AMD ¢t

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 2:
System Programming

Publication No. Revision Date
24593 3.30 September 2018

Advanced Micro Devices “'|



© 2013 — 2018 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD arrow logo, and combinations thereof, AMD Virtualization and 3DNow! are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Contents

Revision History. ... covuiiiiiiiiiiiiiiiiiiiienrenreontsnsssssssssssssosssnsons XXix

g ) 1 e XXXVii

About This BooK. . . .. ... e XXXVil

AUIENCE . . . .ottt e XXXVil

OrganizZation . . . ..ottt ettt e e e e e e e e e XXXVil

Conventions and Definitions . .......... ... i e XXXViil

Notational Conventions ... ............titintit i XXXIX

Definitions . ... ...t x1

R gIStOTS . ottt xlvi

Endian Order . . ... ..o e xlix

Related Documents. . . . .. ..ot e xlix

1 System-Programming Overview ...........ciiiiiiiiiiirnerneenecnecnecnecnnns 1

1.1 Memory Model . ... .. 1

Memory Addressing . . ...ttt 2

Memory Organization . . .. .. ... vttt et e e e e e 3

Canonical Address Form . . ... ... . e 4

1.2 Memory Management . . . ... .ottt e e 5

S EMENLAtION . . . .\ttt et e e e e 5

Pagin g . .. 7

Mixing Segmentation and Paging ... .......... ... .. . . e 8

Real Addressing. . ... ..ottt e e 10

1.3 Operating Modes . . .. ..ottt 11

Long Mode. . ..ot e 12

64-Bit Mode. . . ... 13

Compatibility Mode. . ... ..o e 13

Legacy Modes . ..o oo e e 14

System Management Mode (SMM) . ... ... 15

1.4 SyStem Re@ISterS . . .\ vttt ettt e e e e e 15

1.5 System-Data Structures . . . .. ...t 17

1.6 IeTTUPES .« . et e 19

1.7 Additional System-Programming Facilities ............... ... ... ... ... ..o .o... 20

Hardware Multitasking . . ......... ... i i e 20

Machine Check .. ... ... .. 21

Software Debugging . .. ..ottt 21

Performance Monitoring . .. ........ ottt ettt e e 22

2 x86 and AMDG64 Architecture Differences ............coiiiiiiiiiiiiiiiiiiiin. 23

2.1 Operating Modes . . . ..ottt e e 23

Long Mode. . ..ot e 23

Legacy MoOde . . ..ot e e 23

System-Management Mode. . . ... ... i e 24

2.2 Memory Model .. ... o e 24

Memory Addressing . ... ....vu ittt 24

Contents ii



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Page Translation . ... .. ... ...ttt e e 25

S gMENtAtION . . . ottt e 26

23 Protection Checks . .. ... ... e 27
2.4 R gIStrS .« ottt e 28
General-Purpose Registers. . . . ... ..o 28
YMM/XMM REZISLEIS . ..ottt et e et 28

Flags Register ... .ot e e e e e 28
Instruction Pointer. . . ... ... ... e 28

Stack POINter . . . ... oo 28

Control RegiSters . . ..ot e 29

Debug Registers. . . ..ot 29
Extended Feature Register (EFER) . ...... ... ... .. . . . i, 29
Memory Type Range Registers (MTRRS). . ......... ... i 29

Other Model-Specific Registers (MSRS). .. ... .o e 29

2.5 InStruction Set . . .. ... .. e 29
REX PrefiXes . . oottt 29
Segment-Override Prefixes in 64-BitMode . ......... .. .. .. . .. 30
Operands and Results .. ........ . 30
Address Calculations . . . . ... ot 30
Instructions that Reference RSP ... ... ... .. . . . 31
Branches .. ... ... 32

NOP INStrUCtiON. . . .« oo e e 34
Single-Byte INC and DEC Instructions. . . . ...ttt 34
MOVSXD INStIUCHON -« . vttt ettt e et e e e e e e e et e 34

Invalid INStructions . . ... ... ...t e 34
Reassigned Opcodes ... ...t 36
FXSAVE and FXRSTOR Instructions. . . .. ... ..ottt 36

2.6 Interrupts and EXCEptions . .. ... ..ot e 36
Interrupt Descriptor Table . . . ... ... 37

Stack Frame Pushes . . .. ... o 37

Stack SWItChing . . .. ... e 37

IRET INStruction . . ... ..o e e e e e e e e e 37
Task-Priority Register (CR8). . ... .. e 38

New Exception Conditions . .. ...ttt et e 38

2.7 Hardware Task Switching . . ... . 38
2.8 Long-Mode vs. Legacy-Mode Differences . .. ........ ..o ... 39
3 System ResOuUICes. .o .vuvntitiiiiiiiiiieiieneieneeeeassesesssasocnssscasncns 41
3.1 System-Control Registers .. ........ .. e 41
CRO RIS T . . ..ottt e e e e e e e e e 42

CR2 and CR3 ReiSterS. . . . ottt et e e e e et et et e ettt et 45

CRA RIS T . . o\ vttt ettt e e e e e e e 47
Additional Control Registers in 64-Bit-Mode. ... ........ ... .. ... ... ... 51

CRS8 (Task Priority Register, TPR) . ... .. .. . e 51
REFLAGS RegisSter . . ..ottt e e e e e e e e e 51
Extended Feature Enable Register (EFER) .. ....... ... .. ... ... .. ... ... ...... 55
Extended Control Registers (XCRN) . ... .. . 58

3.2 Model-Specific Registers (MSRS). . ...t e e 58
iv Contents



AMDA

24593—Rev. 3.30—September 2018

33

System Configuration Register (SYSCFQ)
System-Linkage Registers
Memory-Typing Registers
Debug-Extension Registers
Performance-Monitoring Registers
Machine-Check Registers
Processor Feature Identification

4 Segmented Virtual Memory

4.1
4.2
43

4.4
45

4.6

4.7

4.8

4.9

4.10

4.11

Real Mode Segmentation
Virtual-8086 Mode Segmentation
Protected Mode Segmented-Memory Models

Multi-Segmented Model

Flat-Memory Model. .....................
Segmentation in 64-Bit Mode
Segmentation Data Structures and Registers
Segment Selectors and Registers
Segment Selectors . ......................
Segment Registers . ......................
Segment Registers in 64-Bit Mode
Descriptor Tables. .. .....................
Global Descriptor Table. .. ................
Global Descriptor-Table Register
Local Descriptor Table. .. .................
Local Descriptor-Table Register
Interrupt Descriptor Table
Interrupt Descriptor-Table Register
Legacy Segment Descriptors
Descriptor Format . ......................
Code-Segment Descriptors
Data-Segment Descriptors
System Descriptors ......................
Gate Descriptors . ...........coovuienin...
Long-Mode Segment Descriptors
Code-Segment Descriptors
Data-Segment Descriptors
System Descriptors ......................
Gate Descriptors ................covn....
Long Mode Descriptor Summary
Segment-Protection Overview

Privilege-Level Concept

Privilege-Level Types ..............oo....
Data-Access Privilege Checks
Accessing Data Segments
Accessing Stack Segments
Control-Transfer Privilege Checks

Direct Control Transfers

Control Transfers Through Call Gates

ooooooooooooooooo

AMDG64 Technology

Contents



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Return Control Transfers. . .. ... ... 111

412 Limit Checks . . ..o 112
Determining Limit VIiolations . .. ... ...t 112

Data Limit Checks in 64-bit Mode ... ...... ... .. .. .. . .. 114

413 Type Checks . ..o 114
Type Checks in Legacy and Compatibility Modes . ................ .. ... .. ... .... 114

Long Mode Type Check Differences. . .. ... 115

5 Page Translation and Protection .............ciiiiiiiiiiiiiiiiiiiiinnnenenns 117
5.1 Page Translation OVErVIEW . . . ..ot i ittt e e e 118
Page-Translation Options . .. .......o. ittt ettt 120
Page-Translation Enable (PG) Bit. ... ... ... ... ... i 120
Physical-Address Extensions (PAE) Bit . ........ ... ... .. i 121
Page-Size Extensions (PSE) Bit . ........ ... . 121
Page-Directory Page Size (PS) Bit . ....... .. . 122

5.2 Legacy-Mode Page Translation. . ....... ... ..., 122
CR3 RIS T . . o\ttt ettt e e e e e e 123
Normal (Non-PAE) Paging ... ...... ... i e 124

PAE Paging . ... e 126

53 Long-Mode Page Translation . ............... ..., 130
Canonical Address Form . . ... .. e 130

CR 3 e 130
4-Kbyte Page Translation . .......... ...ttt ieie e 131
2-Mbyte Page Translation . . ...... ... i i e e 134
1-Gbyte Page Translation ... ..........c. ..ttt e e e 135

54 Page-Translation-Table Entry Fields. .. ........ ... ... ... . . i, 137
Field Definitions . .. ... . 138

Notes on Accessed and Dirty Bits. .. ... ..o 141

5.5 Translation-Lookaside Buffer (TLB) ............. . .. 141
Global Pages .. ..ottt e e e e 142

TLB Management . . . . ..ottt ettt e e e e 142

5.6 Page-Protection Checks. .. ... ... e 145
User/Supervisor (U/S) Bit . ... ..o 145
Read/Write (R/W) Bit .. ..o e e e e e e 146

No Execute (NX) Bit. . ... e 146

Write Protect (CRO.WP) Bit .. ... ... e 146
Supervisor-Mode Execution Prevention (CR4.SMEP)Bit.......................... 146

5.7 Protection Across Paging Hierarchy . .......... ... ... . ... . .. . . .. 147
Access to User Pages when CRO.WP=1 . ... .. .. .. .. .. .. .. . i ... 148

5.8 Effects of Segment Protection. .. ...ttt 148
6 System-Management InStructions . ........coiviiiiiiiiiirieieienencnenanans 149
6.1 Fast System Calland Return . . .......... . .. . i 152
SYSCALL and SYSRET . . .. ..o e 152
SYSENTER and SYSEXIT (Legacy Mode Only) ............. ... ... ..., 154
SWAPGS INStruction . . . ... oottt e e e e 155

6.2 System Status and Control. . . ... ... .. 155
Processor Feature Identification (CPUID). . ....... ... ... ... .. 155

Vi Contents



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Accessing Control Registers . .. ...ttt e 155
Accessing the RELAGS Register .. ...ttt 156
Accessing Debug Registers . .. ...t 156
Accessing Model-Specific Registers. .. ........ ... i 156

6.3 Segment Register and Descriptor Register Access .. ..., 157
Accessing Segment Registers ... .......... i 157
Accessing Segment Register Hidden State . ............ ... . ... .. 157
Accessing Descriptor-Table Registers. .. ...t i 158

6.4 Protection Checking. . . ... .. o i i e e e e 158
Checking Access Rights . ... ... . e 158
Checking Segment LImits . . . ... ..ottt e 158
Checking Read/Write Rights . . . ... ... . 158
Adjusting Access Rights ... .. ... 159

6.5 Processor Halt . ... ... o e 159
6.6 Cache and TLB Management .. ........ouuniniet e eiinanas 159
Cache Management . . . ... ..ttt e e e e e 159

TLB Invalidation . . . ... ..ot e 160

7 Memory SySteIm . ..o vvitieieneneneneeneeenesseasocsosscasscsssscasncnsnns 161
7.1 Single-Processor Memory Access Ordering . ..., 164
Read Ordering . . ... ..ot e 164

Write Ordering. . .. ..ottt e e 165
Read/Write Barriers . . . ... ...t e 166

7.2 Multiprocessor Memory Access Ordering. . ..ottt 166
7.3 Memory Coherency and Protocol . ...... ... ... .. . . 169
Special Coherency Considerations . .. ... .......c.uiutir it 171

ACCESS ALOMICIEY. .« . ottt ettt e e e e e e e e 172

7 Memory Types172
Instruction Fetching from Uncacheable Memory . .............. ... ... .. ... .. ..... 174
Memory Barrier Interaction with Memory Types .. ..., 175

7.5 Buffering and Combining Memory Writes . .. ... . i, 177
Write Buffering . . ... 177

Write Combining . . . . . ..ot 178

7.6 Memory Caches. . .. ..ottt 179
Cache Organization and Operation . ... ..ottt 179

Cache Control MechaniSms. . . ... .. it e it 182

Cache and Memory Management Instructions . .................co.iiiitenennan... 185
Serializing InStruCtionsS . . ... ... i e 186

Cache and Processor Topology . . ... 186

7.7 Memory-Type Range Registers. . .. ...ttt e 187
MTRR Type Fields .. ......o i e e e e 188

MR RS . . 189

Using MTRRS . ... 195
MTRRs and Page Cache Controls. . ........ ... . i, 196
MTRRSs in Multi-Processing Environments . ............. ... ... ... 198

7.8 Page-Attribute Table Mechanism . ........ .. ... .. i, 198
PAT RegiStOr . .ottt e 198

PAT Indexing . . ..ottt 199
Contents Vil



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Identifying PAT SUPPOIE . . ..ottt e e 200

PAT ACCESSES . . o . vttt et e e 200
Combined Effect of MTRRsand PAT . . . ... ... .. . i 201

PATs in Multi-Processing Environments. . . ............. ..ttt 202
Changing Memory TYPe . . . ..ot i ittt e 202

7.9 Memory-Mapped [/O. . . . ... 202
Extended Fixed-Range MTRR Type-Field Encodings ............................. 203

IOR RS ..ot 204

TIORR OVerlapping. . .. oottt et e et e e e e e e e e e 206

TOP Of MeIMOTY . . oottt e e e e e 206

7.10  Secure Memory Encryption. . . ... ..o 208
Determining Support for Secure Memory Encryption .. ....... ... .. .. .. ... ... ... 208
Enabling Memory Encryption Extensions. . .......... .. .. ... i, 209
Supported Operating Modes . . ...ttt e 209

Page Table Support .. ..ot e 209

/O ACCRSSES . . e ittt it 210
RESIIICHONS . ..ottt e e e 210

SMM INtEraction . . . . ..ottt et et e e e e e 211
Encrypt-in-Place .. ... ... it e 211

8 Exceptions and Interrupts. . . ... oiiiiiiii ittt iiiiiiitiiiiiieitenenas 213
8.1 General CharacteriStiCs . . . .. ... vttt e e e 213
Precision ... ...t e 213
Instruction Restart . . ... ... ... e 214

Types of EXCOPLIONS. . ..ot o it e e e e 214
Masking External Interrupts .. ... i e 215
Masking Floating-Point and Media Instructions . .. ........ ... ... . . i, 215
Disabling EXCeptions. . . ..o v 'ttt 215

8.2 VECHOTS .« . ettt e e 216
#DE—Divide-by-Zero-Error Exception (Vector 0). .. ........ ..., 219
#DB—Debug Exception (Vector 1). . ... ..o i e 219
NMI—Non-Maskable-Interrupt Exception (Vector2) ............. ..., 220
#BP—Breakpoint Exception (Vector 3) . ...t 220
#OF—Overflow Exception (Vector4). .. ..o oot ee e 221
#BR—Bound-Range Exception (Vector 5) . ...t 221
#UD—Invalid-Opcode Exception (Vector 6) . ............ccoiiiinnnnnnnnnnn. 221
#NM—Device-Not-Available Exception (Vector 7) . . .. .. ...t 222
#DF—Double-Fault Exception (Vector 8). . ....... ... i 222
Coprocessor-Segment-Overrun Exception (Vector 9). ........... ... it 223
#TS—Invalid-TSS Exception (Vector 10). . ........ ..o 224
#NP—Segment-Not-Present Exception (Vector 11) .. ...... ... ... . oot 225
#SS—Stack Exception (Vector 12) ... ... it 225
#GP—~General-Protection Exception (Vector 13) . ...... .. ... .. 226
#PF—Page-Fault Exception (Vector 14) . .. ... .. . e 227
#MF—=x87 Floating-Point Exception-Pending (Vector 16). .. ....................... 228
#AC—Alignment-Check Exception (Vector 17). ........ ..ot 229
#MC—Machine-Check Exception (Vector 18) .. ......... ... i 230
#XF—SIMD Floating-Point Exception (Vector 19) .. .......... .. ..., 230

viii Contents



AMDA

24593—Rev. 3.30—September 2018

#VC -- VMM Communication Exception (Vector 29)

#SX—Security Exception (Vector 30). .. .................
User-Defined Interrupts (Vectors 32-255) ................
8.3 Exceptions During a Task Switch . ......................
8.4 ErrorCodes . ...
Selector-Error Code. . ............ i
Page-FaultErrorCode. ............. ... ... ...,
8.5 Priorities. . .. ...
Floating-Point Exception Priorities . .....................
External Interrupt Priorities. . ..........................
8.6 Real-Mode Interrupt Control Transfers. ..................
8.7 Legacy Protected-Mode Interrupt Control Transfers ........
Locating the Interrupt Handler .........................
Interrupt To Same Privilege. . ............... ... ... ...
Interrupt To Higher Privilege. . .........................
Privilege Checks . ........ ... ... . i
Returning From Interrupt Procedures . ...................
8.8 Virtual-8086 Mode Interrupt Control Transfers ............
Protected-Mode Handler Control Transfer ................
Virtual-8086 Handler Control Transfer...................
8.9 Long-Mode Interrupt Control Transfers ..................
Interrupt Gates and Trap Gates .. .......................
Locating the Interrupt Handler .........................
Interrupt Stack Frame ........... ... ... .. ... .......
Interrupt-Stack Table . . ........ ... ... ... .. ..
Returning From Interrupt Procedures . ...................
8.10 VirtualInterrupts . . ...t
Virtual-8086 Mode Extensions . ........................
Protected Mode Virtual Interrupts . . .....................
Effect of Instructions that Modify EFLAGS.IF. ............

9 Machine Check Architecture ........ccvvveivreeneeeneens

9.1 Introduction . ........ ... .
Reliability, Availability, and Serviceability . ...............
Error Detection, Logging, and Reporting . ................
Error Recovery. ....... ... i
9.2 Determining Machine-Check Architecture Support . ........
9.3 Machine Check Architecture MSRs .. ...................
Global Status and Control Registers .. ...................
Error-Reporting Register Banks ........................
9.4 Initializing the Machine-Check Mechanism . ..............
9.5 Using MCA Features. .. ...,
Determining the Scope of Detected Errors . ...............
Handling Machine Check Exceptions . .. .................
Reporting Corrected Errors .. ......... ... L.,

10 System-Management Mode. ............coovivieiennnns.
10.1 SMMDifferences . .........c.c.ouviiiniininnenn..

AMDG64 Technology

Contents



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
10.2 SMM RESOUICES. . . . ot vttt ettt et et e e e e e e e e e 286
SM R AM . L 286
SMBASE RegiSter. . . o\ttt 287
SMRAM State-Save ATea . . . ..ottt ettt e e e e 288
SMM-Revision Identifier. . .. ... ... . 292
SMRAM Protected Areas . . ......oint it e et e 293

10.3  USing SMM . ..ot e e e e e 295
System-Management Interrupt (SMI) . .. ... ... .. . 295

SMM Operating-Environment. . ... ... oottt it it e ettt 295
Exceptions and Interrupts . . ... .. i e 296
Invalidating the Caches . . . ... ... . 297

Saving Additional Processor State. .. ......... . 297
Operating in Protected Mode and LongMode . ........... ... ... .. 298
Auto-Halt Restart. . .. ... e 298

/O Instruction Restart . . . . ... ... o 299

10.4 Leaving SMM . ... . e e e 300
10.5  Multiprocessor Considerations . .. ... ... ..ottt eet e 301
11 SSE, MMX, and x87 Programming .........ccoeutitieiurenenenacasncnenacans 303
11.1  Overview of System-Software Considerations . . ...............otiriirinennan... 303
11.2  Determining Media and x87 Feature Support . .. ........ ... .. ... 303
11.3  Enabling SSE Instructions. . . ........o ittt 305
Enabling Legacy SSE Instruction Execution. . .......... .. .. .. ... . o, 305
Enabling Extended SSE Instruction Execution. ............... .. ... i, 305

SIMD Floating-Point Exception Handling .. ........... ... .. ... ... ... ... ... ... 306

11.4  Media and X87 Processor State . . .. .. .ottt e 306
SSE Execution Unit State .. ........... it e 306

MMX Execution Unit State. . ... ...ttt e 307

x87 Execution Unit State. . . ... ..o 308

Saving Media and x87 Execution Unit State. .. .......... ..ot .. 310

11.5 XSAVE/XRSTOR INStructions . . . . o« v ov ittt ittt e et e e 317
CPUID Enhancements. . . . .. ..ottt e e e e e 317
XFEATURE ENABLED MASK. ... . e e e 317
Extended Save ATea. . ... ..ottt 318
Instruction Functions . . . ... ... 319

YMM States and Supported Operating Modes .. ..., 319
Extended SSE Execution State Management .. ................oitirinreneneannn. 319

Saving Processor State. . ... .ot tieea 321
Restoring Processor State .. .......... i 321
MXCSR State Management. . . .. ... ..ottt 321
Mode-Specific XSAVE/XRSTOR State Management .. ........................... 321

12 Task Management . ... .c.iutitiiinerneeneeeoeesseseessnssnsenssnssnsonses 329
12.1  Hardware Multitasking OVerview . . .. ...ttt e i e e 329
12.2  Task-Management ResOUICes ... ...ttt e 330
TSS Selector .. ..o 332

TSS DS CIIPLOL. .« o v vttt ettt e e e e e 332

Task RegISter . . . oot e 333

X Contents



AMDA

24593—Rev. 3.30—September 2018

12.3

13 Software Debug and Performance Resources

13.1

13.2

13.3

13.4

14 Processor Initialization and Long Mode Activation

14.1

14.2

Legacy Task-State Segment
64-Bit Task State Segment
Task Gate Descriptor (Legacy Mode Only)
Hardware Task-Management in Legacy Mode
Task Memory-Mapping . . .................
Switching Tasks. ........................
Task Switches Using Task Gates
Nesting Tasks. . .........................

Software-Debug Resources
Debug Registers. . .......................
Setting Breakpoints .. ....................
Using Breakpoints . . .....................
Single Stepping .. ....... ... L.
Breakpoint Instruction (INT3)
Control-Transfer Breakpoint Features
Performance Monitoring Counters
Performance Counter MSRs
Detecting Hardware Support for Performance Counters
Using Performance Counters
Time-Stamp Counter . . ...................
Instruction-Based Sampling
IBS Fetch Sampling. .....................
IBS Fetch Sampling Registers

IBS Execution Sampling

IBS Execution Sampling Registers
Lightweight Profiling. . . ..................
OVEeIVIEW . . oottt
Events and Event Records
Detecting LWP. .........................
LWPRegisters. . ..............oovin...
LWP Instructions . .. .....................
LWP Control Block . .....................
XSAVE/XRSTOR . ... o
Implementation Notes . .. .................

Processor Initialization ...................

Built-In Self Test (BIST)

Clock Multiplier Selection
Processor Initialization State
Multiple Processor Initialization
Fetching the First Instruction

Hardware Configuration

Processor Implementation Information
Enabling Internal Caches
Initializing Media and x87 Processor State

AMDG64 Technology

Contents

Xi



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Model-Specific Initialization. . .. ... e 435

143  Initializing Real Mode. . . ... ..ot e e e 436
14.4  Initializing Protected Mode . . .. ... . it 436
14.5 Initializing Long Mode . .. ... .. e 437
14.6  Enabling and Activating LongMode ......... ... .. .. . i 438
Activating Long Mode. . ... ... . e 439
Consistency Checks. . ... ..o e e e e 440
Updating System Descriptor Table References. . ................................. 440
Relocating Page-Translation Tables ................ .., 441

147 Leaving Long Mode . ... .. i e e 441
14.8  Long-Mode Initialization Example . .. ...... ... .. .. . . 441
15 Secure Virtual Machine. .. ..ottt iiiiiiiiiiiiiiiiiiiitiieeneeneenenns 447
15.1  The Virtual Machine Monitor . .. ... .. e 447
152 SVMHardware OVervIEW . . . .. oottt et e e e 447
Virtualization SUpport . . ... ... e 447

Guest MOde . . . . o 447
External Access Protection .. .......... .. ... 448
Interrupt SUPPOTt . . .o 448
Restartable InStructions . . . . .. ... i 448
Security SUPPOTT . . ..ottt e 448

15.3  SVM Processor and Platform Extensions . ............. ... ... i, .. 448
154  Enabling SV M . ... 449
15.5  VMRUN INStrUCtION . .. ..ottt e e e e e e et e 449
Basic Operation . ... ..ottt 450

15.6  HVMEXIT ..o 454
15.7  Intercept Operation . .. .. ... ...ttt e e 455
State Saved on EXit . . .. ..o 456
Intercepts During IDT Interrupt Delivery .. ......... . i i 457
EXITINTINFO Pseudo-Code . . ... ...t e 458

15.8 Decode ASSIStS. . ..ttt e 459
MOV CRX/DRX INtercepts . ..o ovv e ot ettt et e et e e 459

INTR INtercepts . . . oottt e e e e e e 459
INVLPG and INVLPGA Intercepts. . . .. oot te et ettt eieenn 460

Nested and intercepted #PF . . .. ... ... . 460

15.9  Instruction Intercepts. . . ..o vt e 461
1510 TOIO INEETCOPLS .« v v ot v et et et e e e e e e et e e e et e 463
/O Permissions Map . ..o ottt e e e e 463

INand OUT Behavior . . .. ... e e e e et e e 464

(REP) OUTS and INS . .. o e e e e 465

I5.11 MSRINIEICEPLS . . v oottt ettt e e e e e e 465
15.12  EXception INtercepts . .. ..ottt ettt e e e 466
#DE (Divide By Zer0) . . . oot 467

HDB (DebUEZ) . . . oottt 467

Vector 2 (Reserved) . . ..ot e 467

#BP (Breakpoint). . .. oo ot e 467

HOF (OVerflow) . . .o e e 467

#BR (Bound-Range) .. ... 467

Xii Contents



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
#UD (Invalid Opcode) . . ..o oot e 467

#NM (Device-Not-Available) .. ... 467

#DF (Double Fault) . . ... 468

Vector 9 (Reserved) . ..ot 468

HTS (Invalid TSS) . . oot e e e e e e e 468

#NP (Segment Not Present). . . ...ttt e 468

#SS (Stack Fault). ... ..o e 468

#GP (General Protection) . ........... ittt e 468

#PF (Page Fault) .. ... i e 468

#MF (X87 Floating Point) . . ... .. . i e e e 468

#AC (Alignment Check) .. ... ... 469

#MC (Machine Check) . ... ... i e e e e e 469

#XF (SIMD Floating Point). . . ... e e 469

15.13  Interrupt INterCeptS. . . . oot o ettt e e 469
INTR INteTCOPL. « o oot ettt et e e e e e e e e e e et 469
NMIINETCEPL . . o oottt e e e e e e e e e 469
SMIIntercept. . . ..o e e e 469

INIT INterCept . . . oottt e e e e e e e e e e e e e e e 470

Virtual Interrupt Intercept . . ... ... ot e 470

15.14 Miscellaneous INtercepts . . ... oottt e e e e e e 471
Task Switch Intercept. . ... ... i e 471

Ferr Freeze Intercept. . ... ... oo e e 471
Shutdown Intercept . . ... ..ot e 471

Pause Intercept Filtering .. ......... . i 472

15.15 VMCB State Caching . . ... ...ttt e et e et et e e 473
VMCB Clean Bits . . . ... oot e 473
Guidelines for Clearing VMCB Clean Bits. .. ........ ... .. .. i, 473

VMCB Clean Field .. .. ... e e e 474

1516 TLB Control. . .. ..ottt e e e e 475
TLB Flush . . .. 475
Invalidate Page, Alternate ASID .. ... ... i i 476

15.17 Global Interrupt Flag, STGI and CLGI Instructions . . .. ............coutiuinanan.n.. 477
15.18 VMMCALL InStruction. . . . . ..ottt e e et 478
15.19 Paged Real Mode. . . ... .o i 478
1520 Event INjection. . ... ...ttt e 478
15.21 Interrupt and Local APIC Support. . .. ...ttt e 480
Physical (INTR) Interrupt Masking in EFLAGS. . ...... ... ... .. .. . .. . ... 480
Virtualizing APIC.TPR . . ... . e e 480

TPR Access in 32-Bit Mode . ... ... 480
Injecting Virtual (INTR) Interrupts . .. ... ..ot e e 481
Interrupt Shadows . . . ... e 482

Virtual Interrupt Intercept .. ... o e 482
Interrupt Masking in Local APIC .. ... ... .. . . 482

INIT SUPPOLt . . vttt e e e e e e e e 482

NMI SUpPPOTt .« ..o e 483

1522 SMM SUPPOTT .« . ot ettt e e et e e e e e e e e e e e e 483
Sources of SMI .. ..o 483

Contents

Xiii



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Response to SMI . . .. ..o 484
Containerizing Platform SMM . .. .. ... . . 484

15.23 Last Branch Record Virtualization . ........ ... .. .. . ... . .. . i, 485
Hardware Acceleration for LBR Virtualization. . ........ ... ... ... ... ... .. ... 486

LBR Virtualization CPUID Feature Detection . ............ .. ... ... .. ... uon... 486

15.24 External Access Protection ... ............ . . it e 486
Device IDs and Protection Domains . . ............. vttt 486

Device Exclusion Vector (DEV) ... ... e e 487

Access ChecKing . ..ot e 487

DEV Capability Block. . .. ... e 489

DEV Register Access Mechanism. . . ..........u ottt 489

DEYV Control and Status Registers. . . .. ...ttt i 490
Unauthorized Access LOgging. .. ...ttt et 492

Secure Initialization SUpport. . .. ..o i 492

15.25 Nested Paging . ... ... e e 493
Traditional Paging versus Nested Paging . ........... .. ... .. ... . ... 493
Replicated State . . ... ..o 494
Enabling Nested Paging. . .. ... ... i 495

Nested Paging and VMRUN/AVMEXIT. .. ... ... e 495

Nested Table Walk. . . . ... oo 496

Nested versus Guest Page Faults, Fault Ordering . . .......... ... ... .. ... .......... 496
Combining Nested and Guest Attributes. . ........ ... i, 497
Combining Memory Types, MTRRs . .. ... ... i 498

Page Splintering. . .. ...t e 499
Legacy PAEMode. . ... oo 499

A20 Masking . . ..ot e 500
Detecting Nested Paging Support .. ... .. . e 500

15.26  SECUIILY . . oottt ettt e e e e e e e e 500
15.27 Secure Startup with SKINIT .. .. ..o e 500
Secure Loader . ... ...t 501

Secure Loader Image. . . ... ... o 501

Secure Loader Block . . .. ... . o 501
Trusted Platform Module. . . ... ... 502

System Interface, Memory Controller and /O Hub Logic . ......................... 503
SKINIT OPeration . . . ... c vttt et et e e e e e e e e e e 503

SL ADOTE . .ottt e 504

Secure Multiprocessor Initialization . ............... .ttt 504

15.28 Security EXception (#SX) . ..ottt e 506
15.29 Advanced Virtual Interrupt Controller .. ........ ... ... ... ... 506
Introduction . . . ... 506
Architectural Definition. .. ... ... .. . 507

1530 SVMRelated MSRS . .. ..o 526
VM_CRMSR (COO1_O114h) . ..ottt e e e 526
IGNNE MSR (CO01_0115h) . ..ot e e e e e 527
SMM_CTL MSR (CO01_0116h). .. ..o e e 527
VM_HSAVE PAMSR (CO01 O117h) .. ... 528

TSC Ratio MSR (CO00 _0104h). . . ...t e e e 528

Xiv Contents



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
1531 SVM-LoCK. .o 529
SVM_KEY MSR (CO01_O118h). .. ..o e 529

15.32  SMM-LOCK . .o 530
SmmLock Bit— HWCR[0] . ... .. e 530

SMM _KEY MSR (CO01 _O119h) .. ..o e e e e 530

15.33 Nested Virtualization. . .. ... ... e e e 530
VMSAVE and VMLOAD Virtualization. . ... ...t 531

Virtual GIF. ..o 531

15.34 Secure Encrypted Virtualization .. .......... ...ttt 532
Determining Support for SEV . .. .. .. 532

Key Management. . .. ... . 533
Enabling SEV ... 533
Supported Operating Modes . . .......o ittt e 534

SEV Encryption Behavior. .. ...... .. 534

Page Table Support . . ..ot e 534
REStIICHONS . . .ottt e 535

SEV Interaction with SME . . ... ... . . . e 535

Page Flush MSR . ... 537
SEV_STATUS MSR . . . e e e e 537

15.35 Encrypted State (SEV-ES). ... ... 537
Determining Support for SEV-ES . . .. ... .. 538
Enabling SEV-ES. . .. . e 538
SEV-ES OVerVieW . . . oottt e e e e e e 538

Types Of EXitS . ..ot 539

HVC EXCOPUON. . oottt e 540
VIMGEXIt . . .o e 542

GHOCB ... 542

VM RUN L 542
Automatic EXItS . . ... e 543
Control Register WIite Traps. . .. oottt ettt et e e e e 544

16 Advanced Programmable Interrupt Controller (APIC) .............cviiiiin.n. 545
16.1  Sources of Interrupts to the Local APIC . .. ........ ... ... . ... . .. 546
16.2  Interrupt Control . . ... ..ot e e 547
163  Local APIC ... o 547
Local APIC Enable . . ... ... 547

APIC RegiSterS . oot it e e 548

Local APIC ID . . ... e e e e 549

APIC Version Register. . ... ...t e 550
Extended APIC Feature Register. . . . ...ttt e 551
Extended APIC Control Register. . . ...t e e 551

16,4  Local INterrupts . . . ..ottt e e 552
APIC Timer Interrupt. . . . ..ot e 554

Local Interrupts LINTO and LINT 1. . . ... .. . e 556
Performance Monitor Counter Interrupts ............. o i 556
Thermal Sensor INterrupts . . .. ..o vttt e e 557
Extended Interrupts . . .. ..ot e 557

APIC Error INterrupts . .. ..ottt e 557

Contents XV



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Spurious INterrupts. . . ... ov e e 559

16.5 Interprocessor Interrupts (IPI). . ... ... . i e 559

16.6  Local APIC Handling of Interrupts . . .. ..ottt e e 563
Receiving System and IPI Interrupts. ... ... i e 563

Lowest Priority Messages and Arbitration .. ................uuiiiinininenene.... 564

Accepting System and IPT Interrupts. . .. ... i 565

Selecting and Handling Interrupts . . .. ... oo e 568

16.7  SVM Support for Interrupts and the Local APIC . ............... .. ... ... ....... 570
Specific End of Interrupt Register. .. ...... ... ... i 570

Interrupt Enable Register. . .. ... .. 571

17 Hardware Performance Monitoring and Control .............. ..o, 573
17.1  P-State Control. . . . .. ..o 573

17.2  Core Performance Boost . .. ... ... 575

17.3  Determining Processor Effective Frequency............ ... ... .. .. .. .. ... ..... 576

Actual Performance Frequency Clock Count (APERF) ......... ... ... ... ....... 577

Maximum Performance Frequency Clock Count MPERF)......................... 577

MPERF Read-only (MperfReadOnly). ... 578

17.4  Processor Feedback Interface ........ ... ... .. . . 578

17.5  Processor Core Power Reporting. . ......... ... i, 578
Processor Facilities ... ... i 578

Software Algorithm. . ... ... .. 579

Appendix A MSR Cross-Reference..........c.ciuiiiiiiiiiiiiiiiiieiiininnenenenans 581
Al MSR Cross-Reference by MSR Address. .. ...t i 581

A2 System-Software MSRS. . ... ... . e 585

A3 Memory-Typing MSRS . . ... o 586

A4 Machine-Check MSRS. . . ... 589

A5 Software-Debug MSRS ... ... 590

A.6 Performance-Monitoring MSRS ... .. ... . 591

A7 Secure Virtual Machine MSRS .. .. ... . 592

A8 System Management Mode MSRS . ... ... ... . . 594

A9 CPUID Name MSR Cross-Reference .. .......... ... ... .. 594
Appendix B Layout of VMCB ... ... ittt iiiiiiieiiitennnenennnnns 595
Appendix C SVM Intercept ExitCodes .........covtiiiiiiiiiiiiiiineneeneenennnns 607
Appendix D SMM Containerization . .........cciitiiiiiieriernesnrsnssnssnssnses 611
D.1 SMM Containerization Pseudocode .. ....... .. .. .. .. 611
Appendix E  OS-Visible Workarounds ..........ciiiiiiiiiiiiiiiiiiiiiirnenennnnns 617
E.1 Erratum Process OVervIew . . ...t e 619

T 621
XVi Contents



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Figures

Figure 1-1.  Segmented-Memory Model . . ... .. ... . 6
Figure 1-2.  Flat Memory Model . .. ... .. .. 7
Figure 1-3.  Paged Memory Model. . .. ... .. 8
Figure 1-4.  64-Bit Flat, Paged-Memory Model. . . ...... ... . . . 9
Figure 1-5. Real-Address Memory Model. . . ... ... .. 10
Figure 1-6.  Operating Modes of the AMD64 Architecture. .. ...t .. 12
Figure 1-7.  System Registers. .. .. ...ttt et e et e 16
Figure 1-8.  System-Data Structures. . . .. ... ... 18
Figure 3-1.  Control Register 0 (CRO) . ... ... i e e et e e e 43
Figure 3-2.  Control Register 2 (CR2)—Legacy-Mode . .. ... ... 46
Figure 3-3.  Control Register 2 (CR2)—LongMode . .. ... ... it 46
Figure 3-4.  Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging. .. ........................ 46
Figure 3-5.  Control Register 3 (CR3)—Legacy-Mode PAE Paging. .. ............................ 46
Figure 3-6.  Control Register 3 (CR3)—LongMode. ....... ... 47
Figure 3-7. RFLAGS Register. . . .. ..ot e e e e e et et e e 52
Figure 3-8.  Extended Feature Enable Register (EFER). .. ... ... .. .. .. .. . . . . . . . .. .. ... ..., 56
Figure 3-9. AMDG64 Architecture Model-Specific Registers. .. ........ ... .. ... ... 59
Figure 3-10. System-Configuration Register (SYSCFG) . ... ... . i 60
Figure 4-1.  Segmentation Data Structures. . . . ... ...ttt e 68
Figure 4-2. Segment and Descriptor-Table Registers .. ........... i 69
Figure 4-3.  Segment Selector. . . . ... ...t 69
Figure 4-4. Segment-Register Format. . ... ... ... . 71
Figure 4-5.  FS and GS Segment-Register Format—64-Bit Mode. .. ............ ... .. .. .. .. ..... 72
Figure 4-6.  Global and Local Descriptor-Table Access ... ...... ..ot 74
Figure 4-7. GDTR and IDTR Format—Legacy Modes ............ ..., 75
Figure 4-8. GDTR and IDTR Format—Long Mode . .. ....... ... ... .. . . 75
Figure 4-9. Relationship betweenthe LDT and GDT .. ... ... . . . . . ... 76
Figure 4-10. LDTR Format—Legacy Mode . . .. ... ... e 77
Figure 4-11. LDTR Format—Long Mode. . .. ... ..ot e e 77
Figure 4-12. Indexing an IDT .. .. .. . 79
Figure 4-13. Generic Segment Descriptor—Legacy Mode. .. ........ ... . ... 80

