Communications Channel Command Field...........cocovvvivininieininns 764
Table 14-361 Generic Communications Channel Status Field ... 764
Table 14-362 Master Slave Communications Channel Shared Memory Region................ 765
Table 14-363 Master Slave Communications Channel Flags.......ccooinniccnisncnncnseeen, 765
Table 15-364 AdAress RANGE TYPES ..o ssssens 771
Table 15-365 Input to the INT 15h EB20h Call ... 773
Table 15-366 Output from the INT 15h E820h Call ... 773
Table 15-367 Address Range DesSCriptor StFUCTUIE..........ccoeee e 773
Table 15-368 Extended Attributes for Address Range Descriptor Structure............ccccoce, 774
Table 15-369 UEFI Memory Types and mapping to ACPI address range types........cc.cc...... 775
Table 15-370 Sample MEMOTY MAP ..o s 776
Table 18-371 Boot Error Record Table (BERT) TabI€ ... 803
Table 18-372 Hardware Error Source Table (HEST) ... 804
Table 18-373 1A-32 Architecture Machine Check Exception Structure ..., 804
Table 18-374 1A-32 Architecture Machine Check Error Bank Structure..........cccccovevvvnien. 805
Table 18-375 IA-32 Architecture Corrected Machine Check Structure...........cccccoeveveneneennes 806
Table 18-376 1A-32 Architecture NMI Error StrUCTUIE ... 807

Version 6.2 Errata A Page xliii

ACPI Specification

Table 18-377 PCl Express ROOt POrt AER STIUCTUIE........c..ccovvvveriesscsnssessssssiess s ssssenes 808
Table 18-378 PCI EXpress Device AER STIUCTUIE. ... 809
Table 18-379 PCI Express Bridge AER STIUCTUIE ... 810
Table 18-380 Generic Hardware Error SOUrce STIUCTUIE ... escncesessessseees 811
Table 18-381 Generic Error Status BIOCK ... s 813
Table 18-382 Generic Error Data ENTIY ...t sssssse st 814
Table 18-383 Generic Hardware Error Source version 2 (GHESv2) Structurecc..c...... 817
Table 18-384 Hardware Error Notification StrUCTUIE........c..ccoovvvivninnnnessssssss s 818
Table 18-385 Architecture Deferred Machine Check StrucCture ... 819
Table 18-386 Error Record Serialization Table (ERST) ... 822
Table 18-387 Error Record Serialization ACLIONS ... 822
Table 18-388 Command Status DefiNitiON ...t 824
Table 18-389 Serialization INSTrUCTION ENTIY ... sssssssssssssssssens 824
Table 18-390 Serialization INSTIUCTIONS...........cccoviieeeee s 825
Table 18-391 INSTrUCLION FIAQS.......cccviverieeee sttt 826
Table 18-392 Error Record Serialization INFO..........c.conccscrese s 827
Table 18-393 Error Injection Table (EINJ).......ccccoiinciscsee s ssssssssssessessesenes 832
Table 18-394 Error INJECTION ACHIONS ...ttt 833
Table 18-395 Injection INSTrUCTION ENTIY ...t 834
Table 18-396 INSTrUCTION FIAQS.......cccvivieriiree et 835
Table 18-397 INJECTION INSTIUCTIONS. ..o 835
Table 18-398 Command Status DefiNitiON............ccociieenneeeseesee ettt 835
Table 18-399 Error TYPe DefinitioN. ... 836
Table 18-400 SET_ERROR_TYPE_WITH_ADDRESS Data StruCture..........ccoooemnerninrenninnns 836
Table 18-401 Vendor Error Type EXteNSION StIUCTUIE........cccccovvvveeeiieieee e 837
Table 18-402 Trigger Error ACHION ... s 838
Table 19-403 ASL Grammar NOTAtIONc.cccovieieneeeee s seses 843
Table 19-404 Named Object Reference ENCOAINGS.........cccovvnerinininninniniseee s 881
Table 19-405 Definition Block Name Modifier ENCOAINGS.........cccoovninnninsneesseieens 881
Table 19-406 ASL ESCAPE SEUUENCESc.ccvvviiricirsee st ssssssssessessssessssssssssssssssssssessses 883
Table 19-407 Summary Of ASL DAta TYPES ...t sssssessessnes 886
Table 19-408 Data Types and TYPE CONVEISIONS.........cccovveeieeeee s ssssens 890
Table 19-409 Object CONVErSION RUIES ... 892
Table 19-410 Object Storing and CopyinNg RUIES ... 895
Table 19-411 Reading from ArgX ODJECTS ..o 896
Table 19-412 Writing tO ArgX ODJECTS ..ot sssssessessses 896
Table 19-413 Reading from LOCAIX ODJECES ...t sseens 897
Table 19-414 Writing to LOCAIX ODJECLS ... 897
Table 19-415 Reading from Named ODJECTS ... s 897
Table 19-416 Writing to Named ODJECTS ... 898
Table 19-417 Concatenate Data TYPES. ... 913
Table 19-418 Concatenate ODJECE TYPES ..ottt 913
Table 19-419 Debug Object Display FOrmMatS ... 918
Table 19-420 Field UNit ISt @NTIFES........ccoviees s 936
Table 19-421 OperationRegion Address Spaces and ACCESS TYPES.......ccovvrnrenrnieerneineens 937
Table 19-422 Match Term Operator MEANINGS ..o 960
Table 19-423 TValues Returned By the ObjectType Operator...........onnneennneinnns 968
Table 19-424 Pin Configuration Types and ValUEScccccovvnncnrcinsnsnsisssesssssssssenseseens 973
Table 19-425 Pin Group Configuration Types and ValUEs...........cccocvvvvninrinsnissnisnenessnnnns 981
Table 19-426 PLD Keywords and AsSigNMENT TYPES........cccvvininininsssssssssesessssesesesessenes 1006
Table 19-427 PLD Keywords and assignable String Values ... 1007
Table 19-428 UUID BUFfEr FOIMAL ..ot 1009
Table 20-429 AML Grammar Notation CONVENTIONS..........c.cornnnnseessesssesessssenes 1019
Table 20-430 AML Byte Stream Byte ValUES ... sssssesnens 1032
Table 22-431 Default Power State DefinitioNS ... 1058

Version 6.2 Errata A Page xliv

ACPI Specification

Table 23-432 Video Extension Object REQUIrEMENLS..........ccccouvivveininiensississeneess s 1079
Table 23-433 Video Output DeviCe ATLHDULES ... 1084
Table 23-434 EXamMPIe DEVICE IUS ... 1085
Table 23-435 Notifications for Display DEVICES. ... 1088
Table 23-436 DEVICE STALUScocviiiririnisririe ettt 1091
Table 23-437 Device State for _DGS.......rec st esssns 1092
Table 23-438 Device State fOr _DSS ... 1092
Table 23-439 Notification Values for OULPUL DEVICES.........cccovinnnseesseessiens 1093

Version 6.2 Errata A Page xlv

ACPI Specification

List of Figures

FIGUIE O-1 ACPI OVEIVIEWcoveiceiieicisisisss sttt st ss st sttt s s ssnsns 2
FIGUIE O0-2 ACPI STTUCTUIEcocvviccecsee ettt s bbbt ns 2
FIGUIE 0-3 ASL @NGO AML....ooiiiee ettt ss sttt 3
Figure 0-4 ACPIINITAIZATION.........cviiicssssssssssssssse st 5
Figure 0-5 RUNTIME thermal @VENT..........cco s 6
Figure 1-6 OSPM/ACPI GIODbal SYSTEM ...t 13
Figure 3-7 Global System Power States and TranSitioNS ... 45
Figure 3-8 Example Modem and COM POrt Hardware...........cccovvrenineninnssenssssssensssssesseens 53
Figure 3-9 Reporting Battery CaPaACILY ...t 58
Figure 3-10 Low Battery and WarNiNg ... 59
Figure 3-11 TREIMAI ZONE ...t 62
Figure 4-12 Generic Hardware Feature MOEl ..., 70
Figure 4-13 Global States and Their TranSItIONS ... 74
Figure 4-14 Example Event Structure for a Legacy/ACPI Compatible Event Model................ 75
Figure 4-15 Block Diagram of a Status/Enable Cell ... 80
Figure 4-16 Example Fixed Hardware Feature Register Grouping ... 81
Figure 4-17 Register Blocks versus Register GrOUPINGS ..o 82
Figure 4-18 Power ManagemeENT TIMENccuviiinininieisississese s 86
Figure 4-19 Fixed PoOwWer BULtON LOGIC.......cccoviininicnissssess st sssss e ssssessssessesses 87
Figure 4-20 Fixed Hardware Sleep BULEON LOGIC.......ccccoiviiiiinriineeee e ssesssesesssssssenns 89
Figure 4-21 SIeeping/Wake LOGIC. ...t sssss s sssa s 91
FIQUIE 4-22 RTC AIGIMN ..ottt 92
Figure 4-23 Power Management Events to SMI/SCI Control LOQIC..........cccceveenevenenecineiennn, 94
Figure 4-24 Example of General-Purpose vs. Generic Hardware Events...........cccccovveierinnis 105
Figure 4-25 Example Generic Address Space Lid SWitCh LOgIC........ccoeoveevivvrcrinninncineienennns 108
Figure 5-26 Root System Description Pointer and Table..........c.cocconnnnnnnnnns 111
Figure 5-27 Description Table STIUCTUIES ... 112
Figure 5-28 APIC-Global SysStem INTEITUPTS ..ot 163
Figure 5-29 8259-Global System INTEITUPLS ..., 169
Figure 5-30 MPST ACPI Table OVEIVIEW......c.cccviiiiiiniensieeee sttt ssssse s, 187
Figure 5-31 Memory Power State TranSItiIONS........cccocviinninseisssessessssssssssssssssssesssssens 191
FIgUre 5-32 IMage OFFSETL ... 207
Figure 5-33 NVDIMM Firmware Interface Table (NFIT) OVEIVIEW ... 220
Figure 5-34 HMAT REPIeSENTATION..........ccviiiiiicinie e 241
Figure 5-35 Memory Side Cache EXamMPIE ..., 242
Figure 5-36 Example: Platform with 4 debug triggers.........coiicicceecesee e, 252
Figure 5-37 Example ACPI NAMESPACE..........cccovvvirnrinnrsnsessts st ssssssssssssessssnssens 261
Figure 5-38 AML ENCOING........ooiiriircneise ettt sttt 263
Figure 6-39 System Panel and Panel Origin POSITIONS ..., 340
Figure 6-40 Laptop Panel and Panel Origin POSITIONS............ccccvessesssieenns 340
Figure 6-41 Default Shape DefiNitioNS ... 345
Figure 6-42 PLD Back Panel RENAEIING ... ssssssssssss e, 347
Figure 6-43 System Locality information Table ... 381
Figure 6-44 Device Ejection Flow Example USiNg _OST ..., 394