Figures XVii



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Figure 4-14. Code-Segment Descriptor—Legacy Mode. .. ...ttt 82
Figure 4-15. Data-Segment Descriptor—Legacy Mode . .. ...t 83
Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes . .. ...............covvnen... 86
Figure 4-17. Call-Gate Descriptor—Legacy Mode. .. ... ... i e 87
Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode .. .......... ... ... ... .... 87
Figure 4-19. Task-Gate Descriptor—Legacy Mode .. ........ ... . i 87
Figure 4-20. Code-Segment Descriptor—Long Mode . ....... ... .. .. .. i 88
Figure 4-21. Data-Segment Descriptor—Long Mode. .. ... ... ... i &9
Figure 4-22. System-Segment Descriptor—64-Bit Mode. . . .......... .. ... .. . i 91
Figure 4-23. Call-Gate Descriptor—Long Mode . ............. ittt it e 92
Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—LongMode .. .......... ... .. ... ... .... 93
Figure 4-25. Privilege-Level Relationships. .. ... ... i 96
Figure 4-26. Data-Access Privilege-Check Examples. .. .......... ... i, 98
Figure 4-27. Stack-Access Privilege-Check Examples. .. ......... ... i, 99
Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. .. ........................ 102
Figure 4-29. Conforming Code-Segment Privilege-Check Examples. ............................. 103
Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism . .. ........... .. ... .. .. .. .. .. ....... 104
Figure 4-31. Long-Mode Call-Gate Access Mechanism. . .............. i, 105
Figure 4-32. Privilege-Check Examples for Call Gates ............ .. .. ... .. .. 107
Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters................................ 109
Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode. .. ........... ... .. ... ... ....... 109
Figure 4-35. Stack Switch—Long Mode. . . ... ... . e 110
Figure 5-1.  Virtual to Physical Address Translation—Long Mode. . ............ .. ... ... ....... 119
Figure 5-2.  Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode. .. ....................... 123
Figure 5-3.  Control Register 3 (CR3)—PAE Paging Legacy-Mode. .. ........................... 123
Figure 5-4.  4-Kbyte Non-PAE Page Translation—Legacy Mode. . .............................. 124
Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode . ........... ... .. ... i .. 125
Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode . ........... ... ... ... ... i .. 125
Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . ........................ 126
Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode. . ............ ... .. ... ..., 126
Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode. . .......... .. .. .. . . iiiiin.. 127
Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode . .......... ... ... iiiiininnnnn.. 128
Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode ... ........ ... ... i .. 128
XViii Figures



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode .......... ... ... i, 128
Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode ................. .. ... iiiriinn.. 129
Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode. .. ........ .. ..., 129
Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode. .. ....... ... ... i, 130
Figure 5-16. Control Register 3 (CR3)—LongMode. .. ... ... ... i, 131
Figure 5-17. 4-Kbyte Page Translation—Long Mode. .. ........ ... .. ... ... 132
Figure 5-18. 4-Kbyte PML4AE—Long Mode. . ... ... . e 133
Figure 5-19. 4-Kbyte PDPE—Long Mode ... ... ... . i 133
Figure 5-20. 4-Kbyte PDE—Long Mode . ....... ... it e e e 133
Figure 5-21. 4-Kbyte PTE—Long Mode. . . ... ... .. e e 133
Figure 5-22. 2-Mbyte Page Translation—LongMode .......... ... ... ... . .. 134
Figure 5-23. 2-Mbyte PML4E—Long Mode .. ..... ... .. i i 135
Figure 5-24. 2-Mbyte PDPE—Long Mode . .. ... ... .. 135
Figure 5-25. 2-Mbyte PDE—Long Mode . . .. ... ..ottt 135
Figure 5-26. 1-Gbyte Page Translation—Long Mode. .. ... ... ... .. .. . . .. 136
Figure 5-27. 1-Gbyte PML4E—Long Mode. . . ... ... i e e 137
Figure 5-28. 1-Gbyte PDPE—Long Mode .. ...... ... . i e 137
Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRS . . .. .. o e 153
Figure 6-2.  SYSENTER CS, SYSENTER ESP, SYSENTER EIPMSRs........................ 154
Figure 7-1.  Processor and Memory System. . .. .. ...ttt ettt ettt e 162
Figure 7-2.  MOESI State Transitions . . .. .. ...ttt ettt 170
Figure 7-3.  Cache Organization Example . . ....... ... ... i e 180
Figure 7-4.  MTRR Mapping of Physical Memory .......... .. .. . . i, 190
Figure 7-5. Fixed-Range MTRR . . .. .. 191
Figure 7-6.  MTRRphysBasen Register . . . ... ... i 193
Figure 7-7.  MTRRphysMaskn Re@ister. . . ... ...t ettt et e 193
Figure 7-8.  MTRRdefType Register Format. . .......... ... ... .. i 195
Figure 7-9. MTRR Capability Register Format. . ........... .. ... ... ... 196
Figure 7-10. PAT Re@ISter. . . . ..ottt e e e e e e e e e e e 198
Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs) .. ............ ... ... ..... 203
Figure 7-12. IORRBasen Register. . ... ... ... i e e et et et e 205
Figure 7-13. TORRMaskn RegiSter . . . . .. ... o e e 206
Figure 7-14. Memory Organization Using Top-of-Memory Registers............................. 207

Figures Xix



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP MEM2). .......... ... .. ... .. ... ... ... 208
Figure 7-16. Encrypted Memory ACCESSES . . . oo vv vttt e et e ettt ettt ettt e e 210
Figure 8-1. Control Register 2 (CR2) ... ... i e e e ettt e 228
Figure 8-2.  Selector Error Code. . ... ... . i e 233
Figure 8-3. Page-Fault Error Code ... ... ... ... . . e e 233
Figure 8-4.  Task Priority Register (CR8) .. ... ... ... . e 237
Figure 8-5. Real-Mode Interrupt Control Transfer . ... ... ... ... . .. 238
Figure 8-6.  Stack After Interruptin Real Mode. . ........ . ... . .. 239
Figure 8-7.  Protected-Mode Interrupt Control Transfer .. .......... ... ... .. i nnon.. 241
Figure 8-8.  Stack After Interrupt to Same Privilege Level . ....... ... ... ... ... .. .. ... .. .. ... 242
Figure 8-9.  Stack After Interrupt to Higher Privilege . . .. ...... ... . ... . . . . . . ... 243
Figure 8-10. Privilege-Check Examples for Interrupts .. ............ ... . ... 245
Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode. .. ....................... 248
Figure 8-12. Long-Mode Interrupt Control Transfer. ... ...... ... ... ... . . .. 250
Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege. . ......... ... ... .. ... ... ... 252
Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege. .. ........... ... ... ... .. ....... 253
Figure 8-15. Long-Mode IST Mechanism. . ... ... ... e 254
Figure 9-1. MCG CAP Re@ISter. . ..o\ttt ettt e e e e et e et et e 268
Figure 9-2.  MCG _STATUS RegiSter . . ..o\ vt ittt ettt e ettt et et et e 269
Figure 9-3.  MCG CTL RegiSter . . ..ottt e e e e e et et et et et e e 270
Figure 9-4. CPU Watchdog Timer Register Format . .......... ... ... ... ... ... . ... 270
Figure 9-5. MCi CTL RegiSter. . ...ttt et e et e et et e 273
Figure 9-6.  MCi_STATUS REISET . . ..ottt ettt e e e et e e e e 274
Figure 9-7. MCi MISC1 Addressing . ... ..ottt ettt ettt ettt et 277
Figure 9-8.  Miscellaneous Information Register (Thresholding Register Format)................... 278
Figure 10-1. Default SMRAM Memory Map . .. ..ottt ettt et e e 287
Figure 10-2. SMBASE RegiSter . . ... ..o e e e e e 287
Figure 10-3. SMM-Revision Identifier .. ....... ... . 293
Figure 10-4. SMM_ADDR Register Format. . ....... ... . . 294
Figure 10-5. SMM_MASK Register Format. . . ....... . .. 294
Figure 10-6. I/O Instruction Restart Dword. .. . ... .. .. 300
Figure 11-1. SSE Execution Unit State . ... ... ... ... e e 307
Figure 11-2. MMX Execution Unit State . ... ....... ...ttt ettt et 308

XX

Figures



AMDA

24593—Rev. 3.30—September 2018

x87 Execution Unit State
FSAVE/FNSAVE Image (32-Bit, Protected Mode)
FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)
FSAVE/FNSAVE Image (16-Bit, Protected Mode)
FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes)
XFEATURE _ENABLED MASK Register (XCRO)
FXSAVE and FXRSTOR Image (64-bit Mode)
FXSAVE and FXRSTOR Image (Non-64-bit Mode)

Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 11-10.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.

Task-Management Resources
Task-Segment Selector
TR Format, Legacy Mode
TR Format, Long Mode
Relationship between the TSS and GDT
Legacy 32-bit TSS
I/0-Permission Bitmap Example
Long Mode TSS Format
Task-Gate Descriptor, Legacy Mode Only
Privilege-Check Examples for Task Gates
Address-Breakpoint Registers (DR0-DR3)
Debug-Status Register (DR6)
Debug-Control Register (DR7)
Debug-Control MSR (DebugCtl)

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.
Figure 13-10.
Figure 13-11.
Figure 13-12.
Figure 13-13.
Figure 13-14.
Figure 13-15.

Control-Transfer Recording MSRs
Performance Counter Format
Core Performance Event-Select Register (PerfEvtSeln)
Northbridge Performance Event-Select Register (NB_PerfEvtSeln)
L2 Cache Performance Event-Select Register (L21_PerfEvtSeln)
Time-Stamp Counter (TSC)
IBS Fetch Control Register(IbsFetchCtl)
IBS Fetch Linear Address Register (IbsFetchLinAd)
IBS Fetch Physical Address Register (IbsFetchPhysAd)
IBS Execution Control Register (IbsOpCtl)
IBS Op Linear Address Register (IbsOpRip)

AMDG64 Technology

XXi



AMDAQ

AMDG64 Technology

Figure 13-16.
Figure 13-17.
Figure 13-18.
Figure 13-19.
Figure 13-20.
Figure 13-21.
Figure 13-22.
Figure 13-23.
Figure 13-24.
Figure 13-25.
Figure 13-26.
Figure 13-27.
Figure 13-28.
Figure 13-29.
Figure 13-30.
Figure 13-31.
Figure 13-32.
Figure 13-33.

Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.

Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.

24593—Rev. 3.30—September 2018

IBS Op Data 1 Register (IbsOpDatal) . ......... ... 381
IBS Op Data 3 Register (IbsOpData3) .. ..ottt e 383
IBS Data Cache Linear Address Register (IbsDcLinAd).............. ... ... ....... 385
IBS Data Cache Physical Address Register (IbsDcPhysAd) .......................... 385
IBS Branch Target Address Register (IbsBrTarget). . ........ ... ... ... ... i ... 386
Generic Event Record. . .. ... .. 391
Programmed Value Sample EventRecord . ........ ... ... ... ... ... ... ... 392
Instructions Retired Event Record . ........ .. .. . ... .. .. .. 393
Branch Retired Event Record . . ... ... ... .. . . . 395
DCache Miss Event Record . ........ ... 397
CPU Clocks not Halted Event Record . ........... .. .. .. .. .. .. . . .. 398
CPU Reference Clocks not Halted Event Record. .. ................................ 399
Programmed Event Record. .. ... ... . . 400
LWP_CFG—Lightweight Profiling Features MSR. . . . ... ... ... .. .. ... ... ... ... 405
LWPCB—Lightweight Profiling Control Block . .. ................................ 412
LWPCB Flags . . ..o e e e e e e 416
LWPCB Filters . . . oottt ettt e e e e e e e e e e e 417
XSAVE Area for LWP . ..o e 421
EXITINTINFO for Al INtercepts. . . . oo vt ottt ettt 457
EXITINFOL1 for IOIO Intercept . . .. oo oot oo ettt et e e e e i 464
EXITINFOT for SMIINtercept. . .. .o ovv ittt ittt e e et et 470
Layoutof VMCB Clean Field. . . ... ... . . e 474
EVENTINJ Fieldinthe VMCB . .. ... . e 479
Host Bridge DMA Checking. . .. ...t e e 488
Format of DEV_OP Register (in PCI Config Space) . ............ ..., 489
Format of DEV_CAP Register (in PCI Config Space). . ..., 490
Format of DEV_BASE HI[n] Registers. .. ..........o it 491
Format of DEV_BASE LO[n] Registers.............oiiiiiiii .. 491
Format of DEV_MAP[n] Registers ... ... 492
Address Translation with Traditional Paging . .......... ... ... .. ... ... ... .. ..... 493
Address Translation with Nested Paging .......... ... ... ... . .. 494
SLB Example Layout . ... ..ot e e 502
VAPIC Backing Page ACCeSS . ... ovt ittt e e 508

XXii

Figures



AMDA

24593—Rev. 3.30—September 2018

Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 15-19.
Figure 15-20.
Figure 15-21.
Figure 15-22.
Figure 15-23.
Figure 15-24.
Figure 15-25.
Figure 15-26.
Figure 15-27.
Figure 15-28.
Figure 15-29.

Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 16-6.
Figure 16-7.
Figure 16-8.
Figure 16-9.

Figure 16-10.
Figure 16-11.
Figure 16-12.

Figure 16-13.

Figure 16-14.
Figure 16-15.
Figure 16-16.
Figure 16-17.

Virtual APIC Task Priority Register Synchronization
Physical APIC ID Table Entry
Physical APIC Table in Memory
Logical APIC ID Table Entry
Logical APIC ID Table Format, Flat Mode
Logical APIC ID Table Format, Cluster Mode
Doorbell Register, MSR C001_011Bh
EXITINFOL ... .. ..o
EXITINFO2 ... ...
Layout of VM_CR MSR (C001_0114h)
Layout of SMM_CTL MSR (C001_0116h)
TSC Ratio MSR (C000_0104h)
Guest DataRequest. ......................

EXAMPLE #VC FLOW

Block Diagram of a Typical APIC Implementation
APIC Base Address Register (MSR 0000 _001Bh)
APIC ID Register (APIC Offset 20h)
APIC Version Register (APIC Offset 30h)
Extended APIC Feature Register (APIC Offset 400h)
Extended APIC Control Register (APIC Offset 410h)
General Local Vector Table Register Format
APIC Timer Local Vector Table Register (APIC Offset 320h)
Timer Current Count Register (APIC Offset 390h)
Timer Initial Count Register (APIC Offset 380h)
Divide Configuration Register (APIC Offset 3EOh)

Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)556

Performance Monitor Counter Local Vector Table Register

(APIC Offset 340h)556

Thermal Sensor Local Vector Table Register (APIC Offset 330h)
APIC Error Local Vector Table Register (APIC Offset 370h)
APIC Error Status Register (APIC Offset 280h)
Spurious Interrupt Register (APIC Offset FOh)

AMDG64 Technology

Figures

XXiii



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Figure 16-18. Interrupt Command Register (APIC Offset 300h—3010h) ............ ... ... ... ... ... 560
Figure 16-19. Remote Read Register (APIC Offset COh). ........ ... . i 562
Figure 16-20. Logical Destination Register (APIC Offset DOh). . ............ ... ..., 563
Figure 16-21. Destination Format Register (APIC Offset EOh) . ........... ... .. ... ... ... .. .. ..... 564
Figure 16-22. Arbitration Priority Register (APIC Offset 90h). .. ...... ... ... ... .. ... . . .. ... 565
Figure 16-23. Interrupt Request Register (APIC Offset 200h—270h) .. ...... ... ... ... . .. 566
Figure 16-24. In Service Register (APIC Offset 100h—170h). ....... ... . .. . . .. 567
Figure 16-25. Trigger Mode Register (APIC Offset 180h—1FOh). .. ..... ... ... .. ... ... ... ... ..... 567
Figure 16-26. Task Priority Register (APIC Offset 80h). . ........ ... ... i 568
Figure 16-27. Processor Priority Register (APIC Offset AOh) .. ........ ... ... . ... 569
Figure 16-28. End of Interrupt (APIC Offset BOh) .. .. ... ... ... . . i 570
Figure 16-29. Specific End of Interrupt (APIC Offset 420h) . ......... ... .. ., 571
Figure 16-30. Interrupt Enable Register (APIC Offset 480h—4FOh). ......... ... .. .. ... ... .. ... ... 571
Figure 17-1. P-State Current Limit Register (MSR C001 0061h) ........... ... .. ... i, 574
Figure 17-2. P-State Control Register (MSR CO01 0062h) . .......... ... ... ... 574
Figure 17-3. P-State Status Register (MSR CO01 0063h) .......... ..., 575
Figure 17-4. Core Performance Boost (MSRCO001 0015h) ....... ... .. ... 576
Figure 17-5. Actual Performance Frequency Count (MSR0O000 OOE8h).............. .. ... ... ..... 577
Figure 17-6. Max Performance Frequency Count (MSR0O000 O0E7h).............. ... .. .. ....... 577
Figure 17-7. MPERF Read Only (MSR C000_O0E7h). .. ... ... ot 578
XXiv Figures



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Tables

Table 1-1.  Operating Modes. . . .. ..ottt e e e et et et 11
Table 1-2.  Interrupts and EXCeptions . . . .. ... ..ttt e e et e 20
Table 2-1.  Instructions That Reference RSP .. ... ... .. .. .. .. . . . . 31
Table 2-2.  64-Bit Mode Near Branches, Default 64-Bit Operand Size . .. ......................... 32
Table 2-3.  Invalid Instructions in 64-Bit Mode . . ... ... ... 34
Table 2-4.  Invalid Instructions in Long Mode . .. ... ... i e 35
Table 2-5.  Opcodes Reassigned in 64-Bit Mode . .. ...t 36
Table 2-6.  Differences Between Long Mode and Legacy Mode . .. .......... ... ... ... ........ 39
Table 4-1.  Segment RegiSters. . . . . ... ..ottt e 71
Table 4-2.  Descriptor TyPesS. . . o .ottt et e e e e e 81
Table 4-3.  Code-Segment Descriptor TyPes . ... ov vttt e et e 83
Table 4-4.  Data-Segment Descriptor Types. .. ..o vt e ettt ettt 84
Table 4-5.  System-Segment Descriptor Types (S=0)—Legacy Mode. ............................ 85
Table 4-6.  System-Segment Descriptor Types—LongMode ........ .. ... .. .. . ... 90
Table 4-7.  Descriptor-Entry Field ChangesinLongMode .. ........ ... ... ... ... . ... 94
Table 4-8.  Segment Limit Checks in 64-BitMode . .......... ... ..., 114
Table 5-1.  Supported Paging Alternatives (CRO.PG=1) ......... ... .. .. 120
Table 5-2.  Physical-Page Protection, CRO.WP=0 .. ... ... ... ... .. .. .. .. . .. 147
Table 5-3.  Effect of CRO.WP=1 on Supervisor Page Access .............ouiiriririniinenenan.. 148
Table 6-1.  System Management Instructions. . .. ... .. i 149
Table 7-1.  Memory Access by Memory Type . .. ..ot e e 174
Table 7-2.  Caching Policy by Memory Type. ... ...t e et et e e 174
Table 7-3. Memory Access Ordering Rules. .. ... ... i i e 176
Table 7-4. AMD64 Architecture Cache-Operating Modes .. ..., 183
Table 7-5. MTRR Type Field Encodings. . . ......... o e 188
Table 7-6.  Fixed-Range MTRR Address Ranges. .. ........ .. ... . i, 191
Table 7-7.  Combined MTRR and Page-Level Memory Type with Unmodified PAT MSR........... 197
Table 7-8.  PAT Type Encodings . .. ... e e e 199
Table 7-9.  PAT-Register PA-Field Indexing . . .. ... ...t et 200
Table 7-10. Combined Effect of MTRR and PAT Memory Types . .. ...coviiiiiiiiiinan., 201
Table 7-11.  Serialization Requirements for Changing Memory Types. .......... .. ... ..ot 202
Table 7-12. Extended Fixed-Range MTRR Type Encodings .......... ... ... ... ... ... .. ... 204
Table 8-1.  Interrupt Vector Source and Cause. . . .. ... vt ittt et e 217
Table 8-2.  Interrupt Vector Classification .. ............. it 218

Tables XXV



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Table 8-3.  Double-Fault Exception Conditions . . ...........coiuiin i 223
Table 8-4.  Invalid-TSS Exception Conditions . .. ... ...ttt 224
Table 8-5.  Stack Exception Error Codes .. ... .. 226
Table 8-6.  General-Protection Exception Conditions . ................oiiiiitiriieerennannn.. 226
Table 8-7.  Data-Type ALGNMENnt . . . ... ... ittt e et et et e et e e e 229
Table 8-8.  Simultaneous Interrupt Priorities ... ........... it 234
Table 8-9.  Simultaneous Floating-Point Exception Priorities . .............. ... .. ... ... ... ... 236
Table 8-10. Virtual-8086 Mode Interrupt Mechanisms . . ......... ... .. . .. 247
Table 8-11.  Effect of Instructions that Modify the IFBit . .......... ... .. ... .. .. .. ... .. ..... 260
Table 9-1.  CPU Watchdog Timer Time Base . ............... . i, 271
Table 9-2.  CPU Watchdog Timer Count Select. . ........ ... 271
Table 9-3.  Error Log@ing Priorities . . .. ...ttt et 272
Table 9-4. BITOr SCOPC . . . ottt ettt e e e e e 281
Table 10-1. AMD64 Architecture SMM State-Save AT€a. . ... vv vt ee e 288
Table 10-2. Legacy SMM State-Save Area (Not used by AMDG64 Architecture) . ................... 291
Table 10-3. SMM Register Initialization . . . . ... ...ttt ettt e e e 295
Table 11-1.  SSE Subsets - CPUID Feature Identifiers. . ........... .. .. ... ... 304
Table 11-2.  Extended Save Area Format. .. ... ... ... . ... i 318
Table 11-3. XRSTOR Hardware-Specified Initial Values. . .......... ... .. .. . i, 321
Table 11-4.  Deriving FSAVE Tag Field from FXSAVE TagField. .. ......... ... .. .. .. .. .. ... 327
Table 12-1.  Effects of Task Nesting. .. ... ... i e e e e e 347
Table 13-1. Breakpoint-Setting Examples . .. ... ... . i e e e 358
Table 13-2. Breakpoint Location by Condition .. ...........ci it 359
Table 13-3.  Host/Guest Only Bits .. ... ... i e e e e e 367
Table 13-4. Count Control Using CNT MASK and INV .. ... ... .. . i 368
Table 13-5. Operating-System Mode and User Mode Bits . ............... ... .. .. .. ... ... 368
Table 13-6. Eventld Values . .. ... ... 391
Table 13-7. Lightweight Profiling CPUID Values. .. ...t 402
Table 13-8. LWPCB—Lightweight Profiling Control Block Fields. ............................. 413
Table 13-9. LWPCB Filters Fields. . . ... ... o e e 418
Table 13-10. XSAVE Area for LWP Fields. .. ... ... e 422
Table 14-1.  Initial Processor State . . . .. .. ..ottt e 430
Table 14-2. Initial State of Segment-Register Attributes. . ............ .. .. ..., 432
Table 14-3.  x87 Floating-Point State Initialization ............ ... ... .. ... . i, 434
Table 14-4.  Processor Operating Modes . . ... ...ttt et e ettt e 439
Table 14-5. Long-Mode Consistency Checks . ........ ... i 440

XXVi

Tables



AMDA

24593—Rev. 3.30—September 2018

Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.

Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-14.
Table 15-15.
Table 15-16.
Table 15-17.
Table 15-18.
Table 15-19.
Table 15-20.
Table 15-21.
Table 15-22.
Table 15-23.
Table 15-24.
Table 15-25.
Table 15-26.
Table 15-27.
Table 15-28.
Table 15-29.
Table 15-30.
Table 15-31.
Table 15-32.
Table 15-33.

Table 16-1.
Table 16-2.
Table 16-3.

Guest Exception or Interrupt Types
EXITINFO1 for MOV CRx
EXITINFOI1 for MOV DRx
EXITINFOL for INTn. ....................
EXITINFO1 for INVLPG

Guest Instruction Bytes

Instruction Intercepts. . . ...................
MSR Ranges Covered by MSRPM
TLB Control Byte Encodings
Effect of the GIF on Interrupt Handling
Guest Exception or Interrupt Types
INIT Handling in Different Operating Modes
NMI Handling in Different Operating Modes
SMI Handling in Different Operating Modes
DEV Capability Block, Overall Layout
DEV Capability Header (DEV_HDR) (in PCI Config Space)
Encoding of Function Field in DEV_OP Register
DEV_CR Control Register
Combining Guest and Host PAT Types
Combining PAT and MTRR Types
Guest VAPIC Register Access Behavior
Virtual Interrupt Control (VMCB offset 60h)
New VMCB Fields Defined by AVIC
Physical APIC ID Table Entry Fields
Logical APIC ID Table Entry Fields

EXTINFOIl Fields. .......................
EXTINFO2 Fields. . ........... ... ... ...
ID Field—IPI Delivery Failure Cause
EXTINFOl Fields. . ......................
EXTINFO2 Fields. . ......................
Encryption Control . ......................
SEV/SME Interaction.....................
AE Exitcodes. . ........... .. ... ..
Interrupt Sources for Local APIC
APICRegisters .. ...,
Divide Values . . ........... ... ... ... ...

AMDG64 Technology

Tables

XXVii



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 16-4. Valid ICR Field Combinations . . . . ... ...ttt e 562
Table A-1. MSRs of the AMD64 Architecture. ... ....... ..ttt et 581
Table A-2.  System-Software MSR Cross-Reference .............. .. .. .. .. .. .. ... 585
Table A-3. Memory-Typing MSR Cross-Reference. .. ........ ... ... ... 586
Table A-4.  Machine-Check MSR Cross-Reference . .......... .. .. .. .. .. 589
Table A-5.  Software-Debug MSR Cross-Reference. . ......... ... .. ... .. ... 590
Table A-6.  Performance-Monitoring MSR Cross-Reference . ............. ... .. ... ... ....... 591
Table A-7.  Secure Virtual Machine MSR Cross-Reference .. ............. ... ... ... ... ........ 593
Table A-8.  System Management Mode MSR Cross-Reference . ............... .. .. ... .. ....... 594
Table A-9. CPUID Namestring MSRS . . ... ... i e e et e 594
Table B-1.  VMCB Layout, Control Ar€a . . ..........iuinii it et et 595
Table B-2.  VMCB Layout, State Save Area. ... .....cuirir it 600
Table B-3. SWap Ty PeS. . . ottt et e e e 603
Table B-4. VMCB Layout, State Save Areafor SEV-ES ... ....... ... ... ... .. ... 603
Table C-1.  SVM Intercept Codes . . .....o ittt e e e e et et 607
XXViil Tables



AMDA

24593—Rev. 3.30—September

Revision History

2018

AMDG64 Technology

Date Revision

Description

September 2018 3.30

Modified Section 7.4
Modified Section 7.6.4
Modified Section 8.5.2
Modified Section 9.2
Corrected Figure 9-4
Corrected Table 9-1
Modified Section 9.3.2
Corrected Figure 9-6
Corrected Table 9-4
Modified Section 14.2.3
Modified Section 14.4
Modified Section 15.6
Modified Section 15.7
Modified Section 15.34.9
Modified Section 15.34.10
Modified Section 15.35.2
Corrected Table B-4 in Appendix B

December 2017 3.29

Modified Sections 7.10.1 and 7.10.4.
Modified Sections 15.34.1, 15.34.7.
Added new Section 15.34.10.
Modified Section 15.35.10.

Modified Appendix A, Table A-7.

March 2017 3.28

Modified CR4 Register, Section 3.1.3.

Removed UD2 in Table 6-1.

Added new bullet in Section 7.1.1.

Modified Note in Table 7-1.

Added new Section 7.4.1.

Clarified Self Modifying Code in Section 7.6.1.

Added UDO and UD1 instructions in Section 8.2.7.

Added Instructions Retired Performance counter in Section 13.1.1.
Modified Table in Section 15.34.9.

XXIiX



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Date Revision | pescription

Added Resume Flag (RF) Bit in Section 3.1.6, "RFLAGS Register,” on page
51.

Added Tom2ForceMemTypeWB in Section 3.2.1, "System Configuration
Register (SYSCFG),” on page 59.

Clarified SYSCALL and SYSRET in Section 6.1.1, "SYSCALL and
SYSRET,” on page 152.

Added Section 7.3.2, "Access Atomicity,” on page 172.

Updated Note b in Table 7-11 on page 202.

Modified Table 8-1, “Interrupt Vector Source and Cause”, on page 217.
Modified Table 8-2, “Interrupt Vector Classification”, on page 218.
Added Section 8.2.20, "#VC -- VMM Communication Exception (Vector
29),” on page 231.

Added a Note in Chapter 10, "System-Management Mode," on page 285.
Added Section 10.5, "Multiprocessor Considerations,” on page 301.
Updated CPUID 8000 001F[EAX] and added CPUID

8000 001F[EDX] in Section 15.34.1, ”Determining Support for
SEV,” on page 532.

Added new Section 15.35, "Encrypted State (SEV-ES),” on page 537.
Clarified TSC Ratio MSR in Section 15.30.5 "TSC Ratio MSR
(C000_0104h)" on page 528.

Modified Appendix B, “Layout of VMCB" on page 595.

Added Table B-3, “Swap Types”, on page 603.

Added Codes 8Fh, 90h-9Fh, and 403h in Table C-1, “SVM Intercept
Codes”, on page 607.

December 2016 3.27

Clarification on loading a null selector into FS or GS added in Section
4.5.3, "Segment Registers in 64-Bit Mode,” on page 72

Translation table diagrams corrected for definition of bit 8 in Section 5.5,
"Translation-Lookaside Buffer (TLB),” on page 141

CRO0.CD implementation-dependent behavior noted in Section 7.6.2,
"Cache Control Mechanisms,” on page 182

Added clarification on IST usage in Section 8.9.4, "Interrupt-Stack Table,
on page 253.

Added new Section 7.10, "Secure Memory Encryption,” on page 208.
Added guideline for secure AP startup in Section 15.27.8, “Secure
Multiprocessor Initialization,” on page 504

Added TLB maintenance requirement for multiprocessor VM's in Section
15.29.2.2, "VMCB Changes in Support of AVIC,” on page 512.

Added new Section 15.34, "Secure Encrypted Virtualization,” on page
532

14

April 2016 3.26

XXX



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Date Revision | pescription

Added new section 15.33 Nested Virtualization for coverage of VMSAVE
June 2015 3.25 and VMLOAD and Virtual GIF.

Various minor edits.

Added description of Supervisor-Mode Execution Prevention. See
Section 5.6.5 "Supervisor-Mode Execution Prevention (CR4.SMEP) Bit”
on page 146.

Indicated the deprecation of the Processor Feedback Interface. See
Section 17.4, "Processor Feedback Interface,” on page 578.

Added Section 17.5, "Processor Core Power Reporting,” on page 578.

October 2013 3.24

Clarified guidelines for implementing cross-modifying code in the sub-
section "Cross-Modifying Code” on page 181.

Added AVIC description. See Section 15.29, "Advanced Virtual Interrupt
Controller,” on page 506.

Added L2I PMC architecture definition. See Section 13.2, "Performance
Monitoring Counters,” on page 364.

May 2013 3.23

Clarified processor behavior on write of EFER[LMA] bit in Section 3.1.7

"Extended Feature Enable Register (EFER)” on page 55.

Clarified difference between cold reset and warm reset in Section 9.3,

"Machine Check Architecture MSRs,” on page 267.

Added information on FFXSR feature bit to Table 11-1 on page 304.
Clarified SMM code responsibility to manage VMCB clean bits. See

September 2012 3.22 Section 15.15.2, ”Guiderl)ines for )élearing VgMCB Clean Bits,” on page

473.

Added a note to Table 15-9 on page 476 to indicate that all encodings of

TLB_CONTROL not defined are reserved.

Corrected information concerning the assignment of logical APIC IDs in

Section 16.6.1, "Receiving System and IPI Interrupts,” on page 563.

Added definition of processor feedback interface—frequency sensitivity
monitor (See Section 17.4, "Processor Feedback Interface,” on page
578)

Added Instruction-Based Sampling in a new section of Chapter 13 (See
Section 13.3, "Instruction-Based Sampling,” on page 373.)

Reworked Introduction and first section of Chapter 9, "Machine Check
Architecture," on page 263 and added deferred error handling.

Added description of CR4[FSGSBASE] bit. (See Section 3.1.3, "CR4
Register,” on page 47.)

Added references to the RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions in discussion of FS and GS segment
descriptors. (See "FS and GS Registers in 64-Bit Mode” on page 72)
Added Section 6.3.2, "Accessing Segment Register Hidden State,” on
page 157.

March 2012 3.21

XXXI



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Date Revision | pescription

Clarified description of the Cache Disable (CD) memory type in Section
7.4 "Memory Types” on page 172.

Added caveat: an overflow of either APERF or MPERF can invalidate the

December 2011 3.20 effective frequency calculation. See Section 17.3, "Determining
Processor Effective Frequency,” on page 576.
Other minor editorial changes.
Added XSAVEOPT to discussions on XSAVE.
Corrections to discussion on multiprocessor memory access ordering in
Chapter 7.
Added discussion of extended core and northbridge performance
counters and feature indicators to Chapter 13.

September 2011 319 | Added Lightweight Profiling (LWP) to Chapter 13,
Added Global Timestamp Counter, Continuous Mode to LWP description
Clarification: Function of pin A20M# is only defined in real mode.
Statement added to Section 1.2.4, "Real Addressing,” on page 10.
Eliminated hardware P-state references
Added information for OSXSAVE and XSAVE features.
Added Cache Topology, Pause Filter Threshold, and XSETBV
information.

May 2011 3.18 Updated TSC ratio information.
Corrected description of FXSAVE/FXRSTOR exception behavior when
CRO0.EM=1
June 2010 317 Replaced missing figures in Chapter 8, "Exceptions and Interrupts," on

page 213.

Updated information on performance monitoring counters in
"Performance-Monitoring Counter Enable (PCE)” on page 49 and 6.2.5,
"Accessing Model-Specific Registers” on page 156.

Revised Table 4-1, "Segment Registers” on page 71.
Add flush by ASID information to section 15.16, "TLB Control” on page

June 2010 3.16 475.
Added information on VMCB clean field to Chapter15, "Secure Virtual
Machine” on page 447 and Appendix B, "Layout of VMCB” on page 595.

Added section 15.10, "10IO Intercepts” on page 463.
Added section 15.30.5, "TSC Ratio MSR (C000_0104h)” on page 528.
Added section 17.2, "Core Performance Boost” on page 575.

XXXIi



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Date Revision | pescription

Added section 7.5, "Buffering and Combining Memory Writes” on page
177

Added MFENCE to list of "Serializing Instructions” on page 186.

Updated section 7.6.1, "Cache Organization and Operation” on page
179.

Updated Table 7-3, “Memory Access Ordering Rules”, on page 176 and
notes.

Updated 7.4, "Memory Types” on page 172.

Clarified 5.5.2, "TLB Management” on page 142.

Added "Invalidation of Table Entry Upgrades.” on page 143.

Updated "Speculative Caching of Address Translations” on page 143.
Update "Handling of D-Bit Updates” on page 144.

Revised and updated section 7.2, "Multiprocessor Memory Access
Ordering” on page 166 ff.

Added information on long mode segment-limit checks in "Extended
Feature Enable Register (EFER)” on page 56table on page 56 and "Long

November 2009 315 Mode Segment Limit Enable (LMSLE) bit” on page 57 on page 57.
Added discussion of "Data Limit Checks in 64-bit Mode” on page 114o0n
page 114.

Updated Table 6-1, “System Management Instructions”, on page 149.
Updated "Canonicalization and Consistency Checks” on page 453on
page 453.

Added information about the next sequential instruction pointer (nRIP) in
15.7.1, "State Saved on Exit” on page 456.

Updated priority definition of PAUSE instruction intercept in Table 15-7,
“Instruction Intercepts”, on page 461.

Added nRIP field to Table B-1, “VMCB Layout, Control Area”, on

page 595.

Clarified information on ICEBP event injection, on page 479.

Deleted erroneous statement concerning the operation of the General
Local Vector Table register Mask bit in section 16.4.

Clarified the description of the Interrupt Command Register Delivery
Status bit in section "Interprocessor Interrupts (IP1)” on page 5590n page
559.

XXXiii



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Date Revision | pescription

Added information on "Speculative Caching of Address Translations,”
"Caching of Upper Level Translation Table Entries,” "Use of Cached
Entries When Reporting a Page Fault Exception,” "Use of Cached
Entries When Reporting a Page Fault Exception,” "Handling of D-Bit
Updates,” "Invalidation of Cached Upper-level Entries by INVLPG” on
page 144 and "Handling of PDPT Entries in PAE Mode” on page 144to
3.14 section 5.5.2, "TLB Management” on page 142.

Added 15.21.7, "Interrupt Masking in Local APIC” on page 482.

Added 16.3.6, "Extended APIC Control Register” on page 551; clarified
the use of the ICR DS bit in 16.5, "Interprocessor Interrupts (IP1)” on
page 559.

Added minor clarifications and corrected typographical and formatting
errors.

September
2007

Added 5.3.5, ”1-Gbyte Page Translation” on page 135.

Added 7.2, "Multiprocessor Memory Access Ordering” on page 166
Added divide-by-zero exception to Table 8-8, “Simultaneous Interrupt
Priorities”, on page 234.

Added information on "CPU Watchdog Timer Register” on page 270and
"Machine-Check Miscellaneous-Error Information Register
0(MCi_MISCO0)” on page 276to Chapter 9.

Added SSE4A support to Chapter 11, "SSE, MMX, and x87
Programming” on page 303.

Added Monitor and MWAIT intercept information to section 15.9,

July 2007 313 "Instruction Intercepts” on page 461 and reorganized intercept
information; clarified 15.16.1, "TLB Flush” on page 475.

Added Monitor and MWAIT intercepts to tables B-1, "VMCB Layout,
Control Area” on page 595 and C-1, "SVM Intercept Codes” on page 607.
Added Chapter 16, "Advanced Programmable Interrupt Controller
(APIC)” on page 545, Chapter 17, "OS-Visible Workaround Information”
on page 515, Chapter 17, "Hardware Performance Monitoring and
Control” on page 573.

Added Table A-7, “Secure Virtual Machine MSR Cross-Reference”, on

page 593.
Added minor clarifications and corrected typographical and formatting
errors.
September 3.12 Added numerous minor clarifications.
2006
December 2005 311 Added Chapter 15, Secure Virtual Machine. Incorporated numerous

factual corrections and updates.

Corrected Table 8-6, “General-Protection Exception Conditions”, on
page 226. Added SSE3 information. Clarified and corrected information
February 2005 3.10 on the CPUID instruction and feature identification. Added information on
the RDTSCP instruction. Clarified information about MTRRs and PATs in
multiprocessing systems.

XXXIV



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Date Revision | pescription
Segtoecr)r;ber 3.09 Corrected numerous minor typographical errors.

Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor
errors of omission. Documentation of CRO.NW bit has been corrected.
April 2003 3.08 Several register diagrams and figure labels have been corrected.
Description of shared cache lines has been clarified in 7.3, "Memory
Coherency and Protocol” on page 169.

September 307 Made numerous small grammatical changes and factual clarifications.
2002 ' Added Revision History.

XXXV



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

XXXVi



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 2) is intended for programmers writing operating systems, loaders, linkers,
device drivers, or system utilities. It assumes an understanding of AMD64 architecture application-
level programming as described in Volume 1.

This volume describes the AMD64 architecture’s resources and functions that are managed by system
software, including operating-mode control, memory management, interrupts and exceptions, task and
state-change management, system-management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1. Details about each instruction are
described in Volumes 3, 4, and 5.

Organization

This volume begins with an overview of system programming and differences between the x86 and
AMDG64 architectures. This is followed by chapters that describe the following details of system
programming;:

e System Resources—The system registers and processor ID (CPUID) functions.

e Segmented Virtual Memory—The segmented-memory models supported by the architecture and
their associated data structures and protection checks.

e Page Trandation and Protection—The page-translation functions supported by the architecture
and their associated data structures and protection checks.

XXXVii



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

» System-Management Instructions—The instructions used to manage system functions.

e Memory System—The memory-system hierarchy and its resources and protocols, including
memory-characterization, caching, and buffering functions.

* Exceptions and Interrupts—Details about the types and causes of exceptions and interrupts, and
the methods of transferring control during these events.

¢ Machine-Check Mechanism—The resources and functions that support detection and handling of
machine-check errors.

*  System-Management Mode—The resources and functions that support system-management mode
(SMM), including power-management functions.

eSS, MMX, and x87 Programming—The resources and functions that support use (by application
software) and state-saving (by the operation system) of the 256-bit media, 128-bit media, 64-bit
media, and x87 floating-point instructions.