Version 6.2 Errata A Page xlvii

ACPI Specification

Figure 7-45 Working / Sleeping State object evaluation flow..........c..cccoceovvininiiniisisiisieisinnns 488
Figure 8-46 ProCesSSOr POWET STALES ...t ssss s sss s sssssssssssssssessessssens 490
Figure 8-47 Throttling EXAMPIE.......ccccviircsicrscsee st sssnens 491
Figure 8-48 Equation 1 Duty Cycle EQUAtION............ccoeiiinireeeeee e 491
Figure 8-49 Example Control for the STPCLKH ... 492
Figure 8-50 ACPI Clock LOQGIC (ONE PEI PrOCESSOI) ..o ssssssssesssessnsans 492
Figure 8-51 ProcessOr HIEIArChY ..., 504
Figure 8-52 Power states for processor NerarChy ... 506
Figure 8-53 WOrst case WaKe IatENCY ... sses s ssssssssssessesnssens 517
Figure 8-54 Energy of states A,B and C versus sleep duration ... 517
Figure 8-55 Platform performance thresholds...........cccoe, 551
Figure 8-56 OSPM performance CONTIOIS ... 554
Figure 9-57 A five-point ALS RESPONSE CUIMVE ... 575
Figure 9-58 A two-poinNt ALS RESPONSE CUNVE. ...t sesssssssesesssssssssssssssssssessssens 576
Figure 9-59 Example Response Curve for a Transflective Display........ccccooovvvvicnicinincniinnns 577
FIGUIE 9-60 USB POITS ..ottt sttt 599
Figure 9-61 Persistence of expired tiIMer EVENTS ..., 610
Figure 9-62 System transitions with WakeAlarm -- TIMer ..., 611
Figure 9-63 System transitions with WakeAlarm -- POlICY ... 611
Figure 9-64 Vendor/Device Specific Driver LOAding ... 626
Figure 10-65 Typical Smart Battery SUDSYStem (SBS)........cccoornnnieierereee e, 642
Figure 10-66 Single Smart Battery SUDSYSTEM ... 646
Figure 10-67 Smart Battery SUDSYSTEIM ..o 647
Figure 10-68 Remaining Battery Percent FOrmMUIQA..........ccoocvvvininnsvssisssssssssesssssse s 657
Figure 10-69 Remaining Battery Life FOrmula ..., 657
Figure 10-70 Power Meter and Power Source/Docking Namespace Example..........c......... 673
Figure 11-71 ACPI TREIMAI ZOMNE ... 676
Figure 11-72 Thermal EVENTS ...ttt 679
Figure 11-73 Temperature and CPU Performance Versus TiMe.........cnnnn, 681
Figure 11-74 Active and Passive Threshold Values.............cccccoiccccincncecsssse s, 683
Figure 11-75 COO0lNG Pref@rENCES......cciieccssstsssssss s 684
Figure 12-76 Shared INTEITACE ...t 718
Figure 12-77 Private INTEITACE. ... 719
Figure 12-78 INterrupt MOAEL ... 725
Figure 13-79 Bit ENCOAING EXAMIPIE ..o 742
Figure 13-80 Smart Battery SUDSYStEM DEVICES ...t ssssens 745
Figure 13-81 Smart Battery Device Virtual REQISLErS ..., 747
Figure 14-82 Communication flow of the doorbell protocol ..., 766
Figure 14-83 Communication flow for notifications on slave subspaces..........cccocoevvinnne 769
Figure 16-84 Example SIEEPING STALES ... 780
Figure 16-85 Platform Firmware INitialiZation ..., 789
Figure 16-86 Example Physical MemMOry Map ..., 792
Figure 16-87 Memory as Configured after BOOL..............cccocoveiiiniccicse e, 793
Figure 16-88 OS INIIAlIZALION ..o st snnens 794
Figure 18-89 APEI error flow example with external RAS controller ... 816
Figure 23-90 Example Display Archit@CUIE.............cooveiirireeieeee e, 1085

Version 6.2 Errata A Page xlviii

ACPI Specification

Overview

This chapter provides a high-level overview of the Advanced Configuration and Power Interface (ACPI). To
make it easier to understand ACPI, this section focuses on broad and general statements about ACPI and
does not discuss every possible exception or detail about ACPI. The rest of the ACPI specification provides
much greater detail about the inner workings of ACPI than is discussed here, and is recommended
reading for developers using ACPI.

History of ACPI

ACPI was developed through collaboration between Intel, Microsoft*, Toshiba*, HP*, and Phoenix* in
the mid-1990s. Before the development of ACPI, operating systems (OS) primarily used BIOS (Basic Input/
Output System) interfaces for power management and device discovery and configuration. This power
management approach used the OS’s ability to call the system BIOS natively for power management. The
BIOS was also used to discover system devices and load drivers based on probing input/output (1/0) and
attempting to match the correct driver to the correct device (plug and play). The location of devices could
also be hard coded within the BIOS because the platform itself was non-enumerable.

These solutions were problematic in three key ways. First, the behavior of OS applications could be
negatively affected by the BIOS-configured power management settings, causing systems to go to sleep
during presentations or other inconvenient times. Second, the power management interface was
proprietary on each system. This required developers to learn how to configure power management for
each individual system. Finally, the default settings for various devices could also conflict with each other,
causing devices to crash, behave erratically, or become undiscoverable.

ACPI was developed to solve these problems and others.

What is ACPI?

ACPI can first be understood as an architecture-independent power management and configuration
framework that forms a subsystem within the host OS. This framework establishes a hardware register
set to define power states (sleep, hibernate, wake, etc). The hardware register set can accommodate
operations on dedicated hardware and general purpose hardware.

Version 6.2 Errata A Page 1

ACPI Specification Overview

The primary intention of the standard ACPI framework and the hardware register set is to enable power
management and system configuration without directly calling firmware natively from the OS. ACPI
serves as an interface layer between the system firmware (BIOS) and the OS, as shown in Figure 0-1 and
Figure 0-2, with certain restrictions and rules.

Operating System

The ACPI subsystem is an
interface layer between the
ACPI subsystem System firmware and the OS.

C The arrows indicate data flow.

System firmware

Figure 0-1 ACPI overview

Fundamentally, ACPI defines two types of data structures that are shared between the system firmware
and the OS: data tables and definition blocks. These data structures are the primary communication
mechanism between the firmware and the OS. Data tables store raw data and are consumed by device
drivers. Definition blocks consist of byte code that is executable by an interpreter.

The ACPI subsystem consists of
two types of data structures:
data tables and definition blocks.

0s

Upon initialization, the AML
interpreter extracts the byte
code in the definition blocks as
enumerable objects.

v ¥ This collection of enumerable

AML interpreter objects forms the OS construct
called the ACPI hamespdce.

e Objects can either have a
5 Y directly defined value or must be

evaluated and interpreted by
the AML interpreter.

The AML interpreter, directed by
the 0S, evaluates objects and

ACPI | subsystem

Data Tables Definition blocks

¥ interfaces with system hardware
to perform necessa
System hardware b i v
operations.

Figure 0-2 ACPI structure

Version 6.2 Errata A Page 2

ACPI Specification Overview

This definition block byte code is compiled from the ACPI Source Language (ASL) code. ASL is the
language used to define ACPI objects and to write control methods. An ASL compiler translates ASL into
ACPI Machine Language (AML) byte code. AML is the language processed by the AML interpreter, as
shown in Figure 0-3.

ASL code ACPI Source Langauge (ASL) code is
used to define objects and control
methods.

Y The ASL compiler translates ASL into
- | ACPI Machine Language (AML) byte
B code contained within the ACPI
definition blocks.
Y

Definition block Gi :
i e Definition blocks consist of an

. . identifying table header and byte
i Lot s code thatis executable by an AML
I interpreter.
|
Y

AML interpreter

Figure 0-3 ASL and AML

The AML interpreter executes byte code and evaluates objects in the definition blocks to allow the byte
code to perform loop constructs, conditional evaluations, access defined address spaces, and perform
other operations that applications require. The AML interpreter has read/write access to defined address
spaces, including system memory, 1/0O, PCI configuration, and more. It accesses these address spaces by
defining entry points called objects. Objects can either have a directly defined value or else must be
evaluated and interpreted by the AML interpreter.

This collection of enumerable objects is an OS construct called the ACPl namespace. The namespace is a
hierarchical representation of the ACPI devices on a system. The system bus is the root of enumeration
for these ACPI devices. Devices that are enumerable on other buses, like PCI or USB devices, are usually
not enumerated in the namespace. Instead, their own buses enumerate the devices and load their
drivers. However, all enumerable buses have an encoding technique that allows ACPI to encode the bus-
specific addresses of the devices so they can be found in ACPI, even though ACPI usually does not load
drivers for these devices.

Version 6.2 Errata A Page 3

ACPI Specification Overview

Generally, devices that have a _HID object (hardware identification object) are enumerated and have
their drivers loaded by ACPI. Devices that have an _ADR object (physical address object) are usually not
enumerated by ACPI and generally do not have their drivers loaded by ACPI. _ADR devices usually can
perform all necessary functions without involving ACPI, but in cases where the device driver cannot
perform a function, or if the driver needs to communicate to system firmware, ACPI can evaluate objects
to perform the needed function.

As an example of this, PCl does not support native hotplug. However, PCl can use ACPI to evaluate
objects and define methods that allow ACPI to fill in the functions necessary to perform hotplug on PCI.

An additional aspect of ACPI is a runtime model that handles any ACPI interrupt events that occur during
system operation. ACPI continues to evaluate objects as necessary to handle these events. This interrupt-
based runtime model is discussed in greater detail in the Runtime model section below.

ACPI Initialization

The best way to understand how ACPI works is chronologically. The moment the user powers up the
system, the system firmware completes its setup, initialization, and self tests.

The system firmware then uses information obtained during firmware initialization to update the ACPI
tables as necessary with various platform configurations and power interface data, before passing
control to the bootstrap loader. The extended root system description table (XSDT) is the first table used
by the ACPI subsystem and contains the addresses of most of the other ACPI tables on the system. The
XSDT points to the fixed ACPI description table (FADT) as well as other major tables that the OS processes
during initialization. After the OS initializes, the FADT directs the ACPI subsystem to the differentiated
system description table (DSDT), which is the beginning of the namespace because it is the first table that
contains a definition block.

The ACPI subsystem then processes the DSDT and begins building the namespace from the ACPI
definition blocks. The XSDT also points to the secondary system description tables (SSDTs) and adds them
to the namespace. The ACPI data tables give the OS raw data about the system hardware.

After the OS has built the namespace from the ACPI tables, it begins traversing the namespace and
loading device drivers for all the _HID devices it encounters in the namespace.

Version 6.2 Errata A Page 4

ACPI Specification Overview

System firmware updates the
ACPl tables as necessary with
System firmware information only available at
runtime before handing off
control to the boostrap loader.

h 4 The XSDT is the first table used
XSDT by the 0S’s ACPI subsystem and
contains the addresses of most
of the other ACPI tables on the
system.

v v v

FADT SSDTs “ Major ACPl tables

the §5DTs, and other major ACP!
tables.

H The XSDT points to the FADT,

Y The FADT directs the ACPI
subsystem to the DSDT, which is the
beginning of the namespace by
virtue of being the first table that
contains a definition block.

DSDT

h 4 The ACPI subsystem then
consumes the DSDT and begins
building the ACPI namespace
from the definition blocks. The
XSDT also points to the SSDTs
and adds them to the
namespace.

ACPI namespace

Figure 0-4 ACPI initialization

Runtime Model

After the system is up and running, ACPI works with the OS to handle any ACPI events that occur via an
interrupt. This interrupt invokes ACPI events in one of two general ways: fixed events and general
purpose events (GPEs).

Fixed events are ACPI events that have a predefined meaning in the ACPI specification. These fixed events
include actions like pressing the power button or ACPI timer overflows. These events are handled directly
by the OS handlers.

GPEs are ACPI events that are not predefined by the ACPI specification. These events are usually handled
by evaluating control methods, which are objects in the namespace and can access system hardware.
When the ACPI subsystem evaluates the control method with the AML interpreter, the GPE object
handles the events according to the OS’s implementation. Typically this might involve issuing a
notification to a device to invoke the device driver to perform a function.

We discuss a generic example of this runtime model in the next section.