* Multiple-Processor Management—The features of the instruction set and the system resources and
functions that support multiprocessing environments.

e Debug and Performance Resources—The system resources and functions that support software
debugging and performance monitoring.

e Legacy Task Management—Support for the legacy hardware multitasking functions, including
register resources and data structures.

* Processor Initialization and Long-Mode Activation—The methods by which system software
initializes and changes operating modes.

* Mixing Code Across Operating Modes—Things to remember when running programs in different
operating modes.

e Secure Virtual Machine—The system resources that support virtualization development and
deployment.

There are appendices describing details of model-specific registers (MSRs) and machine-check
implementations. Definitions assumed throughout this volume are listed below. The index at the end of
this volume cross-references topics within the volume. For other topics relating to the AMD64
architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xlix for further information about the legacy x86 architecture. Finally,
the Registers section lists the registers which are a part of the system programming model.

XXXViii



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

FOEA 0BO02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “ RRR” notation is followed by
“ xYYY?”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to a field within a register—in this case, the PE field of the CRO register.

CRO[PE]=1,CRO.PE=1
The PE field of the CRO register is set (contains the value 1).

EFER[LME] = 0, EFER.LME =0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI
A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

XXXIX



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID

Address space identifier.
byte

Eight bits.

clear
To write a bit value of 0. Compare Set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

x|



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as Offset.

doubleword

Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

GPA

Guest physical address. In a virtualized environment, the page tables maintained by the guest
operating system provide the translation from the linear (virtual) address to the guest physical

xli



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

address. Nested page tables define the translation of the GPA to the host physical address (HPA).
See SPA and HPA.

HPA

Host physical address. The address space owned by the virtual machine monitor. In a virtualized
environment, nested page translation tables controlled by the VMM provide the translation from
the guest physical address to the host physical address. See GPA.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB

The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt vector table.

LDT

Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xlix for descriptions of the legacy
x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMD64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

xlii



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask

(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1 in a system register, a general-protection
exception (#GP) occurs; if in a translation table entry, a reserved-bit page fault exception (#PF)
will occur if the hardware attempts to use the entry for address translation. See reserved.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

xliii



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ

Value returned on a read is always zero (0) regardless of what was previously written. See
reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

xliv



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

set

To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SPA

System physical address. The address directly used to address system memory. Under SVM, also
known as the host physical address. See HPA.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

SVM

Secure virtual machine. AMD’s virtualization architecture. SVM is defined in Chapter 15 on
page 447.

System software

Privileged software that owns and manages the hardware resources of a system after initialization
by system firmware and controls access to these resources. In a non-virtualized environment,
system software is provided by the operating system. In a virtualized environment, system
software is largely equivalent to the virtual machine monitor (VMM), also commonly known as
the hypervisor.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single data
object. Most of the SSE and 64-bit media instructions use vectors as operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

xlv



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.
AL-DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R§B—R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX—eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare r AX— SP.

EFER
Extended features enable register.

xIvi



AMDA

24593—Rev. 3.30—September 2018

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare rlP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

AMDG64 Technology

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8&R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r&rl5

The 8-bit REB—R15B registers, or the 16-bit RESW—-R15W registers, or the 32-bit RSD-R15D

registers, or the 64-bit R§—R 15 registers.
rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-

bit size.

xlvii



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS

RFLAGS
64-bit flags register. Compare rFLAGS

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CR8), a new register introduced in the AMDG64 architecture to speed
interrupt management.

xIviii



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

TR
Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scala and vector operands used by the SSE instructions.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents

e Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

» Rakesh Agarwal, 80x86 Architecture & Programming: Volume |I, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

* AMD, BIOS and Kernel Developer’s Guide (BKDG) for particular hardware implementations of
older families of the AMD64 architecture.

* AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

e AMD, AMD I/O Virtualization Technology (IOMMU) Specification, Revision 2.2 or later; order
number 48882.

e AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

e Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

* Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

* Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

* Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

e Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

¢ Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

*  Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

e Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

xlix



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

» John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

* Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

e Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

e Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

e Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

e Ray Duncan, Extending DOS. A Programmer's Guide to Protected-Mode DOS Addison Wesley,
NY, 1991.

*  William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

e Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

e John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

e Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

e Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

* IBM Corporation, 4869.C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

e IBM Corporation, 48639.C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

e IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

* IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

e IBM Corporation, Blue Lightning 486D X2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

e Institute of Electrical and Electronics Engineers, |IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

» Institute of Electrical and Electronics Engineers, |IEEE Sandard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

e Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

e Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

e Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

e Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.




AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

NexGen Inc., Nx586™ Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686™ Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Sreaming SMD Extensions in the Pentium® IlII,
www.x86.org/articles/sse ptl/simdl.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft




AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018




AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

1 System-Programming Overview

This entire volume is intended for system-software developers—programmers writing operating
systems, loaders, linkers, device drivers, or utilities that require access to system resources. These
system resources are generally available only to software running at the highest-privilege level
(CPL=0), also referred to as privileged software. Privilege levels and their interactions are fully
described in “Segment-Protection Overview” on page 95.

This chapter introduces the basic features and capabilities of the AMD64 architecture that are
available to system-software developers. The concepts include:

* The supported address forms and how memory is organized.
* How memory-management hardware makes use of the various address forms to access memory.

* The processor operating modes, and how the memory-management hardware supports each of
those modes.

* The system-control registers used to manage system resources.

e The interrupt and exception mechanism, and how it is used to interrupt program execution and to
report errors.

e Additional, miscellaneous features available to system software, including support for hardware
multitasking, reporting machine-check exceptions, debugging software problems, and optimizing
software performance.

Many of the legacy features and capabilities are enhanced by the AMD64 architecture to support 64-
bit operating systems and applications, while providing backward-compatibility with existing
software.

1.1 Memory Model

The AMDG64 architecture memory model is designed to allow system software to manage application
software and associated data in a secure fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The translation mechanisms allow system
software to relocate applications and data transparently, either anywhere in physical-memory space, or
in areas on the system hard drive managed by the operating system.

In long mode, the AMD64 architecture implements a flat-memory model. In legacy mode, the
architecture implements all legacy memory models.

System-Programming Overview 1



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

1.1.1 Memory Addressing

The AMD64 architecture supports address relocation. To do this, several types of addresses are needed
to completely describe memory organization. Specifically, four types of addresses are defined by the
AMDG64 architecture:

* Logical addresses
» Effective addresses, or segment offsets, which are a portion of the logical address.
e Linear (virtual) addresses

e Physical addresses

Logical Addresses. A logical addressis a reference into a segmented-address space. It is comprised
of the segment selector and the effective address. Notationally, a logical address is represented as

Logi cal Address = Segnent Selector : Ofset
The segment selector specifies an entry in either the global or local descriptor table. The specified

descriptor-table entry describes the segment location in virtual-address space, its size, and other
characteristics. The effective address is used as an offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far pointers are used in software addressing
when the segment reference must be explicit (i.e., a reference to a segment outside the current
segment).

Effective Addresses. The offset into a memory segment is referred to as an effective address (see
“Segmentation” on page 5 for a description of segmented memory). Effective addresses are formed by
adding together elements comprising a base value, a scaled-index value, and a displacement value.
The effective-address computation is represented by the equation

Ef fective Address = Base + (Scale x Index) + D splacenent

The elements of an effective-address computation are defined as follows:

* Base—A value stored in any general-purpose register.

e Scale—A positive value of 1, 2, 4, or 8.

e Index—A two’s-complement value stored in any general-purpose register.

* Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement value encoded as part of the
instruction.

Effective addresses are often referred to as near pointers. A near pointer is used when the segment
selector is known implicitly or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a processor implementation does not support
the full 64-bit virtual-address space, the effective address must be in canonical form (see “Canonical
Address Form” on page 4).

2 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Linear (Virtual) Addresses. The segment-selector portion of a logical address specifies a segment-
descriptor entry in either the global or local descriptor table. The specified segment-descriptor entry
contains the segment-base address, which is the starting location of the segment in linear-address
space. A linear addressis formed by adding the segment-base address to the effective address
(segment offset), which creates a reference to any byte location within the supported linear-address
space. Linear addresses are often referred to as virtual addresses, and both terms are used
interchangeably throughout this document.

Li near Address = Segnment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a segment-base address is treated as 0. In
this case, the linear address is identical to the effective address. In long mode, linear addresses must be
in canonical address form, as described in “Canonical Address Form” on page 4.

Physical Addresses. A physical addressis a reference into the physical-address space, typically
main memory. Physical addresses are translated from virtual addresses using page-translation
mechanisms. See “Paging” on page 7 for information on how the paging mechanism is used for
virtual-address to physical-address translation. When the paging mechanism is not enabled, the virtual
(linear) address is used as the physical address.

1.1.2 Memory Organization

The AMDG64 architecture organizes memory into virtual memory and physical memory. Virtual-
memory and physical-memory spaces can be (and usually are) different in size. Generally, the virtual-
address space is much larger than physical-address memory. System software relocates applications
and data between physical memory and the system hard disk to make it appear that much more
memory is available than really exists. System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access locations within the virtual-memory
space. System software is responsible for managing the relocation of applications and data in virtual-
memory space using segment-memory management. System software is also responsible for mapping
virtual memory to physical memory through the use of page translation. The AMD64 architecture
supports different virtual-memory sizes using the following address-translation modes:

e Protected Mode—This mode supports 4 gigabytes of virtual-address space using 32-bit virtual
addresses.

e Long Mode—This mode supports 16 exabytes of virtual-address space using 64-bit virtual
addresses.

System-Programming Overview 3



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Physical Memory. Physical addresses are used to directly access main memory. For a particular
computer system, the size of the available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of physical memory accessible depends on the
processor implementation and on the address-translation mode. The AMD64 architecture supports
varying physical-memory sizes using the following address-translation modes:

* Real-Address Mode—This mode, also called real mode, supports 1 megabyte of physical-address
space using 20-bit physical addresses. This address-translation mode is described in “Real
Addressing” on page 10. Real mode is available only from legacy mode (see “Legacy Modes” on
page 14).

» Legacy Protected Mode—This mode supports several different address-space sizes, depending on
the translation mechanism used and whether extensions to those mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-address space using 32-bit physical
addresses. Both segment translation (see “Segmentation” on page 5) and page translation (see
“Paging” on page 7) can be used to access the physical address space, when the processor is
running in legacy protected mode.

When the physical-address size extensions are enabled (see “Physical-Address Extensions (PAE)
Bit” on page 121), the page-translation mechanism can be extended to support 52-bit physical
addresses. 52-bit physical addresses allow up to 4 petabytes of physical-address space to be
supported. (Currently, the AMD64 architecture supports 40-bit addresses in this mode, allowing
up to 1 terabyte of physical-address space to be supported.

e Long Mode—This mode is unique to the AMDG64 architecture. This mode supports up to 4
petabytes of physical-address space using 52-bit physical addresses. Long mode requires the use of
page-translation and the physical-address size extensions (PAE).

1.1.3 Canonical Address Form

Long mode defines 64 bits of virtual-address space, but processor implementations can support less.
Although some processor implementations do not use all 64 bits of the virtual address, they all check
bits 63 through the most-significant implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address form. In most cases, a virtual-memory
reference that is not in canonical form causes a general-protection exception (#GP) to occur. However,
implied stack references where the stack address is not in canonical form causes a stack exception
(#SS) to occur. Implied stack references include all push and pop instructions, and any instruction
using RSP or RBP as a base register.

By checking canonical-address form, the AMD64 architecture prevents software from exploiting
unused high bits of pointers for other purposes. Software complying with canonical-address form on a
specific processor implementation can run unchanged on long-mode implementations supporting
larger virtual-address spaces.

4 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

1.2 Memory Management

Memory management consists of the methods by which addresses generated by software are translated
by segmentation and/or paging into addresses in physical memory. Memory management is not visible
to application software. It is handled by the system software and processor hardware.

1.2.1 Segmentation

Segmentation was originally created as a method by which system software could isolate software
processes (tasks), and the data used by those processes, from one another in an effort to increase the
reliability of systems running multiple processes simultaneously.

The AMDG64 architecture is designed to support all forms of legacy segmentation. However, most
modern system software does not use the segmentation features available in the legacy x86
architecture. Instead, system software typically handles program and data isolation using page-level
protection. For this reason, the AMD64 architecture dispenses with multiple segments in 64-bit mode
and, instead, uses a flat-memory model. The elimination of segmentation allows new 64-bit system
software to be coded more simply, and it supports more efficient management of multi-processing than
is possible in the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and legacy mode. Here, segmentation is a form
of base memory-addressing that allows software and data to be relocated in virtual-address space off
of an arbitrary base address. Software and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86 architecture provides several methods of
restricting access to segments from other segments so that software and data can be protected from
interfering with each other.

In compatibility and legacy modes, up to 16,383 unique segments can be defined. The base-address
value, segment size (called a limit), protection, and other attributes for each segment are contained in a
data structure called a segment descriptor. Collections of segment descriptors are held in descriptor
tables. Specific segment descriptors are referenced or selected from the descriptor table using a
segment selector register. Six segment-selector registers are available, providing access to as many as
six segments at a time.

Figure 1-1 on page 6 shows an example of segmented memory. Segmentation is described in
Chapter 4, “Segmented Virtual Memory.”

System-Programming Overview 5



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Virtual Address
Space

Effective Address

v

Descriptor Table
Selectors Virtual Address

© 1 | D Lmit | O,

DS Base
ES

Fs
S e . Limit

A 4

Segment

v

SS

v

Segment

v

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the flat-memory model. In the legacy
flat-memory model, all segment-base addresses have a value of 0, and the segment limits are fixed at
4 Gbytes. Segmentation cannot be disabled but use of the flat-memory model effectively disables
segment translation. The result is a virtual address that equals the effective address. Figure 1-2 on
page 7 shows an example of the flat-memory model.

Software running in 64-bit mode automatically uses the flat-memory model. In 64-bit mode, the
segment base is treated as if it were 0, and the segment limit is ignored. This allows an effective
addresses to access the full virtual-address space supported by the processor.

6 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Virtual Address
Space

Effective Address

\4

Virtual Address

Flat Segment

513-202.eps

Figure 1-2. Flat Memory Model

1.2.2 Paging

Paging allows software and data to be relocated in physical-address space using fixed-size blocks
called physical pages. The legacy x86 architecture supports three different physical-page sizes of
4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment translation, access to physical pages by lesser-
privileged software can be restricted.

Page translation uses a hierarchical data structure called a page-translation table to translate virtual
pages into physical-pages. The number of levels in the translation-table hierarchy can be as few as one
or as many as four, depending on the physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must be aligned on 4-Kbyte, 2-Mbyte, or 4-
Mbyte boundaries, depending on the physical-page size.

Each table in the translation hierarchy is indexed by a portion of the virtual-address bits. The entry
referenced by the table index contains a pointer to the base address of the next-lower-level table in the
translation hierarchy. In the case of the lowest-level table, its entry points to the physical-page base
address. The physical page is then indexed by the least-significant bits of the virtual address to yield
the physical address.

Figure 1-3 on page 8 shows an example of paged memory with three levels in the translation-table
hierarchy. Paging is described in Chapter 5, “Page Translation and Protection.”

System-Programming Overview 7



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Physical Address
Virtual Address Space

v

A
o
=0
~
K,
o
=
pd
a.
a
=
[9°3
193]
N

— | | feeeeee-
Table 1 Table 2 Table 3

vy

\ 4

Page Translation Tables
Physical Page

\ 4

Page Table Base Address

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page translation enabled.

1.2.3 Mixing Segmentation and Paging

Memory-management software can combine the use of segmented memory and paged memory.
Because segmentation cannot be disabled, paged-memory management requires some minimum
initialization of the segmentation resources. Paging can be completely disabled, so segmented-
memory management does not require initialization of the paging resources.

Segments can range in size from a single byte to 4 Gbytes in length. It is therefore possible to map
multiple segments to a single physical page and to map multiple physical pages to a single segment.
Alignment between segment and physical-page boundaries is not required, but memory-management
software is simplified when segment and physical-page boundaries are aligned.

8 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The simplest, most efficient method of memory management is the flat-memory model. In the flat-
memory model, all segment base addresses have a value of 0 and the segment limits are fixed at 4
Gbytes. The segmentation mechanism is still used each time a memory reference is made, but because
virtual addresses are identical to effective addresses in this model, the segmentation mechanism is
effectively ignored. Translation of virtual (or effective) addresses to physical addresses takes place
using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat, paged-memory model for memory
management. The 4 Gbyte segment limit is ignored in 64-bit mode. Figure 1-4 shows an example of
this model.

Virtual Address Physical Address
Space Space

\4
ae)
=
~
28
o
=
prd
a
al
=
D
%]
4

Effective Address

A4

Virtual Address y\—74 LTl

Page Translation Tables

Page Frame

v

\ 4

Flat Segment

L { Page Table Base Address

Figure 1-4. 64-Bit Flat, Paged-Memory Model

System-Programming Overview 9



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

1.2.4 Real Addressing

Real addressing is a legacy-mode form of address translation used in real mode. This simplified form
of address translation is backward compatible with 8086-processor effective-to-physical address
translation. In this mode, 16-bit effective addresses are mapped to 20-bit physical addresses, providing
a 1-Mbyte physical-address space.

Segment selectors are used in real-address translation, but not as an index into a descriptor table.
Instead, the 16-bit segment-selector value is shifted left by 4 bits to form a 20-bit segment-base
address. The 16-bit effective address is added to this 20-bit segment base address to yield a 20-bit
physical address. If the sum of the segment base and effective address carries over into bit 20, that bit
can be optionally truncated to mimic the 20-bit address wrapping of the 8086 processor by using the
A20M# input signal to mask the A20 address bit.

A20 address bit masking should only be used real mode (see next section for information on real
mode). Use in other modes may result in address translation errors.

Real-address translation supports a 1-Mbyte physical-address space using up to 64K segments aligned
on 16-byte boundaries. Each segment is exactly 64 Kbytes long. Figure 1-5 shows an example of real-
address translation.

Selectors

(&

DS

ES

FS

Effective Address

GS

SS

19 0 19 0

A4 v

0000 : Effective Address Selector © 0000

v
+
A

Physical Address

Figure 1-5. Real-Address Memory Model

10 System-Programming Overview



AMDA

24593—Rev. 3.30—September 2018

1.3

Operating Modes

AMDG64 Technology

The legacy x86 architecture provides four operating modes or environments that support varying
forms of memory management, virtual-memory and physical-memory sizes, and protection:

¢ Real Mode.
* Protected Mode.
*  Virtual-8086 Mode.

* System Management Mode.

The AMDG64 architecture supports all these legacy modes, and it adds a new operating mode called
long mode. Table 1-1 shows the differences between long mode and legacy mode. Software can move
between all supported operating modes as shown in Figure 1-6 on page 12. Each operating mode is
described in the following sections.

Table 1-1. Operating Modes
L Defaults’ Maximum
System Application Register GPR
Mode Software | Recompile | Address | Operand 2| Width
Required Required Size Size Extensions : t
(bits) (bits) (bits)
64-Bit yes 64 yes 64
Long Mode New 32
M 3 e 64-bit OS
ode Compatibility no 32 no 32
Mode 16 16
Protected 32 32 32
Mode Legacy 16 16
Legacy |virtual-8086 | S20tOS o o
Mode
Mode 16 16 32
Legacy
Real Mode 16-bit OS
Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions include access to the upper eight general-purpose and YMM/XMM registers, uniform access
to lower 8 bits of all GPRs, and access to the upper 32 bits of the GPRs.
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

System-Programming Overview

11



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Long Mode

CS.L=1 SMIz#
64-bit r .( Compatibility

Mode Mode

RSM

CS.L=0

CS.1=0

CR0.PG=0
then EFER LME=0

EFER.LME=1, CR4.PAE=1
then CRO.PG=1
RSM SMIH#

RSM SMIz#

EFLAGS.VM=0 5 Reset

« Virtual
) ! 8086

EFLAGS.VM=1 Mode

Protected
Mode

SMIs RSM

Reset ;'

System
Management
Mode

‘.. Reset .--

Figure 1-6. Operating Modes of the AMD64 Architecture

1.3.1 Long Mode

Long mode consists of two submodes: 64-bit mode and compatibility mode. 64-bit mode supports
several new features, including the ability to address 64-bit virtual-address space. Compatibility mode
provides binary compatibility with existing 16-bit and 32-bit applications when running on 64-bit
system software.

Throughout this document, references to long mode refer collectively to both 64-bit mode and
compatibility mode. If a function is specific to either 64-bit mode or compatibility mode, then those
specific names are used instead of the name long mode.

Before enabling and activating long mode, system software must first enable protected mode. The
process of enabling and activating long mode is described in Chapter 14, “Processor Initialization and

12 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Long Mode Activation.” Long mode features are described throughout this document, where
applicable.

1.3.2 64-Bit Mode

64-bit mode, a submode of long mode, provides support for 64-bit system software and applications by
adding the following features:
e 64-bit virtual addresses (processor implementations can have fewer).
* Access to General Purpose Register bits 63:32
* Access to additional registers through the REX, VEX, and XOP instruction prefixes:
- eight additional GPRs (R8-R15)
- eight additional Streaming SIMD Extension (SSE) registers (YMM/XMM&8-15)
* 64-bit instruction pointer (RIP).
e New RIP-relative data-addressing mode.

* Flat-segment address space with single code, data, and stack space.

The mode is enabled by the system software on an individual code-segment basis. Although code
segments are used to enable and disable 64-bit mode, the legacy segmentation mechanism is largely
disabled. Page translation is required for memory management purposes. Because 64-bit mode
supports a 64-bit virtual-address space, it requires 64-bit system software and development tools.

In 64-bit mode, the default address size is 64 bits, and the default operand size is 32 bits. The defaults
can be overridden on an instruction-by-instruction basis using instruction prefixes. A new REX prefix
is introduced for specifying a 64-bit operand size and the new registers.

1.3.3 Compatibility Mode

Compatibility mode, a submode of long mode, allows system software to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long mode, as shown in Table 1-1 on page 11.

In compatibility mode, applications can only access the first 4 Gbytes of virtual-address space.
Standard x86 instruction prefixes toggle between 16-bit and 32-bit address and operand sizes.

Compatibility mode, like 64-bit mode, is enabled by system software on an individual code-segment
basis. Unlike 64-bit mode, however, segmentation functions the same as in the legacy-x86
architecture, using 16-bit or 32-bit protected-mode semantics. From an application viewpoint,
compatibility mode looks like a legacy protected-mode environment. From a system-software
viewpoint, the long-mode mechanisms are used for address translation, interrupt and exception
handling, and system data-structures.

System-Programming Overview 13



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

1.3.4 Legacy Modes

Legacy mode consists of three submodes: real mode, protected mode, and virtual-8086 mode.
Protected mode can be either paged or unpaged. Legacy mode preserves binary compatibility not only
with existing x86 16-bit and 32-bit applications but also with existing x86 16-bit and 32-bit system
software.

Real Mode. In this mode, also called real-address mode, the processor supports a physical-memory
space of 1 Mbyte and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes). Interrupt
handling and address generation are nearly identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The mode is not supported when the processor
is operating in long mode because long mode requires that paged protected mode be enabled.

Protected Mode. In this mode, the processor supports virtual-memory and physical-memory spaces
of 4 Gbytes and operand sizes of 16 or 32 bits. All segment translation, segment protection, and
hardware multitasking functions are available. System software can use segmentation to relocate
effective addresses in virtual-address space. If paging is not enabled, virtual addresses are equal to
physical addresses. Paging can be optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3. Typically, application software runs at
privilege level 3, the system software runs at privilege levels 0 and 1, and privilege level 2 is available
to system software for other uses. The 16-bit version of this mode was first introduced in the 80286
processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to run 16-bit real-mode software on a
virtualized-8086 processor. In this mode, software written for the 8086, 8088, 80186, or 80188
processor can run as a privilege-level-3 task under protected mode. The processor supports a virtual-
memory space of 1 Mbytes and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes),
and it uses real-mode address translation.

Virtual-8086 mode is enabled by setting the virtual-machine bit in the EFLAGS register
(EFLAGS.VM). EFLAGS.VM can only be set or cleared when the EFLAGS register is loaded from
the TSS as a result of a task switch, or by executing an IRET instruction from privileged software. The
POPF instruction cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is operating in long mode. When long mode is
enabled, any attempt to enable virtual-8086 mode is silently ignored.

14 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

1.3.5 System Management Mode (SMM)

System management mode (SMM) is an operating mode designed for system-control activities that are
typically transparent to conventional system software. Power management is one popular use for
system management mode. SMM is primarily targeted for use by platform firmware and specialized
low-level device drivers. The code and data for SMM are stored in the SMM memory area, which is
isolated from main memory by the SMM output signal.

SMM is entered by way of a system management interrupt (SMI). Upon recognizing an SMI, the
processor enters SMM and switches to a separate address space where the SMM handler is located and
executes. In SMM, the processor supports real-mode addressing with 4 Gbyte segment limits and
default operand, address, and stack sizes of 16 bits (prefixes can be used to override these defaults).

1.4 System Registers

Figure 1-7 on page 16 shows the system registers defined for the AMDG64 architecture. System
software uses these registers to, among other things, manage the processor operating environment,
define system resource characteristics, and to monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only from privileged software.

Except for the descriptor-table registers and task register, the AMDG64 architecture defines all system
registers to be 64 bits wide. The descriptor table and task registers are defined by the AMD64
architecture to include 64-bit base-address fields, in addition to their other fields.

As shown in Figure 1-7 on page 16, the system registers include:

» Control Registers—These registers are used to control system operation and some system features.
See “System-Control Registers” on page 41 for details.

o System-Flags Register—The RFLAGS register contains system-status flags and masks. It is also
used to enable virtual-8086 mode and to control application access to I/O devices and interrupts.
See “RFLAGS Register” on page 51 for details.

» Descriptor-Table Registers—These registers contain the location and size of descriptor tables
stored in memory. Descriptor tables hold segmentation data structures used in protected mode. See
“Descriptor Tables” on page 73 for details.

e Task Register—The task register contains the location and size in memory of the task-state
segment. The hardware-multitasking mechanism uses the task-state segment to hold state
information for a given task. The TSS also holds other data, such as the inner-level stack pointers
used when changing to a higher privilege level. See “Task Register” on page 333 for details.

e Debug Registers—Debug registers are used to control the software-debug mechanism, and to
report information back to a debug utility or application. See “Debug Registers” on page 350 for
details.

System-Programming Overview 15



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Control Registers :" Extended-Feature-Enable Register Memory-Typing Registers
CRO Fo EFER MTRRcap
CR2 : MTRRdefType
CR3 . System-Configuration Register MTRRphysBasen
CR4 : | SYSCEG MTRRphysMaskn
CRS8 MTRRfixn
: System-Linkage Registers PAT
. STAR TOP_MEM
System-Flags Register AR TOF MENZ
RFLAGS
CSTAR o . :
SFEMASK Performance-Monitoring Registers :
Debug Registers ' FS.base TsC
DRO GS.base PerfEvtSeln
DR1 KernelGSbase PerfCtrn
DR2 : SYSENTER_CS
DR3 : SYSENTER ESP Machine-Check Registers
DR6 : SYSENTER_EIP MCG_CAP
DR7 : MCG_STAT
Debug-Extension Registers MCG_CTL
Descriptor-Table Registers : DebugCi MCI_CTL
GDTR : LastBranchFromIP MC'—.STATUS
TR LastBranchTolP MC'_—ADDR
: LastintFromIP MCi_MISC
LDTR :
LastIntTolP

Task Register
TR

System_Registers_Diag.eps

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific registersincluded in the AMD64
architectural definition, and shown in Figure 1-7:

e Extended-Feature-Enable Register—The EFER register is used to enable and report status on
special features not controlled by the CRn control registers. In particular, EFER is used to control
activation of long mode. See “Extended Feature Enable Register (EFER)” on page 55 for more
information.

16 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

» System-Configuration Register—The SYSCFG register is used to enable and configure system-
bus features. See “System Configuration Register (SYSCFG)” on page 59 for more information.

» System-Linkage Registers—These registers are used by system-linkage instructions to specify
operating-system entry points, stack locations, and pointers into system-data structures. See “Fast
System Call and Return” on page 152 for details.

*  Memory-Typing Registers—Memory-typing registers can be used to characterize (type) system
memory. Typing memory gives system software control over how instructions and data are cached,
and how memory reads and writes are ordered. See “MTRRs” on page 189 for details.

» Debug-Extension Registers—These registers control additional software-debug reporting features.
See “Debug Registers” on page 350 for details.

» Performance-Monitoring Registers—Performance-monitoring registers are used to count
processor and system events, or the duration of events. See “Performance Monitoring Counters”
on page 364 for more information.

e Machine-Check Registers—The machine-check registers control the response of the processor to
non-recoverable failures. They are also used to report information on such failures back to system
utilities designed to respond to such failures. See “Machine Check Architecture MSRs” on
page 267 for more information.

1.5 System-Data Structures

Figure 1-8 on page 18 shows the system-data structures defined for the AMD64 architecture. System-
data structures are created and maintained by system software for use by the processor when running
in protected mode. A processor running in protected mode uses these data structures to manage
memory and protection, and to store program-state information when an interrupt or task switch
occurs.

System-Programming Overview 17



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Segment Descriptors (Contained in Descriptor Tables) Task-State Segment
| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

.................................................................................

Global-Descriptor Table Interrupt-Descriptor Table Local-Descriptor Table ;
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .

..................................................................................

.................................................................................

Page-Map Level-4 Page-Directory Pointer Page Directory Page Table

..................................................................................

Figure 1-8. System-Data Structures

As shown in Figure 1-8, the system-data structures include:

Descriptors—A descriptor provides information about a segment to the processor, such as its
location, size and privilege level. A special type of descriptor, called a gate, is used to provide a
code selector and entry point for a software routine. Any number of descriptors can be defined, but
system software must at a minimum create a descriptor for the currently executing code segment
and stack segment. See “Legacy Segment Descriptors” on page 80, and “Long-Mode Segment
Descriptors” on page 88 for complete information on descriptors.

Descriptor Tables—As the name implies, descriptor tables hold descriptors. The global-descriptor
table holds descriptors available to all programs, while a local-descriptor table holds descriptors
used by a single program. The interrupt-descriptor table holds only gate descriptors used by

18

System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

interrupt handlers. System software must initialize the global-descriptor and interrupt-descriptor
tables, while use of the local-descriptor table is optional. See “Descriptor Tables” on page 73 for
more information.

» Task-Sate Segment—The task-state segment is a special segment for holding processor-state
information for a specific program, or task. It also contains the stack pointers used when switching
to more-privileged programs. The hardware multitasking mechanism uses the state information in
the segment when suspending and resuming a task. Calls and interrupts that switch stacks cause
the stack pointers to be read from the task-state segment. System software must create at least one
task-state segment, even if hardware multitasking is not used. See “Legacy Task-State Segment”
on page 335, and “64-Bit Task State Segment” on page 339 for details.

e Page-Trandation Tables—Use of page translation is optional in protected mode, but it is required
in long mode. A four-level page-translation data structure is provided to allow long-mode
operating systems to translate a 64-bit virtual-address space into a 52-bit physical-address space.
Legacy protected mode can use two- or three-level page-translation data structures. See “Page
Translation Overview” on page 118 for more information on page translation.

1.6 Interrupts

The AMD64 architecture provides a mechanism for the processor to automatically suspend (interrupt)
software execution and transfer control to an interrupt handler when an interrupt or exception occurs.
An interrupt handler is privileged software designed to identify and respond to the cause of an
interrupt or exception, and return control back to the interrupted software. Interrupts can be caused
when system hardware signals an interrupt condition using one of the external-interrupt signals on the
processor. Interrupts can also be caused by software that executes an interrupt instruction. Exceptions
occur when the processor detects an abnormal condition as a result of executing an instruction. The
term “interrupts” as used throughout this volume includes both interrupts and exceptions when the
distinction is unnecessary.

System software not only sets up the interrupt handlers, but it must also create and initialize the data
structures the processor uses to execute an interrupt handler when an interrupt occurs. The data
structures include the code-segment descriptors for the interrupt-handler software and any data-
segment descriptors for data and stack accesses. Interrupt-gate descriptors must also be supplied.
Interrupt gates point to interrupt-handler code-segment descriptors, and the entry point in an interrupt
handler. Interrupt gates are stored in the interrupt-descriptor table. The code-segment and data-
segment descriptors are stored in the global-descriptor table and, optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt vector to find the appropriate interrupt gate
in the interrupt-descriptor table. The gate points to the interrupt-handler code segment and entry point,
and the processor transfers control to that location. Before invoking the interrupt handler, the
processor saves information required to return to the interrupted program. For details on how the
processor transfers control to interrupt handlers, see “Legacy Protected-Mode Interrupt Control
Transfers” on page 239, and “Long-Mode Interrupt Control Transfers” on page 249.

System-Programming Overview 19



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 1-2 shows the supported interrupts and exceptions, ordered by their vector number. Refer to
“Vectors” on page 216 for a complete description of each interrupt, and a description of the interrupt
mechanism.

Table 1-2. Interrupts and Exceptions

Vector Description
0 Integer Divide-by-Zero Exception
1 Debug Exception
2 Non-Maskable-Interrupt
3 Breakpoint Exception (INT 3)
4 Overflow Exception (INTO instruction)
5 Bound-Range Exception (BOUND instruction)
6 Invalid-Opcode Exception
7 Device-Not-Available Exception
8 Double-Fault Exception
9 Coprocessor-Segment-Overrun Exception (reserved in

AMDG64)

10 Invalid-TSS Exception
1" Segment-Not-Present Exception
12 Stack Exception
13 General-Protection Exception
14 Page-Fault Exception
15 (Reserved)
16 x87 Floating-Point Exception
17 Alignment-Check Exception
18 Machine-Check Exception
19 SIMD Floating-Point Exception

0-255 Interrupt Instructions

0-255 Hardware Maskable Interrupts

1.7 Additional System-Programming Facilities

1.7.1 Hardware Multitasking

A task is any program that the processor can execute, suspend, and later resume executing at the point
of suspension. During the time a task is suspended, other tasks are allowed to execute. Each task has its
own execution space, consisting of a code segment, data segments, and a stack segment for each
privilege level. Tasks can also have their own virtual-memory environment managed by the page-
translation mechanism. The state information defining this execution space is stored in the task-state
segment (TSS) maintained for each task.

20 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Support for hardware multitasking is provided by implementations of the AMD64 architecture when
software is running in legacy mode. Hardware multitasking provides automated mechanisms for
switching tasks, saving the execution state of the suspended task, and restoring the execution state of
the resumed task. When hardware multitasking is used to switch tasks, the processor takes the
following actions:

* The processor automatically suspends execution of the task, allowing any executing instructions to
complete and save their results.

* The execution state of a task is saved in the task TSS.
* The execution state of a new task is loaded into the processor from its TSS.

* The processor begins executing the new task at the location specified in the new task TSS.

Use of hardware-multitasking features is optional in legacy mode. Generally, modern operating
systems do not use the hardware-multitasking features, and instead perform task management entirely
in software. Long mode does not support hardware multitasking at all.

Whether hardware multitasking is used or not, system software must create and initialize at least one
task-state segment data-structure. This requirement holds for both long-mode and legacy-mode
software. The single task-state segment holds critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in Chapter 12, “Task Management,” along
with a full description of the requirements that must be met in initializing a task-state segment when
hardware multitasking is not used.

1.7.2 Machine Check

Implementations of the AMD64 architecture support the machine-check exception. This exception is

useful in system applications with stringent requirements for reliability, availability, and serviceability.
The exception allows specialized system-software utilities to report hardware errors that are generally
severe and non-recoverable. Providing the capability to report such errors can allow complex system

problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9, “Machine Check Architecture.” Much of the
error-reporting capabilities is implementation dependent. For more information, developers of
machine-check error-reporting software should refer to the BIOSand Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual or applicable to your product.

1.7.3 Software Debugging

A software-debugging mechanism is provided in hardware to help software developers quickly isolate
programming errors. This capability can be used to debug system software and application software
alike. Only privileged software can access the debugging facilities. Generally, software-debug support
is provided by a privileged application program rather than by the operating system itself.

The facilities supported by the AMD64 architecture allow debugging software to perform the
following:

System-Programming Overview 21



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Set breakpoints on specific instructions within a program.

* Set breakpoints on an instruction-address match.

» Set breakpoints on a data-address match.

* Set breakpoints on specific I/O-port addresses.

* Set breakpoints to occur on task switches when hardware multitasking is used.
» Single step an application instruction-by-instruction.

» Single step only branches and interrupts.

e Record a history of branches and interrupts taken by a program.

The debugging facilities are fully described in “Software-Debug Resources” on page 350. Some
processors provide additional, implementation-specific debug support. For more information, refer to
the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product.

1.7.4 Performance Monitoring

For many software developers, the ability to identify and eliminate performance bottlenecks from a
program is nearly as important as quickly isolating programming errors. Implementations of the
AMDG64 architecture provide hardware performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-privileged software can access the
performance monitoring facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of events, or the duration of events.
Performance-analysis software can use the data to calculate the frequency of certain events, or the time
spent performing specific activities. That information can be used to suggest areas for improvement
and the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in “Performance Monitoring Counters” on
page 364. The specific events that can be monitored are generally implementation specific. For more
information, refer to the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

22 System-Programming Overview



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

2 x86 and AMDG64 Architecture Differences

The AMDG64 architecture is designed to provide full binary compatibility with all previous AMD
implementations of the x86 architecture. This chapter summarizes the new features and architectural
enhancements introduced by the AMD64 architecture, and compares those features and enhancements
with previous AMD x86 processors. Most of the new capabilities introduced by the AMD64
architecture are available only in long mode (64-bit mode, compatibility mode, or both). However,
some of the new capabilities are also available in legacy mode, and are mentioned where appropriate.

The material throughout this chapter assumes the reader has a solid understanding of the x86
architecture. For those who are unfamiliar with the x86 architecture, please read the remainder of this
volume before reading this chapter.

2.1 Operating Modes

See “Operating Modes” on page 11 for a complete description of the operating modes supported by the
AMDG64 architecture.

2.1.1 Long Mode

The AMD64 architecture introduces long mode and its two sub-modes: 64-bit mode and compatibility
mode.

64-Bit Mode. 64-bit mode provides full support for 64-bit system software and applications. The new
features introduced in support of 64-bit mode are summarized throughout this chapter. To use 64-bit
mode, a 64-bit operating system and tool chain are required.

Compatibility Mode. Compatibility mode allows 64-bit operating systems to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under control of a 64-bit operating system in long mode. The architectural
enhancements introduced by the AMD64 architecture that support compatibility mode are
summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following two operating modes:

* \irtual-8086 Mode—The virtual-8086 mode bit (EFLAGS.VM) is ignored when the processor is
running in long mode. When long mode is enabled, any attempt to enable virtual-8086 mode is
silently ignored. System software must leave long mode in order to use virtual-8086 mode.

¢ Real Mode—Real mode is not supported when the processor is operating in long mode because
long mode requires that protected mode be enabled.

2.1.2 Legacy Mode

The AMDG64 architecture supports a pure x86 legacy mode, which preserves binary compatibility not
only with existing 16-bit and 32-bit applications but also with existing 16-bit and 32-bit operating

x86 and AMDG64 Architecture Differences 23



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

systems. Legacy mode supports real mode, protected mode, and virtual-8086 mode. A reset always
places the processor in legacy mode (real mode), and the processor continues to run in legacy mode
until system software activates long mode. New features added by the AMD64 architecture that are
supported in legacy mode are summarized in this chapter.

2.1.3 System-Management Mode

The AMD64 architecture supports system-management mode (SMM). SMM can be entered from both
long mode and legacy mode, and SMM can return directly to either mode. The following differences
exist between the support of SMM in the AMD64 architecture and the SMM support found in previous
processor generations:

e The SMRAM state-save area format is changed to hold the 64-bit processor state. This state-save
area format is used regardless of whether SMM is entered from long mode or legacy mode.

* The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
instead of two bytes.

* The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

* New conditions exist that can cause a processor shutdown while exiting SMM.

e SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMDG64
architecture.

See Chapter 10, “System-Management Mode,” for more information on the SMM differences.

2.2 Memory Model

The AMDG64 architecture provides enhancements to the legacy memory model to support very large
physical-memory and virtual-memory spaces while in long mode. Some of this expanded support for
physical memory is available in legacy mode.

2.2.1 Memory Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded to 64 address bits in long mode.
This allows up to 16 exabytes of virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded to 52 address bits in long
mode and legacy mode. This allows up to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging and the page-size extensions.

Note that given processor may implement less than the architecturally-defined physical address size of
52 bits.

24 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Effective Addressing. The effective-address length is expanded to 64 bits in long mode. An
effective-address calculation uses 64-bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses remain 32 bits long.

2.2.2 Page Translation

The AMD64 architecture defines an expanded page-translation mechanism supporting translation of a
64-bit virtual address to a 52-bit physical address. See “Long-Mode Page Translation” on page 130 for
detailed information on the enhancements to page translation in the AMD64 architecture. The
enhancements are summarized below.

Physical-Address Extensions (PAE). The AMD64 architecture requires physical-address
extensions to be enabled (CR4.PAE=1) before long mode is entered. When PAE is enabled, all paging
data-structures are 64 bits, allowing references into the full 52-bit physical-address space supported by
the architecture.

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) are ignored in long mode. Long
mode does not support the 4-Mbyte page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The AMDG64 architecture extends the page-translation data structures in
support of long mode. The extensions are:

e Page-map level-4 (PML4)—Long mode defines a new page-translation data structure, the PML4
table. The PML4 table sits at the top of the page-translation hierarchy and references PDP tables.

» Page-directory pointer (PDP)—The PDP tables in long mode are expanded from 4 entries to 512
entries each.

» Page-directory pointer entry (PDPE)—Previously undefined fields within the legacy-mode PDPE
are defined by the AMDG64 architecture.

CR3 Register. The CR3 register is expanded to 64 bits for use in long-mode page translation. When
long mode is active, the CR3 register references the base address of the PML4 table. In legacy mode,
the upper 32 bits of CR3 are masked by the processor to support legacy page translation. CR3
references the PDP base-address when physical-address extensions are enabled, or the page-directory
table base-address when physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take advantage of the enhancements
made to the physical-address extension (PAE) support and page-size extension (PSE) support. The
four-level page translation mechanism introduced by long mode is not available to legacy-mode
software.

*  PAE—When physical-address extensions are enabled (CR4.PAE=1), the AMDG64 architecture
allows legacy-mode software to load up to 52-bit (maximum size) physical addresses into the PDE
and PTE. Note that addresses are expanded to the maximum physical address size supported by the
implementation.

x86 and AMDG64 Architecture Differences 25



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* PSE—The use of page-size extensions allows legacy mode software to define 4-Mbyte pages
using the 32-bit page-translation tables. When page-size extensions are enabled (CR4.PSE=1), the
AMD64 architecture enhances the 4-Mbyte PDE to support 40 physical-address bits.

See “Legacy-Mode Page Translation” on page 122 for more information on these enhancements.

2.2.3 Segmentation

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

e In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

*  64-bit mode requires a flat-memory model for creating a flat 64-bit virtual-address space. Much of
the segmentation capability present in legacy mode and compatibility mode is disabled when the
processor is running in 64-bit mode.

The differences in the segmentation model as defined by the AMD64 architecture are summarized in
the following sections. See Chapter 4, “Segmented Virtual Memory,” for a thorough description of
these differences.

Descriptor-Table Registers. In long mode, the base-address portion of the descriptor-table registers
(GDTR, IDTR, LDTR, and TR) are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit mode (using the LGDT, LIDT, LLDT, and
LTR instructions, respectively). However, the full 64-bit base address is used by a processor running in
compatibility mode (in addition to 64-bit mode) when making a reference into a descriptor table.

A processor running in legacy mode can only load the low 32 bits of the base address, and the high 32
bits are ignored when references are made to the descriptor tables.

Code-Segment Descriptors. The AMD64 architecture defines a new code-segment descriptor
attribute, L (long). In compatibility mode, the processor treats code-segment descriptors as it does in
legacy mode, with the exception that the processor recognizes the L attribute. If a code descriptor with
L=1 is loaded in compatibility mode, the processor leaves compatibility mode and enters 64-bit mode.
In legacy mode, the L attribute is reserved.

The following differences exist for code-segment descriptors in 64-bit mode only:

* The CS base-address field is ignored by the processor.

e The CS limit field is ignored by the processor.

*  Only the L (long), D (default size), and DPL (descriptor-privilege level) fields are used by the
processor in 64-bit mode. All remaining attributes are ignored.

Data-Segment Descriptors. The following differences exist for data-segment descriptors in 64-bit

mode only:

e The DS, ES, and SS descriptor base-address fields are ignored by the processor.

26 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* The FS and GS descriptor base-address fields are expanded to 64 bits and used in effective-address
calculations. The 64 bits of base address are mapped to model-specific registers (MSRs), and can
only be loaded using the WRMSR instruction.

* The limit fields and attribute fields of all data-segment descriptors (DS, ES, FS, GS, and SS) are
ignored by the processor.

In compatibility mode, the processor treats data-segment descriptors as it does in legacy mode.
Compatibility mode ignores the high 32 bits of base address in the FS and GS segment descriptors
when calculating an effective address.

System-Segment Descriptors. In 64-bit mode only, The LDT and TSS system-segment descriptor
formats are expanded by 64 bits, allowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptors into the LDTR and TR registers, respectively, from
64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT and TSS system-segment descriptors
are unchanged. Also, unlike code-segment and data-segment descriptors, system-segment descriptor
limits are checked by the processor in long mode.

Some legacy mode LDT and TSS type-field encodings are illegal in long mode (both compatibility
mode and 64-bit mode), and others are redefined to new types. See “System Descriptors” on page 90
for additional information.

Gate Descriptors. The following differences exist between gate descriptors in long mode (both
compatibility mode and 64-bit mode) and in legacy mode:

* Inlong mode, all 32-bit gate descriptors are redefined as 64-bit gate descriptors, and are expanded
to hold 64-bit offsets. The length of a gate descriptor in long mode is therefore 128 bits (16 bytes),
versus the 64 bits (8 bytes) in legacy mode.

* Some type-field encodings are illegal in long mode, and others are redefined to new types. See
“Gate Descriptors” on page 92 for additional information.

e The interrupt-gate and trap-gate descriptors define a new field, called the interrupt-stack table
(IST) field.

2.3 Protection Checks

The AMD64 architecture makes the following changes to the protection mechanism in long mode:

* The page-protection-check mechanism is expanded in long mode to include the U/S and R/'W
protection bits stored in the PML4 entries and PDP entries.

* Several system-segment types and gate-descriptor types that are legal in legacy mode are illegal in
long mode (compatibility mode and 64-bit mode) and fail type checks when used in long mode.

* Segment-limit checks are disabled in 64-bit mode for the CS, DS, ES, FS, GS, and SS segments.
Segment-limit checks remain enabled for the LDT, GDT, IDT and TSS system segments.

All segment-limit checks are performed in compatibility mode.

x86 and AMDG64 Architecture Differences 27



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Code and data segments used in 64-bit mode are treated as both readable and writable.

See “Page-Protection Checks” on page 145 and “Segment-Protection Overview” on page 95 for
detailed information on the protection-check changes.

24 Registers

The AMDG64 architecture adds additional registers to the architecture, and in many cases expands the
size of existing registers to 64 bits. The 80-bit floating-point stack registers and their overlaid 64-bit
MMX™ registers are not modified by the AMD64 architecture.

2.4.1 General-Purpose Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits wide, and eight additional GPRs are
available. The GPRs are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new R8-R 15
registers. To access the full 64-bit operand size, or the new R8-R15 registers, an instruction must
include a new REX instruction-prefix byte (see “REX Prefixes” on page 29 for a summary of this
prefix).

In compatibility and legacy modes, the GPRs consist only of the eight legacy 32-bit registers. All
legacy rules apply for determining operand size.

2.4.2 YMM/XMM Registers

In 64-bit mode, eight additional YMM/XMM registers are available, YMM/XMM8-15. A REX
instruction prefix is used to access these registers. In compatibility and legacy modes, only registers
YMM/XMMO0-7 are accessible.

2.4.3 Flags Register

The flags register is expanded to 64 bits, and is called RFLAGS. All 64 bits can be accessed in 64-bit
mode, but the upper 32 bits are reserved and always read back as zeros. Compatibility mode and
legacy mode can read and write only the lower-32 bits of RFLAGS (the legacy EFLAGS).

2.4.4 Instruction Pointer

In long mode, the instruction pointer is extended to 64 bits, to support 64-bit code offsets. This 64-bit
instruction pointer is called RIP.

2.4.5 Stack Pointer

In 64-bit mode, the size of the stack pointer, RSP, is always 64 bits. The stack size is not controlled by
a bit in the SS descriptor, as it is in compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for implicit stack references.

28 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

2.4.6 Control Registers

The AMDG64 architecture defines several enhancements to the control registers (CRn). In long mode,
all control registers are expanded to 64 bits, although the entire 64 bits can be read and written only
from 64-bit mode. A new control register, the task-priority register (CR8 or TPR) is added, and can be
read and written from 64-bit mode. Last, the function of the page-enable bit (CR0.PG) is expanded.
When long mode is enabled, the PG bit is used to activate and deactivate long mode.

2.4.7 Debug Registers

In long mode, all debug registers are expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. Expanded register encodings for the decode registers allow up to eight
new registers to be defined (DR8-DR15), although presently those registers are not supported by the
AMD64 architecture.

2.4.8 Extended Feature Register (EFER)

The EFER is expanded by the AMD64 architecture to include a long-mode-enable bit (LME), and a
long-mode-active bit (LMA). These new bits can be accessed from legacy mode and long mode.

2.4.9 Memory Type Range Registers (MTRRs)

The legacy MTRRs are architecturally defined as 64 bits, and can accommodate the maximum 52-bit
physical address allowed by the AMD64 architecture. From both long mode and legacy mode,
implementations of the AMD64 architecture reference the entire 52-bit physical-address value stored
in the MTRRs. Long mode and legacy mode system software can update all 64 bits of the MTRRs to
manage the expanded physical-address space.

2.4.10 Other Model-Specific Registers (MSRs)

Several other MSRs have fields holding physical addresses. Examples include the APIC-base register
and top-of-memory register. Generally, any model-specific register that contains a physical address is
defined architecturally to be 64 bits wide, and can accommodate the maximum physical-address size
defined by the AMD64 architecture. When physical addresses are read from MSRs by the processor,
the entire value is read regardless of the operating mode. In legacy implementations, the high-order
MSR bits are reserved, and software must write those values with zeros. In legacy mode on AMD64
architecture implementations, software can read and write all supported high-order MSR bits.

2.5 Instruction Set

2.5.1 REX Prefixes

REX prefixes are used in 64-bit mode to:

e Specify the new GPRs and YMM/XMM registers.
* Specify a 64-bit operand size.

x86 and AMDG64 Architecture Differences 29



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Specify additional control registers. One additional control register, CRS, is defined in 64-bit
mode.

* Specify additional debug registers (although none are currently defined).

Not all instructions require a REX prefix. The prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is
ignored.

Default 64-Bit Operand Size. In 64-bit mode, two groups of instructions have a default operand size
of 64 bits and thus do not need a REX prefix for this operand size:

¢ Near branches.

* All instructions, except far branches, that implicitly reference the RSP. See “Instructions that
Reference RSP” on page 31 for additional information.

2.5.2 Segment-Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override prefixes have no effect. These four prefixes
are no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they
are treated as null prefixes.

The FS and GS segment-override prefixes are treated as segment-override prefixes in 64-bit mode.
Use of the F'S and GS prefixes cause their respective segment bases to be added to the effective address
calculation. See “FS and GS Registers in 64-Bit Mode” on page 72 for additional information on using
these segment registers.

2.5.3 Operands and Results

The AMDG64 architecture provides support for using 64-bit operands and generating 64-bit results
when operating in 64-bit mode.

Operand-Size Overrides. In 64-bit mode, the default operand size is 32 bits. A REX prefix can be
used to specify a 64-bit operand size. Software uses a legacy operand-size (66h) prefix to toggle to 16-
bit operand size. The REX prefix takes precedence over the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit operations with a GPR
destination, the processor zero-extends the 32-bit result into the full 64-bit destination. Both 8-bit and
16-bit operations on GPRs preserve all unwritten upper bits of the destination GPR. This is consistent
with legacy 16-bit and 32-bit semantics for partial-width results.

2.5.4 Address Calculations

The AMDG64 architecture modifies aspects of effective-address calculation to support 64-bit mode.
These changes are summarized in the following sections. See “Memory Addressing” in Volume 1 for
details.

30 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Address-Size Overrides. In 64-bit mode, the default-address size is 64 bits. The address size can be
overridden to 32 bits by using the address-size prefix (67h). 16-bit addresses are not supported in 64-

bit mode. In compatibility mode and legacy mode, address-size overrides function the same as in x86
legacy architecture.

Displacements and Immediates. Generally, displacement and immediate values in 64-bit mode are
not extended to 64 bits. They are still limited to 32 bits and are sign extended during effective-address
calculations. In 64-bit mode, however, support is provided for some 64-bit displacement and
immediate forms of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16-bit and 32-bit address calculations are zero-
extended in long mode to form 64-bit addresses. Address calculations are first truncated to the
effective-address size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative (instruction-pointer relative)
addressing, is implemented in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that Reference RSP

With the exception of far branches, all instructions that implicitly reference the 64-bit stack pointer,
RSP, default to a 64-bit operand size in 64-bit mode (see Table 2-1 for a listing). Pushes and pops of
32-bit stack values are not possible in 64-bit mode with these instructions, but they can be overridden
to 16 bits.

Table 2-1. Instructions That Reference RSP

Mnemonic 0(‘::::39 Description
ENTER C8 Create Procedure Stack Frame
LEAVE C9 Delete Procedure Stack Frame
POP reg/mem 8F/0 Pop Stack (register or memory)
POP reg 58-5F Pop Stack (register)
POP FS OF A1 Pop Stack into FS Segment Register
POP GS OF A9 Pop Stack into GS Segment Register
POPF, POPFD, POPFQ 9D Pop to rFLAGS Word, Doubleword, or Quadword
PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF/6 Push onto Stack (register or memory)
PUSH reg 50-57 Push onto Stack (register)
PUSH FS OF AO Push FS Segment Register onto Stack
PUSH GS OF A8 Push GS Segment Register onto Stack
PUSHF, PUSHFD, PUSHFQ 9C Push rFLAGS Word, Doubleword, or Quadword onto Stack

x86 and AMDG64 Architecture Differences 31



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

2.5.6 Branches

The AMD64 architecture expands two branching mechanisms to accommodate branches in the full
64-bit virtual-address space:

¢ In 64-bit mode, near-branch semantics are redefined.

e In both 64-bit and compatibility modes, a 64-bit call-gate descriptor is defined for far calls.
In addition, enhancements are made to the legacy SYSCALL and SYSRET instructions.

Near Branches. In 64-bit mode, the operand size for all near branches defaults to 64 bits (see
Table 2-2 for a listing). Therefore, these instructions update the full 64-bit RIP without the need for a
REX operand-size prefix. The following aspects of near branches default to 64 bits:

e Truncation of the instruction pointer.
* Size of a stack pop or stack push, resulting from a CALL or RET.
* Size of a stack-pointer increment or decrement, resulting from a CALL or RET.

* Size of operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bits in 64-bit mode.

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic O(;:‘cec))(c)ie Description
CALL E8, FF/2 Call Procedure Near
Jcc many Jump Conditional Near
JMP E9, EB, FF/4 |Jump Near
LOOP E2 Loop
LOOPcc EO, E1 Loop Conditional
RET C3, C2 Return From Call (near)

The address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default,
but they can be overridden to 32 bits by a prefix.

The size of the displacement field for relative branches is still limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the 32-bit call-gate
descriptor type as a 64-bit call-gate descriptor and expands the call-gate descriptor size to hold a 64-bit
offset. The long-mode call-gate descriptor allows far branches to reference any location in the
supported virtual-address space. In long mode, the call-gate mechanism is changed as follows:

* In long mode, CALL and JMP instructions that reference call-gates must reference 64-bit call
gates.

* A 64-bit call-gate descriptor must reference a 64-bit code-segment.

32 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

e When a control transfer is made through a 64-bit call gate, the 64-bit target address is read from the
64-bit call-gate descriptor. The base address in the target code-segment descriptor is ignored.

Stack Switching. Automatic stack switching is also modified when a control transfer occurs through
a call gate in long mode:

* The target-stack pointer read from the TSS is a 64-bit RSP value.

* The SS register is loaded with a null selector. Setting the new SS selector to null allows nested
control transfers in 64-bit mode to be handled properly. The SS.RPL value is updated to remain
consistent with the newly loaded CPL value.

* The size of pushes onto the new stack is modified to accommodate the 64-bit RIP and RSP values.

* Automatic parameter copying is not supported in long mode.

Far Returns. Inlong mode, far returns can load a null SS selector from the stack under the following
conditions:

* The target operating mode is 64-bit mode.
* The target CPL<3.

Allowing RET to load SS with a null selector under these conditions makes it possible for the
processor to unnest far CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not supported in long mode.

Branches to 64-Bit Offsets. Because immediate values are generally limited to 32 bits, the only way
a full 64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason,
direct forms of far branches are eliminated from the instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The AMD64 architecture expands the function of the legacy
SYSCALL and SYSRET instructions in long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIP for the instructions when they are executed in long
mode. The legacy STAR register is not expanded in long mode. See “SYSCALL and SYSRET” on
page 152 for additional information.

SWAPGS Instruction. The AMD64 architecture provides the SWAPGS instruction as a fast method
for system software to load a pointer to system data-structures. SWAPGS is valid only in 64-bit mode.
An undefined-opcode exception (#UD) occurs if software attempts to execute SWAPGS in legacy
mode or compatibility mode. See “SWAPGS Instruction” on page 155 for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT instructions are invalid in
long mode, and result in an invalid opcode exception (#UD) if software attempts to use them. Software
should use the SYSCALL and SYSRET instructions when running in long mode. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” on page 154 for additional information.

x86 and AMDG64 Architecture Differences 33



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

2.5.7 NOP Instruction

The legacy x86 architecture commonly uses opcode 90h as a one-byte NOP. In 64-bit mode, the
processor treats opcode 90h specially in order to preserve this NOP definition. This is necessary
because opcode 90h is actually the XCHG EAX, EAX instruction in the legacy architecture. Without
special handling in 64-bit mode, the instruction would not be a true no-operation. Therefore, in 64-bit
mode the processor treats opcode 90h (the legacy XCHG EAX, EAX instruction) as a true NOP,
regardless of a REX operand-size prefix.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two-byte form of XCHG to
exchange a register with itself does not result in a no-operation, because the default operation size is 32
bits in 64-bit mode.

2.5.8 Single-Byte INC and DEC Instructions

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values. The functionality of these INC and DEC
instructions is still available, however, using the ModRM forms of those instructions (opcodes FF /0
and FF /1). See “Single-Byte INC and DEC Instructions in 64-Bit Mode” in Volume 3 for additional
information.

2.5.9 MOVSXD Instruction

MOVSXD is a new instruction in 64-bit mode (the legacy ARPL instruction opcode, 63h, is
reassigned as the MOVSXD opcode). It reads a fixed-size 32-bit source operand from a register or
memory and (if a REX prefix is used with the instruction) sign-extends the value to 64 bits. MOVSXD
is analogous to the MOVSX instruction, which sign-extends a byte to a word or a word to a
doubleword, depending on the effective operand size. See the instruction reference page for the
MOVSXD instruction in Volume 3 for additional information.

2.5.10 Invalid Instructions

Table 2-3 lists instructions that are illegal in 64-bit mode. Table 2-4 on page 35 lists instructions that
are invalid in long mode (both compatibility mode and 64-bit mode). Attempted use of these
instructions causes an invalid-opcode exception (#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode

Mnemonic 0(%(:::;(3 Description
AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds

34 x86 and AMDG64 Architecture Differences



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)
Mnemonic 0(%(:::;(3 Description
CALL (far) 9A Procedure Call Far (absolute)
DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LDS C5 Load DS Segment Register
LES C4 Load ES Segment Register
POP DS 1F Pop Stack into DS Segment
POP ES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS OE Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSH ES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA, 60 Push All GPR Words or Doublewords onto
PUSHAD Stack
Redundant Grp1 Redundant encoding of group1 Eb,Ib
(undocumented) 82 opcodes
(Su'?:llagcumented) D6 Set AL According to CF
Table 2-4. Invalid Instructions in Long Mode
Mnemonic O&c;c:ge Description
SYSENTER OF 34 System Call
SYSEXIT OF 35 System Return

x86 and AMDG64 Architecture Differences

35



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

2.5.11 Reassigned Opcodes

Table 2-5 below lists opcodes that are assigned functions in 64-bit mode that differ from their legacy
functions.

Table 2-5. Opcodes Reassigned in 64-Bit Mode

Opcode (hex) Compatibility and Legacy 64-Bit Mode
Modes
ARPL—Adjust Requestor MOVSXD—Move Doubleword
63 L o ;
Privilege Level with Sign Extension
DEC—Decrement by 1 ,
40-4F INC—Increment by 1 REX Prefix
Note: Two-byte versions of DEC and INC are still available in 64-bit mode.

2.5.12 FXSAVE and FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and restore the entire 128-bit media
(XMM), 64-bit media, and x87 instruction-set environment during a context switch. The AMD64
architecture modifies the memory format used by these instructions in order to save and restore the full
64-bit instruction and data pointers, as well as the XMMS8-15 registers. Selection of the 32-bit legacy
format or the expanded 64-bit format is accomplished by using the corresponding operand size with
the FXSAVE and FXRSTOR instructions. When 64-bit software executes an FXSAVE and FXRSTOR
with a 32-bit operand size (no operand-size override) the 32-bit legacy format is used. When 64-bit
software executes an FXSAVE and FXRSTOR with a 64-bit operand size, the 64-bit format is used.

For more information on the save area formats, see Section 11.4.4, “Saving Media and x87 Execution
Unit State,” on page 310

Ifthe fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE and FXRSTOR do not
save or restore the XMMO-15 registers when executed in 64-bit mode at CPL 0. The x87 environment
and MXCSR are saved whether fast-FXSAVE/FXRSTOR is enabled or not. The fast-
FXSAVE/FXRSTOR feature has no effect on FXSAVE/FXRSTOR in non 64-bit mode or when CPL >
0.

Software can use the CPUID instruction to determine whether the fast-FXSAVE/FXRSTOR feature is
available (CPUID Fn8000 0001h EDX[FFXSR]). For information on using the CPUID instruction to
obtain processor feature information, see Section 3.3, “Processor Feature Identification,” on page 63.

2.6 Interrupts and Exceptions

When a processor is running in long mode, an interrupt or exception causes the processor to enter 64-
bit mode. All long-mode interrupt handlers must be implemented as 64-bit code. The AMD64
architecture expands the legacy interrupt-processing and exception-processing mechanism to support

36 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

handling of interrupts by 64-bit operating systems and applications. The changes are summarized in
the following sections. See “Long-Mode Interrupt Control Transfers” on page 249 for detailed
information on these changes.

2.6.1 Interrupt Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain 64-bit mode interrupt-gate or trap-gate
descriptors for all interrupts or exceptions that can occur while the processor is running in long mode.
Task gates cannot be used in the long-mode IDT, because control transfers through task gates are not
supported in long mode. In long mode, the IDT index is formed by scaling the interrupt vector by 16.
In legacy protected mode, the IDT is indexed by scaling the interrupt vector by eight.

2.6.2 Stack Frame Pushes

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-
frame pushes, and SS:eSP is pushed only on a CPL change. In long mode, the size of interrupt stack-
frame pushes is fixed at eight bytes, because interrupts are handled in 64-bit mode. Long mode
interrupts also cause SS:RSP to be pushed unconditionally, rather than pushing only on a CPL change.

2.6.3 Stack Switching

Legacy mode provides a mechanism to automatically switch stack frames in response to an interrupt.
In long mode, a slightly modified version of the legacy stack-switching mechanism is implemented,
and an alternative stack-switching mechanism—called the interrupt stack table (IST)—is supported.

Long-Mode Stack Switches. When stacks are switched as part of a long-mode privilege-level
change resulting from an interrupt, the following occurs:

* The target-stack pointer read from the TSS is a 64-bit RSP value.

e The SS register is loaded with a null selector. Setting the new SS selector to null allows nested
control transfers in 64-bit mode to be handled properly. The SS.RPL value is cleared to 0.

e The old SS and RSP are saved on the new stack.

Interrupt Stack Table. In long mode, a new interrupt stack table (IST) mechanism is available as an
alternative to the modified legacy stack-switching mechanism. The IST mechanism unconditionally
switches stacks when it is enabled. It can be enabled for individual interrupt vectors using a field in the
IDT entry. This allows mixing interrupt vectors that use the modified legacy mechanism with vectors
that use the IST mechanism. The IST pointers are stored in the long-mode TSS. The IST mechanism is
only available when long mode is enabled.

2.6.4 IRET Instruction

In compatibility mode, IRET pops SS:eSP off the stack only if there is a CPL change. This allows
legacy applications to run properly in compatibility mode when using the IRET instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the interrupt stack frame, even if the CPL
does not change. This is done because the original interrupt always pushes SS:RSP. Because interrupt

x86 and AMDG64 Architecture Differences 37



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

stack-frame pushes are always eight bytes in long mode, an IRET from a long-mode interrupt handler
(64-bit code) must pop eight-byte items off the stack. This is accomplished by preceding the IRET
with a 64-bit REX operand-size prefix.

In long mode, an IRET can load a null SS selector from the stack under the following conditions:

* The target operating mode is 64-bit mode.
e The target CPL<3.

Allowing IRET to load SS with a null selector under these conditions makes it possible for the
processor to unnest interrupts (and far CALLs) in long mode.

2.6.5 Task-Priority Register (CR8)

The AMDG64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, also called the task-priority register (TPR), uses the four low-order bits for specifying a
task priority. How external interrupts are organized into these priority classes is implementation
dependent. See “External Interrupt Priorities” on page 236 for information on this feature.

2.6.6 New Exception Conditions

The AMDG64 architecture defines a number of new conditions that can cause an exception to occur
when the processor is running in long mode. Many of the conditions occur when software attempts to
use an address that is not in canonical form. See “Vectors” on page 216 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching

The legacy hardware task-switch mechanism is disabled when the processor is running in long mode.
However, long mode requires system software to create data structures for a single task—the long-
mode task.

* TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS type, is defined for use in long
mode. It is the only valid TSS type that can be used in long mode, and it must be loaded into the TR
by executing the LTR instruction in 64-bit mode. See “TSS Descriptor” on page 332 for additional
information.

» Task Gates—Because the legacy task-switch mechanism is not supported in long mode, software
cannot use task gates in long mode. Any attempt to transfer control to another task through a task
gate causes a general-protection exception (#GP) to occur.

» Task-Sate Segment—A 64-bit task state segment (TSS) is defined for use in long mode. This new
TSS format contains 64-bit stack pointers (RSP) for privilege levels 0-2, interrupt-stack-table

38 x86 and AMDG64 Architecture Differences



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

(IST) pointers, and the I/O-map base address. See “64-Bit Task State Segment” on page 339 for

additional information.

2.8 Long-Mode vs. Legacy-Mode Differences

Table 2-6 on page 39 summarizes several major system-programming differences between 64-bit
mode and legacy protected mode. The third column indicates whether the difference also applies to
compatibility mode. “Differences Between Long Mode and Legacy Mode” in Volume 3 summarizes
the application-programming model differences.

Table 2-6. Differences Between Long Mode and Legacy Mode

Applies To
Subject 64-Bit Mode Difference Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes
Task Switching Task switching not supported Yes

64-bit virtual addresses No
Addressing 4-level paging structures Yes

PAE must always be enabled

CS, DS, ES, SS segment bases are ignored
Loaded Segment (Usage CS, DS, ES, FS, GS, SS segment limits are ignored No
during memory reference) DS, ES, FS, GS attribute are ignored

CS, DS, ES, SS Segment prefixes are ignored

All pushes are 8 bytes
Exception and Interrupt IDT entries are expanded to 16 bytes Yes
Handling SS is not changed for stack switch

SS:RSP is pushed unconditionally

All pushes are 8 bytes

16-bit call gates are illegal
Call Gates 32-bit call gate type is redefined as 64-bit call gate and is Yes

expanded to 16 bytes

SS is not changed for stack switch
gésgtiz;z—rgescrlptor GDT, IDT, LDT, TR base registers expanded to 64 bits Yes
System-Descriptor Table LGDT and LIDT use expanded 10-byte pseudo-descriptors
Entries and Pseudo- i No
Descriptors LLDT and LTR use expanded 16-byte table entries
x86 and AMD64 Architecture Differences 39



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

40 x86 and AMDG64 Architecture Differences



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

3 System Resources

The operating system manages the software-execution environment and general system operation
through the use of system resources. These resources consist of system registers (control registers and
model-specific registers) and system-data structures (memory-management and protection tables).
The system-control registers are described in detail in this chapter; many of the features they control
are described elsewhere in this volume. The model-specific registers supported by the AMD64
architecture are introduced in this chapter.

Because of their complexity, system-data structures are described in separate chapters. Refer to the
following chapters for detailed information on these data structures:

* Descriptors and descriptor tables are described in “Segmentation Data Structures and Registers”
on page 67.

* Page-translation tables are described in “Legacy-Mode Page Translation” on page 122 and “Long-
Mode Page Translation” on page 130.

* The task-state segment is described in “Legacy Task-State Segment” on page 335 and “64-Bit Task
State Segment” on page 339.

Not all processor implementations are required to support all possible features. The last section in this
chapter addresses processor-feature identification. System software uses the capabilities described in
that section to determine which features are supported so that the appropriate service routines are
loaded.

3.1 System-Control Registers

The registers that control the AMD64 architecture operating environment include:

* CRO—Provides operating-mode controls and some processor-feature controls.

e CR2—This register is used by the page-translation mechanism. It is loaded by the processor with
the page-fault virtual address when a page-fault exception occurs.

* CR3—This register is also used by the page-translation mechanism. It contains the base address of
the highest-level page-translation table, and also contains cache controls for the specified table.

e CR4—This register contains additional controls for various operating-mode features.

e CR8—This new register, accessible in 64-bit mode using the REX prefix, is introduced by the
AMDG64 architecture. CRS is used to prioritize external interrupts and is referred to as the task-
priority register (TPR).

* RFLAGS—This register contains processor-status and processor-control fields. The status and
control fields are used primarily in the management of virtual-8086 mode, hardware multitasking,
and interrupts.

System Resources 41



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e EFER—This model-specific register contains status and controls for additional features not
managed by the CR0O and CR4 registers. Included in this register are the long-mode enable and
activation controls introduced by the AMDG64 architecture.

Control registers CR1, CR5—CR7, and CR9—CR15 are reserved.

In legacy mode, all control registers and RFLAGS are 32 bits. The EFER register is 64 bits in all
modes. The AMD64 architecture expands all 32-bit system-control registers to 64 bits. In 64-bit mode,
the MOV CRn instructions read or write all 64 bits of these registers (operand-size prefixes are
ignored). In compatibility and legacy modes, control-register writes fill the low 32 bits with data and
the high 32 bits with zeros, and control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CR0O and CR4 are reserved and must be written with zeros. Writing
a 1 to any of the high 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are

writable. However, the MOV CRn instructions do not check that addresses written to CR2 are within

the virtual-address limitations of the processor implementation.

All CR3 bits are writable, except for unimplemented physical address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are always read as zero by the processor. Attempts to load the upper 32
bits of RFLAGS with anything other than zero are ignored by the processor.

3.1.1 CRO Register

The CRO register is shown in Figure 3-1 on page 43. The legacy CRO register is identical to the low 32
bits of this register (CRO bits 31:0).

42 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

63 32

Reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0
(P; g \'/\lv Reserved I\A/I R \va Reserved E .EI. ; I\E/I I\Iél E
Bits Mnemonic Description R/W

63:32 Reserved Reserved, Must be Zero

31 PG Paging R/W

30 CD Cache Disable R/W

29 NW Not Writethrough R/W

28:19 Reserved Reserved

18 AM Alignment Mask R/W

17 Reserved Reserved

16 WP Write Protect R/W

15:6 Reserved Reserved

5 NE Numeric Error R/W

4 ET Extension Type R

3 TS Task Switched R/W

2 EM Emulation R/W

1 MP Monitor Coprocessor R/W

0 PE Protection Enabled R/W

Figure 3-1. Control Register 0 (CR0)

The functions of the CRO control bits are (unless otherwise noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected mode by setting PE to 1, and
disables protected mode by clearing PE to 0. When the processor is running in protected mode,
segment-protection mechanisms are enabled.

See “Segment-Protection Overview” on page 95 for information on the segment-protection
mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software uses the MP bit with the task-switched control bit
(CRO.TS) to control whether execution of the WAIT/FWALIT instruction causes a device-not-available
exception (#NM) to occur, as follows:

e If both the monitor-coprocessor and task-switched bits are set (CRO.MP=1 and CR0.TS=1), then
executing the WAIT/FWAIT instruction causes a device-not-available exception (#NM).

e If either the monitor-coprocessor or task-switched bits are clear (CR0.MP=0 or CR0.TS=0), then
executing the WAIT/FWAIT instruction proceeds normally.

System Resources 43



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Software typically should set MP to 1 if the processor implementation supports x87 instructions. This
allows the CRO.TS bit to completely control when the x87-instruction context is saved as a result of a
task switch.

Emulate Coprocessor (EM) Bit. Bit 2. Software forces all x87 instructions to cause a device-not-
available exception (#¥NM) by setting EM to 1. Likewise, setting EM to 1 forces an invalid-opcode
exception (#UD) when an attempt is made to execute any of the 64-bit or 128-bit media instructions
except the FXSAVE and FXRSTOR instructions. Attempting to execute these instructions when EM is
set results in an #NM exception instead.The exception handlers can emulate these instruction types if
desired. Setting the EM bit to 1 does not cause an #NM exception when the WAIT/FWAIT instruction
is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute an x87 or media instruction
while TS=1, a device-not-available exception (#NM) occurs. Software can use this mechanism—
sometimes referred to as “lazy context-switching”—to save the unit contexts before executing the next
instruction of those types. As a result, the x87 and media instruction-unit contexts are saved only when
necessary as a result of a task switch.

When a hardware task switch occurs, TS is automatically set to 1. System software that implements
software task-switching rather than using the hardware task-switch mechanism can still use the TS bit
to control x87 and media instruction-unit context saves. In this case, the task-management software
uses a MOV CRO instruction to explicitly set the TS bit to 1 during a task switch. Software can clear
the TS bit by either executing the CLTS instruction or by writing to the CRO register directly. Long-
mode system software can use this approach even though the hardware task-switch mechanism is not
supported in long mode.

The CRO.MP bit controls whether the WAIT/FWAIT instruction causes an #NM exception when
TS=1.

Extension Type (ET) Bit. Bit 4, read-only. In some early x86 processors, software set ET to 1 to
indicate support of the 387D X math-coprocessor instruction set. This bit is now reserved and forced to
1 by the processor. Software cannot clear this bit to 0.

Numeric Error (NE) Bit. Bit 5. Clearing the NE bit to 0 disables internal control of x87 floating-point
exceptions and enables external control. When NE is cleared to 0, the IGNNE# input signal controls
whether x87 floating-point exceptions are ignored:

*  When IGNNE# is 1, x87 floating-point exceptions are ignored.

e When IGNNE# is 0, x87 floating-point exceptions are reported by setting the FERR# input signal
to 1. External logic can use the FERR# signal as an external interrupt.

When NE is set to 1, internal control over x87 floating-point exception reporting is enabled and the
external reporting mechanism is disabled. It is recommended that software set NE to 1. This enables
optimal performance in handling x87 floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pages are protected from supervisor-level writes when the
WP bit is set to 1. When WP is cleared to 0, supervisor software can write into read-only pages.

44 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

See “Page-Protection Checks” on page 145 for information on the page-protection mechanism.

Alignment Mask (AM) Bit. Bit 18. Software enables automatic alignment checking by setting the
AM bit to 1 when RFLAGS.AC=1. Alignment checking can be disabled by clearing either AM or
RFLAGS.AC to 0. When automatic alignment checking is enabled and CPL=3, a memory reference to
an unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. Ignored. This bit can be set to 1 or cleared to 0, but its value is
ignored. The NW bit exists only for legacy purposes.

Cache Disable (CD) Bit. Bit 30. When CD is cleared to 0, the internal caches are enabled. When CD
is set to 1, no new data or instructions are brought into the internal caches. However, the processor still
accesses the internal caches when CD = 1 under the following situations:

e Reads that hit in an internal cache cause the data to be read from the internal cache that reported the
hit.

e Writes that hit in an internal cache cause the cache line that reported the hit to be written back to
memory and invalidated in the cache.

Cache misses do not affect the internal caches when CD = 1. Software can prevent cache access by
setting CD to 1 and invalidating the caches.

Setting CD to 1 also causes the processor to ignore the page-level cache-control bits (PWT and PCD)
when paging is enabled. These bits are located in the page-translation tables and CR3 register. See
“Page-Level Writethrough (PWT) Bit” on page 139 and “Page-Level Cache Disable (PCD) Bit” on
page 139 for information on page-level cache control.

See “Memory Caches” on page 179 for information on the internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation by setting PG to 1, and disables
page translation by clearing PG to 0. Page translation cannot be enabled unless the processor is in
protected mode (CRO.PE=1). If software attempts to set PG to 1 when PE is cleared to 0, the processor
causes a general-protection exception (#GP).

See “Page Translation Overview” on page 118 for information on the page-translation mechanism.

Reserved Bits. Bits 28:19, 17, 15:6, and 63:32. When writing the CRO register, software should set
the values of reserved bits to the values found during the previous CRO read. No attempt should be
made to change reserved bits, and software should never rely on the values of reserved bits. In long
mode, bits 63:32 are reserved and must be written with zero, otherwise a #GP occurs.

3.1.2 CR2 and CR3 Registers

The CR2 (page-fault linear address) register, shown in Figure 3-2 on page 46 and Figure 3-3 on
page 46, and the CR3 (page-translation-table base address) register, shown in Figure 3-4 and
Figure 3-5 on page 46, and Figure 3-6 on page 47, are used only by the page-translation mechanism.

System Resources 45



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

31 0

Page-Fault Virtual Address

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

63 32

Page-Fault Virtual Address

31 0

Page-Fault Virtual Address

Figure 3-3. Control Register 2 (CR2)—Long Mode

See “CR2 Register” on page 227 for a description of the CR2 register.

The CR3 register is used to point to the base address of the highest-level page-translation table.

31 12 11 5 2 0

3

P
Page-Directory-Table Base Address Reserved W | Reserved
T

OO |+

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

31 5 2 0

3

P
Page-Directory-Pointer-Table Base Address W | Reserved
T

OO o+

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

46 System Resources



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

63 52 51 32
Page-Map Level-4 Table Base Address
REEERIEE, L2 (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 5 4 3 2 0
P|P
Page-Map Level-4 Table Base Address Reserved C | W | Reserved
DT

Figure 3-6. Control Register 3 (CR3)—Long Mode

The legacy CR3 register is described in “CR3 Register” on page 123, and the long-mode CR3 register
is described in “CR3” on page 130.