Version 6.2 Errata A Page 5

ACPI Specification Overview

Thermal Event Example

ACPl includes a thermal model to allow systems to control the system temperature either actively (by
performing actions like turning a fan on) or passively by reducing the amount of power the system uses
(by performing actions like throttling the processor). We can use an example of a generic thermal event
shown in Figure 5 to demonstrate how the ACPI runtime model works.

When the system initially finds a

Thermal zone [1] thermal zone [1] in the namespace,

. i Temperature and it loads the thermal zone handlerto
Example trip point 5 : :
various trip points evaluate the thermal zone to
_______________________________ determine the femperature and trip
points.
v
Thermal zone GPE When the temperature reachesa
121 trip point during runtime, a general

purpose event [2] occurs.

(4] 7
The thermal zone event causes an
mtemupt[3] interrupt [3] to occur.
[51
When the OS receives the interrupt,
ACH e pate the handler searches the
L Various ACPI namespace for the control method
objects object [4] corresponding to the GPE
interrupt. Upon finding it, the
handler evaluates that object.
Read temperature, turn on fans, reduce device ” The thermal zone handlerthen
performance, etc. takes whatever actions are

necessary to handle the event [5].

Figure 0-5 Runtime thermal event

The ACPI thermal zone includes control methods to read the current system temperature and trip points.

When the OS initially finds a thermal zone in the namespace, it loads the thermal zone driver, which
evaluates the thermal zone to obtain the current temperature and trip points.

When a system component heats up enough to trigger a trip point, a thermal zone GPE occurs.

The GPE causes an interrupt to occur. When the ACPI subsystem receives the interrupt, it first checks
whether any fixed events have occurred. In this example, the thermal zone event is a GPE, so no fixed
event hasoccurred.

Version 6.2 Errata A Page 6

ACPI Specification Overview

The ACPI subsystem then searches the namespace for the control method that matches the GPE number
of the interrupt. Upon finding it, the ACPI subsystem evaluates the control method, which might then
access hardware and/or notify the thermal zone handler.

The operating system’s thermal zone handler then takes whatever actionsare necessary to handle the
event, including possibly accessinghardware.

ACPI is a very robust interface implementation. The thermal zone trip point could notify the system to
turn on a fan, reduce a device’s performance, read the temperature, shut down the system, or any
combination of these and other actions depending on the need.

This runtime model is used throughout the system to manage all of the ACPI events that occur during
system operation.

Summary

ACPI can best be described as a framework of concepts and interfaces that are implemented to form a
subsystem within the host OS. The ACPI tables, handlers, interpreter, namespace, events, and interrupt
model together form this implementation of ACPI, creating the ACPI subsystem within the host OS. In this
sense, ACPI is the interface between the system hardware/firmware and the OS and OS applications for
configuration and power management. This gives various OS a standardized way to support power
management and configuration via the ACPl namespace.

The ACPI namespace is the enumerable, hierarchical representation of all ACPI devices on the system and
is used to both find and load drivers for ACPI devices on the system. The namespace can be dynamic by
evaluating objects and sending interrupts in real time, all without the need for the OS to call native
system firmware code. This enables device manufacturers to code their own instructions and events into
devices. It also reduces incompatibility and instability by implementing a standardized power
management interface.

Version 6.2 Errata A Page 7

ACPI Specification

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration
and power management of both devices and entire systems. ACPI is the key element in Operating
System-directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APls, PNPBIOS APIls, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more
efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of
computers including (but not limited to) desktop, mobile, workstation, and server machines. From a
power management perspective, OSPM/ACPI promotes the concept that systems should conserve
energy by transitioning unused devices into lower power states including placing the entire system in a
low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPl and OSPM are to:
1. Enable all computer systems to implement motherboard configuration and power
management functions, using appropriate cost/function tradeoffs.

e Computer systems include (but are not limited to) desktop, mobile, workstation, and
server machines.

¢ Machine implementers have the freedom to implement a wide range of solutions, from
the very simple to the very aggressive, while still maintaining full OS support.

e Wide implementation of power management will make it practical and compelling for
applications to support and exploit it. It will make new uses of PCs practical and existing
uses of PCs more economical.

2. Enhance power management functionality and robustness.

Version 6.2 Errata A Page 9

ACPI Specification Introduction

3.

Power management policies too complicated to implement in platform firmware can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

Facilitate and accelerate industry-wide implementation of power management.

OSPM and ACPI reduces the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This
will allow industry participants to focus their efforts and investments on innovation rather
than simple parity.

The OS can evolve independently of the hardware, allowing all ACPI-compatible machines
to gain the benefits of OS improvements and innovations.

4. Create a robust interface for configuring motherboard devices.

Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between
the OS and the hardware to achieve the principal goals set forth above.

Minimal support for power management inhibits application vendors from supporting or
exploiting it.

Moving power management functionality into the OS makes it available on every machine
on which the OS is installed. The level of functionality (power savings, and so on) varies
from machine to machine, but users and applications will see the same power interfaces
and semantics on all OSPM machines.

This will enable application vendors to invest in adding power management functionality to
their products.

Legacy power management algorithms were restricted by the information available to the
platform firmware that implemented them. This limited the functionality that could be
implemented.

Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy I/O
operations (such as a word processor saving files in the background) would be gathered up
into clumps and done only when the required I/O device is powered up for some other
reason. A non-lazy /0 request made when the required device was powered down would
cause the device to be powered up immediately, the non-lazy 1/O request to be carried
out, and any pending lazy 1/O operations to be done. Such a policy requires knowing when
I/0 devices are powered up, knowing which application I/O requests are lazy, and being
able to assure that such lazy 1/0 operations do not starve.

Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert,
am waiting for incoming phone calls; any sleep state the system enters must allow me to

llI

Version 6.2 Errata A Page 10

ACPI Specification Introduction

wake and answer the telephone in 1 second.” Then, when the user presses the “off”
button, the system would pick the deepest sleep state consistent with the needs of the
phone answering service.

Platform firmware has become very complex to deal with power management. It is difficult to
make work with an OS and is limited to static configurations of the hardware.

e There is much less state information for the platform firmware to retain and manage
(because the OS manages it).

e Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

e Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

e Because the platform firmware has fewer functions and they are simpler, it is much easier
(and therefore cheaper) to implement and support.

The existing structure of the PC platform constrains OS and hardware designs.

Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the

hardware from the OS.

ACPI is by nature more portable across operating systems and processors. ACPI control

methods allow for very flexible implementations of particular features.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM
Legacy hardware A legacy OS on legacy hardware | If the OS lacks legacy support, legacy

does what it always did. support is completely contained within
the hardware functions.

Legacy and ACPI It works just like a legacy OS on During boot, the OS tells the hardware to
hardware support in legacy hardware. switch from legacy to OSPM/ACPI mode
machine and from then on, the system has full

OSPM/ACPI support.

ACPl-only hardware There is no power management. | There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:

An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPlI OSPM
software and implement the hardware part of the ACPI specification (for a given platform) in
one of many possible ways.

An OEM can develop a driver and hardware that are not ACPl-compatible. This strategy opens
up even more hardware implementation possibilities. However, OEMs who implement

Version 6.2 Errata A Page 11

ACPI Specification Introduction

hardware that is OSPM-compatible but not ACPIl-compatible will bear the cost of developing,
testing, and distributing drivers for their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that
is a “soft” button that does not turn the machine physically off but signals the OS to put the machine in a
soft off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to
sleep and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

1.6 ACPI Specification and the Structure of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-6 lays out the software and hardware components relevant to OSPM/ACPI and how they relate
to each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both
software and hardware and how they must behave. ACPI is, instead, an interface specification comprised
of both software and hardware elements.

Version 6.2 Errata A Page 12

ACPI Specification Introduction

Dependent
Application
APls

‘ APPLICATIONS

OSPM System Code

0S8 Specific

Device ACPI Driver/ _ technologies,
Driver AML Interpreter interfaces, and code

0S '
ACPI ACPI Table Inde
: . pendent
' Interface technologies,
interfaces, "
firmware hardware
Existing ' Interface .
industry
tandard
Tegister AcPiBios [l ACPITables
interfaces to !
CMOS, PIC,
PITS, ... | e o o o o N = o = e e o o @ —

Y
Platform Hardware BIOS

! - ACPI Spec Covers this area

- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Figure 1-6 OSPM/ACPI Global System

There are three run-time components to ACPI:

ACPI System Description Tables

Describe the interfaces to the hardware. Some descriptions limit what can be built (for example,
some controls are embedded in fixed blocks of registers and the table specifies the address of the
register block). Most descriptions allow the hardware to be built in arbitrary ways and can
describe arbitrary operation sequences needed to make the hardware function. ACPI Tables
containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter

Version 6.2 Errata A Page 13

ACPI Specification Introduction

that executes procedures encoded in the pseudo-code language and stored in the ACPI tables
containing “Definition Blocks.” The pseudo-code language, known as ACPl Machine Language
(AML), is a compact, tokenized, abstract type of machine language.

ACPI Registers.

The constrained part of the hardware interface, described (at least in location) by the ACPI
System Description Tables.

ACPI Platform Firmware.

Refers to the portion of the firmware that is compatible with the ACPI specifications. Typically,
this is the code that boots the machine (as legacy BIOSs have done) and implements interfaces
for sleep, wake, and some restart operations. It is called rarely, compared to a legacy BIOS. The
ACPI Description Tables are also provided by the ACPI Platform Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPl-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPIl-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces
specified below are generally spread throughout the ACPI specification. The ACPI specification
defines:

e System address map reporting interfaces (Section 14)
e ACPI System Description Tables (Section 5.2):

Version 6.2 Errata A Page 14

ACPI Specification Introduction

e Root System Description Pointer (RSDP)

e System Description Table Header

e Root System Description Table (RSDT)

e Fixed ACPI Description Table (FADT)

e Firmware ACPI Control Structure (FACS)

e Differentiated System Description Table (DSDT)

e Secondary System Description Table (SSDT)

e Multiple APIC Description Table (MADT)

e Smart Battery Table (SBST)

e Extended System Description Table (XSDT)

e Embedded Controller Boot Resources Table (ECDT)

e System Resource Affinity Table (SRAT)

e System Locality Information Table (SLIT)

e Corrected Platform Error Polling Table (CPEP)

¢ Maximum System Characteristics Table (MSCT)

e ACPI RAS FeatureTable (RASF)

e Memory Power StateTable (MPST)

¢ Platform Memory Topology Table (PMTT)

e Boot Graphics Resource Table (BGRT)

e Firmware Performance Data Table (FPDT)

e Generic Timer Description Table (GTDT)

e ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):

e Power management timer control/status

e Power or sleep button with S5 override (also possible in generic space)

e Real time clock wakeup alarm control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

e System power state controls (sleeping/wake control) (Section 7)

e Processor power state control (c states) (Section 8)

e Processor throttling control/status (Section 8)

e Processor performance state control/status (Section 8)

e General-purpose event control/status

e Global Lock control/status

e System Reset control (Section 4.7.3.6)

e Embedded Controller control/status (Section 12)

e SMBus Host Controller (HC) control/status (Section 13)

e Smart Battery Subsystem (Section 10.1)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace
(Section 4.2, Section 5.6.5):

e General-purpose event processing

e Motherboard device identification, configuration, and insertion/removal (Section 6)

e Thermal zones (Section 11)

e Power resource control (Section 7.1)

e Device power state control (Section 7.2)

e System power state control (Section 7.3)

e System indicators (Section 9.1)