3.1.3 CR4 Register

The CR4 register is shown in Figure 3-7. In legacy mode, the CR4 register is identical to the low 32
bits of the register (CR4 bits 31:0). The features controlled by the bits in the CR4 register are model-
specific extensions. Except for the performance-counter extensions (PCE) feature, software can use
the CPUID instruction to verify that each feature is supported before using that feature. See
Section 3.3, “Processor Feature Identification,” on page 63 for information on using the CPUID

instruction.
63 32
Reserved, MBZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 O
}_
oW
HEEE: 2
oo < ) —
Reserved, MBZ <§’: g S & g @ | Reserved, MBZ g X 6|6 o 2% o %) > <
558580 Slo &= 7 F T2
X (0| |» X |O
[ (%)
(@)
Bits Mnemonic Description Access Type
63:22 — Reserved Reserved, MBZ
21 SMAP Supervisor Mode Access Protection R/W
20 SMEP Supervisor Mode Execution Prevention R/W
19 — Reserved Reserved, MBZ
18 OSXSAVE XSAVE and Processor Extended States Enable Bit R/W
17 — Reserved Reserved, MBZ
Enable RDFSBASE, RDGSBASE, WRFSBASE, and
16 FSGSBASE WRGSBASE instructions RIW
15:11 — Reserved Reserved, MBZ
10 OSXMMEXCPT  Operating System Unmasked Exception Support R/W
System Resources 47



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Bits Mnemonic Description Access Type
9 OSFXSR Operating System FXSAVE/FXRSTOR Support R/W

8 PCE Performance-Monitoring Counter Enable R/W

7 PGE Page-Global Enable R/W

6 MCE Machine Check Enable R/W

5 PAE Physical-Address Extension R/W

4 PSE Page Size Extensions R/W

3 DE Debugging Extensions R/W

2 TSD Time Stamp Disable R/W

1 PVI Protected-Mode Virtual Interrupts R/W

0 VME Virtual-8086 Mode Extensions R/W

:The function of the CR4 control bits are (all bits are read/write):

Virtual-8086 Mode Extensions (VME). Bit 0. Setting VME to 1 enables hardware-supported
performance enhancements for software running in virtual-8086 mode. Clearing VME to 0 disables
this support. The enhancements enabled when VME=1 include:

* Virtualized, maskable, external-interrupt control and notification using the VIF and VIP bits in the
RFLAGS register. Virtualizing affects the operation of several instructions that manipulate the
RFLAGS.IF bit.

* Selective intercept of software interrupts (INTh instructions) using the interrupt-redirection
bitmap in the TSS.

Protected-Mode Virtual Interrupts (PVI). Bit 1. Setting PVI to 1 enables support for protected-
mode virtual interrupts. Clearing PVI to 0 disables this support. When PVI=I1, hardware support of
two bits in the RFLAGS register, VIF and VIP, is enabled.

Only the STI and CLI instructions are affected by enabling PVI. Unlike the case when CR0.VME=1,
the interrupt-redirection bitmap in the TSS cannot be used for selective INTnN interception.

PVI enhancements are also supported in long mode. See “Virtual Interrupts” on page 255 for more
information on using PVI.

Time-Stamp Disable (TSD). Bit 2. The TSD bit allows software to control the privilege level at
which the time-stamp counter can be read. When TSD is cleared to 0, software running at any privilege
level can read the time-stamp counter using the RDTSC or RDTSCP instructions. When TSD is set to
1, only software running at privilege-level 0 can execute the RDTSC or RDTSCP instructions.

Debugging Extensions (DE). Bit 3. Setting the DE bit to 1 enables the I/O breakpoint capability and
enforces treatment of the DR4 and DRS registers as reserved. Software that accesses DR4 or DRS
when DE=1 causes a invalid opcode exception (#UD).

When the DE bit is cleared to 0, I/O breakpoint capabilities are disabled. Software references to the
DR4 and DRS5 registers are aliased to the DR6 and DR7 registers, respectively.

48 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Page-Size Extensions (PSE). Bit 4. Setting PSE to 1 enables the use of 4-Mbyte physical pages.
With PSE=1, the physical-page size is selected between 4 Kbytes and 4 Mbytes using the page-
directory entry page-size field (PS). Clearing PSE to 0 disables the use of 4-Mbyte physical pages and
restricts all physical pages to 4 Kbytes.

The PSE bit has no effect when physical-address extensions are enabled (CR4.PAE=1). Because long
mode requires CR4.PAE=1, the PSE bit is ignored when the processor is running in long mode.

See “4-Mbyte Page Translation” on page 125 for more information on 4-Mbyte page translation.

Physical-Address Extension (PAE). Bit 5. Setting PAE to 1 enables the use of physical-address
extensions and 2-Mbyte physical pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-translation data structures are expanded from 32 bits to 64 bits, allowing the
translation of up to 52-bit physical addresses. Also, the physical-page size is selectable between

4 Kbytes and 2 Mbytes using the page-directory-entry page-size field (PS). Long mode requires PAE
to be enabled in order to use the 64-bit page-translation data structures to translate 64-bit virtual
addresses to 52-bit physical addresses.

See “PAE Paging” on page 126 for more information on physical-address extensions.

Machine-Check Enable (MCE). Bit 6. Setting MCE to 1 enables the machine-check exception
mechanism. Clearing this bit to 0 disables the mechanism. When enabled, a machine-check exception
(#MC) occurs when an uncorrectable machine-check error is encountered.

Regardless of whether machine-check exceptions are enabled, the processor records enabled-errors
when they occur. Error-reporting is performed by the machine-check error-reporting register banks.
Each bank includes a control register for enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but they do not cause a machine-check
exception.

See Chapter 9, “Machine Check Architecture,” for a description of the machine-check mechanism, the
registers used, and the types of errors captured by the mechanism.

Page-Global Enable (PGE). Bit 7. When page translation is enabled, system-software performance
can often be improved by making some page translations global to all tasks and procedures. Setting
PGE to 1 enables the global-page mechanism. Clearing this bit to 0 disables the mechanism.

When PGE is enabled, system software can set the global-page (G) bit in the lowest level of the page-
translation hierarchy to 1, indicating that the page translation is global. Page translations marked as
global are not invalidated in the TLB when the page-translation-table base address (CR3) is updated.
When the G bit is cleared, the page translation is not global. All supported physical-page sizes also
support the global-page mechanism. See “Global Pages” on page 142 for information on using the
global-page mechanism.

Performance-Monitoring Counter Enable (PCE). Bit 8. Setting PCE to 1 allows software running
at any privilege level to use the RDPMC instruction. Software uses the RDPMC instruction to read the

System Resources 49



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

performance-monitoring counter MSRs, *PerfCtrn. Clearing PCE to 0 allows only the most-privileged
software (CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR). Bit9. System software must set the OSFXSR bit to 1 to
enable use of the legacy SSE instructions. When this bit is set to 1, it also indicates that system
software uses the FXSAVE and FXRSTOR instructions to save and restore the processor state for the
x87, 64-bit media, and 128-bit media instructions.

Clearing the OSFXSR bit to 0 indicates that legacy SSE instructions cannot be used. Attempts to use
those instructions while this bit is clear result in an invalid-opcode exception (#UD). Software can
continue to use the FXSAVE/FXRSTOR instructions for saving and restoring the processor state for
the x87 and 64-bit media instructions.

Unmasked Exception Support (OSXMMEXCPT). Bit 10. System software must set the
OSXMMEXCPT bit to 1 when it supports the SIMD floating-point exception (#XF) for handling of
unmasked 256-bit and 128-bit media floating-point errors. Clearing the OSXMMEXCPT bit to 0
indicates the #XF handler is not supported. When OSXMMEXCPT=0, unmasked 128-bit media
floating-point exceptions cause an invalid-opcode exception (#UD). See “SIMD Floating-Point
Exception Causes” in Volume 1 for more information on unmasked SSE floating-point exceptions.

FSGSBASE. Bit 16. System software must set this bit to 1 to enable the execution of the
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions when supported. When
enabled, these instructions allow software running in 64-bit mode at any privilege level to read and
write the FS.base and GS.base hidden segment register state. See the discussion of segment registers in
64-bit mode in Section 4.5.3, “Segment Registers in 64-Bit Mode,” on page 72. Also see descriptions
of the RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions in Volume 3.

XSAVE and Extended States (OSXSAVE). Bit 18. After verifying hardware support for the
extended processor state management instructions, operating system software sets this bit to indicate
support for the XGETBYV, XSAVE and XRSTOR instructions.

Setting this bit also:

e allows the execution of the XGETBYV and XSETBYV instructions, and

* enables the XSAVE and XRSTOR instructions to save and restore the x87 FPU state (including
MMX registers), along with other processor extended states enabled in XCRO.

After initializing the XSAVE/XRSTOR save area, XSAVEOPT (if supported) may be used to save x87
FPU and other enabled extended processor state. For more information on XSAVEOPT, see individual
instruction listing in Chapter 2 of Volume 4.

Note that legacy SSE instruction execution must be enabled prior to enabling extended processor state
management.

Supervisor Mode Execution Prevention (SMEP). Bit 20. Setting this bit enables the supervisor
mode execution prevention feature, if supported. This feature prevents the execution of instructions

50 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

that reside in pages accessible by user-mode software when the processor is in supervisor-mode. See
Section 5.6, “Page-Protection Checks,” on page 145 for more information.

CR1 and CR5-CR?7 Registers. Control registers CR1, CR5-CR7, and CR9—CR15 are reserved.
Attempts by software to use these registers result in an undefined-opcode exception (#UD).

3.1.4 Additional Control Registers in 64-Bit-Mode

In 64-bit mode, additional encodings are available to address up to eight additional control registers.
The REX.R bit, in a REX prefix, is used to modify the ModRM reg field when that field encodes a
control register, as shown in “REX Prefixes” in Volume 3. These additional encodings enable the
processor to address CR§—CR15.

One additional control register, CR8S, is defined in 64-bit mode for all hardware implementations, as
described in “CRS (Task Priority Register, TPR),” below. Access to the CR9—CR15 registers is
implementation-dependent. Any attempt to access an unimplemented register results in an invalid-
opcode exception (#UD).

3.1.5 CRS8 (Task Priority Register, TPR)

The AMDG64 architecture introduces a new control register, CR8, defined as the task priority register
(TPR). The register is accessible in 64-bit mode using the REX prefix. See “External Interrupt
Priorities” on page 236 for a description of the TPR and how system software can use the TPR for
controlling external interrupts.

3.1.6 RFLAGS Register

The RFLAGS register contains two different types of information:
e Control bits provide system-software controls and directional information for string operations.
Some of these bits can have privilege-level restrictions.

* Satusbits provide information resulting from logical and arithmetic operations. These are written
by the processor and can be read by software running at any privilege level.

Figure 3-7 on page 52 shows the format of the RFLAGS register. The legacy EFLAGS register is
identical to the low 32 bits of the register shown in Figure 3-7 (RFLAGS bits 31:0). The term rFLAGS
is used to refer to the 16-bit, 32-bit, or 64-bit flags register, depending on context.

System Resources 51



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

63 32

Reserved, RAZ

31 22 2120191817 16 151413121110 9 8 7 6 5 4 3 2 1 0
| ViV A|lV|R N O|D|I|T|S|Z A P C
Reserved, RAZ D|L||:CMFOT|OPLFFFFFFOFOF1F
Bits Mnemonic Description R/W
63:22 Reserved Reserved, Read as Zero
21 ID ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtual Interrupt Flag R/W
18 AC Alignment Check R/W
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W
15 Reserved Reserved, Read as Zero
14 NT Nested Task R/W
13:12 IOPL I/O Privilege Level R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W
8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
5 Reserved Reserved, Read as Zero
4 AF Auxiliary Flag R/W
3 Reserved Reserved, Read as Zero
2 PF Parity Flag R/W
1 Reserved Reserved, Read as One
0 CF Carry Flag R/W

Figure 3-7. RFLAGS Register

The functions of the RFLAGS control and status bits used by application software are described in
“Flags Register” in Volume 1. The functions of RFLAGS system bits are (unless otherwise noted, all
bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software sets the TF bit to 1 to enable single-step mode during software
debug. Clearing this bit to 0 disables single-step mode.

When single-step mode is enabled, a debug exception (#DB) occurs after each instruction completes
execution. Single stepping begins with the instruction following the instruction that sets TF. Single
stepping is disabled (TF=0) when the #DB exception occurs or when any exception or interrupt
occurs.

52 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

See “Single Stepping” on page 362 for information on using the single-step mode during debugging.

Interrupt Flag (IF) Bit. Bit9. Software sets the IF bit to 1 to enable maskable interrupts. Clearing this
bit to 0 causes the processor to ignore maskable interrupts. The state of the IF bit does not affect the
response of a processor to non-maskable interrupts, software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:

e The current privilege-level (CPL)

e The I/O privilege level (RFLAGS.IOPL)

e Whether or not virtual-8086 mode extensions are enabled (CR4.VME=1)

e Whether or not protected-mode virtual interrupts are enabled (CR4.PVI=1)

See “Masking External Interrupts” on page 215 for information on interrupt masking. See “Accessing
the RFLAGS Register” on page 156 for information on the specific instructions used to modify the IF
bit.

I/O Privilege Level Field (IOPL) Field. Bits 13:12. The IOPL field specifies the privilege level
required to execute I/O address-space instructions (i.e., instructions that address the I/O space rather
than memory-mapped /O, such as IN, OUT, INS, OUTS, etc.). For software to execute these
instructions, the current privilege-level (CPL) must be equal to or higher than (lower numerical value
than) the privilege specified by IOPL (CPL <=10PL). If the CPL is lower than (higher numerical
value than) that specified by the IOPL (CPL > IOPL), the processor causes a general-protection
exception (#GP) when software attempts to execute an I/O instruction. See “Protected-Mode I/O” in
Volume 1 for information on how IOPL controls access to address-space I/0.

Virtual-8086 mode uses IOPL to control virtual interrupts and the IF bit when virtual-8086 mode
extensions are enabled (CR4.VME=1). The protected-mode virtual-interrupt mechanism (PVI) also
uses IOPL to control virtual interrupts and the IF bit when PVI is enabled (CR4.PVI=1). See “Virtual
Interrupts” on page 255 for information on how IOPL is used by the virtual interrupt mechanism.

Nested Task (NT) Bit. Bit 14, IRET reads the NT bit to determine whether the current task is nested
within another task. When NT is set to 1, the current task is nested within another task. When NT is
cleared to 0, the current task is at the top level (not nested).

The processor sets the NT bit during a task switch resulting from a CALL, interrupt, or exception
through a task gate. When an IRET is executed from legacy mode while the NT bit is set, a task switch
occurs. See “Task Switches Using Task Gates” on page 345 for information on switching tasks using
task gates, and “Nesting Tasks” on page 347 for information on task nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit, when set to 1, temporarily disables instruction breakpoint
reporting to prevent repeated debug exceptions (#DB) from occurring. This allows an instruction
which had been inhibited by an instruction-breakpoint debug exception to be restarted by the debug
exception handler.

The processor clears the RF bit after every instruction is successfully executed, except when the

System Resources 53



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

instruction is:

e AnIRET that sets the RF bit.
e JMP, CALL, or INTn through a task gate.

In both of the above cases, RF is not cleared to 0 until the next instruction successfully executes.

When an exception occurs (or when a string instruction is interrupted), the processor normally sets
RF=1 in the RFLAGS image saved on the interrupt stack. However, when a #DB exception occurs as a
result of an instruction breakpoint, the processor clears the RF bit to 0 in the interrupt-stack RFLAGS
image.

For instruction restart to work properly following an instruction breakpoint, the #DB exception
handler must set RF to 1 in the interrupt-stack RFLAGS image. When an IRET is later executed to
return to the instruction that caused the instruction-breakpoint #DB exception, the set RF bit (RF=1) is
loaded from the interrupt-stack RFLAGS image. RF is not cleared by the processor until the
instruction causing the #DB exception successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software sets the VM bit to 1 to enable virtual-8086 mode.
Software clears the VM bit to 0 to disable virtual-8086 mode. System software can only change this bit
using a task switch or an IRET. It cannot modify the bit using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic alignment checking by setting the
ACbitto 1 when CRO.AM=1. Alignment checking can be disabled by clearing either AC or CR0.AM
to 0. When automatic alignment checking is enabled and the current privilege-level (CPL) is 3 (least
privileged), a memory reference to an unaligned operand causes an alignment-check exception (#AC).

Virtual Interrupt (VIF) Bit. Bit 19. The VIF bit is a virtual image of the RFLAGS.IF bit. It is enabled
when either virtual-8086 mode extensions are enabled (CR4.VME=1) or protected-mode virtual
interrupts are enabled (CR4.PVI=1), and the RFLAGS.IOPL field is less than 3. When enabled,
instructions that ordinarily would modify the IF bit actually modify the VIF bit with no effect on the
RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable the VIF bit using CR4.VME. This
allows 8086 software to execute instructions that can set and clear the RFLAGS.IF bit without causing
an exception. With VIF enabled in virtual-8086 mode, those instructions set and clear the VIF bit
instead, giving the appearance to the 8086 software that it is modifying the RFLAGS.IF bit. System
software reads the VIF bit to determine whether or not to take the action desired by the 8086 software
(enabling or disabling interrupts by setting or clearing the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 255 for more information on virtual interrupts.

Virtual Interrupt Pending (VIP) Bit. Bit 20. The VIP bit is provided as an extension to both virtual-
8086 mode and protected mode. It is used by system software to indicate that an external, maskable
interrupt is pending (awaiting) execution by either a virtual-8086 mode or protected-mode interrupt-

54 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

service routine. Software must enable virtual-8086 mode extensions (CR4.VME=1) or protected-
mode virtual interrupts (CR4.PVI=1) before using VIP.

VIP is normally set to 1 by a protected-mode interrupt-service routine that was entered from virtual-
8086 mode as a result of an external, maskable interrupt. Before returning to the virtual-8086 mode
application, the service routine sets VIP to 1 if EFLAGS.VIF=1. When the virtual-8086 mode
application attempts to enable interrupts by clearing EFLAGS.VIF to 0 while VIP=1, a general-
protection exception (#GP) occurs. The #GP service routine can then decide whether to allow the
virtual-8086 mode service routine to handle the pending external, maskable interrupt. (EFLAGS is
specifically referred to in this case because virtual-8086 mode is supported only from legacy mode.)

In long mode, the use of the VIP bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 255 for more information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit21. The ability of software to modify this bit
indicates that the processor implementation supports the CPUID instruction. See Section 3.3,
“Processor Feature Identification,” on page 63 for more information on the CPUID instruction.

3.1.7 Extended Feature Enable Register (EFER)

The extended-feature-enable register (EFER) contains control bits that enable additional processor
features not controlled by the legacy control registers. The EFER is a model-specific register (MSR)
with an address of CO00_0080h (see “Model-Specific Registers (MSRs)” on page 58 for more
information on MSRs). It can be read and written only by privileged software. Figure 3-8 on page 56
shows the format of the EFER register.

System Resources 55



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

63 32

Reserved, MBZ

31 16 15 14 13 12 11 10 9 8 7 1 0
Fl|L s
TIF|M Vv N|L|{M|L S
Reserved, MBZ C|X]|s M X|{M|B|M Reserved, RAZ C
E|S|L E E|A|Z|E E
R|E
Bits Mnemonic Description R/W
63:16 Reserved, MBZ Reserved, Must be Zero
15 TCE Translation Cache Extension R/W
14 FFXSR Fast FXSAVE/FXRSTOR R/W
13 LMSLE Long Mode Segment Limit Enable  R/W
12 SVME Secure Virtual Machine Enable R/W
1 NXE No-Execute Enable R/W
10 LMA Long Mode Active R/W
9 Reserved, MBZ Reserved, Must be Zero
8 LME Long Mode Enable R/W
71 Reserved, RAZ Reserved, Read as Zero
0 SCE System Call Extensions R/W

Figure 3-8. Extended Feature Enable Register (EFER)
The defined EFER bits shown in Figure 3-8 above are described below:

System-Call Extension (SCE) Bit. Bit 0, read/write. Setting this bit to 1 enables the SYSCALL and
SYSRET instructions. Application software can use these instructions for low-latency system calls
and returns in a non-segmented (flat) address space. See “Fast System Call and Return” on page 152
for additional information.

Long Mode Enable (LME) Bit. Bit 8, read/write. Setting this bit to 1 enables the processor to activate
long mode. Long mode is not activated until software enables paging some time later. When paging is
enabled after LME is set to 1, the processor sets the EFER.LMA bit to 1, indicating that long mode is
not only enabled but also active. See Chapter 14, “Processor Initialization and Long Mode
Activation,” for more information on activating long mode.

Long Mode Active (LMA) Bit. Bit 10, read/write. This bit indicates that long mode is active. The
processor sets LMA to 1 when both long mode and paging have been enabled by system software. See
Chapter 14, “Processor Initialization and Long Mode Activation,” for more information on activating
long mode.

When LMA=1, the processor is running either in compatibility mode or 64-bit mode, depending on the
value of the L bit in a code-segment descriptor, as shown in Figure 1-6 on page 12.

56 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

When LMA=0, the processor is running in legacy mode. In this mode, the processor behaves like a
standard 32-bit x86 processor, with none of the new 64-bit features enabled. When writing the EFER
register the value of this bit must be preserved. Software must read the EFER register to determine the
value of LMA, change any other bits as required and then write the EFER register. An attempt to write
a value that differs from the state determined by hardware results in a #GP fault.

No-Execute Enable (NXE) Bit. Bit 11, read/write. Setting this bit to 1 enables the no-execute page-
protection feature. The feature is disabled when this bit is cleared to 0. See “No Execute (NX) Bit” on
page 140 for more information.

Before setting NXE, system software should verify the processor supports the feature by examining
the feature flag CPUID Fn8000 0001 EDX[NX]. See Section 3.3, “Processor Feature Identification,”
on page 63 for information on using the CPUID instruction.

Secure Virtual Machine Enable (SVME) Bit. Bit 12, read/write. Enables the SVM extensions.
When this bit is zero, the SVM instructions cause #UD exceptions. EFER.SVME defaults to a reset
value of zero. The effect of turning off EFER.SVME while a guest is running is undefined; therefore,
the VMM should always prevent guests from writing EFER. SVM extensions can be disabled by
setting VM_CR.SVME DISABLE. For more information, see descriptions of LOCK and

SMVE DISABLE bits in Section 15.30.1, “VM_CR MSR (C001_0114h),” on page 526.

Long Mode Segment Limit Enable (LMSLE) bit. Bit 13, read/write. Setting this bit to 1 enables
certain limit checks in 64-bit mode. See Section 4.12.2, “Data Limit Checks in 64-bit Mode,” on
page 114, "Data Limit Checks in 64-bit Mode", for more information on these limit checks.

Fast FXSAVE/FXRSTOR (FFXSR) Bit. Bit 14, read/write. Setting this bit to 1 enables the FXSAVE
and FXRSTOR instructions to execute faster in 64-bit mode at CPL 0. This is accomplished by not
saving or restoring the XMM registers (XMMO0-XMM15). The FFXSR bit has no effect when the
FXSAVE/FXRSTOR instructions are executed in non 64-bit mode, or when CPL > (0. The FFXSR bit
does not affect the save/restore of the legacy x87 floating-point state, or the save/restore of MXCSR.

Before setting FFXSR, system software should verify whether this feature is supported by examining
the feature flag CPUID Fn8000 0001 EDX[FFXSR]. See Section 3.3, “Processor Feature
Identification,” on page 63 for information on using the CPUID instruction.

Translation Cache Extension (TCE) Bit. Bit 15, read/write. Setting this bit to 1 changes how the
INVLPG instruction operates on TLB entries. When this bit is 0, INVLPG will remove the target PTE
from the TLB as well as all upper-level table entries that are cached in the TLB, whether or not they
are associated with the target PTE. When this bit is set, INVLPG will remove the target PTE and only
those upper-level entries that lead to the target PTE in the page table hierarchy, leaving unrelated
upper-level entries intact. This may provide a performance benefit.

Page table management software must be written in a way that takes this behavior into account.
Software that was written for a processor that does not cache upper-level table entries may result in
stale entries being incorrectly used for translations when TCE is enabled. Software that is compatible
with TCE mode will operate in either mode.

System Resources 57



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Before setting TCE, system software should verify that this feature is supported by examining the
feature flag CPUID Fn8000 0001 ECX[TCE)]. See Section 3.3, “Processor Feature Identification,”
on page 63 for information on using the CPUID instruction.

3.1.8 Extended Control Registers (XCRn)

Extended control registers (XCRN) form a new register space that is available for managing processor
architectural features and capabilities. Currently only XCRO is defined. All other XCR registers are
reserved. For more details on the Extended Control Registers, see “Extended Control Registers” in
Volume 4, Chapter 1.

3.2 Model-Specific Registers (MSRs)

Processor implementations provide model-specific registers (MSRs) for software control over the
unique features supported by that implementation. Software reads and writes MSRs using the
privileged RDMSR and WRMSR instructions. Implementations of the AMD64 architecture can
contain a mixture of two basic MSR types:

* Legacy MSRs. The AMD family of processors often share model-specific features with other x86
processor implementations. Where possible, AMD implementations use the same MSRs for the
same functions. For example, the memory-typing and debug-extension MSRs are implemented on
many AMD and non-AMD processors.

*  AMD model-specific MSRs. There are many MSRs common to the AMD family of processors but
not to legacy x86 processors. Where possible, AMD implementations use the same AMD-specific
MSRs for the same functions.

Every model-specific register, as the name implies, is not necessarily implemented by all members of
the AMD family of processors. Appendix A, “MSR Cross-Reference,” lists MSR-address ranges
currently used by various AMD and other x86 processors.

The AMDG64 architecture includes a number of features that are controlled using MSRs. Those MSRs
are shown in Figure 3-9. The EFER register—described in “Extended Feature Enable Register
(EFER)” on page 55—is also an MSR.

58 System Resources



AMDA

24593—Rev. 3.30—September 2018

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR
LSTAR
CSTAR
SFMASK
FS.base
GS.base
KernelGSbase
SYSENTER_CS
SYSENTER_ESP
SYSENTER_EIP

Debug-Extension Registers
DebugCitl
LastBranchFromIP
LastBranchTolP
LastintFromIP
LastIntTolP

AMD64_MSRs.eps

AMDG64 Technology

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Figure 3-9. AMDG64 Architecture Model-Specific Registers

The following sections briefly describe the MSRs in the AMD64 architecture.

3.2.1 System Configuration Register (SYSCFG)

The system-configuration register (SYSCFG) contains control bits for enabling and configuring
system bus features. SYSCFG is a model-specific register (MSR) with an address of C001_0010h.
Figure 3-10 on page 60 shows the format of the SYSCFG register. Some features are implementation
specific, and are described in the BIOSand Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product. Implementation-specific features are not

shown in Figure 3-10.

System Resources

59



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

31 24 23 22 21 20 19 18 17 0
M E TIM|M[M
E O|VI|F|F

Reserved M \gl Mmlipolplp Reserved

E 2| M|M|E

Bits Mnemonic Description R/W

31:24 Reserved

23 MEME MemEncryptionModeEn R/W

22 FWB Tom2ForceMemTypeWB R/W

21 TOM2 MtrrTom2En R/W

20 MVDM MtrrVarDramEn R/W

19 MFDM MtrrFixDramModEn R/W

18 MFDE MtrrFixDramEn R/W

17:0 Reserved

Figure 3-10. System-Configuration Register (SYSCFG)

The function of the SYSCFG bits are (all bits are read/write unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting this bit to 1 enables use of the RdMem and WrMem attributes in
the fixed-range MTRR registers. When cleared, these attributes are disabled. The RdMem and
WrMem attributes allow system software to define fixed-range IORRs using the fixed-range MTRRs.
See “Extended Fixed-Range MTRR Type-Field Encodings” on page 203 for information on using this
feature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software to read and write the RdMem
and WrMem bits. When cleared, writes do not modify the RdMem and WrMem bits, and reads return
0. See “Extended Fixed-Range MTRR Type-Field Encodings” on page 203 for information on using
this feature.

MtrrVarDramEn Bit. Bit 20. Setting this bit to 1 enables the TOP_MEM register and the variable-
range IORRs. These registers are disabled when the bit is cleared to 0. See “IORRs” on page 204 and
“Top of Memory” on page 206 for information on using these features.

MtrrTom2En Bit. Bit 21. Setting this bit to 1 enables the TOP_ MEM2 register. The register is
disabled when this bit is cleared to 0. See “Top of Memory” on page 206 for information on using this
feature.

Tom2ForceMemTypeWB. Bit 22. Setting this bit to 1 forces the default memory type for memory
between 4GB and the address specified by TOP. MEM2 to be write back instead of the memory type
defined by MTRRdefType[Type]. For this bit to have any effect, MTRRdefType[E] must be 1. MTRR
variable-range settings and PAT can be used to override this memory type.

60 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

MemEncryptionModeEn. Bit 23. Setting this bit to 1 enables the SME (Section 7.10, “Secure
Memory Encryption,” on page 208) and SEV (Section 15.34, “Secure Encrypted Virtualization,” on
page 532) memory encryption features. When cleared, these features are disabled. If
MSRCO001 _0015[SmmLock] is set, the MemEncryptionModeEn bit is sticky and cannot be changed
fromaltoaO.

3.2.2 System-Linkage Registers

System-linkage MSRs are used by system software to allow fast control transfers between applications
and the operating system. The functions of these registers are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used to provide mode-
dependent linkage information for the SYSCALL and SYSRET instructions. STAR is used in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility mode. SFMASK is used by the
SYSCALL instruction for RFLAGS in long mode.

FS.base and GS.base Registers. These registers allow 64-bit base-address values to be specified
for the FS and GS segments, for use in 64-bit mode. See “FS and GS Registers in 64-Bit Mode” on
page 72 for a description of the special treatment the FS and GS segments receive.

KernelGSbase Register. This register is used by the SWAPGS instruction. This instruction
exchanges the value located in KernelGSbase with the value located in GS.base.

SYSENTERX Registers. The SYSENTER CS, SYSENTER ESP, and SYSENTER EIP registers
are used to provide linkage information for the SYSENTER and SYSEXIT instructions. These
instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are described in “Fast System Call and Return”
on page 152.

3.2.3 Memory-Typing Registers

Memory-typing MSRs are used to characterize, or type, memory. Memory typing allows software to
control the cacheability of memory, and determine how accesses to memory are ordered. The memory-
typing registers perform the following functions:

MTRRcap Register. This register contains information describing the level of MTRR support
provided by the processor.

MTRRdefType Register. This register establishes the default memory type to be used for physical
memory that is not specifically characterized using the fixed-range and variable-range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. These registers form a register pair that can
be used to characterize any address range within the physical-memory space, including all of physical
memory. Up to eight address ranges of varying sizes can be characterized using these registers.

System Resources 61



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

MTRRfixn Registers. These registers are used to characterize fixed-size memory ranges in the first 1
Mbytes of physical-memory space.

PAT Register. This register allows memory-type characterization based on the virtual (linear)
address. It is an extension to the PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-typing capabilities as the MTRRs, but
with the added flexibility provided by the paging mechanism.

TOP_MEM and TOP_MEM2 Registers. These top-of-memory registers allow system software to
specify physical addresses ranges as memory-mapped /O locations.

Refer to “Memory-Type Range Registers” on page 187 for more information on using these registers.

3.2.4 Debug-Extension Registers

The debug-extension MSRs provide software-debug capability not available in the legacy debug
registers (DRO-DR7). These MSRs allow single stepping and recording of control transfers to take
place. The debug-extension registers perform the following functions:

DebugCtl Register. This MSR register provides control over control-transfer recording and single
stepping, and external-breakpoint reporting and trace messages.

LastBranchx and Lastintx Registers. The four registers, LastBranchTolP, LastBranchFromIP,
LastIntToIP, and LastIntFromlIP, are all used to record the source and target of control transfers when
branch recording is enabled.

Refer to “Control-Transfer Breakpoint Features” on page 362 for more information on using these
debug registers.

3.2.5 Performance-Monitoring Registers

The time-stamp counter and performance-monitoring registers are useful in identifying performance
bottlenecks. The number of performance counters can vary based on the implementation. These
registers perform the following functions:

TSC Register. This register is used to count processor-clock cycles. It can be read using the RDMSR
instruction, or it can be read using the either of the read time-stamp counter instructions, RDTSC or
RDTSCP. System software can make RDTSC or RDTSCP available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to 0.

*PerfEvtSeln Registers. These registers are used to specify the events counted by the correspondin
g pecily y P g
performance counter, and to control other aspects of its operation.

*PerfCtrn Registers. These registers are performance counters that hold a count of processor,
northbridge, or L2 cache events or the duration of events, under the control of the corresponding
*PerfEvtSeln register. Each *PerfCtrn register can be read using the RDMSR instruction, or they can
be read using the read performance-monitor counter instruction, RDPMC. System software can make

62 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

RDPMC available for use by non-privileged software by setting the performance-monitor counter
enable bit (CR4.PCE) to 1.

Refer to “Using Performance Counters” on page 371 for more information on using these registers.

3.2.6 Machine-Check Registers

The machine-check registers control the detection and reporting of hardware machine-check errors.
The types of errors that can be reported include cache-access errors, load-data and store-data errors,
bus-parity errors, and ECC errors. Two types of machine-check MSRs are shown in Figure 3-9 on
page 59.

The first type is global machine-check registers, which perform the following functions:

MCG_CAP Register. This register identifies the machine-check capabilities supported by the
processor.

MCG_CTL Register. This register provides global control over machine-check-error reporting.
MCG_STATUS Register. This register reports global status on detected machine-check errors.

The second type is error-reporting register banks, which report on machine-check errors associated
with a specific processor unit (or group of processor units). There can be different numbers of register
banks for each processor implementation, and each bank is numbered from 0 to i. The registers in each
bank perform the following functions:

MCi_CTL Registers. These registers control error-reporting.
MCi_STATUS Registers. These registers report machine-check errors.
MCi_ADDR Registers. These registers report the machine-check error address.

MCi_MISC Registers. These registers report miscellaneous-error information.

Refer to “Using MCA Features” on page 280 for more information on using these registers.

3.3 Processor Feature Identification

The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this
information. Software can utilize this information to optimize performance.

The CPUID instruction supports multiple functions, each providing specific information about the
processor implementation, including the vendor, model number, revision (stepping), features, cache
organization, and name. The multifunction approach allows the CPUID instruction to return a detailed
picture of the processor implementation and its capabilities—more detailed information than could be
returned by a single function. This flexibility also allows for the addition of new CPUID functions in
future processor generations.

System Resources 63



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

The desired function number is loaded into the EAX register before executing the CPUID instruction.
CPUID functions are divided into two types:

e Sandard functions return information about features common to all x86 implementations,
including the earliest features offered in the x86 architecture, as well as information about the
presence of features such as support for the AVX and FMA instruction subsets. Standard function
numbers are in the range 0000 0000h—0000 FFFFh.

e Extended functions return information about AMD-specific features such as long mode and the

presence of features such as support for the FMA4 and XOP instruction subsets. Extended function
numbers are in the range 8000 0000h—8000 FFFFh.

Feature information is returned in the EAX, EBX, ECX, and EDX registers. Some functions accept a
second input parameter passed to the instruction in the ECX register.

In this and the other three volumes of this Programmer’s Manual, the notation CPUID
FnXXXX_XXXX_RRR[FieldName] _xYY is used to represent the input parameters and return value that
corresponds to a particular processor capability or feature.

In this notation, XXXX_XXXX represents the 32-bit value to be placed in the EAX register prior to
executing the CPUID instruction. This value is the function number. RRRis either EAX, EBX, ECX,
or EDX and represents the register to be examined after the execution of the instruction. If the contents
of the entire 32-bit register provides the capability information, the notation [ FieldName] is omitted,
otherwise this provides the name of the field within the return value that represents the capability or
feature.

When the field is a single bit, this is called a feature flag. Normally, if a feature flag bit is set, the
corresponding processor feature is supported and if it is cleared, the feature is not supported. The
optional input parameter passed to the CPUID instruction in the ECX register is represented by the
notation _xYY appended after the return value notation. If a CPUID function does not accept this
optional input parameter, this notation is omitted.

For more specific information on the CPUID instruction, see the instruction reference page in Volume
3. For a description of all feature flags related to instruction subset support, see Volume 3, Appendix
D, "Instruction Subsets and CPUID Feature Flags." For a comprehensive list of all processor
capabilities and feature flags, see Volume 3, Appendix E, "Obtaining Processor Information Via the
CPUID Instruction."

64 System Resources



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

4 Segmented Virtual Memory

The legacy x86 architecture supports a segment-translation mechanism that allows system software to
relocate and isolate instructions and data anywhere in the virtual-memory space. A segment is a
contiguous block of memory within the linear address space. The size and location of a segment within
the linear address space is arbitrary. Instructions and data can be assigned to one or more memory
segments, each with its own protection characteristics. The processor hardware enforces the rules
dictating whether one segment can access another segment.

The segmentation mechanism provides ten segment registers, each of which defines a single segment.
Six of these registers (CS, DS, ES, FS, GS, and SS) define user segments. User segments hold
software, data, and the stack and can be used by both application software and system software. The
remaining four segment registers (GDT, LDT, IDT, and TR) define system segments. System
segments contain data structures initialized and used only by system software. Segment registers
contain a base address pointing to the starting location of a segment, a limit defining the segment size,
and attributes defining the segment-protection characteristics.

Although segmentation provides a great deal of flexibility in relocating and protecting software and
data, it is often more efficient to handle memory isolation and relocation with a combination of
software and hardware paging support. For this reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be completely disabled, and an understanding
of the segmentation mechanism is important to implementing long-mode system software.

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:

* In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit
or 32-bit protected mode semantics.

e 64-bit mode, segmentation is disabled, creating a flat 64-bit virtual-address space. As will be seen,
certain functions of some segment registers, particularly the system-segment registers, continue to
be used in 64-bit mode.

4.1 Real Mode Segmentation

After reset or power-up, the processor always initially enters real mode. Protected modes are entered
from real mode.

As noted in “Real Addressing” on page 10, real mode (real-address mode), provides a physical-
memory space of 1 Mbyte. In this mode, a 20-bit physical address is determined by shifting a 16-bit
segment selector to the left four bits and adding the 16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte boundaries. The segment base is
the lowest address in a given segment, and is equal to the segment selector * 16. The POP and MOV
instructions can be used to load a (possibly) new segment selector into one of the segment registers.

Segmented Virtual Memory 65



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

When this occurs, the selector is updated and the segment base is set to selector * 16. The segment
limit and segment attributes are unchanged, but are normally 64K (the maximum allowable limit) and
read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the new value, and the CS segment base is
set to selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and
read/write, respectively.

If the interrupt descriptor table (IDT) is used to find the real mode IDT see “Real-Mode Interrupt
Control Transfers” on page 237.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation

Virtual-8086 mode supports 16-bit real mode programs running under protected mode (see below). It
uses a simple form of memory segmentation, optional paging, and limited protection checking.
Programs running in virtual-8086 mode can access up to IMB of memory space.

As with real mode segmentation, each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte
boundaries. The segment base is the lowest address in a given segment, and is equal to the segment
selector * 16. The POP and MOV instructions work exactly as in real mode and can be used to load a
(possibly) new segment selector into one of the segment registers. When this occurs, the selector is
updated and the segment base is set to selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions, operate as in real mode. On FAR
transfers, the CS (code segment) selector is updated to the new value, and the CS segment base is set to
selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and read/write,
respectively. Interrupts and exceptions switch the processor to protected mode. (See Chapter 8,
“Exceptions and Interrupts” for more information.)

4.3 Protected Mode Segmented-Memory Models

System software can use the segmentation mechanism to support one of two basic segmented-memory
models: a flat-memory model or a multi-segmented model. These segmentation models are supported
in legacy mode and in compatibility mode. Each type of model is described in the following sections.

4.3.1 Multi-Segmented Model

In the multi-segmented memory model, each segment register can reference a unique base address
with a unique segment size. Segments can be as small as a single byte or as large as 4 Gbytes. When
page translation is used, multiple segments can be mapped to a single page and multiple pages can be
mapped to a single segment. Figure 1-1 on page 6 shows an example of the multi-segmented model.

66 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The multi-segmented memory model provides the greatest level of flexibility for system software
using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be used in support of legacy software.
However, in compatibility mode, the multi-segmented memory model is restricted to the first 4 Gbytes
of virtual-memory space. Access to virtual memory above 4 Gbytes requires the use of 64-bit mode,
which does not support segmentation.

4.3.2 Flat-Memory Model

The flat-memory model is the simplest form of segmentation to implement. Although segmentation
cannot be disabled, the flat-memory model allows system software to bypass most of the segmentation
mechanism. In the flat-memory model, all segment-base addresses have a value of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to 0 effectively disables segment
translation, resulting in a single segment spanning the entire virtual-address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on page 7 shows an example of the flat-
memory model.

4.3.3 Segmentation in 64-Bit Mode

In 64-bit mode, segmentation is disabled. The segment-base value is ignored and treated as 0 by the
segmentation hardware. Likewise, segment limits and most attributes are ignored. There are a few
exceptions. The CS-segment DPL, D, and L attributes are used (respectively) to establish the privilege
level for a program, the default operand size, and whether the program is running in 64-bit mode or
compatibility mode. The FS and GS segments can be used as additional base registers in address
calculations, and those segments can have non-zero base-address values. This facilitates addressing
thread-local data and certain system-software data structures. See “FS and GS Registers in 64-Bit
Mode” on page 72 for details about the FS and GS segments in 64-bit mode. The system-segment
registers are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers

Figure 4-1 on page 68 shows the following data structures used by the segmentation mechanism:

*  Segment Descriptors—As the name implies, a segment descriptor describes a segment, including
its location in virtual-address space, its size, protection characteristics, and other attributes.

» Descriptor Tables—Segment descriptors are stored in memory in one of three tables. The global-
descriptor table (GDT) holds segment descriptors that can be shared among all tasks. Multiple
local-descriptor tables (LDT) can be defined to hold descriptors that are used by specific tasks and
are not shared globally. The interrupt-descriptor table (IDT) holds gate descriptors that are used to
access the segments where interrupt handlers are located.

» Task-Sate Segment—A task-state segment (TSS) is a special type of system segment that contains
task-state information and data structures for each task. For example, a TSS holds a copy of the
GPRs and EFLAGS register when a task is suspended. A TSS also holds the pointers to privileged-

Segmented Virtual Memory 67



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

software stacks. The TSS and task-switch mechanism are described in Chapter 12, “Task
Management.”

Segment Selectors—Descriptors are selected for use from the descriptor tables using a segment
selector. A segment selector contains an index into either the GDT or LDT. The IDT is indexed
using an interrupt vector, as described in “Legacy Protected-Mode Interrupt Control Transfers” on
page 239, and in “Long-Mode Interrupt Control Transfers” on page 249.

Global-Descriptor Table (GDT)

Descriptor
> Descriptor
Segment Descriptors
Descriptor
Segment Selectors I Code
| Selector 1 Local-Descriptor Table (LDT) | Stack
Descriptor Soeeaol
| Selector 2 I—'_> Descriptor | Data
| | I Gate
Descriptor o
| Selector n | | Task-State Segment
Interrupt-Descriptor Table (IDT) ,
Gate Descriptor 2 | Local-Descriptor Table
Gate Descriptor
Gate Descriptor

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 69 shows the registers used by the segmentation mechanism. The registers have the
following relationship to the data structures:

Segment Registers—The six segment registers (CS, DS, ES, FS, GS, and SS) are used to point to
the user segments. A segment selector selects a descriptor when it is loaded into one of the segment
registers. This causes the processor to automatically load the selected descriptor into a software-
invisible portion of the segment register.

Descriptor-Table Registers—The three descriptor-table registers (GDTR, LDTR, and IDTR) are
used to point to the system segments. The descriptor-table registers identify the virtual-memory
location and size of the descriptor tables.

Task Register (TR)—Describes the location and limit of the current task state segment (TSS).

68

Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Code Segment Register Global-Descriptor-Table Register
CS | GDTR

i

Data Segment Registers
Interrupt-Descriptor-Table Register

| DS
| | IDTR
.
il Local-Descriptor-Table Register
| LDTR
s 1
Task Register
Stack Segment Register | -

SS

i

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, points to the TSS. The data structures and registers
associated with task-state segments are described in “Task-Management Resources” on page 330.

4.5 Segment Selectors and Registers

4.5.1 Segment Selectors

Segment selectors are pointers to specific entries in the global and local descriptor tables. Figure 4-3
shows the segment selector format.

15 3210
Sl TlI| RPL
Bits Mnemonic Description R/W
15:3 SI Selector Index R/W
2 T Table Indicator R/W
1.0 RPL Requestor Privilege Level R/W

Figure 4-3. Segment Selector

The selector format consists of the following fields:

Segmented Virtual Memory 69



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Selector Index Field. Bits 15:3. The selector-index field specifies an entry in the descriptor table.
Descriptor-table entries are eight bytes long, so the selector index is scaled by 8 to form a byte offset
into the descriptor table. The offset is then added to either the global or local descriptor-table base
address (as indicated by the table-index bit) to form the descriptor-entry address in virtual-address
space.

Some descriptor entries in long mode are 16 bytes long rather than § bytes (see “Legacy Segment
Descriptors” on page 80 for more information on long-mode descriptor-table entries). These expanded
descriptors consume two entries in the descriptor table. Long mode, however, continues to scale the
selector index by eight to form the descriptor-table offset. It is the responsibility of system software to
assign selectors such that they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit2. The TI bit indicates which table holds the descriptor referenced by the
selector index. When TI=0 the GDT is used and when TI=1 the LDT is used. The descriptor-table base
address is read from the appropriate descriptor-table register and added to the scaled selector index as
described above.

Requestor Privilege-Level (RPL) Field. Bits 1:0. The RPL represents the privilege level (CPL) the
processor is operating under at the time the selector is created.

RPL is used in segment privilege-checks to prevent software running at lesser privilege levels from
accessing privileged data. See “Data-Access Privilege Checks” on page 97 and “Control-Transfer
Privilege Checks” on page 100 for more information on segment privilege-checks.

Null Selector. Null selectors have a selector index of 0 and TI=0, corresponding to the first entry in
the GDT. However, null selectors do not reference the first GDT entry but are instead used to
invalidate unused segment registers. A general-protection exception (#GP) occurs if a reference is
made to use a segment register containing a null selector in non-64-bit mode. By initializing unused
segment registers with null selectors software can trap references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS data-segment registers, and into the
LDTR descriptor-table register. A #GP occurs if software attempts to load the CS register with a null
selector or if software attempts to load the SS register with a null selector in non 64-bit mode or at CPL
3.

4.5.2 Segment Registers

Six 16-bit segment registers are provided for referencing up to six segments at one time. All software
tasks require segment selectors to be loaded in the CS and SS registers. Use of the DS, ES, FS, and GS
segments is optional, but nearly all software accesses data and therefore requires a selector in the DS
register. Table 4-1 on page 71 lists the supported segment registers and their functions.

70 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 4-1. Segment Registers

ii%?::: Encoding Segment Register Function
ES /0 References optional data-segment descriptor entry
CS " References code-segment descriptor entry
SS 2 References stack segment descriptor entry
DS 13 References default data-segment descriptor entry
FS /4 References optional data-segment descriptor entry
GS /5 References optional data-segment descriptor entry

The processor maintains a hidden portion of the segment register in addition to the selector value
loaded by software. This hidden portion contains the values found in the descriptor-table entry
referenced by the segment selector. The processor loads the descriptor-table entry into the hidden
portion when the segment register is loaded. By keeping the corresponding descriptor-table entry in
hardware, performance is optimized for the majority of memory references.

Figure 4-4 shows the format of the visible and hidden portions of the segment register. Except for the
FS and GS segment base, software cannot directly read or write the hidden portion (shown as gray-
shaded boxes in Figure 4-4).

Selector

Segment Attributes

32-Bit Segment Limit

32-Bit Segment Base Address

|:| Hidden From Software

Figure 4-4. Segment-Register Format

CS Register. The CS register contains the segment selector referencing the current code-segment
descriptor entry. All instruction fetches reference the CS descriptor. When a new selector is loaded into
the CS register, the current-privilege level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register contains the segment selector referencing the default
data-segment descriptor entry. The SS register contains the stack-segment selector. The ES, FS, and
GS registers are optionally loaded with segment selectors referencing other data segments. Data
accesses default to referencing the DS descriptor except in the following two cases:

Segmented Virtual Memory 71



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* The ES descriptor is referenced for string-instruction destinations.

* The SS descriptor is referenced for stack operations.
4.5.3 Segment Registers in 64-Bit Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden portion of the CS register is
ignored. Only the L (long), D (default operation size), and DPL (descriptor privilege-level) attributes
are recognized by 64-bit mode. Address calculations assume a CS.base value of 0. CS references do
not check the CS.limit value, but instead check that the effective address is in canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents of the ES, DS, and SS
segment registers are ignored. All fields (base, limit, and attribute) in the hidden portion of the
segment registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS, or SS segments are treated as if the
segment base is 0. Instead of performing limit checks, the processor checks that all virtual-address
references are in canonical form.

Neither enabling and activating long mode nor switching between 64-bit and compatibility modes
changes the contents of the visible or hidden portions of the segment registers. These registers remain
unchanged during 64-bit mode execution unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlike the CS, DS, ES, and SS segments, the FS and GS
segment overrides can be used in 64-bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-address (EA) calculation. The complete
EA calculation then becomes (FS or GS).base + base + (scale * index) + displacement. The FS.base
and GS.base values are also expanded to the full 64-bit virtual-address size, as shown in Figure 4-5.
The resulting EA calculation is allowed to wrap across positive and negative addresses.

Selector

Segment Attributes

32-Bit Segment Limit

64-Bit Segment Base Address

|:| Hidden from Software and Unused in 64-bit Mode

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

In 64-bit mode, FS-segment and GS-segment overrides are not checked for limit or attributes. Instead,
the processor checks that all virtual-address references are in canonical form.

72 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Segment register-load instructions (MOV to Sreg and POP Sreg) load only a 32-bit base-address value
into the hidden portion of the FS and GS segment registers. The base-address bits above the low 32 bits
are cleared to 0 as a result of a segment-register load. When a null selector is loaded into FS or GS, the
contents of the corresponding hidden descriptor register are not altered.

There are two methods to update the contents of the FS.base and GS.base hidden descriptor fields. The
first is available exclusively to privileged software (CPL = 0). The FS.base and GS.base hidden
descriptor-register fields are mapped to MSRs. Privileged software can load a 64-bit base address in
canonical form into FS.base or GS.base using a single WRMSR instruction. The FS.base MSR address
is C000_0100h while the GS.base MSR address is C000_0101h.

The second method of updating the FS and GS base fields is available to software running at any
privilege level (when supported by the implementation and enabled by setting CR4[FSGSBASE)).
The WRFSBASE and WRGSBASE instructions copy the contents of a GPR to the FS.base and
GS.base fields respectively. When the operand size is 32 bits, the upper doubleword of the base is
cleared. WRFSBASE and WRGSBASE are only supported in 64-bit mode.

The addresses written into the expanded FS.base and GS.base registers must be in canonical form. Any
instruction that attempts to write a non-canonical address to these registers causes a general-protection
exception (#GP) to occur.

When in compatibility mode, the FS and GS overrides operate as defined by the legacy x86
architecture regardless of the value loaded into the high 32 bits of the hidden descriptor-register base-
address field. Compatibility mode ignores the high 32 bits when calculating an effective address.

4.6 Descriptor Tables

Descriptor tables are used by the segmentation mechanism when protected mode is enabled
(CRO.PE=1). These tables hold descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory references in protected mode access a descriptor-table entry.

As previously mentioned, there are three types of descriptor tables supported by the x86 segmentation
mechanism:

* Global descriptor table (GDT)

* Local descriptor table (LDT)

e Interrupt descriptor table (IDT)

Software establishes the location of a descriptor table in memory by initializing its corresponding

descriptor-table register. The descriptor-table registers and the descriptor tables are described in the
following sections.

4.6.1 Global Descriptor Table

Protected-mode system software must create a global descriptor table (GDT). The GDT contains code-
segment and data-segment descriptor entries (user segments) for segments that can be shared by all

Segmented Virtual Memory 73



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

tasks. In addition to the user segments, the GDT can also hold gate descriptors and other system-
segment descriptors. System software can store the GDT anywhere in memory and should protect the
segment containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (TT) bit in the selector is cleared to 0. The
selector index portion of the segment selector references a specific entry in the GDT. Figure 4-6 on
page 74 shows how the segment selector indexes into the GDT. One special form of a segment selector
is the null selector. A null selector points to the first entry in the GDT (the selector index is 0 and
TI=0). However, null selectors do not reference memory, so the first GDT entry cannot be used to
describe a segment (see “Null Selector” on page 70 for information on using the null selector). The
first usable GDT entry is referenced with a selector index of 1.

Selector Index + TI+ | Segment Selector
Global (TI=0) «
Local (TI=1)
Descriptor Table ~\
‘ Oy
- - Selector Index + 000
Unused in GDT I
« Descriptor Table Base Address + Descriptor Table Limit

Global or Local Descriptor-Table Register

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global Descriptor-Table Register

The global descriptor-table register (GDTR) points to the location of the GDT in memory and defines
its size. This register is loaded from memory using the LGDT instruction (see “LGDT and LIDT
Instructions” on page 158). Figure 4-7 shows the format of the GDTR in legacy mode and
compatibility mode.

74 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 75 shows the format of the GDTR in 64-bit mode.

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains two fields:

Limit. 2 bytes. These bits define the 16-bit limit, or size, of the GDT in bytes. The limit value is added
to the base address to yield the ending byte address of the GDT. A general-protection exception (#GP)
occurs if software attempts to access a descriptor beyond the GDT limit.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the GDTR and IDTR limit-field sizes are unchanged from the legacy sizes. The
processor does check the limits in long mode during GDT and IDT accesses.

Base Address. 8 bytes. The base-address field holds the starting byte address of the GDT in virtual-
memory space. The GDT can be located at any byte address in virtual memory, but system software
should align the GDT on a quadword boundary to avoid the potential performance penalties associated
with accessing unaligned data.

The AMDG64 architecture increases the base-address field of the GDTR to 64 bits so that system
software running in long mode can locate the GDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 4 bytes of base address when running in legacy mode.

4.6.3 Local Descriptor Table

Protected-mode system software can optionally create a local descriptor table (LDT) to hold segment
descriptors belonging to a single task or even multiple tasks. The LDT typically contains code-

Segmented Virtual Memory 75



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

segment and data-segment descriptors as well as gate descriptors referenced by the specified task. Like
the GDT, system software can store the LDT anywhere in memory and should protect the segment
containing the LDT from non-privileged software.

Segment selectors point to the LDT when the table-index bit (TI) in the selector is set to 1. The selector
index portion of the segment selector references a specific entry in the LDT (see Figure 4-6 on

page 74). Unlike the GDT, however, a selector index of 0 references the first entry in the LDT (when
TI=1, the selector is not a null selector).

LDTs are described by system-segment descriptor entries located in the GDT, and a GDT can contain
multiple LDT descriptors. The LDT system-segment descriptor defines the location, size, and
privilege rights for the LDT. Figure 4-9 on page 76 shows the relationship between the LDT and GDT
data structures.

Loading a null selector into the LDTR is useful if software does not use an LDT. This causes a #GP if
an erroneous reference is made to the LDT.

Global Local
Descriptor Descriptor
Table Table
T . E/— LDT Selector - -
LDT Attributes
GDT Limit | — KA LT Limit | —
GDT Base Address > LDT Base Address >
Global Descriptor Table Register Local Descriptor Table Register

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local Descriptor-Table Register

The local descriptor-table register (LDTR) points to the location of the LDT in memory, defines its
size, and specifies its attributes. The LDTR has two portions. A visible portion holds the LDT selector,
and a hidden portion holds the LDT descriptor. When the LDT selector is loaded into the LDTR, the
processor automatically loads the LDT descriptor from the GDT into the hidden portion of the LDTR.
The LDTR is loaded in one of two ways:

e Using the LLDT instruction (see “LLDT and LTR Instructions” on page 158).

76 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* Performing a task switch (see “Switching Tasks” on page 343).

Figure 4-10 on page 77 shows the format of the LDTR in legacy mode.

Selector

Descriptor Attributes

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

|:| Hidden From Software

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 shows the format of the LDTR in long mode (both compatibility mode and 64-bit mode).

Selector

Descriptor Attributes

32-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

|:| Hidden From Software

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields:

LDT Selector. 2 bytes. These bits are loaded explicitly from the TSS during a task switch, or by using
the LLDT instruction. The LDT selector must point to an LDT system-segment descriptor entry in the
GDT. If it does not, a general-protection exception (#GP) occurs.

The following three fields are loaded automatically from the LDT descriptor in the GDT as a result of
loading the LDT selector. The register fields are shown as shaded boxes in Figure 4-10 and
Figure 4-11.

Segmented Virtual Memory 77



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Base Address. The base-address field holds the starting byte address of the LDT in virtual-memory
space. Like the GDT, the LDT can be located anywhere in system memory, but software should align
the LDT on a quadword boundary to avoid performance penalties associated with accessing unaligned
data.

The AMDG64 architecture expands the base-address field of the LDTR to 64 bits so that system
software running in long mode can locate an LDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 32 base-address bits when running in legacy mode. Because the
LDTR is loaded from the GDT, the system-segment descriptor format (LDTs are system segments) has
been expanded by the AMDG64 architecture in support of 64-bit mode. See “Long Mode Descriptor
Summary” on page 94 for more information on this expanded format. The high-order base-address
bits are only loaded from 64-bit mode using the LLDT instruction (see “LLDT and LTR Instructions”
on page 158 for more information on this instruction).

Limit. This field defines the limit, or size, of the LDT in bytes. The LDT limit as stored in the LDTR
is 32 bits. When the LDT limit is loaded from the GDT descriptor entry, the 20-bit limit field in the
descriptor is expanded to 32 bits and scaled based on the value of the descriptor granularity (G) bit. For
details on the limit biasing and granularity, see “Granularity (G) Bit” on page 81.

If an attempt is made to access a descriptor beyond the LDT limit, a general-protection exception
(#GP) occurs.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the LDTR limit-field size is unchanged from the legacy size. The processor does
check the LDT limit in long mode during LDT accesses.

Attributes. This field holds the descriptor attributes, such as privilege rights, segment presence and
segment granularity.

4.6.5 Interrupt Descriptor Table

The final type of descriptor table is the interrupt descriptor table (IDT). Multiple IDTs can be
maintained by system software. System software selects a specific IDT by loading the interrupt
descriptor table register (IDTR) with a pointer to the IDT. As with the GDT and LDT, system software
can store the IDT anywhere in memory and should protect the segment containing the IDT from non-
privileged software.

The IDT can contain only the following types of gate descriptors:

* Interrupt gates

e Trap gates

e Task gates.

The use of gate descriptors by the interrupt mechanism is described in Chapter 8, “Exceptions and

Interrupts.” A general-protection exception (#GP) occurs if the IDT descriptor referenced by an
interrupt or exception is not one of the types listed above.

78 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

IDT entries are selected using the interrupt vector number rather than a selector value. The interrupt
vector number is scaled by the interrupt-descriptor entry size to form an offset into the IDT. The
interrupt-descriptor entry size depends on the processor operating mode as follows:

* Inlong mode, interrupt descriptor-table entries are 16 bytes.

* Inlegacy mode, interrupt descriptor-table entries are eight bytes.

Figure 4-12 shows how the interrupt vector number indexes the IDT.

Interrupt
Descriptor Table ) oy
e
Interrupt Vector
Descriptor Entry
Size
< IDT Base Address IDT Limit

Interrupt Descriptor Table Register

Figure 4-12. Indexing an IDT

4.6.6 Interrupt Descriptor-Table Register

The interrupt descriptor-table register (IDTR) points to the IDT in memory and defines its size. This
register is loaded from memory using the LIDT instruction (see “LGDT and LIDT Instructions” on
page 158). The format of the IDTR is identical to that of the GDTR in all modes. Figure 4-7 on

page 75 shows the format of the IDTR in legacy mode. Figure 4-8 on page 75 shows the format of the
IDTR in long mode.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the IDTR limit-field size is unchanged from the legacy size. The processor does
check the IDT limit in long mode during IDT accesses.

Segmented Virtual Memory 79



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

4.7 Legacy Segment Descriptors

4.7.1 Descriptor Format

Segment descriptors define, protect, and isolate segments from each other. There are two basic types of
descriptors, each of which are used to describe different segment (or gate) types:

e User Segments—These include code segments and data segments. Stack segments are a type of
data segment.

e SYystem Segments—System segments consist of LDT segments and task-state segments (TSS).
Gate descriptors are another type of system-segment descriptor. Rather than describing segments,
gate descriptors point to program entry points.

Figure 4-13 shows the generic format for user-segment and system-segment descriptors. User and
system segments are differentiated using the S bit. S=1 indicates a user segment, and S=0 indicates a
system segment. Gray shading indicates the field or bit is reserved. The format for a gate descriptor
differs from the generic segment descriptor, and is described separately in “Gate Descriptors” on
page 86.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
D A ISegmentLimit
Base Address[31:24] G|/ \% 9[19_ 16] P|DPL | S Type Base Address[23:16] +4
B L ’
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 shows the fields in a generic, legacy-mode, 8-byte (two doubleword) segment descriptor.
In this figure, the upper doubleword (located at byte offset +4) is shown on top and the lower
doubleword (located at byte offset +0) is shown on the bottom. The fields are defined as follows:

Segment Limit. The 20-bit segment limit is formed by concatenating bits 19:16 of the upper
doubleword with bits 15:0 of lower doubleword. The segment limit defines the segment size, in bytes.
The granularity (G) bit controls how the segment-limit field is scaled (see “Granularity (G) Bit” on
page 81). For data segments, the expand-down (E) bit determines whether the segment limit defines
the lower or upper segment-boundary (see “Expand-Down (E) Bit” on page 84).

If software references a segment descriptor with an address beyond the segment limit, a general-
protection exception (#GP) occurs. The #GP occurs if any part of the memory reference falls outside
the segment limit. For example, a doubleword (4-byte) address reference causes a #GP if one or more
bytes are located beyond the segment limit.

Base Address. The 32-bit base address is formed by concatenating bits 31:24 of the upper
doubleword with bits 7:0 of the same doubleword and bits 15:0 of the lower doubleword. The
segment-base address field locates the start of a segment in virtual-address space.

80 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

S Bit and Type Field. Bit 12 and bits 11:8 of the upper doubleword. The S and Type fields, together,
specify the descriptor type and its access characteristics. Table 4-2 summarizes the descriptor types by
S-field encoding and gives a cross reference to descriptions of the Type-field encodings.

Table 4-2. Descriptor Types

. Descriptor . .

S Field Type Type-Field Encoding

LDT
0 (System) TSS See Table 4-5 on page 85

Gate
Code See Table 4-3 on page 83

1 (User)
Data See Table 4-4 on page 84

Descriptor Privilege-Level (DPL) Field. Bits 14:13 of the upper doubleword. The DPL field
indicates the descriptor-privilege level of the segment. DPL can be set to any value from 0 to 3, with 0
specifying the most privilege and 3 the least privilege. See “Data-Access Privilege Checks” on

page 97 and “Control-Transfer Privilege Checks” on page 100 for more information on how the DPL
is used during segment privilege-checks.

Present (P) Bit. Bit 15 of the upper doubleword. The segment-present bit indicates that the segment
referenced by the descriptor is loaded in memory. If a reference is made to a descriptor entry when

P =0, a segment-not-present exception (#NP) occurs. This bit is set and cleared by system software
and is never altered by the processor.

Available To Software (AVL) Bit. Bit 20 of the upper doubleword. This field is available to software,
which can write any value to it. The processor does not set or clear this field.

Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. The default operand-size bit is
found in code-segment and data-segment descriptors but not in system-segment descriptors. Setting
this bit to 1 indicates a 32-bit default operand size, and clearing it to 0 indicates a 16-bit default size.
The effect this bit has on a segment depends on the segment-descriptor type. See “Code-Segment
Default-Operand Size (D) Bit” on page 83 for a description of the D bit in code-segment descriptors.
“Data-Segment Default Operand Size (D/B) Bit” on page 85 describes the D bit in data-segment
descriptors, including stack segments, where the bit is referred to as the “B” bit.

Granularity (G) Bit. Bit 23 of the upper doubleword. The granularity bit specifies how the segment-
limit field is scaled. Clearing the G bit to 0 indicates that the limit field is not scaled. In this case, the
limit equals the number of bytes available in the segment. Setting the G bit to 1 indicates that the limit
field is scaled by 4 Kbytes (4096 bytes). Here, the limit field equals the number of 4-Kbyte blocks
available in the segment.

Setting a limit of 0 indicates a 1-byte segment limit when G = 0. Setting the same limit of 0 when G =
1 indicates a segment limit of 4095.

Segmented Virtual Memory 81



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Reserved Bits. Generally, software should clear all reserved bits to 0, so they can be defined in future
revisions to the AMD64 architecture.

4.7.2 Code-Segment Descriptors

Figure 4-14 shows the code-segment descriptor format (gray shading indicates the bit is reserved). All
software tasks require that a segment selector, referencing a valid code-segment descriptor, is loaded
into the CS register. Code segments establish the processor operating mode and execution privilege-
level. The segments generally contain only instructions and are execute-only, or execute and read-
only. Software cannot write into a segment whose selector references a code-segment descriptor.

31 24 23 22 21 20 19 16 151413121110 9 8 7 0
A
Base Address[31:24] |G |D| |v| S89ment 1ol pp | 4| 1|c|R|A| Base Address[23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the S bit set to 1, identifying the segments as user segments. Type-field
bit 11 differentiates code-segment descriptors (bit 11 set to 1) from data-segment descriptors (bit 11
cleared to 0). The remaining type-field bits (10:8) define the access characteristics for the code-
segment, as follows:

Conforming (C) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the code segment
as conforming. When control is transferred to a higher-privilege conforming code-segment (C=1) from
a lower-privilege code segment, the processor CPL does not change. Transfers to non-conforming
code-segments (C = 0) with a higher privilege-level than the CPL can occur only through gate
descriptors. See “Control-Transfer Privilege Checks” on page 100 for more information on
conforming and non-conforming code-segments.

Readable (R) Bit. Bit9 of the upper doubleword. Setting this bit to 1 indicates the code segment is
both executable and readable as data. When this bit is cleared to 0, the code segment is executable, but
attempts to read data from the code segment cause a general-protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into the CS register. This bit is only cleared by software.

Table 4-3 on page 83 summarizes the code-segment type-field encodings.

82 Segmented Virtual Memory



AMDA

24593—Rev. 3.30—September 2018

Table 4-3. Code-Segment Descriptor Types

AMDG64 Technology

Type Field
Hex . Bit 10 Bit 9 Bit 8 e
Value Bit 11 i Description
(Code/Data) Conforming | Readable Accessed
(C) (R) (A)

8 0 0 0 Execute-Only

9 0 0 1 Execute-Only — Accessed

A 0 1 0 Execute/Readable

B 0 1 1 Execute/Readable — Accessed

C 1 1 0 0 Conforming, Execute-Only

D 1 0 1 Conforming, Execute-Only — Accessed

E 1 1 0 Conforming, Execute/Readable
Conforming, Execute/Readable —

F 1 1 1
Accessed

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-segment descriptors, the
D bit selects the default operand size and address sizes. In legacy mode, when D=0 the default operand
size and address size is 16 bits and when D=1 the default operand size and address size is 32 bits.
Instruction prefixes can be used to override the operand size or address size, or both.

4.7.3 Data-Segment Descriptors

Figure 4-15 shows the data-segment descriptor format. Data segments contain non-executable
information and can be accessed as read-only or read/write. They are referenced using the DS, ES, FS,
GS, or SS data-segment registers. The DS data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment registers hold segment selectors for additional
data segments usable by the current software task.

The stack segment is a special form of data-segment register. It is referenced using the SS segment
register and must be read/write. When loading the SS register, the processor requires that the selector
reference a valid, writable data-segment descriptor.

31 24 23 22 21 20 19 161514 13121110 9 8 7 0
D A
Base Address[31:24] |G| / v | Segment fo |l np 14l o|E|w|A| Base Address[23:16] +4
B L Limit [19:16]
Base Address[15:0] Segment Limit[15:0] +0
Figure 4-15. Data-Segment Descriptor—Legacy Mode
Segmented Virtual Memory 83



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Data-segment descriptors have the S bit set to 1, identifying them as user segments. Type-field bit 11
differentiates data-segment descriptors (bit 11 cleared to 0) from code-segment descriptors (bit 11 set
to 1). The remaining type-field bits (10:8) define the data-segment access characteristics, as follows:

Expand-Down (E) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the data
segment as expand-down. In expand-down segments, the segment limit defines the lower segment
boundary while the base is the upper boundary. Valid segment offsets in expand-down segments lie in
the byte range limit+1 to FFFFh or FFFF_FFFFh, depending on the value of the data segment default

operand size (D/B) bit.

Expand-down segments are useful for stacks, which grow in the downward direction as elements are
pushed onto the stack. The stack pointer, ESP, is decremented by an amount equal to the operand size
as a result of executing a PUSH instruction.

Clearing the E bit to 0 identifies the data segment as expand-up. Valid segment offsets in expand-up

segments lie in the byte range 0 to segment limit.

Writable (W) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 identifies the data segment as
read/write. When this bit is cleared to 0, the segment is read-only. A general-protection exception
(#GP) occurs if software attempts to write into a data segment when W=0.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into one of the data-segment registers or the stack-
segment register. This bit is only cleared by software.

Table 4-4 summarizes the data-segment type-field encodings.

Table 4-4. Data-Segment Descriptor Types

Type Field
Hex Bit 10 Bit 9 Bit 8
Bit 11 N Description
Value (Code/Data) E;E;::: Writable | Accessed
(E) (W) (A)
0 0 0 0 Read-Only
1 0 0 1 Read-Only — Accessed
2 0 1 0 Read/Write
3 0 0 1 1 Read/Write — Accessed
4 1 0 0 Expand-down, Read-Only
5 1 0 1 Expand-down, Read-Only — Accessed
6 1 1 0 Expand-down, Read/Write
7 1 1 1 Expand-down, Read/Write — Accessed
84 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. For expand-down
data segments (E=1), setting D=1 sets the upper bound of the segment at 0 FFFF_FFFFh. Clearing
D=0 sets the upper bound of the segment at 0 FFFFh.

In the case where a data segment is referenced by the stack selector (SS), the D bit is referred to as the
B bit. For stack segments, the B bit sets the default stack size. Setting B=1 establishes a 32-bit stack
referenced by the 32-bit ESP register. Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SP register.

4.7.4 System Descriptors

There are two general types of system descriptors: system-segment descriptors and gate descriptors.
System-segment descriptors are used to describe the LDT and TSS segments. Gate descriptors do not
describe segments, but instead hold pointers to code-segment descriptors. Gate descriptors are used for
protected-mode control transfers between less-privileged and more-privileged software.

System-segment descriptors have the S bit cleared to 0. The type field is used to differentiate the
various LDT, TSS, and gate descriptors from one another. Table 4-5 summarizes the system-segment
type-field encodings.

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode

Valve | (Bite 1126 Description
0 0000 Reserved (lllegal)
1 0001 Available 16-bit TSS
2 0010 LDT
3 0011 Busy 16-bit TSS
4 0100 16-bit Call Gate
5 0101 Task Gate
6 0110 16-bit Interrupt Gate
7 0111 16-bit Trap Gate
8 1000 Reserved (lllegal)
9 1001 Available 32-bit TSS
A 1010 Reserved (lllegal)
B 1011 Busy 32-bit TSS
C 1100 32-bit Call Gate
D 1101 Reserved (lllegal)
E 1110 32-bit Interrupt Gate
F 1111 32-bit Trap Gate

Segmented Virtual Memory 85



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Figure 4-16 shows the legacy-mode system-segment descriptor format used for referencing LDT and
TSS segments (gray shading indicates the bit is reserved). This format is also used in compatibility
mode. The system-segments are used as follows:

e The LDT typically holds segment descriptors belonging to a single task (see “Local Descriptor
Table” on page 75).

e The TSS is a data structure for holding processor-state information. Processor state is saved in a
TSS when a task is suspended, and state is restored from the TSS when a task is restarted. System
software must create at least one TSS referenced by the task register, TR. See “Legacy Task-State
Segment” on page 335 for more information on the TSS.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
I [A
Base Address31:24] |G| & |v| S89ment 1olnp o] Type Base Address[23:16] +4
N L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors

Gate descriptors hold pointers to code segments and are used to control access between code segments
with different privilege levels. There are four types of gate descriptors:

o Call Gates—These gates (Figure 4-17 on page 87) are located in the GDT or LDT and are used to
control access between code segments in the same task or in different tasks. See “Control Transfers
Through Call Gates” on page 104 for information on how call gates are used to control access
between code segments operating in the same task. The format of a call-gate descriptor is shown in
Figure 4-17 on page 87.

* Interrupt Gatesand Trap Gates—These gates (Figure 4-18 on page 87) are located in the IDT and
are used to control access to interrupt-service routines. “Legacy Protected-Mode Interrupt Control
Transfers” on page 239 contains information on using these gates for interrupt-control transfers.
The format of interrupt-gate and trap-gate descriptors is shown in Figure 4-17 on page 87.

» Task Gates—These gates (Figure 4-19 on page 87) are used to control access between different
tasks. They are also used to transfer control to interrupt-service routines if those routines are
themselves a separate task. See “Task-Management Resources” on page 330 for more information
on task gates and their use.

86 Segmented Virtual Memory



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
31 16 15 14 13 12 11 8 7 6 5 4 0
Target Code-Segment Offset[31:16] P|DPL |O Type Relsce;vaed Parameter Count] +4
Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

Figure 4-17. Call-Gate Descriptor—Legacy Mode

31 16 15 14 13 12 11 8 7 0
Target Code-Segment Offset[31:16] P|DPL |O Type Reserved, IGN +4
Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

31 16 1514 13 12 11 8 7 0

Reserved, IGN P|DPL|O Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor format and the system-segment descriptor
format. These differences are described as follows, from least-significant to most-significant bit
positions:

Target Code-Segment Offset. The 32-bit segment offset is formed by concatenating bits 31:16 of
byte +4 with bits 15:0 of byte +0. The segment-offset field specifies the target-procedure entry point
(offset) into the segment. This field is loaded into the EIP register as a result of a control transfer using
the gate descriptor.

Target Code-Segment Selector. Bits 31:16 of byte +0. The segment-selector field identifies the
target-procedure segment descriptor, located in either the GDT or LDT. The segment selector is loaded
into the CS segment register as a result of a control transfer using the gate descriptor.

TSS Selector. Bits 31:16 of byte +0 (task gates only). This field identifies the target-task TSS
descriptor, located in any of the three descriptor tables (GDT, LDT, and IDT).

Segmented Virtual Memory 87



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Parameter Count (Call Gates Only). Bits 4:0 of byte +4. Legacy-mode call-gate descriptors contain
a 5-bit parameter-count field. This field specifies the number of parameters to be copied from the
currently-executing program stack to the target program stack during an automatic stack switch.
Automatic stack switches are performed by the processor during a control transfer through a call gate
to a greater privilege-level. The parameter size depends on the call-gate size as specified in the type
field. 32-bit call gates copy 4-byte parameters, and 16-bit call gates copy 2-byte parameters. See
“Stack Switching” on page 108 for more information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors

The interpretation of descriptor fields is changed in long mode, and in some cases the format is
expanded. The changes depend on the operating mode (compatibility mode or 64-bit mode) and on the
descriptor type. The following sections describe the changes.

4.8.1 Code-Segment Descriptors

Code segments continue to exist in long mode. Code segments and their associated descriptors and
selectors are needed to establish the processor operating mode as well as execution privilege-level.
The new L attribute specifies whether the processor is running in compatibility mode or 64-bit mode
(see “Long (L) Attribute Bit” on page 89). Figure 4-20 shows the long-mode code-segment descriptor
format. In compatibility mode, the code-segment descriptor is interpreted and behaves just as it does in
legacy mode as described in “Code-Segment Descriptors” on page 82.

In Figure 4-20, gray shading indicates the code-segment descriptor fields that are ignored in 64-bit
mode when the descriptor is used during a memory reference. However, the fields are loaded whenever
the segment register is loaded in 64-bit mode.

31 24 23 22 21 20 19 161514 13121110 9 8 7 0
A
Base Address[31:24] |G |D|L|v | S89ment ol oy | 4| 1|c|R|A| BaseAddress23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode, and code segments span
all of virtual memory. In this mode, code-segment base addresses are ignored. For the purpose of
virtual-address calculations, the base address is treated as if it has a value of zero.

Segment-limit checking is not performed, and both the segment-limit field and granularity (G) bit are
ignored. Instead, the virtual address is checked to see if it is in canonical-address form.

The readable (R) and accessed (A) attributes in the type field are also ignored.

88 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a new attribute, the long (L) bit, in
code-segment descriptors. This bit specifies that the processor is running in 64-bit mode (L=1) or
compatibility mode (L=0). When the processor is running in legacy mode, this bit is reserved.

Compatibility mode maintains binary compatibility with legacy 16-bit and 32-bit applications.
Compatibility mode is selected on a code-segment basis, and it allows legacy applications to coexist
under the same 64-bit system software along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and 32-bit applications by clearing the L bit
of the code-segment descriptor to 0.

When L=0, the legacy meaning of the code-segment D bit (see “Code-Segment Default-Operand Size
(D) Bit” on page 83)—and the address-size and operand-size prefixes—are observed. Segmentation is
enabled when L=0. From an application viewpoint, the processor is in a legacy 16-bit or 32-bit
operating environment (depending on the D bit), even though long mode is activated.

If the processor is running in 64-bit mode (L=1), the only valid setting of the D bit is 0. This setting
produces a default operand size of 32 bits and a default address size of 64 bits. The combination L=1
and D=1 is reserved for future use.

“Instruction Prefixes” in Volume 3 describes the effect of the code-segment L and D bits on default
operand and address sizes when long mode is activated. These default sizes can be overridden with
operand size, address size, and REX prefixes.

4.8.2 Data-Segment Descriptors

Data segments continue to exist in long mode. Figure 4-21 shows the long-mode data-segment
descriptor format. In compatibility mode, data-segment descriptors are interpreted and behave just as
they do in legacy mode.

In Figure 4-21, gray shading indicates the fields that are ignored in 64-bit mode when the descriptor is
used during a memory reference. However, the fields are loaded whenever the segment register is
loaded in 64-bit mode.

31 24 23 22 21 20 19 16 151413121 10 9 8 7 0
D A Segment
Base Address[31:24] G|/ V], . .g ] P|DPL|[1|0|E|W|A Base Address[23:16] +4
B L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode. The interpretation of the
segment-base address depends on the segment register used:

Segmented Virtual Memory 89



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

* In data-segment descriptors referenced by the DS, ES and SS segment registers, the base-address
field is ignored. For the purpose of virtual-address calculations, the base address is treated as if it

has a value of zero.

* Data segments referenced by the FS and GS segment registers receive special treatment in 64-bit
mode. For these segments, the base address field is not ignored, and a non-zero value can be used
in virtual-address calculations. A 64-bit segment-base address can be specified using model-
specific registers. See “FS and GS Registers in 64-Bit Mode” on page 72 for more information.

Segment-limit checking is not performed on any data segments in 64-bit mode, and both the segment-
limit field and granularity (G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field attributes are ignored.

A data-segment-descriptor DPL field is ignored in 64-bit mode, and segment-privilege checks are not
performed on data segments. System software can use the page-protection mechanisms to isolate and
protect data from unauthorized access.

4.8.3 System Descriptors

In long mode, the allowable system-descriptor types encoded by the type field are changed. Some
descriptor types are modified, and others are illegal. The changes are summarized in Table 4-6. An
attempt to use an illegal descriptor type causes a general-protection exception (#GP).