Version 6.2 Errata A Page 15

ACPI Specification Introduction

¢ Devices and device controls (Section 9):
— Processor (Section 8)
— Control Method Battery (Section 10)
— Smart Battery Subsystem (Section 10)
— Mobile Lid
— Power or sleep button with S5 override (also possible in fixed space)
— Embedded controller (Section 12)
— Fan
— Generic Bus Bridge
— ATA Controller
— Floppy Controller
— GPE Block
— Module
— Memory
e Global Lock related interfaces
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions (Section 2):
— Global system power states (G-states, SO, S5)
— System sleeping states (S-states S1-S4) (Section 15)
— Device power states (D-states (Appendix B))
— Processor power states (C-states) (Section 8)
— Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following example shows how a client platform design guide could use the recommended
terminology to define ACPI requirements, with a goal of requiring robust configuration and power
management for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

e System address map reporting interfaces

e ACPI System Description Tables provided in the system firmware

e ACPI-defined Fixed Registers Interfaces:

¢ Power management timer control/status

e Power or sleep button with S5 override (may also be implemented in generic register space)

e Real time clock wakeup alarm control/status

e General-purpose event control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

¢ (control required only if system supports legacy mode)

e System power state controls (sleeping/wake control)

e Processor power state control (for C1)

Version 6.2 Errata A Page 16

ACPI Specification Introduction

¢ Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
— General-purpose event processing
— Motherboard device identification, configuration, and insertion/removal (Section 6)
— System power state control (Section 7.3)
— Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register
space)
— Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions:

— System sleeping states (At least one system sleeping state, S1-S4, must be implemented)

— Device power states (D-states must be implemented in accordance with device class
specifications)

— Processor power states (All processors must support the C1 Power State)

The following example shows how a design guide could use the recommended terminology to define
ACPI related requirements for systems that execute multiple OS instances, with a goal of requiring robust
configuration and continuous availability for the system class.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

e System address map reporting interfaces

e ACPI System Description Tables provided in the system firmware

¢ ACPI-defined Fixed Registers Interfaces:

¢ Power management timer control/status

e General-purpose event control/status

e SCI /SMI routing control/status for Power Management and General-purpose events

e (control required only if system supports legacy mode)

e System power state controls (sleeping/wake control)

e Processor power state control (for C1)

e Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
— General-purpose event processing
— Motherboard device identification, configuration, and insertion/removal (Section 6)
— System power state control (Section 7.3)

Version 6.2 Errata A Page 17

ACPI Specification Introduction

— System indicators
— Devices and device controls:

Processor
¢ Global Lock related interfaces when a logical register in the hardware is shared between OS

and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined Platform Firmware Responsibilities (Section 15)
e ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

0OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with
their associated event models appropriate to the system platform class upon which the OS executes. This
is the implementation of OSPM. The following outlines the OS enhancements and elements necessary to
support all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs
to be modified to:

e Use system address map reporting interfaces.

¢ Find and consume the ACPI System Description Tables.

¢ Interpret ACPI machine language (AML).

e Enumerate and configure motherboard devices described in the ACPI Namespace.

¢ Interface with the power management timer.

¢ Interface with the real-time clock wake alarm.

e Enter ACPI mode (on legacy hardware systems).

¢ Implement device power management policy.

¢ Implement power resource management.

¢ Implement processor power states in the scheduler idle handlers.

e Control processor and device performance states.

¢ Implement the ACPI thermal model.

e Support the ACPI Event programming model including handling SCl interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

e Support acquisition and release of the Global Lock.

e Use the reset register to reset the system.

¢ Provide APIs to influence power management policy.

¢ Implement driver support for ACPI-defined devices.

¢ Implement APIs supporting the system indicators.

e Support all system states S1-S5.

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:
e Use system address map reporting interfaces to get the system address map on Intel
Architecture (lA) platforms:

e INT 15H, E820H - Query System Address Map interface (see Section 15,“System Address
Map Interfaces”)

e EFlI GetMemoryMap() Boot Services Function (see Section 15, “System Address Map
Interfaces”)

Version 6.2 Errata A Page 18

ACPI Specification Introduction

Find and consume the ACPI System Description Tables (see Section 5, “ACPI Software
Programming Model”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see
Section 20, ACPI Machine Language Specification”).

Support for the ACPI Event programming model including handling SCI interrupts, managing
fixed events, general-purpose events, embedded controller interrupts, and dynamic device
support.

Enumerate and configure motherboard devices described in the ACPI Namespace.
Implement support for the following ACPI devices defined within this specification:

e Embedded Controller Device (see Section 12, “ACPI Embedded Controller Interface
Specification”)

e GPE Block Device (see Section 9.11, “GPE Block Device”)

¢ Module Device (see Section 9.12, “Module Device”)

Implementation of the ACPI thermal model (see Section 11, “Thermal Management”).
Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device
context as described by the Device Power Management Class Specifications described in
Section A).

1.8 Target Audience

This specification is intended for the following users:

OEMs building hardware containing ACPI-compatible interfaces
Operating system and device driver developers

All platform system firmware developers

CPU and chip set vendors

Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

The first part of the specification (sections 1 through 3) introduces ACPI and provides an
executive overview.

The second part (sections 4 and 5) defines the ACPI hardware and software programming
models.

The third part (sections 6 through 17) specifies the ACPl implementation details; this part of
the specification is primarily for developers.

The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI
Source Language (ASL) reference, parts of which are referred to by most of the other sections
in the document.

Appendices contain device class specifications, describing power management characteristics
of specific classes of devices, and device class-specific ACPI interfaces.

Version 6.2 Errata A Page 19

ACPI Specification Introduction

1.9.1 ACPI Introduction and Overview
The first three sections of the specification provide an executive overview of ACPI.
Section 1: Introduction.

Discusses the purpose and goals of the specification, presents an overview of the ACPI-
compatible system architecture, specifies the minimum requirements for an ACPl-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms.

Defines the key terminology used in this specification. In particular, the global system states
(Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in this section,
along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (DO). Device
and processor performance states (PO, P1, ...Pn) are also discussed.

Section 3: ACPI Overview.

Gives an overview of the ACPI specification in terms of the functional areas covered by the
specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal
management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and
5. These sections are the heart of the ACPI specification. There are extensive cross-references between
the two sections.

Section 4: ACPI Hardware Specification.
Defines a set of hardware interfaces that meet the goals of this specification.
Section 5: ACPI Software Programming Model.

Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPIl-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration.

Defines the reserved Plug and Play objects used to configure and assign resources to devices, and
share resources and the reserved objects used to track device insertion and removal. Also defines
the format of ACPIl-compatible resource descriptors.

Version 6.2 Errata A Page 20

ACPI Specification Introduction

Section 7: Power and Performance Management.

Defines the reserved device power-management objects and the reserved-system power-
management objects.

Section 8: Processor Configuration and Control.

Defines how the OS manages the processors’ power consumption and other controls while the
system is in the working state.

Section 9: ACPI-Specific Device Objects.

Lists the integrated devices that need support for some device-specific ACPI controls, along with
the device-specific ACPI controls that can be provided. Most device objects are controlled
through generic objects and control methods and have generic device IDs; this section discusses
the exceptions.

Section 10: Power Source Devices.
Defines the reserved battery device and AC adapter objects.
Section 11: Thermal Management.
Defines the reserved thermal management objects.
Section 12: ACPlI Embedded Controller Interface Specification.
Defines the interfaces between an ACPI-compatible OS and an embedded controller.
Section 13: ACPI System Management Bus Interface Specification.

Defines the interfaces between an ACPI-compatible OS and a System Management Bus (SMBus)
host controller.

Section 14: Platform Communications Channel.

Explains the generic mechanism for OSPM to communicate with an entity in the platform
defines a new address space type

Section 15: System Address Map Interfaces.

Explains the special INT 15 call for use in ISA/EISA/PCI bus-based systems. This call supplies the
OS with a clean memory map indicating address ranges that are reserved and ranges that are
available on the motherboard. UEFI-based memory address map reporting interfaces are also
described.

Section 16: Waking and Sleeping.

Defines in detail the transitions between system working and sleeping states and their
relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 17: Non-Uniform Memory Access (NUMA) Architecture Platforms.

Discusses in detail how ACPI define interfaces can be used to describe a NUMA architecture
platform. Refers to the reserved objects defined in sections 5, 6, 8, and 9.

Version 6.2 Errata A Page 21

ACPI Specification Introduction

Section 18: ACPI Platform Error Interfaces.

Defines interfaces that enable OSPM to processes different types of hardware error events that
are detected by platform-based error detection hardware.

1.9.4 Technical Reference
The fourth part of the specification contains reference material for developers.
Section 19: ACPI Source Language Reference.

Defines the syntax of all the ASL statements that can be used to write ACPI control methods,
along with example syntax usage.

Section 20: ACPI Machine Language Specification.

Defines the grammar of the language of the ACPI virtual machine language. An ASL translator
(compiler) outputs AML.

Section 21: ACPI Data Tables and Table Language Definition.

Describes a simple language (the Table Definition Language or TDL) that can be used to generate
any ACPI data table.

Appendix A: Device class specifications.
Describes device-specific power management behavior on a per device-class basis.
Appendix B: Video Extensions.

Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Legacy PNP
Guidelines".

e Advanced Power Management (APM) BIOS Specification, Revision 1.2.
e Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® Itanium ™ Architecture Software Developer’s Manual, see “Links to ACPI-Related Documents”
(http://uefi.org/acpi) under the heading "Intel Architecture Specifications".

Itanium™ Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, see “Links to ACPI-Related Documents” (http://
uefi.org/acpi) under the heading "Unified Extensible Firmware Interface Specifications"

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:

Version 6.2 Errata A Page 22

ACPI Specification Introduction

e “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Smart Battery
System Components and SMBus Specification".

e Smart Battery Data Specification, see “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Smart Battery System Components and SMBus Specification".

e Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

e System Management Bus Specification, Revision 1.1, Smart Battery System Implementers
Forum, December, 1998.

Version 6.2 Errata A Page 23

ACPI Specification

2 Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPIl is a method for describing hardware interfaces in terms
abstract enough to allow flexible and innovative hardware implementations and concrete
enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the interfaces to
those features described using the Description Tables as specified by this document.

ACPI Namespace

A hierarchical tree structure in OS-controlled memory that contains named objects. These
objects may be data objects, control method objects, bus/device package objects, and so on. The
OS dynamically changes the contents of the namespace at run-time by loading and/or unloading
definition blocks from the ACPI Tables that reside in the ACPI system firmware. All the
information in the ACPlI Namespace comes from the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, and one or more other definition
blocks.

ACPI Machine Language (AML)

Pseudo-code for a virtual machine supported by an ACPIl-compatible OS and in which ACPI
control methods and objects are written. The AML encoding definition is provided in section 19,
“ACPI Machine Language (AML) Specification.”

Add-in Card

A generic term used to refer to any device which can be inserted or removed from a platform
through a connection bus, such as PCl. Add-in cards are typically inserted within a platform’s
physical enclosure, rather than residing physically external to a platform. An add-in card will have
its own devices and associated firmware, and may have its own Expansion ROM Firmware.

Advanced Programmable Interrupt Controller (APIC)

An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC
systems. The APIC architecture supports multiprocessor interrupt management (with symmetric

Version 6.2 Errata A Page 25

ACPI Specification Definition of Terms

interrupt distribution across all processors), multiple 1/0 subsystem support, 8259A
compatibility, and inter-processor interrupt support. The architecture consists of local APICs
commonly attached directly to processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)

The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Address Range Scrub (ARS)

Process by which regions of memory can be scrubbed to look for memory locations that contain
correctable or uncorrectable errors.

BIOS

BIOS (Basic Input/Output System) is firmware that provides basic boot capabilities for a platform;
it is used here to refer specifically to traditional x86 BIOS, and not as a general term for all
firmware, or a replacement term for UEFI Core System BIOS. The ambiguity of this the term is
what we are trying to remove. See also: Legacy BIOS, System BIOS.

Boot Firmware

Generic term to describe any firmware on a platform used during the boot process. Use a more
specific term, if possible.

Component

Synonym for device. Please use the term “device” if possible.
Control Method

A control method is a definition of how the OS can perform a simple hardware task. For example,
the OS invokes control methods to read the temperature of a thermal zone. Control methods are
written in an encoded language called AML that can be interpreted and executed by the ACPI-
compatible OS. An ACPI-compatible system must provide a minimal set of control methods in the
ACPI tables. The OS provides a set of well-defined control methods that ACPI table developers
can reference in their control methods. OEMs can support different revisions of chip sets with
one version of platform firmware by either including control methods in the platform firmware
that test configurations and respond as needed or including a different set of control methods for
each chip set revision.

Central Processing Unit (CPU) or Processor

The part of a platform that executes the instructions that do the work. An ACPIl-compatible OS
can balance processor performance against power consumption and thermal states by
manipulating the processor performance controls. The ACPI specification defines a working state,
labeled GO (S0), in which the processor executes instructions. Processor sleeping states, labeled
C1 through C3, are also defined. In the sleeping states, the processor executes no instructions,
thus reducing power consumption and, potentially, operating temperatures. The ACPI
specification also defines processor performance states, where the processor (while in CO)
executes instructions, but with lower performance and (potentially) lower power consumption
and operating temperature. For more information, see section 8, “Processor Configuration and
Control.”

Version 6.2 Errata A Page 26

ACPI Specification Definition of Terms

A definition block contains information about hardware implementation and configuration
details in the form of data and control methods, encoded in AML. An OEM can provide one or
more definition blocks in the ACPI Tables. One definition block must be provided: the
Differentiated Definition Block, which describes the base system. Upon loading the
Differentiated Definition Block, the OS inserts the contents of the Differentiated Definition Block
into the ACPI Namespace. Other definition blocks, which the OS can dynamically insert and
remove from the active ACPlI Namespace, can contain references to the Differentiated Definition
Block. For more information, see Section 5.2.11

Device

A generic term used to refer to any computing, input/output or storage element, or any
collection of computing, input/output or storage elements, on a platform. An example of a
device is a CPU, APU, embedded controller (EC), BMC, Trusted Platform Module (TPM), graphics
processing unit (GPU), network interface controller (NIC), hard disk drive (HDD), solid state drive
(SSD), Read Only Memory (ROM), flash ROM, or any of the large number of other possible
devices. If at all possible, use a more specific term.

Device Context

The variable data held by the device; it is usually volatile. The device might forget this
information when entering or leaving certain states (for more information, see section 2.3,
“Device Power State Definitions.”), in which case the OS software is responsible for saving and
restoring the information. Device Context refers to small amounts of information held in device
peripherals. See System Context.

Device Firmware

Firmware that is only used by a specific device and cannot be used with any other device. This
firmware is typically provided by the device manufacturer.

Differentiated System Description Table (DSDT)

An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the
base system. The OS always inserts the DSDT information into the ACPI Namespace at system
boot time and never removes it.

DIMM Physical Address (DPA)
An NVDIMM relative memory address.
Embedded Controller

The general class of micro-controllers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform
design, as long as the micro-controller conforms to one of the models described in this section.
The embedded controller performs complex low-level functions through a simple interface to the
host microprocessor(s).

Embedded Controller Interface

A standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly

Version 6.2 Errata A Page 27

ACPI Specification Definition of Terms

communicate with an embedded controller in the system, thus allowing other drivers within the
system to communicate with and use the resources of system embedded controllers (for
example, Smart Battery and AML code). This in turn enables the OEM to provide platform
features that the OS and applications can use.

Expansion ROM Firmware

Peripheral Component Interconnect (PCl) term for firmware executed on a host processor which
is used by an add-in device during the boot process. This includes Option ROM Firmware and
UEFI drivers. Expansion ROM Firmware may be embedded as part of the Host Processor Boot
Firmware, or may be separate (e.g., from an add-in card). See also: Option ROM Firmware

Firmware

Generic term to describe any BIOS or firmware on a platform; it refers to the general class of
things, not a specific type. Use a more specific term, if possible.

Firmware ACPI Control Structure (FACS)

A structure in read/write memory that the platform runtime firmware uses for handshaking
between the firmware and the OS. The FACS is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FADT). The FACS contains the system’s hardware signature at last boot,
the firmware waking vector, and the Global Lock.

Firmware Storage Device

A memory device used to store firmware. This could include Read Only Memory (ROM), flash
memory, eMMC, UFS drives, etc.

Fixed ACPI Description Table (FADT)

A table that contains the ACPI Hardware Register Block implementation and configuration details
that the OS needs to directly manage the ACPl Hardware Register Blocks, as well as the physical
address of the DSDT, which contains other platform implementation and configuration details.
An OEM must provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always
inserts the namespace information defined in the Differentiated Definition Block in the DSDT into
the ACPI Namespace at system boot time, and the OS never removes it.

Fixed Features

A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are
implemented as described in this specification so that OSPM can directly access the fixed feature
registers.

Fixed Feature Events

A set of events that occur at the ACPI interface when a paired set of status and event bits in the
fixed feature registers are set at the same time. When a fixed feature event occurs, a system
control interrupt (SCl is raised. For ACPI fixed feature events, OSPM (or an ACPl-aware driver)
acts as the event handler.

Version 6.2 Errata A Page 28

ACPI Specification Definition of Terms

Fixed Feature Registers

A set of hardware registers in fixed feature register space at specific address locations in system
I/0O address space. ACPI defines register blocks for fixed features (each register block gets a
separate pointer from the FADT). For more information, see section 4.6, “ACPl Hardware
Features.”

General-Purpose Event Registers

The general-purpose event registers contain the event programming model for generic features.
All general-purpose events generate SCls.

Generic Feature

A generic feature of a platform is value-added hardware implemented through control methods
and general-purpose events.

Generic Interrupt Controller (GIC)
An interrupt controller architecture for ARM processor-based systems.

Global System Status

Global system states apply to the entire system, and are visible to the user. The various global
system states are labeled GO through G3 in the ACPI specification. For more information, see
Section 2.2, “Global System State Definitions.”

Host Processor

A host processor is the primary processing unit in a platform, traditionally called a Central
Processing Unit (CPU), now also sometimes referred to as an Application Processing Unit (APU),
or a System on Chip (SoC). This is the processing unit on which the primary operating system
(and/or hypervisor), as well as user applications run. This is the processor that is responsible for
loading and executing the Host Processor Boot Firmware. This term and "Boot Processor" should
be considered synonyms for this particular text clean-up effort (i.e., making them consistent
should probably be part of a different ECR, if needed).

Host Processor Boot Firmware

Generic term used to describe firmware loaded and executed by the Host Processor which
provides basic boot capabilities for a platform. This class of firmware is a reference to Legacy
BIOS and UEFI, which were sometimes referred to as System BIOS. Where the distinction
between Legacy BIOS and UEFI is not important, the term Host Processor Boot Firmware will be
used. Where the distinction is important, it will be referenced appropriately. Expansion ROM
firmware may also be considered as part of the Host Processor Boot Firmware. Expansion ROM
Firmware may be embedded as part of the Host Processor Boot Firmware, or may be separate
from the Host Processor Boot Firmware (e.g., loaded from an add-in card).

Host Processor Runtime Firmware

Host processor runtime firmware is any runtime firmware which executes on the host processor.

Ignored Bits

Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI
specification. Ignored bits are undefined and can return zero or one (in contrast to reserved bits,

Version 6.2 Errata A Page 29

ACPI Specification Definition of Terms

which always return zero). Software ignores ignored bits in ACPl hardware registers on reads and
preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC)

A general descriptive term for computers built with processors conforming to the architecture
defined by the Intel processor family based on the Intel Architecture instruction set and having
an industry-standard PC architecture.

/0 APIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to
the processor’s local APIC.

/0 SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts
from devices to the processor’s local APIC.

Label Storage Area
A persistent storage area reserved for Label storage.
Legacy

A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in
today’s systems are used to support power management in a system that uses a legacy OS that
does not support the OS-directed power management architecture.

Legacy BIOS

One form of Host Processor Boot Firmware used on x86 platforms which uses a legacy x86 BIOS

structure. This form of host processor boot firmware has been or is being replaced by UEFI. This
term will likely be most useful in distinguishing and comparing older forms of firmware to newer
forms (e.g., "it was done this way in legacy BIOS, but is now done another way in UEFI). See also:
BIOS, System BIOS

Legacy Hardware
A computer system that has no ACPl or OSPM power management support.
Legacy OS

An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.
Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/
O SAPIC.

Version 6.2 Errata A Page 30

ACPI Specification Definition of Terms

Management Firmware

Firmware used only by a Baseboard Management Controller (BMC) or other Out-of-Band (OOB)
management controller.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Namespace

A namespace defines a contiguously-addressed range of Non-Volatile Memory, conceptually
similar to a SCSI Logical Unit (LUN) or an NVM Express namespace. A namespace can be
described by one or more Labels.

Non-Host Processor

A non-host processor is a generic term used to describe any processing unit on a platform which
is not a host processor (e.g. a microcontroller, co-processor, etc). For the purposes of this
particular ECR, this should also be considered a synonym for "secondary processor", those CPUs
that might be on an SoC, for example, that are not the host (or "boot") processor.

NVDIMM
Non Volatile Dual In-line Memory Module.
Object

The nodes of the ACPlI Namespace are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package objects,
control method objects, and so on. Package objects refer to other objects. Objects also have
type, size, and relative name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.
Operating System-directed Power Management (OSPM)

A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Option ROM FirmwareDevice Firmware

Legacy term for boot firmware typically executed on a host processor which is used by a device
during the boot process. Option ROM firmware may be included with the host processor boot
firmware or may be carried separately by a device (such as an add-in card). See also: Expansion
ROM Firmware

Package

An array of objects.

Version 6.2 Errata A Page 31

ACPI Specification Definition of Terms

Peripheral

A peripheral (also known as an external device) is a device which resides physically external to a
platform and is connected to a platform, either wired or wirelessly. A peripheral is comprised of
its own devices which may have their own firmware.

Persistent Memory (pmem)
Byte-addressable memory that retains its contents across power loss.
Platform

A platform consists of multiple devices assembled and working together to deliver a specific
computing function, but does not include any other software other than the firmware as part of
the devices in the platform. Examples of platforms include a notebook, a desktop, a server, a
network switch, a blade, etc. - all without and independent of any operating system, user
applications, or user data.

Platform Boot Firmware

The collection of all boot firmware on a platform. This firmware is initially loaded by a platform
(such as an SoC, a motherboard, or a complete system) at power-on to do basic initialization of
the platform hardware and then hand control to a boot loader or OS. In some cases this will be
x86 BIOS, or it may be UEFI Core System BIQS, or it could be something else entirely. Once
control has been handed over to a boot loader or an OS, this firmware has no further role.

Platform Runtime Firmware

The collection of all run-time firmware on a platform. This is firmware that can provide functions
that can be invoked by an OS, but those functions are still concerned only with the platform
hardware (e.g., PSCl on ARM). The assumption is that platform boot firmware has since been
superceded by the OS since the OS is now up and running, but that there is still a need for an OS
to access specific features of hardware that may only be possible via firmware.

Platform Firmware
The collection of platform boot firmware and platform runtime firmware.
Power Button

A user push button or other switch contact device that switches the system from the sleeping/
soft off state to the working state, and signals the OS to transition to a sleeping/soft off state
from the working state.

Power Management

Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power
consumption. Power management is required for some system functions, such as appliance (for
example, answering machine, furnace control) operations.

Power Resources

Resources (for example, power planes and clock sources) that a device requires to operate in a
given power state.