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex Type Field Lo
- - - - Description
Value | Bit 11 Bit 10 Bit 9 Bit 8
0 0 0 0 0
Reserved (lllegal)
1 0 0 0 1
2 0 0 1 0 64-bit LDT'
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
Reserved (lllegal)
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1 Available 64-bit TSS
A 1 0 1 0 Reserved (lllegal)
B 1 0 1 1 Busy 64-bit TSS
C 1 1 0 0 64-bit Call Gate
Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

90

Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 4-6. System-Segment Descriptor Types—Long Mode (continued)

Hex Type Field -
_ _ _ _ Description
Value | Bit 11 Bit 10 Bit 9 Bit 8
D 1 1 0 1 Reserved (lllegal)
E 1 1 1 0 64-bit Interrupt Gate
F 1 1 1 1 64-bit Trap Gate
Note(s):

1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

In long mode, the modified system-segment descriptor types are:

e The 32-bit LDT (02h), which is redefined as the 64-bit LDT.
e The available 32-bit TSS (09h), which is redefined as the available 64-bit TSS.
* The busy 32-bit TSS (0Bh), which is redefined as the busy 64-bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors are expanded by 64 bits, as shown in
Figure 4-22. In this figure, gray shading indicates the fields that are ignored in 64-bit mode. Expanding
the descriptors allows them to hold 64-bit base addresses, so their segments can be located anywhere
in the virtual-address space. The expanded descriptor can be loaded into the corresponding descriptor-
table register (LDTR or TR) only from 64-bit mode. In compatibility mode, the legacy system-
segment descriptor format, shown in Figure 4-16 on page 86, is used. See “LLDT and LTR
Instructions” on page 158 for more information.

31 23 20 19 16 151413121110 9 8 7 0
Reserved, IGN o(ojojoj|o Reserved, IGN +12
Base Address[63:32] +8
A Segment
Base Address[31:24] G v| 2% . P|DPL |O Type Base Address[23:16] +4
L Limit[19:16]
Base Address[15:0] Segment Limit[15:0] +0

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-bit system-segment base address must be in canonical form. Otherwise, a general-protection
exception occurs with a selector error-code, #GP(selector), when the system segment is loaded.
System-segment limit values are checked by the processor in both 64-bit and compatibility modes,
under the control of the granularity (G) bit.

Figure 4-22 shows that bits 12:8 of doubleword +12 must be cleared to 0. These bits correspond to the
S and Type fields in a legacy descriptor. Clearing these bits to 0 corresponds to an illegal type in legacy

Segmented Virtual Memory 91



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

mode and causes a #GP if an attempt is made to access the upper half of a 64-bit mode system-segment
descriptor as a legacy descriptor or as the lower half of a 64-bit mode system-segment descriptor.

4.8.4 Gate Descriptors

As shown in Table 4-6 on page 90, the allowable gate-descriptor types are changed in long mode.
Some gate-descriptor types are modified and others are illegal. The modified gate-descriptor types in
long mode are:

* The 32-bit call gate (0Ch), which is redefined as the 64-bit call gate.
* The 32-bit interrupt gate (OEh), which is redefined as the 64-bit interrupt gate.
e The 32-bit trap gate (OFh), which is redefined as the 64-bit trap gate.

In long mode, several gate-descriptor types are illegal. An attempt to use these gates causes a general-
protection exception (#GP) to occur. The illegal gate types are:

e The 16-bit call gate (04h).

e The task gate (05h).

e The 16-bit interrupt gate (06h).
e The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits, allowing them to hold 64-bit offsets. The 64-
bit call-gate descriptor is shown in Figure 4-23 and the 64-bit interrupt gate and trap gate are shown in
Figure 4-24 on page 93. In these figures, gray shading indicates the fields that are ignored in long
mode. The interrupt and trap gates contain an additional field, the IST, that is not present in the call
gate—see “IST Field (Interrupt and Trap Gates)” on page 93.

31 16 1514 13121110 9 8 7 0
Reserved, IGN o0[(0oj0|0]|O Reserved, IGN +12
Target Offset[63:32] +8
Target Offset[31:16] P|DPL |O Type Reserved, IGN +4
Target Selector Target Offset[15:0] +0

Figure 4-23. Call-Gate Descriptor—Long Mode

92 Segmented Virtual Memory



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
31 16 15 14 13 12 11 8 7 3 2 0
Reserved, IGN +12
Target Offset[63:32] +8
Target Offset[31:16] P|DPL |0 Type Reserved, IGN IST +4
Target Selector Target Offset[15:0] +0

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate descriptor must be a 64-bit code segment
(CS.L=1, CS.D=0). If the target is not a 64-bit code segment, a general-protection exception,
#GP(error), occurs. The error code reported depends on the gate type:

e Call gates report the target code-segment selector as the error code.

e Interrupt and trap gates report the interrupt vector number as the error code.

A general-protection exception, #GP(0), occurs if software attempts to reference a long-mode gate
descriptor with a target-segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate descriptors in the same descriptor table.
Figure 4-23 on page 92 shows that bits 12:8 of byte +12 in a long-mode call gate must be cleared to 0.
These bits correspond to the S and Type fields in a legacy call gate. Clearing these bits to 0
corresponds to an illegal type in legacy mode and causes a #GP if an attempt is made to access the
upper half of a 64-bit mode call-gate descriptor as a legacy call-gate descriptor.

It is not necessary to clear these same bits in a long-mode interrupt gate or trap gate. In long mode, the
interrupt-descriptor table (IDT) must contain 64-bit interrupt gates or trap gates. The processor
automatically indexes the IDT by scaling the interrupt vector by 16. This makes it impossible to access
the upper half of a long-mode interrupt gate, or trap gate, as a legacy gate when the processor is
running in long mode.

IST Field (Interrupt and Trap Gates). Bits 2:0 of byte +4. Long-mode interrupt gate and trap gate
descriptors contain a new, 3-bit interrupt-stack-table (IST) field not present in legacy gate descriptors.
The IST field is used as an index into the IST portion of a long-mode TSS. If the IST field is not 0, the
index references an IST pointer in the TSS, which the processor loads into the RSP register when an
interrupt occurs. If the IST index is 0, the processor uses the legacy stack-switching mechanism (with
some modifications) when an interrupt occurs. See “Interrupt-Stack Table” on page 253 for more
information.

Segmented Virtual Memory 93



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Count Field (Call Gates). The count field found in legacy call-gate descriptors is not supported in
long-mode call gates. In long mode, the field is reserved and should be cleared to zero.

4.8.5 Long Mode Descriptor Summary

System descriptors and gate descriptors are expanded by 64 bits to handle 64-bit base addresses in
long mode or 64-bit mode. The mode in which the expansion occurs depends on the purpose served by
the descriptor, as follows:

e Expansion Only In 64-Bit Mode—The system descriptors and pseudo-descriptors that are loaded
into the GDTR, IDTR, LDTR, and TR registers are expanded only in 64-bit mode. They are not
expanded in compatibility mode.

e Expansion In Long Mode—Gate descriptors (call gates, interrupt gates, and trap gates) are
expanded in long mode (both 64-bit mode and compatibility mode). Task gates and 16-bit gate
descriptors are illegal in long mode.

The AMDG64 architecture redefines several of the descriptor-entry fields in support of long mode. The
specific change depends on whether the processor is in 64-bit mode or compatibility mode. Table 4-7
summarizes the changes in the descriptor entry field when the descriptor entry is loaded into a segment
register (as opposed to when the segment register is subsequently used to access memory).

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor | Descriptor Long Mode
Field Type Compatibility Mode 64-Bit Mode

Code

Limit Data Same as legacy x86 Same as legacy x86
System

Offset Gate Expanded to 64 bits Expanded to 64 bits
Code

Base Data Same as legacy x86

Same as legacy x86

System

Selector Gate Same as legacy x86

IST? Gate Interrupt and trap gates only. (New for long mode.)
Code
Data Same as legacy x86 Same as legacy x86

Types 02h, 09h, and 0Bh redefined
Types 01h and 03h are illegal

Types 0Ch, OEh, and OFh redefined
Types 04h—07h are illegal

S and Type |System

Gate

Note(s):
1. Not available (reserved) in legacy mode.

94 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor | Descriptor Long Mode
Field Type Compatibility Mode 64-Bit Mode

Code

DPL Data Same as legacy x86 Same as legacy x86
System
Gate
Code

Present Data Same as legacy x86 Same as legacy x86
System
Gate
Code D=0 Indicates 64-bit address, 32-bit data

Default Size Same as legacy x86 D=1 Reserved
Data Same as legacy x86

Long1 Code Specifies compatibility mode Specifies 64-bit mode
Code

Granularity |Data Same as legacy x86 Same as legacy x86
System
Code

Available Data Same as legacy x86 Same as legacy x86
System

Note(s):
1. Not available (reserved) in legacy mode.

4.9 Segment-Protection Overview

The AMDG64 architecture is designed to fully support the legacy segment-protection mechanism. The
segment-protection mechanism provides system software with the ability to restrict program access
into other software routines and data.

Segment-level protection remains enabled in compatibility mode. 64-bit mode eliminates most type
checking, and limit checking is not performed, except on accesses to system-descriptor tables.

The preferred method of implementing memory protection in a long-mode operating system is to rely
on the page-protection mechanism as described in “Page-Protection Checks” on page 145. System
software still needs to create basic segment-protection data structures for 64-bit mode. These
structures are simplified, however, by the use of the flat-memory model in 64-bit mode, and the limited
segmentation checks performed when executing in 64-bit mode.

Segmented Virtual Memory 95



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

4.9.1 Privilege-Level Concept

Segment protection is used to isolate and protect programs and data from each other. The segment-
protection mechanism supports four privilege levels in protected mode. The privilege levels are
designated with a numerical value from 0 to 3, with 0 being the most privileged and 3 being the least
privileged. System software typically assigns the privilege levels in the following manner:

e Privilege-level O (most privilege)—This level is used by critical system-software components that
require direct access to, and control over, all processor and system resources. This can include
platform firmware, memory-management functions, and interrupt handlers.

* Privilege-levels 1 and 2 (moderate privilege)—These levels are used by less-critical system-
software services that can access and control a limited scope of processor and system resources.
Software running at these privilege levels might include some device drivers and library routines.
These software routines can call more-privileged system-software services to perform functions
such as memory garbage-collection and file allocation.

e Privilege-level 3 (least privilege)—This level is used by application software. Software running at
privilege-level 3 is normally prevented from directly accessing most processor and system
resources. Instead, applications request access to the protected processor and system resources by
calling more-privileged service routines to perform the accesses.

Figure 4-25 shows the relationship of the four privilege levels to each other.

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

Application Programs

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level Types

There are three types of privilege levels the processor uses to control access to segments. These are
CPL, DPL, and RPL.

Current Privilege-Level. The current privilege-level (CPL) is the privilege level at which the
processor is currently executing. The CPL is stored in an internal processor register that is invisible to

96 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

software. Software changes the CPL by performing a control transfer to a different code segment with
a new privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) is the privilege level that system
software assigns to individual segments. The DPL is used in privilege checks to determine whether
software can access the segment referenced by the descriptor. In the case of gate descriptors, the DPL
determines whether software can access the descriptor reference by the gate. The DPL is stored in the
segment (or gate) descriptor.

Requestor Privilege-Level. The requestor privilege-level (RPL) reflects the privilege level of the
program that created the selector. The RPL can be used to let a called program know the privilege level
of the program that initiated the call. The RPL is stored in the selector used to reference the segment
(or gate) descriptor.

The following sections describe how the CPL, DPL, and RPL are used by the processor in performing
privilege checks on data accesses and control transfers. Failure to pass a protection check generally
causes an exception to occur.

410 Data-Access Privilege Checks

4.10.1 Accessing Data Segments

Before loading a data-segment register (DS, ES, FS, or GS) with a segment selector, the processor
checks the privilege levels as follows to see if access is allowed:

1. The processor compares the CPL with the RPL in the data-segment selector and determines the
effective privilege level for the data access. The processor sets the effective privilege level to the
lowest privilege (numerically-higher value) indicated by the comparison.

2. The processor compares the effective privilege level with the DPL in the descriptor-table entry
referenced by the segment selector. If the effective privilege level is greater than or equal to
(numerically lower-than or equal-to) the DPL, then the processor loads the segment register with
the data-segment selector. The processor automatically loads the corresponding descriptor-table
entry into the hidden portion of the segment register.

If the effective privilege level is lower than (numerically greater-than) the DPL, a general-
protection exception (#GP) occurs and the segment register is not loaded.

Figure 4-26 on page 98 shows two examples of data-access privilege checks.

Segmented Virtual Memory 97



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

Effective

e | | CPL=3 I Privilege
‘—»_3

Data | | RPL=0 I @
Selector - Access Denied Data
|—>@ """"""""" > Segment
| DPL=2
] Descriptor

Example 1: Privilege Check Fails

Effective
& | | CPL=0 I Privilege
Data
Selector | | RPL0 I Access Allowed Data
|—’® > Segment
| DPL=2
Descriptor

Example 2: Privilege Check Passes

Figure 4-26. Data-Access Privilege-Check Examples
Example 1 in Figure 4-26 shows a failing data-access privilege check. The effective privilege level is 3
because CPL=3. This value is greater than the descriptor DPL, so access to the data segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege check. Here, the effective privilege
level is 0 because both the CPL and RPL have values of 0. This value is less than the descriptor DPL,
so access to the data segment is allowed, and the data-segment register is successfully loaded.

4.10.2 Accessing Stack Segments

Before loading the stack segment register (SS) with a segment selector, the processor checks the
privilege levels as follows to see if access is allowed:

98 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

1. The processor checks that the CPL and the stack-selector RPL are equal. If they are not equal, a
general-protection exception (#GP) occurs and the SS register is not loaded.

2. The processor compares the CPL with the DPL in the descriptor-table entry referenced by the
segment selector. The two values must be equal. If they are not equal, a #GP occurs and the SS
register is not loaded.

Figure 4-27 shows two examples of stack-access privilege checks. In Example 1 the CPL, stack-
selector RPL, and stack segment-descriptor DPL are all equal, so access to the stack segment using the
SS register is allowed. In Example 2, the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL is not equal to the stack segment-descriptor DPL, and access to the
stack segment through the SS register is denied.

cs | | cpL=3 |
L
Stack | | RPL=3 I
Selector - Access Allowed Stack
Segment
| DPL=3
Descriptor
Example 1: Privilege Check Passes
cs | [cr=2 |
).
Stack | | RPL=3 I
Selector - Access Denied Stack
Segment
| DPL=3
Descriptor

Example 2: Privilege Check Fails

Figure 4-27. Stack-Access Privilege-Check Examples

Segmented Virtual Memory 99



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

4.11 Control-Transfer Privilege Checks

Control transfers between code segments (also called far control transfers) cause the processor to
perform privilege checks to determine whether the source program is allowed to transfer control to the
target program. If the privilege checks pass, access to the target code-segment is granted. When access
is granted, the target code-segment selector is loaded into the CS register. The rIP register is updated
with the target CS offset taken from either the far-pointer operand or the gate descriptor. Privilege
checks are not performed during near control transfersbecause such transfers do not change
segments.

The following mechanisms can be used by software to perform far control transfers:

* System-software control transfers using the system-call and system-return instructions. See
“SYSCALL and SYSRET” on page 152 and “SYSENTER and SYSEXIT (Legacy Mode Only)”
on page 154 for more information on these instructions. SYSCALL and SYSRET are the preferred
method of performing control transfers in long mode. SYSENTER and SYSEXIT are not supported
inlong mode.

* Direct control transfers using CALL and JMP instructions. These are discussed in the next section,
“Direct Control Transfers.”

e C(Call-gate control transfers using CALL and JMP instructions. These are discussed in “Control
Transfers Through Call Gates” on page 104.

* Return control transfers using the RET instruction. These are discussed in “Return Control
Transfers” on page 111.

e Interrupts and exceptions, including the INTn and IRET instructions. These are discussed in
Chapter 8, “Exceptions and Interrupts.”

» Task switches initiated by CALL and JMP instructions. Task switches are discussed in Chapter 12,
“Task Management.” The hardware task-switch mechanismis not supported in long mode.

4.11.1 Direct Control Transfers

A direct control transfer occurs when software executes a far-CALL or a far-JMP instruction without
using a call gate. The privilege checks and type of access allowed as a result of a direct control transfer
depends on whether the target code segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the target code-segment is conforming (see
“Conforming (C) Bit” on page 82 for more information on the conforming bit).

Privilege levels are not changed as a result of a direct control transfer. Program stacks are not
automatically switched by the processor as they are with privilege-changing control transfers through
call gates (see “Stack Switching” on page 108 for more information on automatic stack switching
during privilege-changing control transfers).

Nonconforming Code Segments. Software can perform a direct control transfer to a
nonconforming code segment only if the target code-segment descriptor DPL and the CPL are equal
and the RPL is less than or equal to the CPL. Software must use a call gate to transfer control to a

100 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

more-privileged, nonconforming code segment (see “Control Transfers Through Call Gates” on
page 104 for more information).

In far calls and jumps, the far pointer (CS:rIP) references the target code-segment descriptor. Before
loading the CS register with a nonconforming code-segment selector, the processor checks as follows
to see if access is allowed:

1. DPL = CPL Check—The processor compares the target code-segment descriptor DPL with the
currently executing program CPL. If they are equal, the processor performs the next check. If they
are not equal, a general-protection exception (#GP) occurs.

2. RPL < CPL Check—The processor compares the target code-segment selector RPL with the
currently executing program CPL. If the RPL is less than or equal to the CPL, access is allowed. If
the RPL is greater than the CPL, a #GP exception occurs.

If access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target-CS selector RPL value is
disregarded when the selector is loaded into the CS register.

Figure 4-28 on page 102 shows three examples of privilege checks performed as a result of a far
control transfer to a nonconforming code-segment. In Example 1, access is allowed because CPL =
DPL and RPL < CPL. In Example 2, access is denied because CPL # DPL. In Example 3, access is
denied because RPL > CPL.

Segmented Virtual Memory 101



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Code
Selector | | RPL=0 I Access
Allowed
Access Allowed
Cs | [crL=2 | >
Code
Access
| DPL=2 Allowed Segment
Descriptor
Example 1: Privilege Check Passes
Code
Selector | ReL=0] Access
Allowed
Access Denied
cs | [cr=2) @ .............. »
—E) SR Code
Access Segment
| DPL=3 Denied
Descriptor
Example 2: Privilege Check Fails
Code
Selector | | RPL=3 I Access
Denied
4 Access Denied
cs| 2] () >
Code
Access Segment
| DPL=2 Allowed
Descriptor

Example 3: Privilege Check Fails

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

Conforming Code Segments. On a direct control transfer to a conforming code segment, the target
code-segment descriptor DPL can be lower than (at a greater privilege) the CPL. Before loading the

102

Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

CS register with a conforming code-segment selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If the DPL is less than or equal to the CPL,
access is allowed. If the DPL is greater than the CPL, a #GP exception occurs.

On an access to a conforming code segment, the RPL is ignored and not involved in the privilege
check.

When access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target CS-descriptor DPL value is
disregarded when the selector is loaded into the CS register. The target program runs at the same
privilege as the program that called it.

Figure 4-29 shows two examples of privilege checks performed as a result of a direct control transfer
to a conforming code segment. In Example 1, access is allowed because the CPL of 3 is greater than
the DPL of 0. As the target code selector is loaded into the CS register, the old CPL value of 3 replaces
the target-code selector RPL value, and the target program executes with CPL=3. In Example 2, access
is denied because CPL < DPL.

Code | | I
Selector
cs | |cpL=3 |
Access Allowed
— ) o  Code
Segment
| DPL=0
Descriptor
Example 1: Privilege Check Passes
Code | | I
Selector
Cs | | cpL=0 |
Access Denied
() SR | Code
Segment
| DPL=3
Descriptor

Example 2: Privilege Check Fails

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

Segmented Virtual Memory 103



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

4.11.2 Control Transfers Through Call Gates

Control transfers to more-privileged code segments are accomplished through the use of call gates.
Call gates are a type of descriptor that contain pointers to code-segment descriptors and control access
to those descriptors. System software uses call gates to establish protected entry points into system-
service routines.

Transfer Mechanism. The pointer operand of a far-CALL or far-JMP instruction consists of two
pieces: a code-segment selector (CS) and a code-segment offset (rIP). In a call-gate transfer, the CS
selector points to a call-gate descriptor rather than a code-segment descriptor, and the rIP is ignored
(but required by the instruction).

Figure 4-30 shows a call-gate control transfer in legacy mode. The call-gate descriptor contains
segment-selector and segment-offset fields (see “Gate Descriptors” on page 86 for a detailed
description of the call-gate format and fields). These two fields perform the same function as the
pointer operand in a direct control-transfer instruction. The segment-selector field points to the target
code-segment descriptor, and the segment-offset field is the instruction-pointer offset into the target
code-segment. The code-segment base taken from the code-segment descriptor is added to the offset
field in the call-gate descriptor to create the target virtual address (linear address).

Virtual-Address

Space
Far Pointer
Segment Selector Instruction Offset
Descriptor Table
P T Call-Gate
| | v Descriptor
'DPL ! Code-Segment Selector

_> --------------------------------------- mmmmmmmemm--
Code-Segment Offset :@—» _____ Virtual Address

A

Code Segment

v

EDPL Code-Segment Limit

Code-Segment
Descriptor

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

104 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Figure 4-31 shows a call-gate control transfer in long mode. The long-mode call-gate descriptor
format is expanded by 64 bits to hold a full 64-bit offset into the virtual-address space. Only long-
mode call gates can be referenced in long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit types, and 16-bit call-gate types are
illegal.

Far Pointer Virtual-Address
Space
Segment Selector Instruction Offset
Descriptor Table [ Call “Gate
—— Descriptor
v
[ CodeSegmentOffset (6332)

Code-Segment Offset (31:0)

v
=
=
c
=R
pd
a
o
=
D
%)
A

' DPL | Code-Segment Limit

Code-Segment

Descriptor Flat Code-Segment

[ ] Unused

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment descriptor. In 64-bit mode, the code-
segment descriptor base-address and limit fields are ignored. The target virtual-address is the 64-bit
offset field in the expanded call-gate descriptor.

Privilege Checks. Before loading the CS register with the code-segment selector located in the call
gate, the processor performs three privilege checks. The following checks are performed when either
conforming or nonconforming code segments are referenced:

1. The processor compares the CPL with the call-gate DPL from the call-gate descriptor (DPLg;).
The CPL must be numerically less than or equal to DPL; for this check to pass. In other words,
the following expression must be true: CPL < DPL

Segmented Virtual Memory 105



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

2. The processor compares the RPL in the call-gate selector with DPL; The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL < DPL

3. The processor compares the CPL with the target code-segment DPL from the code-segment
descriptor (DPLg). The type of comparison varies depending on the type of control transfer.

- When a call—or a jump to a conforming code segment—is used to transfer control through a
call gate, the CPL must be numerically greater than or equal to DPLg for this check to pass.
(This check prevents control transfers to less-privileged programs.) In other words, the
following expression must be true: CPL  DPLg.

- When a JMP instruction is used to transfer control through a call gate to a nonconforming code
segment, the CPL must be numerically equal to DPLg for this check to pass. (JMP instructions
cannot change CPL.) In other words, the following expression must be true: CPL = DPLg.

Figure 4-32 on page 107 shows two examples of call-gate privilege checks. In Example 1, all privilege
checks pass as follows:

* The call-gate DPL (DPL) is at the lowest privilege (3), specifying that software running at any
privilege level (CPL) can access the gate.

* The selector referencing the call gate passes its privilege check because the RPL is numerically
less than or equal to DPL

» The target code segment is at the highest privilege level (DPLg = 0). This means software running
at any privilege level can access the target code segment through the call gate.

106 Segmented Virtual Memory



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

Cs | | cpL=2 |
Call-Gate —

Selector | | RPL=S I

]
| DPL=3
> Code
Call-Gate Descriptor _‘ Segment
DPL=0 Access Allowed

Code-Segment Descriptor

Example 1: Privilege Check Passes

Cs | | crL=2 |
Call-Gate
Selector | | RPL=3 I

|
| DPL=0
Code
Call-Gate Descriptor _‘ Segment
DPL=3 cT
— A _cc_es:s_D_erﬁe_d _______ |

Code-Segment Descriptor

Example 2: Privilege Check Fails

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, all privilege checks fail as follows:

* The call-gate DPL (DPL) specifies that only software at privilege-level 0 can access the gate. The
current program does not have enough privilege to access the call gate because its CPL is 2.

* The selector referencing the call-gate descriptor does not have enough privilege to complete the
reference. Its RPL is numerically greater than DPL;

Segmented Virtual Memory 107



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* The target code segment is at a lower privilege (DPLg = 3) than the currently running software
(CPL =2). Transitions from more-privileged software to less-privileged software are not allowed,
so this privilege check fails as well.

Although all three privilege checks failed in Example 2, failing only one check is sufficient to deny
access into the target code segment.

Stack Switching. The processor performs an automatic stack switch when a control transfer causes a
change in privilege levels to occur. Switching stacks isolates more-privileged software stacks from
less-privileged software stacks and provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, as is done when transferring control using a call gate, the
processor uses the corresponding stack pointer (privilege-level 0, 1, or 2) stored in the task-state
segment (TSS). The format of the stack pointer stored in the TSS depends on the system-software
operating mode:

* Legacy-mode system software stores a 32-bit ESP value (stack offset) and 16-bit SS selector
register value in the TSS for each of three privilege levels 0, 1, and 2.

* Long-mode system software stores a 64-bit RSP value in the TSS for privilege levels 0, 1, and 2.
No SS register value is stored in the TSS because in long mode a call gate must reference a 64-bit
code-segment descriptor. 64-bit mode does not use segmentation, and the stack pointer consists
solely of the 64-bit RSP. Any value loaded in the SS register is ignored.

See “Task-Management Resources” on page 330 for more information on the legacy-mode and long-
mode TSS formats.

Figure 4-33 on page 109 shows a 32-bit stack in legacy mode before and after the automatic stack
switch. This particular example assumes that parameters are passed from the current program to the
target program. The process followed by legacy mode in switching stacks and copying parameters is:

1. The target code-segment DPL is read by the processor and used as an index into the TSS for
selecting the new stack pointer (SS:ESP). For example, if DPL=1 the processor selects the
SS:ESP for privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP values read from the TSS.

3. The old values of the SS and ESP registers are pushed onto the stack pointed to by the new
SS:ESP.

4. The 5-bit count field is read from the call-gate descriptor.

The number of parameters specified in the count field (up to 31) are copied from the old stack to
the new stack. The size of the parameters copied by the processor depends on the call-gate size:
32-bit call gates copy 4-byte parameters and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the EIP of the instruction following the calling instruction.

108 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

7. The CS register is loaded from the segment-selector field in the call-gate descriptor, and the EIP is
loaded from the offset field in the call-gate descriptor.

8. The target program begins executing with the instruction referenced by new CS:EIP.

old New
32-Bit Stack 32-Bit Stack
Before CALL After CALL
0ld SS +(*4)+12
Old ESP +(n*4)+8
Parameter 1 | +(n-1)*4 Parameter 1 | +(n*4)+4
Parameter 2 | +(n-2)*4 Parameter 2 | +(n*4)
Parameter n <—| Old SS:ESP I Parametern | +8
. 0ld CS +4
Old EIP <—| New SS:ESP
4
""""""" Sackswith

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters

Figure 4-34 shows a 32-bit stack in legacy mode before and after the automatic stack switch when no
parameters are passed (count=0). Most software does not use the call-gate descriptor count-field to
pass parameters. System software typically defines linkage mechanisms that do not rely on automatic
parameter copying.

old New
32-Bit Stack 32-Bit Stack
Before CALL After CALL
Old SS +12
Old ESP +8
Old CS +4
1 Old SS:ESP Old P Je——{New ss:£sp
X yy
O Sakswith

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 110 shows a long-mode stack switch. In long mode, all call gates must reference
64-bit code-segment descriptors, so a long-mode stack switch uses a 64-bit stack. The process of

Segmented Virtual Memory 109



AMDAQ

AM

D64 Technology 24593—Rev. 3.30—September 2018

switching stacks in long mode is similar to switching in legacy mode when no parameters are passed.
The process is as follows:

1.

The target code-segment DPL is read by the processor and used as an index into the 64-bit TSS
for selecting the new stack pointer (RSP).

The RSP register is loaded with the new RSP value read from the TSS. The SS register is loaded
with a null selector (SS=0). Setting the new SS selector to null allows proper handling of nested
control transfers in 64-bit mode. See “Nested Returns to 64-Bit Mode Procedures” on page 112
for additional information.

As in legacy mode, it is desirable to keep the stack-segment requestor privilege-level (SS.RPL)
equal to the current privilege-level (CPL). When using a call gate to change privilege levels, the
SS.RPL is updated to reflect the new CPL. The SS.RPL is restored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

The old values of the SS and RSP registers are pushed onto the stack pointed to by the new RSP.
The old SS value is popped on a subsequent far return. This allows system software to set up the
SS selector for a compatibility-mode process by executing a RET (or IRET) that changes the
privilege level.

The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the RIP of the instruction following the calling instruction.

The CS register is loaded from the segment-selector field in the long-mode call-gate descriptor,
and the RIP is loaded from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction referenced by the new RIP.

All

old New
64-Bit Stack 64-Bit Stack
Before CALL After CALL
0Old SS +24
OldRSP [+
0ld CS +8
L old ss:Rsp ORI e NewRsP J(ss=0+ new_cpl)

Stack Switch

Figure 4-35. Stack Switch—Long Mode

long-mode stack pushes resulting from a privilege-level-changing far call are eight-bytes wide and

increment the RSP by eight. Long mode ignores the call-gate count field and does not support the
automatic parameter-copy feature found in legacy mode. Software can access parameters on the old
stack, if necessary, by referencing the old stack segment selector and stack pointer saved on the new
process stack.

110

Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

4.11.3 Return Control Transfers

Returns to calling programs can be performed by using the RET instruction. The following types of
returns are possible:

* Near Return—Near returns perform control transfers within the same code segment, so the CS
register is unchanged. The new offset is popped off the stack and into the rIP register. No privilege
checks are performed.

* Far Return, Same Privilege—A far return transfers control from one code segment to another.
When the original code segment is at the same privilege level as the target code segment, a far
pointer (CS:rIP) is popped off the stack and the RPL of the new code segment (CS) is checked. If
the requested privilege level (RPL) matches the current privilege level (CPL), then a return is made
to the same privilege level. This prevents software from changing the CS value on the stack in an
attempt to return to higher-privilege software.

* Far Return, Less Privilege—Far returns can change privilege levels, but only to a lower-privilege
level. In this case a stack switch is performed between the current, higher-privilege program and
the lower-privilege return program. The CS-register and rIP-register values are popped off the
stack. The lower-privilege stack pointer is also popped off the stack and into the SS register and
rSP register. The processor checks both the CS and SS privilege levels to ensure they are equal and
at a lesser privilege than the current CS.

In the case of nested returns to 64-bit mode, a null selector can be popped into the SS register. See
“Nested Returns to 64-Bit Mode Procedures” on page 112.

Far returns also check the privilege levels of the DS, ES, FS and GS selector registers. If any of
these segment registers have a selector with a higher privilege than the return program, the
segment register is loaded with the null selector.

Stack Switching. The stack switch performed by a far return to a lower-privilege level reverses the
stack switch of a call gate to a higher-privilege level, except that parameters are never automatically
copied as part of a return. The process followed by a far-return stack switch in long mode and legacy
mode is:

1. The return code-segment RPL is read by the processor from the CS value stored on the stack to
determine that a lower-privilege control transfer is occurring.

2. The return-program instruction pointer is popped off the current-program (higher privilege) stack
and loaded into the CS and rIP registers.

3. The return instruction can include an immediate operand that specifies the number of additional
bytes to be popped off of the stack. These bytes may correspond to the parameters pushed onto the
stack previously by a call through a call gate containing a non-zero parameter-count field. If the
return includes the immediate operand, then the stack pointer is adjusted upward by adding the
specified number of bytes to the rSP.

4. The return-program stack pointer is popped off the current-program (higher privilege) stack and
loaded into the SS and rSP registers. In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register.

Segmented Virtual Memory 111



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

The operand size of a far return determines the size of stack pops when switching stacks. If a far return
is used in 64-bit mode to return from a prior call through a long-mode call gate, the far return must use
a 64-bit operand size. The 64-bit operand size allows the far return to properly read the stack
established previously by the far call.

Nested Returns to 64-Bit Mode Procedures. Inlong mode, a far call that changes privilege levels
causes the SS register to be loaded with a null selector (this is the same action taken by an interrupt in
long mode). If the called procedure performs another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame, and another null selector is loaded into
the SS register. Using a null selector in this way allows the processor to properly handle returns nested
within 64-bit-mode procedures and interrupt handlers.

Normally, a RET that pops a null selector into the SS register causes a general-protection exception
(#GP) to occur. However, in long mode, the null selector acts as a flag indicating the existence of
nested interrupt handlers or other privileged software in 64-bit mode. Long mode allows RET to pop a
null selector into SS from the stack under the following conditions:

* The target mode is 64-bit mode.
* The target CPL is less than 3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

4.12 Limit Checks

Except in 64-bit mode, limit checks are performed by all instructions that reference memory. Limit
checks detect attempts to access memory outside the current segment boundary, attempts at executing
instructions outside the current code segment, and indexing outside the current descriptor table. If an
instruction fails a limit check, either (1) a general-protection exception occurs for all other segment-
limit violations or (2) a stack-fault exception occurs for stack-segment limit violations.

In 64-bit mode, segment limits are not checked during accesses to any segment referenced by the CS,
DS, ES, FS, GS, and SS selector registers. Instead, the processor checks that the virtual addresses used
to reference memory are in canonical-address form. In 64-bit mode, as with legacy mode and
compatibility mode, descriptor-table limits are checked.

4.12.1 Determining Limit Violations

To determine segment-limit violations, the processor checks a virtual (linear) address to see if it falls
outside the valid range of segment offsets determined by the segment-limit field in the descriptor. If
any part of an operand or instruction falls outside the segment-offset range, a limit violation occurs.
For example, a doubleword access, two bytes from an upper segment boundary, causes a segment
violation because half of the doubleword is outside the segment.

112 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Three bits from the descriptor entry are used to control how the segment-limit field is interpreted: the
granularity (G) bit, the default operand-size (D) bit, and for data segments, the expand-down (E) bit.
See “Legacy Segment Descriptors” on page 80 for a detailed description of each bit.

For all segments other than expand-down segments, the minimum segment-offset is 0. The maximum
segment-offset depends on the value of the G bit:

e If G=0 (byte granularity), the maximum allowable segment-offset is equal to the value of the
segment-limit field.

e If G=1 (4096-byte granularity), the segment-limit field is first scaled by 4096 (1000h). Then 4095
(OFFFh) is added to the scaled value to arrive at the maximum allowable segment-offset, as shown
in the following equation:

maximum segment-offset = (limit X 1000h) + OFFFh
For example, if the segment-limit field is 0100h, then the maximum allowable segment-offset is
(0100h x 1000h) + OFFFh = 10 1FFFh.

In both cases, the maximum segment-size is specified when the descriptor segment-limit field is
OF FFFFh.

Expand-Down Segments. Expand-down data segments are supported in legacy mode and
compatibility mode but not in 64-bit mode. With expand-down data segments, the maximum segment
offset depends on the value of the D bit in the data-segment descriptor:

e If D=0 the maximum segment-offset is 0 FFFFh.

e If D=1 the maximum segment-offset is 0 FFFF FFFFh.

The minimum allowable segment offset in expand-down segments depends on the value of the G bit:

e If G=0 (byte granularity), the minimum allowable segment offset is the segment-limit value plus 1.

For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
0101h.

o If G=1 (4096-byte granularity), the segment-limit value in the descriptor is first scaled by 4096
(1000h), and then 4095 (OFFFh) is added to the scaled value to arrive at a scaled segment-limit
value. The minimum allowable segment-offset is this scaled segment-limit value plus 1, as shown
in the following equation:
minimum segment-offset = (limit X 1000) + OFFFh + 1
For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is

(0100h x 1000h) + OFFFh + 1=10_1000h.

For expand-down segments, the maximum segment size is specified when the segment-limit value is
0.

Segmented Virtual Memory 113



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

4.12.2 Data Limit Checks in 64-bit Mode

In 64-bit mode, data reads and writes are not normally checked for segment-limit violations. When
EFER.LMSLE = 1, reads and writes in 64-bit mode at CPL > 0, using the DS, ES, FS, or SS segments,
have a segment-limit check applied.

This limit-check uses the 32-bit segment-limit to find the maximum allowable address in the top 4GB
of the 64-bit virtual (linear) address space.

Table 4-8. Segment Limit Checks in 64-Bit Mode

Memory Address Effect of Limit Check
Linear Address < (OFFFFFFFF_00000000h + 32-bit Limit) |Access OK.
Linear Address > (OFFFFFFFF_00000000h + 32-bit Limit) |Exception (#GP or #SS)

This segment-limit check does not apply to accesses through the GS segment, or to code reads. If the
DS, ES, FS, or SS segment is null or expand-down, the effect of the limit check is undefined.

413 Type Checks

Type checks prevent software from using descriptors in invalid ways. Failing a type check results in an
exception. Type checks are performed using five bits from the descriptor entry: the S bit and the 4-bit
Type field. Together, these five bits are used to specify the descriptor type (code, data, segment, or
gate) and its access characteristics. See “Legacy Segment Descriptors” on page 80 for a detailed
description of the S bit and Type-field encodings. Type checks are performed by the processor in
compatibility mode as well as legacy mode. Limited type checks are performed in 64-bit mode.

4.13.1 Type Checks in Legacy and Compatibility Modes
The type checks performed in legacy mode and compatibility mode are listed in the following sections.

Descriptor-Table Register Loads. Loads into the LDTR and TR descriptor-table registers are
checked for the appropriate system-segment type. The LDTR can only be loaded with an LDT
descriptor, and the TR only with a TSS descriptor. The checks are performed during any action that
causes these registers to be loaded. This includes execution of the LLDT and LTR instructions and
during task switches.

Segment Register Loads. The following restrictions are placed on the segment-descriptor types that
can be loaded into the six user segment registers:

e Only code segments can be loaded into the CS register.

e Only writable data segments can be loaded into the SS register.

*  Only the following segment types can be loaded into the DS, ES, FS, or GS registers:
- Read-only or read/write data segments.

- Readable code segments.

114 Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

These checks are performed during any action that causes the segment registers to be loaded. This
includes execution of the MOV segment-register instructions, control transfers, and task switches.

Control Transfers. Control transfers (branches and interrupts) place additional restrictions on the
segment types that can be referenced during the transfer:

* The segment-descriptor type referenced by far CALLs and far JMPs must be one of the following:
- A code segment
- A call gate or a task gate
- Anavailable TSS (only allowed in legacy mode)
- A task gate (only allowed in legacy mode)

e Only code-segment descriptors can be referenced by call-gate, interrupt-gate, and trap-gate
descriptors.

e Only TSS descriptors can be referenced by task-gate descriptors.

* The link field (selector) in the TSS can only point to a TSS descriptor. This is checked during an
IRET control transfer to a task.

e The far RET and far IRET instructions can only reference code-segment descriptors.

* The interrupt-descriptor table (IDT), which is referenced during interrupt control transfers, can
only contain interrupt gates, trap gates, and task gates.

Segment Access. After a segment descriptor is successfully loaded into one of the segment
registers, reads and writes into the segments are restricted in the following ways:

e Writes are not allowed into read-only data-segment types.
e Writes are not allowed into code-segment types (executable segments).

e Reads from code-segment types are not allowed if the readable (R) type bit is cleared to 0.

These checks are generally performed during execution of instructions that access memory.

4.13.2 Long Mode Type Check Differences

Compatibility Mode and 64-Bit Mode. The following type checks differ in long mode (64-bit mode
and compatibility mode) as compared to legacy mode:

e System Segments—System-segment types are checked, but the following types that are valid in
legacy mode are illegal in long mode:

- 16-bit available TSS.
- 16-bit busy TSS.

- Type-field encoding of 00h in the upper half of a system-segment descriptor to indicate an
illegal type and prevent access as a legacy descriptor.

* Gates—Gate-descriptor types are checked, but the following types that are valid in legacy mode
are illegal in long mode:

Segmented Virtual Memory 115



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

16-bit call gate.
16-bit interrupt gate.
16-bit trap gate.
Task gate.

64-Bit Mode. 64-bit mode disables segmentation, and most of the segment-descriptor fields are
ignored. The following list identifies situations where type checks in 64-bit mode differ from those in
compatibility mode and legacy mode:

e Code Segments—The readable (R) type bit is ignored in 64-bit mode. None of the legacy type-
checks that prevent reads from or writes into code segments are performed in 64-bit mode.