Version 6.2 Errata A Page 32

ACPI Specification Definition of Terms

Power Sources

The battery (including a UPS battery) and AC line powered adapters or power supplies that
supply power to a platform.

Register Grouping

Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows
the bits within a register grouping to be split between two chips.

Reserved Bits

Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI
specification. For future extensibility, hardware-register reserved bits always return zero, and
data writes to them have no side effects. OSPM implementations must write zeros to all reserved
bits in enable and status registers and preserve bits in control registers.

Root System Description Pointer (RSDP)

An ACPl-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)

A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Runtime Firmware

Generic term to describe any firmware on a platform used during runtime (i.e., after the boot
process has completed). Use a more specific term, if possible.

Secondary System Description Table (SSDT)

SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform
description. After the DSDT is loaded into the ACPl Namespace, each secondary description table
listed in the RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the
base support in one table, while adding smaller system options in other tables.

System Physical Address (SPA)
The platform physical address assigned and programmed by the platform and utilized by the OS.
Sleep Button

A user push button that switches the system from the sleeping/soft off state to the working
state, and signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem

A battery subsystem that conforms to the following specifications: Smart Battery and either
Smart Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Version 6.2 Errata A Page 33

ACPI Specification Definition of Terms

Smart Battery Table

An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the
energy-level trip points that the platform requires for placing the system into different sleeping
states and suggested energy levels for warning the user to SMBus Interface

A standard hardware and software communications interface between an OS bus driver and an
SMBus controller.

Software

Software is comprised of elements required to load the operating system and all user
applications and user data subsequently handled by the operating system.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)

An advanced APIC commonly found on Intel Itanium™ Processor Family-based 64-bit systems.
transition the platform into a sleeping state.
System

A system is the entirety of a computing entity, including all elements in a platform (hardware,
firmware) and software (operating system, user applications, user data). A system can be
thought of both as a logical construct (e.g. a software stack) or physical construct (e.g. a
notebook, a desktop, a server, a network switch, etc).

System BIOS

A term sometimes used in industry to refer to either Legacy BIOS, or to UEFI Core System BIOS, or
both. Please use this term only when referring to Legacy BIOS. See also: BIOS, Legacy BIOS.

System Context
The volatile data in the system that is not saved by a device driver.
System Control Interrupt (SCI)

A system interrupt used by hardware to notify the OS of ACPI events. The SCl is an active, low,
shareable, level interrupt.

System Management Bus (SMBus)

A two-wire interface based upon the I12C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

System Management Interrupt (SMI)

An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on
ACPI systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style
interrupts will not work). Hardware platforms that want to support both legacy operating
systems and ACPI systems must support a way of re-mapping the interrupt events between SMls
and SCls when switching between ACPI and legacy models.

Thermal States

Thermal states represent different operating environment temperatures within thermal zones of
a system. A system can have one or more thermal zones; each thermal zone is the volume of

Version 6.2 Errata A Page 34

ACPI Specification Definition of Terms

space around a particular temperature-sensing device. The transitions from one thermal state to
another are marked by trip points, which are implemented to generate an SCl when the
temperature in a thermal zone moves above or below the trip point temperature.

UEFI

One form of Host Processor Boot Firmware which uses a Unified Extensible Firmware Interface
(UEFI) structure (as defined by the UEFI Forum). This is the current host processor boot firmware
structure being adopted as a standard in the industry. This term should be used when referring
specifically to UEFI code on a platform.

UEFI Drivers

Standalone binary executables in PECOFF format which are loaded by UEFI during the boot
process to handle specific pieces of hardware.

Extended Root System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32 bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

2.2 Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.
Global system states are defined by six principal criteria:

Does application software run?

What is the latency from external events to application response?
What is the power consumption?

Is an OS reboot required to return to a working state?

e W e

Is it safe to disassemble the computer?
6. Can the state be entered and exited electronically?

Following is a list of the system states:
G3 Mechanical Off

A computer state that is entered and left by a mechanical means (for example, turning off the
system’s power through the movement of a large red switch). It is implied by the entry of this off
state through a mechanical means that no electrical current is running through the circuitry and
that it can be worked on without damaging the hardware or endangering service personnel. The
OS must be restarted to return to the Working state. No hardware context is retained. Except for
the real-time clock, power consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user mode or
system mode code is run. This state requires a large latency in order to return to the Working
state. The system’s context will not be preserved by the hardware. The system must be restarted
to return to the Working state. It is not safe to disassemble the machine in this state.

Version 6.2 Errata A Page 35

ACPI Specification Definition of Terms

G1 Sleeping

A computer state where the computer consumes a small amount of power, user mode threads
are not being executed, and the system “appears” to be off (from an end user’s perspective, the
display is off, and so on). Latency for returning to the Working state varies on the wake
environment selected prior to entry of this state (for example, whether the system should
answer phone calls). Work can be resumed without rebooting the OS because large elements of
system context are saved by the hardware and the rest by system software. It is not safe to
disassemble the machine in this state.

G0 Working

A computer state where the system dispatches user mode (application) threads and they
execute. In this state, peripheral devices (peripherals) are having their power state changed
dynamically. The user can select, through some Ul, various performance/power characteristics of
the system to have the software optimize for performance or battery life. The system responds
to external events in real time. It is not safe to disassemble the machine in this state.

S$4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored (relatively
slowly) when power is lost to the motherboard. If the system has been commanded to enter S4,
the OS will write all system context to a file on non-volatile storage media and leave appropriate
context markers. The machine will then enter the S4 state. When the system leaves the Soft Off
or Mechanical Off state, transitioning to Working (G0) and restarting the OS, a restore from a
NVS file can occur. This will only happen if a valid non-volatile sleep data set is found, certain
aspects of the configuration of the machine have not changed, and the user has not manually
aborted the restore. If all these conditions are met, as part of the OS restarting, it will reload the
system context and activate it. The net effect for the user is what looks like a resume from a
Sleeping (G1) state (albeit slower). The aspects of the machine configuration that must not
change include, but are not limited to, disk layout and memory size. It might be possible for the
user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to 5S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or platform runtime firmware can save the system context takes too long from the user's point of
view. The transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-2 Summary of Global Power States

Global system Software | Latency | Power OSrestart | Safe to Exit state

state runs consumption | required disassemble | electronically
computer

GO Working Yes 0 Large No No Yes

Version 6.2 Errata A Page 36

ACPI Specification Definition of Terms

Global system Software | Latency | Power OSrestart | Safe to Exit state
state runs consumption | required disassemble | electronically
computer
G1 Sleeping No >0, varies | Smaller No No Yes
with
sleep
state
G2/S5 Soft Off No Long Very near 0 Yes No Yes
G3 Mechanical Off | No Long RTC battery Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This
implies that a platform designed to give the user the appearance of “instant-on,” similar to a home
appliance device, will use the GO and G1 states almost exclusively (the G3 state may be used for moving
the machine or repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working
state.

Device states apply to any device on any bus. They are generally defined in terms of four principal
criteria:

e Power consumption-How much power the device uses.

¢ Device context--How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

¢ Device driver--What the device driver must do to restore the device to full on.

e Restore time--How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no
user-perceptible difference between the modes, only the lowest power mode will be used. The Device
Class Power Management Specifications, included in Appendix A of this specification, describe which of
these power states are defined for a given type (class) of device and define the specific details of each
power state for that device class. For a list of the available Device Class Power Management
Specifications, see “Appendix A: Device Class Specifications.”

D3 (Off)

Power has been fully removed from the device. Also referred to as D3cold in this and other specs.
All device context is lost when this state is entered, so the OS software will reinitialize the device
when powering it back on. Since all device context and power are lost, devices in this state do not
decode their address lines, and cannot be enumerated by software. Devices in this state have the
longest restore times.

D3hot

The meaning of the D3hot State is defined by each device class. In general, D3hot is expected to
save as much power as possible without affecting PNP Enumeration. Devices in D3hot must have
enough power to remain enumerable by software. For example, PCI Configuration space access

Version 6.2 Errata A Page 37

ACPI Specification Definition of Terms

Note:

D2

D1

and contents must operate as in shallower power states. Similarly, ACPI identification and
configuration objects must operate as in shallower power states. Otherwise, no device
functionality is supported, and Driver software is required to restore any lost context, or
reinitialize the device, during its transition back to DO.

Devices in this state can have long restore times. All classes of devices define this state.

For devices that support both D3hot and D3 exposed to OSPM via _PR3, device software/drivers
must always assume OSPM will target D3and must assume all device context will be lost and the
device will no longer be enumerable.

The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than
D1 or DO. Buses in D2 may cause the device to lose some context (for example, by reducing
power on the bus, thus forcing the device to turn off some of its functions).

The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than
D2.

DO (Fully-On)

This state is assumed to be the highest level of power consumption. The device is completely
active and responsive, and is expected to remember all relevant context continuously.

Transitions amongst these power states are restricted for simplicity. Power-down transitions (from
higher-power, or shallower, to lower-power, or deeper) are allowed between any two states. However,
power-up transitions (from deeper to shallower) are required to go through DO; i.e. Dy to Dx<y is illegal
for all x 1=0.

Table 2-3 Summary of Device Power States

Device State Power Consumption Device Context Retained | Driver Restoration

DO - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization and
load

D3 - Off 0 None Full initialization and load

Version 6.2 Errata A Page 38

ACPI Specification Definition of Terms

Note: Devices often have different power modes within a given state. Devices can use these modes as
long as they can automatically transparently switch between these modes from the software,
without violating the rules for the current Dx state the device is in. Low-power modes that
adversely affect performance (in other words, low speed modes) or that are not transparent to
software cannot be done automatically in hardware; the device driver must issue commands to
use these modes.

2.3.1 Device Performance States

Device performance states (Px states) are power consumption and capability states within the active (DO)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that
the states invoke different device efficiency levels as opposed to a linear scaling of performance and
energy consumption. Since performance state transitions occur in the active device states, care must be
taken to ensure that performance state transitions do not adversely impact the system.

Device performance states, when necessary, are defined on a per device class basis (See Appendix A for
more information).

2.4 Sleeping and Soft-off State Definitions

S1-S4 are types of sleeping states within the global system state, G1, while S5 is a soft-off state associated
with the G2 system state. The Sx states are briefly defined below. For a detailed definition of the system
behavior within each Sx state, see Section 7.4.2, “System _Sx States.” For a detailed definition of the
transitions between each of the Sx states, see Section 16.1, “Sleeping States.”

S1 Sleeping State

The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost
(CPU or chip set) and hardware maintains all system context.

S2 Sleeping State

The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping
state except that the CPU and system cache context is lost (the OS is responsible for maintaining
the caches and CPU context). Control starts from the processor’s reset vector after the wake
event.

S3 Sleeping State

The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains
memory context and restores some CPU and L2 configuration context. Control starts from the
processor’s reset vector after the wake event.

S84 Sleeping State

The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI.
In order to reduce power to a minimum, it is assumed that the hardware platform has powered
off all devices. Platform context is maintained.

S5 Soft Off State

The S5 state is similar to the S4 state except that the OS does not save any context. The system is
in the “soft” off state and requires a complete boot when it wakes. Software uses a different

Version 6.2 Errata A Page 39

ACPI Specification Definition of Terms

state value to distinguish between the S5 state and the S4 state to allow for initial boot
operations within the platform boot firmware to distinguish whether the boot is going to wake
from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states
within the global working state, GO. The Cx states possess specific entry and exit semantics and are briefly
defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

CO0 Processor Power State
While the processor is in this state, it executes instructions.
C1 Processor Power State

This processor power state has the lowest latency. The hardware latency in this state must be
low enough that the operating software does not consider the latency aspect of the state when
deciding whether to use it. Aside from putting the processor in a non-executing power state, this
state has no other software-visible effects.

C2 Processor Power State

The C2 state offers improved power savings over the C1 state. The worst-case hardware latency
for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from
putting the processor in a non-executing power state, this state has no other software-visible
effects.

C3 Processor Power State

The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can
use this information to determine when the C2 state should be used instead of the C3 state.
While in the C3 state, the processor’s caches maintain state but ignore any snoops. The operating
software is responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within
the active/executing states, CO for processors and DO for devices. The Px states are briefly defined below.
For a more detailed definition of each Px state from a processor perspective, see section 8.4.4,
“Processor Performance Control.” For a more detailed definition of each Px state from a device
perspective see section 3.6, “Device and Processor Performance States,” and the device class
specifications in Appendix A.

PO Performance State

While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

Version 6.2 Errata A Page 40

ACPI Specification Definition of Terms

P1 Performance State

In this performance power state, the performance capability of a device or processor is limited
below its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its minimum
level and consumes minimal power while remaining in an active state. State n is a maximum
number and is processor or device dependent. Processors and devices may define support for an
arbitrary number of performance states not to exceed 255.

Version 6.2 Errata A Page 41

ACPI Specification

3 ACPI Concepts

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance,
and thermal status of the system based on user preference, application requests and OS imposed Quality
of Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

System power management

ACPI defines mechanisms for putting the computer as a whole in and out of system sleeping
states. It also provides a general mechanism for any device to wake the computer.

Device power management

ACPI tables describe motherboard devices, their power states, the power planes the devices are
connected to, and controls for putting devices into different power states. This enables the OS to
put devices into low-power states based on application usage.

Processor power management

While the OS is idle but not sleeping, it will use commands described by ACPI to put processors in
low-power states.

Device and processor performance management

While the system is active, OSPM will transition devices and processors into different
performance states, defined by ACPI, to achieve a desirable balance between performance and
energy conservation goals as well as other environmental requirements (for example, visibility
and acoustics).

Configuration / Plug and Play

ACPI specifies information used to enumerate and configure motherboard devices. This
information is arranged hierarchically so when events such as docking and undocking take place,
the OS has precise, a priori knowledge of which devices are affected by the event.

System Events

ACPI provides a general event mechanism that can be used for system events such as thermal
events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the
core logic chip set.

Battery management

Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-compatible
battery device needs either a Smart Battery subsystem interface, which is controlled by the OS
directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an

Version 6.2 Errata A Page 43

ACPI Specification ACPI Concepts

OEM to choose any type of the battery and any kind of communication interface supported by
ACPI. The battery must comply with the requirements of its interface, as described either herein
or in other applicable standards. The OS may choose to alter the behavior of the battery, for
example, by adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery
subsystem does not synthesize a “composite battery” from the separate battery’s data, the OS
must provide that synthesis.

Thermal management

Since the OS controls the power and performance states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scalable model that allows OEMs to
define thermal zones, thermal indicators, and methods for cooling thermal zones.

Embedded Controller

ACPI defines a standard hardware and software communications interface between an OS bus
enumerator and an embedded controller. This allows any OS to provide a standard bus
enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

SMBus Controller

ACPI defines a standard hardware and software communications interface between an OS bus
driver and an SMBus Controller. This allows any OS to provide a standard bus driver that can
directly communicate with SMBus devices in the system. This in turn enables the OEM to provide
platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality
of Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPI mode, the platform’s hardware, firmware, or other non-0S software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces
independently of OSPM. OSPM alone is responsible for coordinating the configuration, power
management, performance management, and thermal control policy of the system. Manipulation of
these interfaces independently of OSPM undermines the purpose of OSPM/ACPI and may adversely
impact the system’s configuration, power, performance, and thermal policy goals. There are two
exceptions to this requirement. The first is in the case of the possibility of damage to a system from an
excessive thermal conditions where an ACPI compatible OS is present and OSPM latency is insufficient to
remedy an adverse thermal condition. In this case, the platform may exercise a failsafe thermal control
mechanism that reduces the performance of a system component to avoid damage. If this occurs, the
platform must notify OSPM of the performance reduction if the reduction is of significant duration (in
other words, if the duration of reduced performance could adversely impact OSPM’s power or
performance control policy - operating system vendors can provide guidance in this area). The second
exception is the case where the platform contains Active cooling devices but does not contain Passive
cooling temperature trip points or controls,. In this case, a hardware based Active cooling mechanism
may be implemented without impacting OSPM’s goals. Any platform that requires both active and

Version 6.2 Errata A Page 44

ACPI Specification ACPI Concepts

passive cooling must allow OSPM to manage the platform thermals via ACPI defined active and passive
cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences
and knowledge of how devices are being used by applications, the OS puts devices in and out of low-
power states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:
Power

GO (S0) -
Working 52

51

G1-

Figure 3-7 Global System Power States and Transitions

See Section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not
being used. Any device the system turns off because it is not actively in use can be turned on with short
latency. (What “short” means depends on the device. An LCD display needs to come on in sub-second
times, while it is generally acceptable to wait a few seconds for a printer to wake.)

Version 6.2 Errata A Page 45

ACPI Specification ACPI Concepts

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into
one of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-
states differ in what events can arouse the system to a Working state, and how long this takes. When the
machine must awaken to all possible events or do so very quickly, it can enter only the sub-states that
achieve a partial reduction of system power consumption. However, if the only event of interest is a user
pushing on a switch and a latency of minutes is allowed, the OS could save all system context into an NVS
file and transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero
power and retains system context for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off
or, on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user
wants the machine to “come on” in less than 1 second with all context as it was when the user turned the
machine “off”), system alert functions (such as the system being used as an answering machine or fax
machine), or application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see
Section 11, “Thermal Management”) and the embedded controller interface (see Section 12, “ACPI
Embedded Controller Interface Specification”).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over time.

Version 6.2 Errata A Page 46

ACPI Specification ACPI Concepts

Ordinary “Green PC”

Here, new appliance functions are not the issue. The machine is really only used for productivity
computations. At least initially, such machines can get by with very minimal function. In
particular, they need the normal ACPI timers and controls, but don’t need to support elaborate
sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as
possible (to allow for maximum compute speed with minimum power wasted on unused
devices). Such PCs will also need to support wake from the sleeping state by means of a timer,
because this allows administrators to force them to turn on just before people are to show up for
work.

Home PC

Computers are moving into home environments where they are used in entertainment centers
and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a
thermal management aspect to a home PC, as a home PC user wants the system to run as quietly
as possible, often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Day Mode

In day mode, servers are power-managed much like a corporate ordinary green PC, staying in the
Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power
management can result in large savings. OSPM allows careful tuning of when to do this, thus
making it workable.

Night Mode

In night mode, servers look like home PCs. They sleep as deeply as they can and are still able to
wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a
print job at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and
then goes back to sleep. If the print request comes over the LAN, then this scenario depends on
an intelligent LAN adapter that can wake the system in response to an interesting received
packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state
is described, and an example of ACPI-compatible device management using a modem is given

Version 6.2 Errata A Page 47

ACPI Specification ACPI Concepts

3.3.1 Device Power Management Model

ACPI Device Power Management is based on an integrated model consisting of:

Distributed device power state policy

For each hardware device on the system, there is a Power Policy Owner in the Operating System
that is responsible for continuously determining the best power state for the device. The best
device power state is the one that, at any point in time, minimizes the consumption of power by
the device consistent with the usage requirements of the device by the system and its user.
Policy is typically defined for a class of devices, and incorporates application activity, user
scenarios and other operating state as necessary. It is applied to all devices of a given class.

Layered device power state control

Once power state decisions are made for a device, they must be carried-out by device drivers.
The model partitions the control functionality between the device, bus and platform layers.
Device drivers at each layer perform control using mechanisms available at that level,
coordinated by OSPM. In general, the ordering proceeds from Device/Class level, to Bus level, to
Platform level when a device is powering down, and the inverse when powering-up.

For instance, a device-level driver has access, via the device programming interface, to settings
and control registers that invoke specific, sometimes proprietary, power control features in the
device. The device driver uses these controls as appropriate for the target ACPIl-defined power
state determined by the policy owner. Similarly, classes of devices may have standardized power
features, invoked in standardized ways that Class Drivers might use when entering a target
power state.

At the bus level, power management standards come into play to provide bus-specific controls
that work for every device connected to the bus, regardless of device class. PCI, for instance,
defines fields in the device Configuration Space for setting the device’s power state (D0-D3). Bus-
level drivers utilize these standards to perform control in addition to that applied by the device-
specific or device class driver. Bus-specific mechanisms also enable additional power savings in
the system by enabling the bus infrastructure hardware itself to enter lower power states, as
defined in the bus standard.

Finally, for platform-level power state control, ACPI defines mechanisms (_PRx, PSx, ON, OFF)
for putting a device into a given power state. The Operating System’s ACPI software (“OSPM”)
utilizes these mechanisms to execute the lowest-level, platform-specific control for a given
device, such as turning off and on power rails and clocks, resetting HW, etc.

Operating System coordination

Finally, ACPI defines information and behavior requirements that enable OSPM to inform the
Power Policy Owner about supported state and wake-up capabilities, and to coordinate the
actions of the various levels of device drivers in controlling power. OSPM, in this role, is
responsible for ensuring that device power management is coordinated with System Power
Management such as entering sleep states (5S1-S4) or Low-power ldle states (LPI). Integrated with
device power state policy and control, wake-up policy and control are also coordinated by OSPM.
Power Policy Owners, which decide when the device might be needed to wake the system,
ensure that only device power states that the device can wake from are selected when the

Version 6.2 Errata A Page 48

ACPI Specification ACPI Concepts

platform enters a Sleep or LPI state. Enabling of wake-up hardware is also performed at the
device, bus and platform levels and coordinated by OSPM. OSPM ensures further that the Sleep
or LPI state selected for the system is compatible with the device state and wake-up capabilities
of all the devices currently enabled for wake.

3.3.2 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending
commands to a device. These standards define the operations used to manage power of devices on a
particular I/O interconnect and the power states that devices can be put into. Defining these standards
for each I/0O interconnect creates a baseline level of power management support the OS can utilize.
Independent Hardware Vendors (IHVs) do not have to spend extra time writing software to manage
power of their hardware, because simply adhering to the standard gains them direct OS support. For OS
vendors, the 1/0 interconnect standards allow the power management code to be centralized in the
driver for each I/O interconnect. Finally, I/O interconnect-driven power management allows the OS to
track the states of all devices on a given I/O interconnect. When all the devices are in a given state (or
example, D3 - off), the OS can put the entire I/O interconnect into the power supply mode appropriate
for that state (for example, D3 - off).

I/0 interconnect-level power management specifications are written for a number of buses including:

e PCI

e PCl Express
e CardBus

e USB

e |EEE 1394

3.3.3 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for
the power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption--How much power the device uses.

e Device context--How much of the context of the device is retained by the hardware.
¢ Device driver--What the device driver must do to restore the device to fully on.

e Restore latency--How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See Section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (DO-D3).

3.3.4 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to
set the device power state to a given level is invoked, the actions a device might take and the specific
sorts of behaviors the OS can assume while the device is in that state will vary from device type to device
type. For a fully integrated device power management system, these class-specific power characteristics
must also be standardized:

Version 6.2 Errata A Page 49

ACPI Specification ACPI Concepts

Device Power State Characteristics

Each class of device has a standard definition of target power consumption levels, state-change
latencies, and context loss.

Minimum Device Power Capabilities
Each class of device has a minimum standard set of power capabilities.
Device Functional Characteristics

Each class of device has a standard definition of what subset of device functionality or features is
available in each power state (for example, the net card can receive, but cannot transmit; the
sound card is fully functional except that the power amps are off, and so on).

Device Wakeup Characteristics
Each class of device has a standard definition of its wake policy.

The Device Class Power Management specifications define these power state characteristics for each
class of device. See Appendix A.

3.4 Controlling Device Power

ACPI interfaces provide the control methods and information needed to manage device power. OSPM
leverages these interfaces to perform tasks like determining the capabilities of a device, executing
methods to set a device's power state or get its status, and enabling a device to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCl devices are reported
through the standard PCl enumeration mechanisms. Power management of these devices is
handled through their own bus specification (in this case, PCl). All other devices on the main board
are handled through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus
specification.

For more detailed information see Section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features
that the device supports. The Differentiated Definition Block given to the OS by the platform boot
firmware describes every device handled by ACPI. This description contains the following information:

e Adescription of what power resources (power planes and clock sources) the device needs in
each power state that the device supports. For example, a device might need a high power bus
and a clock in the DO state but only a low-power bus and no clock in the D2 state.

e Adescription of what power resources a device needs in order to wake the machine (or none
to indicate that the device does not support wake). The OS can use this information to infer
what device and system power states from which the device can support wake.

¢ The optional control method the OS can use to set the power state of the device and to get and
set resources.

Version 6.2 Errata A Page 50

ACPI Specification ACPI Concepts

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see Section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state
based on the current device requirements on that bus. For example, if all devices on a bus are in the D3
state, the OS will send a command to the bus control chip set to remove power from the bus (thus
putting the bus in the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus
in that state if all devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be
able to issue a Set Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device
before it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in Section 7, “Power and Performance Management.”).

For power-down operations (transitions from Dx to some deeper Dy), OSPM first evaluates the
appropriate control method for the target state (_PSx), then turns-off any unused power resources.
Notice that this might not mean that power is actually removed from the device. If other active devices
are sharing a power resource, the power resource will remain on. In the power-up case (transitions from
some Dx back to the shallower D0), the power resources required for DO are first turned on, and then the
control method (_PSO0) is evaluated.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPl event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via an interrupt, either SCI, or GPIO. An interrupt status bit is
set to indicate the event to the OS. The OS runs the control method associated with the event. This
control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining
capacity), the OS uses control methods from the battery’s description table to read this information. To
read status information for Smart Batteries, the OS can use a standard Smart Battery driver that directly
interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the System

The wake operation enables devices to wake the system from a sleeping or low-power idle state. This
operation must not depend on the CPU because the CPU will not be executing instructions.

Version 6.2 Errata A Page 51

ACPI Specification ACPI Concepts

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the system, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the system.

Before putting the system in a sleeping power state, the OS determines which devices are needed to
wake the system based on application requests, and then enables wake on those devices in a device and
bus specific manner.

The OS enables the wake feature on devices by setting that device's SCI Enable bit or unmasking its wake
interrupt. The location of this control is listed in the device's entry in the description table. Only devices
that have their wake feature enabled can wake the system. The OS keeps track of the power states that
the wake devices support, and keeps the system in a power state in which the wake can still wake the
system (based on capabilities reported in the description table).

When the system is in a Sleeping or low-power idle state and a wake device decides to wake the system,
it signals to the core logic. The status bit corresponding to the device waking the system is set, and the
core logic resumes the system. After the OS is running again, it determines the device responsible for the
wake event by either running a control method (for wake events) or processing the device's ISR (for wake
interrupts).

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from
certain states (such as the $4 state), it may start out in non-ACPI mode. In this case, the SCI status
bit may be cleared when ACPI mode is re-entered. However the platform must still attempt to
record the wake source for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device
can also be put into a low power state during the SO system state, and that this device may
generate a wake signal in the SO state as the following example illustrates.

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

DO

Modem controller on
Phone interface on
Speaker on

Can be on hook or off hook
Can be waiting for answer

D1

Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off

Must be on hook

Version 6.2 Errata A Page 52

ACPI Specification ACPI Concepts

D2
Same as D3
D3

Modem controller off (context lost)

Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 DO

COM port opened
DO0,D1 D3

COM port closed
D0 D1

Modem put in answer mode
D1 DO

Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
system.

Based on that policy, the modem and the COM port to which it is attached can be implemented in

hardware as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is
not intended to describe how OEMs should build hardware.

PWR1 PWR2
E g E g
PWR1_EN]
PWR2_EN | ﬁ
MDM_D3
MDM D1
COM_D3
- v A A
ACPI core 1o /o 110
chip set COM port Modem Control Phone Phone
(UART) controller interface line
— RI
N
WAKE (<

Figure 3-8 Example Modem and COM Port Hardware

Version 6.2 Errata A Page 53

ACPI Specification ACPI Concepts

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in
the ACPI Differentiated Description Block so that devices are isolated as power planes are
sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the
modem’s entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

e DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

e To wake the system, the modem needs no power resources (implying it can wake the system
from DO, D1, and D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the
power policy defined for modem:s.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then
if the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the
call. To make this power-down transition, OSPM first runs a control method (_PS1) provided in the
modem's entry to put the device in the D1 state. In this example, this control method asserts the
MDM_D1 signal that tells the modem controller to go into a low-power mode. OSPM then checks to see
what power resources are no longer needed by the modem device. In this case, PWR2 is no longer
needed. Then it checks to make sure no other device in the system requires the use of the PWR2 power
resource. If the resource is no longer needed, the OSPM uses the _OFF control method associated with
that power resource in the Differentiated Definition Block to turn off the PWR2 power plane. This control
method sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM begins the state transition process by running the
modem's control method to switch the device to the D3 power state. The control method causes the
MDM_D3 line to be asserted. Notice that these registers might not be in the device itself. For example,
the control method could read the register that controls MDM_D3.The modem controller now turns off
all its major functions so that it draws little power, if any, from the PWR1 line. OSPM continues by
checking to see which power resources are no longer needed. Because the LPT port is still active, PWR1 is
in use. OSPM does not turn off the PWR1 resource. Because the COM port is closed, the same sequence
of events take place to put it in the D3 state, but the power resource is not turned off due to the LPT
dependency.

Version 6.2 Errata A Page 54

ACPI Specification ACPI Concepts

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power
state of the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control
method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control method
reads from the necessary registers to determine the modem’s power state.

3.4.5.4 Waking the System

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the system in a Sleep or LPI state, the OS enables wake on any devices that applications
have requested to be able to wake the system. Then, it chooses the deepest sleeping or LPI state that can
still provide the power resources necessary to allow all enabled wake devices to wake the system. Next,
the OS puts each of those devices in the appropriate power state. In this case, the OS puts the modem in
the D3 state because it supports wake from that state. Finally, the OS puts the system into a sleep or LPI
state.

Waking the system via modem starts with the modem's phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core logic to generate a wake
event. The chipset then wakes the system and the hardware will eventually pass control back to the OS
(the wake mechanism differs depending on the sleeping state, or LPI). After the OS is running, it puts the
device in the DO state and begins handling interrupts from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when
an interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in Section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest
impact when the states invoke different device and processor efficiency levels as opposed to a linear
scaling of performance and energy consumption. Since performance state transitions occur in the active/
executing device states, care must be taken to ensure that performance state transitions do not
adversely impact the system.

Examples of device performance states include:

Version 6.2 Errata A Page 55

ACPI Specification ACPI Concepts

¢ A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

e An LCD panel that supports multiple brightness levels that correspond to levels of power
consumption.

e Agraphics component that scales performance between 2D and 3D drawing modes that
corresponds to levels of power consumption.

e An audio subsystem that provides multiple levels of maximum volume that correspond to
levels of maximum power consumption.

e A Direct-RDRAM™ controller that provides multiple levels of memory throughput
performance, corresponding to multiple levels of power consumption, by adjusting the
maximum bandwidth throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM
to configure the required resources of motherboard devices along with their dynamic insertion and
removal. ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and
Secondary System Description Tables (SSDTs), describe motherboard devices in a hierarchical format
called the ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPl Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently
used by the device, and objects for configuring those resources. The information is used by the Plug and
Play OS (OSPM) to configure the devices.

Note: When preparing to boot a system, the platform boot firmware only needs to configure boot
devices. This includes boot devices described in the ACPI system description tables as well as
devices that are controlled through other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:

e The device can use IRQ 3, I/0 3F8-3FF or IRQ 4, 1/0 2E8-2EF
e The device is currently using IRQ 3, /O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the
device for those resources by running a control method supplied in the modem’s section of the
Differentiated Definition Block. This control method will write to any 1/O ports or memory addresses
necessary to configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and 1/0 buses, that comprise what is commonly known as a

Version 6.2 Errata A Page 56

ACPI Specification ACPI Concepts

“NUMA node”. Processor accesses to memory or 1/O resources within the local NUMA node is generally
faster than processor accesses to memory or /O resources outside of the local NUMA node. ACPI defines
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPl includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable
register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the system is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the status
bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three
status bits (and three enable bits). Yet another design might have every individual event wired to its own
pin and status bit. This design, at the opposite extreme from the single pin design, allows very complex
hardware, yet very simple control methods. Countless variations in wiring up events are possible.
However, note that care must be taken to ensure that if events share a signal that the event that
generated the signal can be determined in the corresponding event handling control method allowing
the proper device notification to be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must comply
with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem
is not required to perform any synthesis of a “composite battery” from the data of the separate batteries.
In cases where the battery subsystem does not synthesize a “composite battery” from the separate
battery's data, the OS must provide that synthesis.

An ACPl-compatible battery device needs either a Smart Battery subsystem interface or a Control
Method Battery interface.

e Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see Section 12.9, “SMBus

Version 6.2 Errata A Page 57

ACPI Specification ACPI Concepts

Host Controller Interface via Embedded Controller.” For additional information about the
Smart Battery subsystem interface, see Section 10.1, “Smart Battery Subsystems.”

e Control Method Battery is completely accessed by AML code control methods, allowing the
OEM to choose any type of battery and any kind of communication interface supported by
ACPI. For more information about the Control Method Battery Interface, see Section 10.2,
“Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery
system types must provide notification to the OS when there is a change such as inserting or removing a
battery, or when a battery starts or stops discharging. Smart Batteries and some Control Method
Batteries are also able to give notifications based on changes in capacity. Smart batteries provide extra
information such as estimated run-time, information about how much power the battery is able to
provide, and what the run-time would be at a predetermined rate of consumption.

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining
capacity. Remaining capacity decreases during usage, and it also changes depending on the environment.
Therefore, the OS must use latest full-charged capacity to calculate the battery percentage. In addition
the battery system must report warning and low battery levels at which the user must be notified and the
system transitioned to a sleeping state. See Figure 3-9 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWHh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

Designed capacity
L) AR ERREERER Last full charged capacity

””” <4+— Present remaining capacity

<+ | >

|1 €-------- OEM designed initial capacity for warning
.. _ BRI T OEM designed initial capacity for low

Figure 3-9 Reporting Battery Capacity

Version 6.2 Errata A Page 58

ACPI Specification ACPI Concepts

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Battery R ining C it Ah/mWh
Remaining Battery Percentage[%] = attery Remaining Capacity [mAh/mWh * 100

Last Full Charged Capacity [nAh/mWHh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed
by the system to take certain actions. The critical battery level or flag is used to indicate when the
batteries in the system are completely drained. OSPM can determine independent warning and low
battery capacity values based on the OEM-designed levels, but cannot set these values lower than the
OEM-designed values, as shown in the figure below

Full ——1 i
A Last full charged capacity

< OSPM-selected low battery warning capacity

... Waming . OEM-designed initial capacity for warning (minimum)

......... OSPM-selected low battery

B ~|:°W_ OEM-des