* Data Segments—Data-segment type attributes are ignored in 64-bit mode. The writable (W) and
expand-down (E) type bits are ignored. All data segments are treated as writable.

116

Segmented Virtual Memory



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

5 Page Translation and Protection

The x86 page-translation mechanism (or simply paging mechanism) enables system software to create
separate address spaces for each process or application. These address spaces are known as virtual-
address spaces. System software uses the paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of hierarchical address-translation tables
known collectively as page tables.

The paging mechanism and the page tables are used to provide each process with its own private
region of physical memory for storing its code and data. Processes can be protected from each other by
isolating them within the virtual-address space. A process cannot access physical memory that is not
mapped into its virtual-address space by system software.

System software can use the paging mechanism to selectively map physical-memory pages into
multiple virtual-address spaces. Mapping physical pages in this manner allows them to be shared by
multiple processes and applications. The physical pages can be configured by the page tables to allow
read-only access. This prevents applications from altering the pages and ensures their integrity for use
by all applications.

Shared mapping is typically used to allow access of shared-library routines by multiple applications. A
read-only copy of the library routine is mapped to each application virtual-address space, but only a
single copy of the library routine is present in physical memory. This capability also allows a copy of
the operating-system kernel and various device drivers to reside within the application address space.
Applications are provided with efficient access to system services without requiring costly address-
space switches.

The system-software portion of the address space necessarily includes system-only data areas that
must be protected from accesses by applications. System software uses the page tables to protect this
memory by designating the pages as SUpervisor pages. Such pages are only accessible by system
software.

When the supervisor mode execution prevention (SMEP) feature is supported and enabled, attempted
instruction fetches from user-mode accessible pages while in supervisor-mode triggers a page fault
(#PF). This protects the integrity of system software by preventing the execution of instructions at a
supervisor privilege level (CPL < 3) when these instructions could have been written or modified by
user-mode code.

Finally, system software can use the paging mechanism to map multiple, large virtual-address spaces
into a much smaller amount of physical memory. Each application can use the entire 32-bit or 64-bit
virtual-address space. System software actively maps the most-frequently-used virtual-memory pages
into the available pool of physical-memory pages. The least-frequently-used virtual-memory pages are
swapped out to the hard drive. This process is known as demand-paged virtual memory.

Page Translation and Protection 117



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

5.1 Page Translation Overview

The legacy x86 architecture provides support for translating 32-bit virtual addresses into 32-bit
physical addresses (larger physical addresses, such as 36-bit or 40-bit addresses, are supported as a
special mode). The AMD64 architecture enhances this support to allow translation of 64-bit virtual
addresses into 52-bit physical addresses, although processor implementations can support smaller
virtual-address and physical-address spaces.

Virtual addresses are translated to physical addresses through hierarchical translation tables created
and managed by system software. Each table contains a set of entries that point to the next-lower table
in the translation hierarchy. A single table at one level of the hierarchy can have hundreds of entries,
each of which points to a unique table at the next-lower hierarchical level. Each lower-level table can
in turn have hundreds of entries pointing to tables further down the hierarchy. The lowest-level table in
the hierarchy points to the translated physical page.

Figure 5-1 on page 119 shows an overview of the page-translation hierarchy used in long mode.
Legacy mode paging uses a subset of this translation hierarchy (the page-map level-4 table does not
exist in legacy mode and the PDP table may or may not be used, depending on which paging mode is
enabled). As this figure shows, a virtual address is divided into fields, each of which is used as an
offset into a translation table. The complete translation chain is made up of all table entries referenced
by the virtual-address fields. The lowest-order virtual-address bits are used as the byte offset into the
physical page.

118 Page Translation and Protection



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
63 64-Bit Virtual Address 0
Sign Page Map Page Directory Page Directory Page Table Physical Page
Extension Level-4 Offset Pointer Offset Offset Offset Offset
|
poPE |- | S S I : :
""""" R > PTE : 5
> PML4E — . ] Ly pDE | be-eooo-- E___________E
""""" Eaiutuiiuiute ] Physical
> : I Address
Page Map ,
Level 4 [ ’ [ ; [ S
Table : ] : ] . N A
Page Directory Pointer Page Directory Page Physical Page
Table Table Table Frame
Page Map Base Register CR3
Figure 5-1. Virtual to Physical Address Translation—Long Mode
Page Translation and Protection 119



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

The following physical-page sizes are supported: 4 Kbytes, 2 Mbytes, 4 Mbytes, and 1 Gbytes. In long
mode 4-Kbyte, 2-MByte, and 1-GByte sizes are available. In legacy mode 4-Kbyte, 2-MByte, and 4-
MByte sizes are available.

Virtual addresses are 32 bits long, and physical addresses up to the supported physical-address size can
be used. The AMDG64 architecture enhances the legacy translation support by allowing virtual
addresses of up to 64 bits long to be translated into physical addresses of up to 52 bits long.

Currently, the AMDG64 architecture defines a mechanism for translating 48-bit virtual addresses to 52-
bit physical addresses. The mechanism used to translate a full 64-bit virtual address is reserved and
will be described in a future AMDG64 architectural specification.

5.1.1 Page-Translation Options

The form of page-translation support available to software depends on which paging features are
enabled. Four controls are available for selecting the various paging alternatives:

e Page-Translation Enable (CR0.PG)

e Physical-Address Extensions (CR4.PAE)
* Page-Size Extensions (CR4.PSE)

e Long-Mode Active (EFER.LMA)

Not all paging alternatives are available in all modes. Table 5-1 summarizes the paging support
available in each mode.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

Physical- Page-Size Page- Page- Resulting | Maximum | Maximum
Address - Directory . . - .
Mode Extensions Extensions Pointer Directory | Physical- | Virtual Physical
(CRA.PAE) (CR4.PSE) Offset Page Size |Page Size| Address | Address
Long Mode PDPE PS=0 PDE.PS=0 | 4 Kbyte
(64-bit and Enabled - PDE.PS=1| 2Mbyte | 64-bit | 52-bit
compatability
PDE.PS=0 | 4 Kbyte 52-bit
Enabled - _
PDE.PS=1 | 2 Mbyte 52-bit
Legacy Mode Disabled | PDPE.PS=0 - 4 Kbyte 32-bit 32-bit
Disabled PDE.PS=0 | 4 Kbyte 32-bit
Enabled .
PDE.PS=1 | 4 Mbyte 40-bit

5.1.2 Page-Translation Enable (PG) Bit

Page translation is controlled by the PG bit in CRO (bit 31). When CR0O.PG is set to 1, page translation
is enabled. When CRO.PG is cleared to 0, page translation is disabled.

120 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The AMDG64 architecture uses CR0.PG to activate and deactivate long mode when long mode is
enabled. See “Enabling and Activating Long Mode” on page 438 for more information.

5.1.3 Physical-Address Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in CR4 (bit 5). When CR4.PAE is setto 1,
physical-address extensions are enabled. When CR4.PAE is cleared to 0, physical-address extensions
are disabled.

Setting CR4.PAE = 1 enables virtual addresses to be translated into physical addresses up to 52 bits
long. This is accomplished by doubling the size of paging data-structure entries from 32 bits to 64 bits
to accommodate the larger physical base-addresses for physical-pages.

PAE must be enabled before activating long mode. See “Enabling and Activating Long Mode” on
page 438.

5.1.4 Page-Size Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit 4). Setting CR4.PSE to 1 allows
operating-system software to use 4-Mbyte physical pages in the translation process. The 4-Mbyte
physical pages can be mixed with standard 4-Kbyte physical pages or replace them entirely. The
selection of physical-page size is made on a page-directory-entry basis. See “Page Size (PS) Bit” on
page 139 for more information on physical-page size selection. When CR4.PSE is cleared to 0, page-
size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical-page size depends on the value of CR4.PSE
and CR4.PAE, as follows:

* Ifphysical-address extensions are enabled (CR4.PAE=1), the large physical-page size is 2 Mbytes,
regardless of the value of CR4.PSE.

e If physical-address extensions are disabled (CR4.PAE=0) and CR4.PSE=1, the large physical-
page size is 4 Mbytes.

e Ifboth CR4.PAE=0 and CR4.PSE=0, the only available page size is 4 Kbytes.

The value of CR4.PSE is ignored when long mode is active. This is because physical-address
extensions must be enabled in long mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be translated from 32-bit virtual addresses
using 32-bit paging data-structure entries when 4-Mbyte physical-page sizes are selected. In this
special case, CR4.PSE=1 and CR4.PAE=0. See “4-Mbyte Page Translation” on page 125 for a
description of the 4-Mbyte PDE that supports 40-bit physical-address translation. The 40-bit physical-
address capability is an AMD64 architecture enhancement over the similar capability available in the
legacy x86 architecture.

Page Translation and Protection 121



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

5.1.5 Page-Directory Page Size (PS) Bit

The page directory offset entry (PDE) and page directory pointer offset entry (PDPE) are data
structures used in page translation (see Figure 5-1 on page 119). The page-size (PS) bit in the PDE (bit
7, referred to as PDE.PS) selects between standard 4-Kbyte physical-page sizes and larger (2-Mbyte or
4-Mbyte) physical-page sizes. The page-size (also PS) bit in the PDPE (bit 7, referred to as PDPE.PS)
selects between 2-Mbyte and 1-Gbyte physical-page sizes in long mode.

When PDE.PS is set to 1, large physical pages are used, and the PDE becomes the lowest level of the
translation hierarchy. The size of the large page is determined by the values of CR4.PAE and
CRA4.PSE, as shown in Figure 5-1 on page 120. When PDE.PS is cleared to 0, standard 4-Kbyte
physical pages are used, and the PTE is the lowest level of the translation hierarchy.

When PDPE.PS is set to 1, 1-Gbyte physical pages are used, and the PDPE becomes the lowest level of
the translation hierarchy. Neither the PDE nor PTE are used for 1-Gbyte paging.

5.2 Legacy-Mode Page Translation

Legacy mode supports two forms of translation:

* Normal (non-PAE) Paging—This is used when physical-address extensions are disabled
(CR4.PAE=0). Entries in the page translation table are 32 bits and are used to translate 32-bit
virtual addresses into physical addresses as large as 40 bits.

e PAE Paging—This is used when physical-address extensions are enabled (CR4.PAE=1). Entries in
the page translation table are 64 bits and are used to translate 32-bit virtual addresses into physical
addresses as large as 52 bits.

Legacy paging uses up to three levels of page-translation tables, depending on the paging form used
and the physical-page size. Entries within each table are selected using virtual-address bit fields. The
legacy page-translation tables are:

» Page Table—Each page-table entry (PTE) points to a physical page. If 4-Kbyte pages are used, the
page table is the lowest level of the page-translation hierarchy. PTEs are not used when translating
2-Mbyte or 4-Mbyte pages.

e Page Directory—If 4-Kbyte pages are used, each page-directory entry (PDE) points to a page
table. If 2-Mbyte or 4-Mbyte pages are used, a PDE is the lowest level of the page-translation
hierarchy and points to a physical page. In non-PAE paging, the page directory is the highest level
of the translation hierarchy.

e Page-Directory Pointer—Each page-directory pointer entry (PDPE) points to a page directory.
Page-directory pointers are only used in PAE paging (CR4.PAE=1), and are the highest level in the
legacy page-translation hierarchy.

The translation-table-entry formats and how they are used in the various forms of legacy page
translation are described beginning on page 124.

122 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

5.2.1 CR3 Register

The CR3 register is used to point to the base address of the highest-level page-translation table. The
base address is either the page-directory pointer table or the page directory table. The CR3 register
format depends on the form of paging being used. Figure 5-2 on page 123 shows the CR3 format when
normal (non-PAE) paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format when PAE paging
is used (CR4.PAE=1).

31 12 11 5 4 3 2 0
P|P

Page-Directory-Table Base Address Reserved C | W | Reserved
DT
Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

31 5 4 3 2 0
P|P

Page-Directory-Pointer-Table Base Address C | W | Reserved
DT

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

Table Base Address Field. This field points to the starting physical address of the highest-level
page-translation table. The size of this field depends on the form of paging used:

* Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field occupies bits 31:12, and points to the
base address of the page-directory table. The page-directory table is aligned on a 4-Kbyte
boundary, with the low-order 12 address bits 11:0 assumed to be 0. This yields a total base-address
size of 32 bits.

* PAE Paging (CR4.PAE=1)—This field is 27 bits and occupies bits 31:5. The CR3 register points to
the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on
a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

Page Translation and Protection 123



AMDA1
AMDG64 Technology

24593—Rev. 3.30—September 2018

5.2.2 Normal (Non-PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte physical pages, as described in the
following sections.

4-Kbyte Page Translation. 4-Kbyte physical-page translation is performed by dividing the 32-bit
virtual address into three fields. Each of the upper two fields is used as an index into a two-level page-
translation hierarchy. The virtual-address fields are used as follows, and are shown in Figure 5-4:

e Bits 31:22 index into the 1024-entry page-directory table.
e Bits 21:12 index into the 1024-entry page table.
e Bits 11:0 provide the byte offset into the physical page.

Virtual Address

31 2221 1211 0
Page-Directory Page-Table
Offset Offset Page Offset
£ 10 410 A 12
Page- 4 Kbyte
Directory Page Physical
Table Table Page
> PTE ,3/2
Lo Physical
PDE 32 Address
— P — >
31 12
Page-Directory Base CR3

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 on page 125 shows the format of the PDE (page-directory entry), and Figure 5-6 on

page 125 shows the format of the PTE (page-table entry). Each table occupies 4 Kbytes and can hold
1024 of the 32-bit table entries. The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 137.

Figure 5-5 shows bit 7 cleared to 0. This bit is the page-size bit (PS), and specifies a 4-Kbyte physical-
page translation.

124 Page Translation and Protection



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
31 12 11 9 8 7 6 5 4 3 2 10
I [ PIP|U|IR
Page-Table Base Address AVL GIO|G|A|C|W|/|/]|P
N N DIT|S|W

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

31 12 11 9 87 6 5 4 3 2 10
P PIPIU|R

Physical-Page Base Address AVL G|A|ID|A|[C|W|/|]]|P
T D|T|S|W

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page translation is only supported when page-size extensions
are enabled (CR4.PSE=1) and physical-address extensions are disabled (CR4.PAE=0).

PSE defines a page-size bit in the 32-bit PDE format (PDE.PS). This bit is used by the processor
during page translation to support both 4-Mbyte and 4-Kbyte pages. 4-Mbyte pages are selected when
PDE.PS is set to 1, and the PDE points directly to a 4-Mbyte physical page. PTEs are not used in a 4-
Mbyte page translation. If PDE.PS is cleared to 0, or if 4-Mbyte page translation is disabled, the PDE
points to a PTE.

4-Mbyte page translation is performed by dividing the 32-bit virtual address into two fields. Each field
is used as an index into a single-level page-translation hierarchy. The virtual-address fields are used as
follows, and are shown in Figure 5-7 on page 126:

e Bits 31:22 index into the 1024-entry page-directory table.
* Bits 21:0 provide the byte offset into the physical page.

Page Translation and Protection 125



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Virtual Address

31 2221 0
Page-Directory
Offset Page Offset
A~ 10 A 22
Page- 4 Mbyte
Directory Physical
Table Page
Ly Physical
PDE }O Address
— P —
31 12
Page-Directory Base CR3

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The AMDG64 architecture modifies the legacy 32-bit PDE format in PSE mode to increase physical-
address size support to 40 bits. This increase in address size is accomplished by using bits 20:13 to
hold eight additional high-order physical-address bits. Bit 21 is reserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is enabled. The physical-page base-address
bits are contained in a split field. The high-order, physical-page base-address bits 39:32 are located in
PDE[20:13], and physical-page base-address bits 31:22 are located in PDE[31:22].

31 22 21 20 131211 9 8 7 6 5 4 3 2 1 0
. P PIP|U[R

Physical-Page Base Address [31:22] | o | PTYsical-Page Base Address| \ | a1 g| 1 |p|a|c|w|/|/]|P
[39:32] T D[T|s|w

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode

5.2.3 PAE Paging

PAE paging is used when physical-address extensions are enabled (CR4.PAE=1). PAE paging doubles
the size of page-translation table entries to 64 bits so that the table entries can hold larger physical

126 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

addresses (up to 52 bits). The size of each table remains 4 Kbytes, which means each table can hold
512 of the 64-bit entries. PAE paging also introduces a third-level page-translation table, known as the
page-directory-pointer table (PDP).

The size of large pages in PAE-paging mode is 2 Mbytes rather than 4 Mbytes. PAE uses the page-
directory page-size bit (PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page sizes. PAE
automatically uses the page-size bit, so the value of CR4.PSE is ignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page translation is performed by
dividing the 32-bit virtual address into four fields, each of the upper three fields is used as an index into
a 3-level page-translation hierarchy. The virtual-address fields are described as follows and are shown
in Figure 5-9:

e Bits 31:30 index into a 4-entry page-directory-pointer table.

e Bits 29:21 index into the 512-entry page-directory table.

e Bits 20:12 index into the 512-entry page table.

* Bits 11:0 provide the byte offset into the physical page.

Virtual Address

31 30 29 2120 12 11 0
Page-Directory- | Page-Directory Page-Table
Pointer Offset Offset Offset Page Offset
// 2 //9 //9 // 12
Page- 4 Kbyte
Page- Directory Page Physical
Directory- Table Table Page
Pointer
Table .
1 PTE /5/2
52
> PDPE [
Physical
- 52* L

A
L »| ppE / ddress
I I >

*This is an architectural limit. A given processor
31 5 implementation may support fewer bits.

Y

—‘ Page-Directory-Pointer Base CR3

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Figures 5-10 through 5-12 show the legacy-mode 4-Kbyte translation-table formats:

Page Translation and Protection 127



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Figure 5-10 shows the PDPE (page-directory-pointer entry) format.
e Figure 5-11 shows the PDE (page-directory entry) format.
* Figure 5-12 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137.

Figure 5-11 shows the PDE.PS bit cleared to 0 (bit 7), specifying a 4-Kbyte physical-page translation.

63 52 51 32
Page-Directory Base Address
RESEEE], W2 (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 5 4 3 2 1 0
Reserved PP
Page-Directory Base Address AVL " |C|W| MBZ |P
MBZ DlT

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

63 62 52 51 32
N Page-Table Base Address
X N 122 (This is an architectural limit. A given implementation may support fewer bits.)
31 12 1 9 8 7 6 54 3 2 10
| | P|P|U|R
Page-Table Base Address AVL G|O|IG|A|[C|W|/|/]]|P
N N D|T|S|W
Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode
63 62 52 51 32
N Physical-Page Base Address
X N 122 (This is an architectural limit. A given implementation may support fewer bits.)
31 12 1 9 8 7 6 54 3 2 10
P PIP|U|R
Physical-Page Base Address AVL G|A|ID|A|C|W|/|]]|P
T D|T|S|W

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page translation is performed by dividing the 32-bit virtual
address into three fields. Each field is used as an index into a 2-level page-translation hierarchy. The
virtual-address fields are described as follows and are shown in Figure 5-13 on page 129:

e Bits 31:30 index into the 4-entry page-directory-pointer table.

128 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

e Bits 29:21 index into the 512-entry page-directory table.
* Bits 20:0 provide the byte offset into the physical page.

Virtual Address

31 30 29 2120 0
Page-Directory- | Page-Directory
Pointer Offset Offset Page Offset
A2 A9 A 21
Page- 2 Mbyte
Page- Directory Physical
Directory- Table Page
Pointer
Table
52*
> PDPE |7
50+ L Physical
> ; PDE 7 Address
=_ > I
*This is an architectural limit. A given processor
31 5 implementation may support fewer bits.
—‘ Page-Directory-Pointer Base Register CR3

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode
Figure 5-14 shows the format of the PDPE (page-directory-pointer entry) and Figure 5-15 on page 130
shows the format of the PDE (page-directory entry). PTEs are not used in 2-Mbyte page translations.

Figure 5-15 on page 130 shows the PDE.PS bit set to 1 (bit 7), specifying a 2-Mbyte physical-page
translation.

63 52 51 32
Page-Directory Base Address
L2 (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 5 4 3 2 1 0
Reserved PP
Page-Directory Base Address AVL  |C|W| MBZ |P
MBZ DlT

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

Page Translation and Protection 129



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
63 62 52 51 32
N Physical-Page Base Address
X XL, WU (This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

P PIPIU|R
Physical-Page Base Address Reserved, MBZ A AVL G|1|D|A|C|W|/|/]|P
T D|T|S|W

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation

Long-mode page translation requires the use of physical-address extensions (PAE). Before activating
long mode, PAE must be enabled by setting CR4.PAE to 1. Activating long mode before enabling PAE
causes a general-protection exception (#GP) to occur.

The PAE-paging data structures support mapping of 64-bit virtual addresses into 52-bit physical
addresses. PAE expands the size of legacy page-directory entries (PDEs) and page-table entries
(PTEs) from 32 bits to 64 bits, allowing physical-address sizes of greater than 32 bits.

The AMDG64 architecture enhances the page-directory-pointer entry (PDPE) by defining previously
reserved bits for access and protection control. A new translation table is added to PAE paging, called
the page-map level-4 (PML4). The PMLA4 table precedes the PDP table in the page-translation
hierarchy.

Because PAE is always enabled in long mode, the PS bit in the page directory entry (PDE.PS) selects
between 4-Kbyte and 2-Mbyte page sizes, and the CR4.PSE bit is ignored. When 1-Gbyte pages are
supported, the PDPE. PS bit selects the 1-Gbyte page size.

5.3.1 Canonical Address Form

The AMDG64 architecture requires implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form. An address is in canonical form if the
address bits from the most-significant implemented bit up to bit 63 are all ones or all zeros. If the
addresses of all bytes in a virtual-memory reference are not in canonical form, the processor generates
a general-protection exception (#GP) or a stack fault (#SS) as appropriate.

5.3.2 CR3

In long mode, the CR3 register is used to point to the PML4 base address. CR3 is expanded to 64 bits
in long mode, allowing the PML4 table to be located anywhere in the 52-bit physical-address space.
Figure 5-16 on page 131 shows the long-mode CR3 format.

130 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

63 52 51 32

Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

Reserved, MBZ

31 12 11 5 2 0

Page-Map Level-4 Table Base Address Reserved Reserved

o O Tl
- S U|w

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits 51:12. This 40-bit field points to the PML4 base address. The
PMLA4 table is aligned on a 4-Kbyte boundary with the low-order 12 address bits (11:0) assumed to be
0. This yields a total base-address size of 52 bits. System software running on processor
implementations supporting less than the full 52-bit physical-address space must clear the
unimplemented upper base-address bits to 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0), the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.3.3 4-Kbyte Page Translation

In long mode, 4-Kbyte physical-page translation is performed by dividing the virtual address into six
fields. Four of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-17 on page 132:

* Bits 63:48 are a sign extension of bit 47, as required for canonical-address forms.
e Bits 47:39 index into the 512-entry page-map level-4 table.

e Bits 38:30 index into the 512-entry page-directory pointer table.

e Bits 29:21 index into the 512-entry page-directory table.

e Bits 20:12 index into the 512-entry page table.

* Bits 11:0 provide the byte offset into the physical page.

Note: The sizes of the sign extension and the PMLA4 fields depend on the number of virtual address
bits supported by the implementation.

Page Translation and Protection 131



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Virtual Address

63 48 47 3938 30 29 2120 1211 0
Page-M
) L a?i O?fp ¢ Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend evera VISeL | pointer Offset Offset Offset Page Offset
(PML4)
A9 A9 A9 ¥9 A12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
—* PTE ,5/2
52
5o+ ™| PDPE |7
e buLae B2 s Lo Physical
Address
—> PDE 1
> P — — >

*This is an architectural limit. A given processor

51 12 implementation may support fewer bits.
Page-Map Level-4
Base Address CR3

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 133 and Figure 5-21 on page 133 show the long-mode 4-Kbyte
translation-table formats:

* Figure 5-18 on page 133 shows the PMLA4E (page-map level-4 entry) format.

* Figure 5-19 on page 133 shows the PDPE (page-directory-pointer entry) format.
e Figure 5-20 on page 133 shows the PDE (page-directory entry) format.

* Figure 5-21 on page 133 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137.

Figure 5-20 on page 133 shows the PDE.PS bit (bit 7) cleared to 0, indicating a 4-Kbyte physical-page
translation.

132 Page Translation and Protection



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
63 62 52 51 32
N Available Page-Directory-Pointer Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 1 0
MIM| | PIPIU|R
Page-Directory-Pointer Base Address AVL B/ B|G|A|C|W|/]|/]|P
Z|Z|N D|T|S|W
Figure 5-18. 4-Kbyte PML4E—Long Mode
63 62 52 51 32
N Available Page-Directory Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 1 0
| | PIPIU|R
Page-Directory Base Address AVL G|O|IG|A|C|W|/]|/|P
N N D|T|S|W
Figure 5-19. 4-Kbyte PDPE—Long Mode
63 62 52 51 32
N Available Page-Table Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 10
I | PIPIU|R
Page-Table Base Address AVL GIO|G|A|C|W|/|/]|P
N N D|T|S|W
Figure 5-20. 4-Kbyte PDE—Long Mode
63 62 52 51 32
N Available Physical-Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 10
P PIPIU|R
Physical-Page Base Address AVL G|IA|D|A|C|W|/|/]|P
T D|T|S|W

Figure 5-21. 4-Kbyte PTE—Long Mode

Page Translation and Protection 133



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

5.3.4 2-Mbyte Page Translation

In long mode, 2-Mbyte physical-page translation is performed by dividing the virtual address into five
fields. Three of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-22:

* Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
e Bits 47:39 index into the 512-entry page-map level-4 table.

e Bits 38:30 index into the 512-entry page-directory-pointer table.

e Bits 29:21 index into the 512-entry page-directory table.

* Bits 20:0 provide the byte offset into the physical page.

Virtual Address

63 48 47 3938 30 29 2120 0
Page-Ma . .
. L |4gT o OF:f Page-Directory- | Page-Directory P Offset
Sign Extend evel4 Table Offset | - pyinter Offset Offset age Liise
(PML4)
A9 A9 A9 72
Page-
Page-Map Directory- Page- 2 Mbyte
Level-4 Pointer Directory Physical
Table Table Table Page
52
50+ ™ PDPE |7
™ PML4E 4 - . Zz)(;swal
L » ppe 1~ ress

L I — 5
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map Level-4
| ge ep CR3

Base Address
__

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 135 show the long-mode 2-Mbyte translation-table formats (the
PML4 and PDPT formats are identical to those used for 4-Kbyte page translations and are repeated
here for clarity):

* Figure 5-23 on page 135 shows the PMLA4E (page-map level-4 entry) format.
* Figure 5-24 on page 135 shows the PDPE (page-directory-pointer entry) format.
e Figure 5-25 on page 135 shows the PDE (page-directory entry) format.

134 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137. PTEs are not used in 2-Mbyte page translations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a 2-Mbyte physical-page translation.

63 62 52 51 32
N Available Page-Directory-Pointer Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 10
MIM| | PIPIU|R
Page-Directory-Pointer Base Address AVL B/ B|G|IA|C|{W|/|/|P
Z|Z|N D|T|S|W
Figure 5-23. 2-Mbyte PML4E—Long Mode
63 62 52 51 32
N Available Page-Directory Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 5 4 3 2 1 0
| | PIPIU|R
Page-Directory Base Address AVL G|O|G|A|C|W|/]|/|P
N N D|T|S|W
Figure 5-24. 2-Mbyte PDPE—Long Mode
63 52 51 32
N Available Physical Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 21 20 13 12 11 9 8 7 6 5 4 3 2 10
P PIPIU|R
Physical Page Base Address Reserved, MBZ A AVL G|1|D|A|C|W|/|/]|P
T D|T|S|W

Figure 5-25. 2-Mbyte PDE—Long Mode

5.3.5 1-Gbyte Page Translation

In long mode, 1-Gbyte physical-page translation is performed by dividing the virtual address into four
fields. Two of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-26 on page 136:

* Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
* Bits 47:39 index into the 512-entry page-map level-4 table.

* Bits 38:30 index into the 512-entry page-directory-pointer table.

e Bits 29:0 provide the byte offset into the physical page.

Page Translation and Protection 135



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Virtual Address

63 48 47 3938 30 29 0
Page-M .
. age-map Page-Directory-
Sign Extend  |Level-4 Table Offset : Page Offset
Pointer Offset
(PML4)
X9 A9 A 30
Page-
Page-Map Directory- 1 Gbyte
Level-4 Pointer Physical
Table Table Page
52*
« —% PDPE |
> PML4E ?2 Physical
7 ™| Address
> > P —
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
‘ Page-Map Level-4 Base Address CR3

Figure 5-26. 1-Gbyte Page Translation—Long Mode

Figure 5-27 and Figure 5-28 on page 137 show the long mode 1-Gbyte translation-table formats (the
PML4 format is identical to the one used for 4-Kbyte page translations and is repeated here for clarity):

» Figure 5-27 shows the PMLA4E (page-map level-4 entry) format.
* Figure 5-28 shows the PDPE (page-directory-pointer entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137 in the current volume. PTEs and PDEs are not used in 1-Gbyte page translations.

Figure 5-28 on page 137 shows the PDPE.PS bit (bit 7) set to 1, indicating a 1-Gbyte physical-page
translation.

136 Page Translation and Protection



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
63 62 52 51 32
N Available Page Directory Pointer Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 12 11 9 8 7 6 54 3 2 10
MM/ I P/P|U|R
Page-Directory-Pointer Base Address AVL BIB|G|A|C|IW!|/!|/|P
Z\|Z D|T|S|W

Figure 5-27. 1-Gbyte PML4E—Long Mode

63 62 52 51 32

N Available Physical Page Base Address

X (This is an architectural limit. A given implementation may support fewer bits.)

31 30 12 11 9 8 7 6 5 4 3 2 10

chye P PIP|U|IR

Bage Reserved, MBZ A AVL G|{1|D|A[C|W|/|/]]|P
T DIT|S|W

Addr

Figure 5-28. 1-Gbyte PDPE—Long Mode

1-Gbyte Paging Feature Identification. EDX bit 26 as returned by CPUID function 8000 _0001h
indicates 1-Gbyte page support. The EAX register as returned by CPUID function 8000 0019h reports
the number of 1-Gbyte L1 TLB entries supported and EBX reports the number of 1-Gbyte L2 TLB
entries. For more information using the CPUID instruction see Section 3.3 “Processor Feature
Identification” on page 63.

5.4 Page-Translation-Table Entry Fields

The page-translation-table entries contain control and informational fields used in the management of
the virtual-memory environment. Most fields are common across all translation table entries and
modes and occupy the same bit locations. However, some fields are located in different bit positions
depending on the page translation hierarchical level, and other fields have different sizes depending on
which physical-page size, physical-address size, and operating mode are selected. Although these
fields can differ in bit position or size, their meaning is consistent across all levels of the page
translation hierarchy and in all operating modes.

Page Translation and Protection 137



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

5.4.1 Field Definitions
The following sections describe each field within the page-translation table entries.

Translation-Table Base Address Field. The translation-table base-address field points to the
physical base address of the next-lower-level table in the page-translation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so only the address bits above bit 11 are
stored in the translation-table base-address field. Bits 11:0 are assumed to be 0. The size of the field
depends on the mode:

* Innormal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit physical address.
* In PAE paging (CR4.PAE=1), this field specifies a 52-bit physical address.

52 bits correspond to the maximum physical-address size allowed by the AMDG64 architecture. If a
processor implementation supports fewer than the full 52-bit physical address, software must clear the
unimplemented high-order translation-table base-address bits to 0. For example, if a processor
implementation supports a 40-bit physical-address size, software must clear bits 51:40 when writing a
translation-table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-address field points to the base
address of the translated physical page. This field is found only in the lowest level of the page-
translation hierarchy. The size of the field depends on the mode:

* Innormal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit base address for a physical
page.
* In PAE paging (CR4.PAE=1), this field specifies a 52-bit base address for a physical page.

Physical pages can be 4 Kbytes, 2 Mbytes, 4 Mbytes, or 1-Gbyte and they are always aligned on an
address boundary corresponding to the physical-page length. For example, a 2-Mbyte physical page is
always aligned on a 2-Mbyte address boundary. Because of this alignment, the low-order address bits
are assumed to be 0, as follows:

* 4-Kbyte pages, bits 11:0 are assumed 0.
e 2-Mbyte pages, bits 20:0 are assumed 0.
e 4-Mbyte pages, bits 21:0 are assumed 0.
* 1-Gbyte pages, bits 29:0 are assumed 0.

Present (P) Bit. Bit 0. This bit indicates whether the page-translation table or physical page is loaded
in physical memory. When the P bit is cleared to 0, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical memory.

Software clears this bit to 0 to indicate a page table or physical page is not loaded in physical memory.
A page-fault exception (#PF) occurs if an attempt is made to access a table or page when the P bit is 0.
System software is responsible for loading the missing table or page into memory and setting the P bit
to 1.

138 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

When the P bit is 0, indicating a not-present page, all remaining bits in the page data-structure entry are
available to software.

Entries with P cleared to 0 are never cached in TLB nor will the processor set the Accessed or Dirty bit
for the table entry.

Read/Write (R/W) Bit. Bit 1. This bit controls read/write access to all physical pages mapped by the
table entry. For example, a page-map level-4 R/W bit controls read/write access to all 128M

(512 x 512 x 512) physical pages it maps through the lower-level translation tables. When the R/W bit
is cleared to 0, access is restricted to read-only. When the R/W bit is set to 1, both read and write access
is allowed. See “Page-Protection Checks” on page 145 for a description of the paging read/write
protection mechanism.

User/Supervisor (U/S) Bit. Bit 2. This bit controls user (CPL 3) access to all physical pages mapped
by the table entry. For example, a page-map level-4 U/S bit controls the access allowed to all 128M
(512 x 512 x 512) physical pages it maps through the lower-level translation tables. When the U/S bit
is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When the U/S bit is set to 1, both
user and supervisor access is allowed. See “Page-Protection Checks” on page 145 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. This bit indicates whether the page-translation table or
physical page to which this entry points has a writeback or writethrough caching policy. When the
PWT bit is cleared to 0, the table or physical page has a writeback caching policy. When the PWT bit is
set to 1, the table or physical page has a writethrough caching policy. See “Memory Caches” on

page 179 for additional information on caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. This bit indicates whether the page-translation table or
physical page to which this entry points is cacheable. When the PCD bit is cleared to 0, the table or
physical page is cacheable. When the PCD bit is set to 1, the table or physical page is not cacheable.
See “Memory Caches” on page 179 for additional information on caching.

Accessed (A) Bit. Bit 5. This bit indicates whether the page-translation table or physical page to
which this entry points has been accessed. The A bit is set to 1 by the processor the first time the table
or physical page is either read from or written to. The A bit is never cleared by the processor. Instead,
software must clear this bit to 0 when it needs to track the frequency of table or physical-page accesses.

Dirty (D) Bit. Bit 6. This bit is only present in the lowest level of the page-translation hierarchy. It
indicates whether the physical page to which this entry points has been written. The D bit is set to 1 by
the processor the first time there is a write to the physical page. The D bit is never cleared by the
processor. Instead, software must clear this bit to 0 when it needs to track the frequency of physical-
page writes.

Page Size (PS) Bit. Bit 7. This bit is present in page-directory entries and long-mode page-directory-
pointer entries. When the PS bit is set in the page-directory-pointer entry (PDPE) or page-directory
entry (PDE), that entry is the lowest level of the page-translation hierarchy. When the PS bit is cleared

Page Translation and Protection 139



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

to 0 in all levels above PTE, the lowest level of the page-translation hierarchy is the page-table entry
(PTE), and the physical-page size is 4 Kbytes. The physical-page size is determined as follows:

e IfEFER.LMA=I1 and PDPE.PS=1, the physical-page size is 1 Gbyte.
e If CR4.PAE=0 and PDE.PS=1, the physical-page size is 4 Mbytes.
e IfCR4.PAE=1 and PDE.PS=1, the physical-page size is 2 Mbytes.

See Table 5-1 on page 120 for a description of the relationship between the PS bit, PAE, physical-page
sizes, and page-translation hierarchy.

Global Page (G) Bit. Bit 8. This bit is only present in the lowest level of the page-translation
hierarchy. It indicates the physical page is a global page. The TLB entry for a global page (G=1) is not
invalidated when CR3 is loaded either explicitly by a MOV CRn instruction or implicitly during a task
switch. Use of the G bit requires the page-global enable bit in CR4 to be set to 1 (CR4.PGE=1). See
“Global Pages” on page 142 for more information on the global-page mechanism.

Available to Software (AVL) Bit. These bits are not interpreted by the processor and are available for
use by system software.

Page-Attribute Table (PAT) Bit. This bit is only present in the lowest level of the page-translation
hierarchy, as follows:

e Ifthe lowest level is a PTE (PDE.PS=0), PAT occupies bit 7.
e Ifthe lowest level is a PDE (PDE.PS=1) or PDPE (PDPE.PS=1), PAT occupies bit 12.

The PAT bit is the high-order bit of a 3-bit index into the PAT register (Figure 7-10 on page 198). The
other two bits involved in forming the index are the PCD and PWT bits. Not all processors support the
PAT bit by implementing the PAT registers. See “Page-Attribute Table Mechanism” on page 198 for a
description of the PAT mechanism and how it is used.

No Execute (NX) Bit. Bit 63. This bit is present in the translation-table entries defined for PAE
paging, with the exception that the legacy-mode PDPE does not contain this bit. This bit is not
supported by non-PAE paging.

The NX bit can only be set when the no-execute page-protection feature is enabled by setting
EFER.NXE to 1 (see “Extended Feature Enable Register (EFER)” on page 55). If EFER.NXE=0, the
NX bit is treated as reserved. In this case, a page-fault exception (#PF) occurs if the NX bit is not
cleared to 0.

This bit controls the ability to execute code from all physical pages mapped by the table entry. For
example, a page-map level-4 NX bit controls the ability to execute code from all 128M

(512 x 512 x 512) physical pages it maps through the lower-level translation tables. When the NX bit
is cleared to 0, code can be executed from the mapped physical pages. When the NX bit is set to 1,
code cannot be executed from the mapped physical pages. See “No Execute (NX) Bit” on page 140 for
a description of the no-execute page-protection mechanism.

140 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Reserved Bits. Software should clear all reserved bits to 0. If the processor is in long mode, or if
page-size and physical-address extensions are enabled in legacy mode, a page-fault exception (#PF)
occurs if reserved bits are not cleared to 0.

5.4.2 Notes on Accessed and Dirty Bits

The processor never sets the Accessed bit or the Dirty bit for a not present page (P = 0). The ordering
of Accessed and Dirty bit updates with respect to surrounding loads and stores is discussed below.

Accessed (A) Bit. The Accessed bit can be set for instructions that are speculatively executed by the
processor.

For example, the Accessed bit may be set by instructions in a mispredicted branch path even though
those instructions are never retired. Thus, software must not assume that the TLB entry has not been
cached in the TLB, just because no instruction that accessed the page was successfully retired.
Nevertheless, a table entry is never cached in the TLB without its Accessed bit being set at the same
time.

The processor does not order Accessed bit updates with respect to loads done by other instructions.

Dirty (D) Bit. The Dirty bit is not updated speculatively. For instructions with multiple writes, the D
bit may be set for any writes completed up to the point of a fault. In rare cases, the Dirty bit may be set
even if a write was not actually performed, including MASKMOVQ with a mask of zero and certain
x87 floating point instructions that cause an exception. Thus software can not assume that the page has
actually been written even where PTE[D] is set to 1.

If PTE[D] is cleared to 0, software can rely on the fact that the page has not been written.

In general, Dirty bit updates are ordered with respect to other loads and stores, although not
necessarily with respect to accesses to WC memory; in particular, they may not cause WC buffers to
be flushed. However, to ensure compatibility with future processors, a serializing operation should be
inserted before reading the D bit.

5.5 Translation-Lookaside Buffer (TLB)

When paging is enabled, every memory access has its virtual address automatically translated into a
physical address using the page-translation hierarchy. Translation-lookaside buffers (TLBs), also
known as page-translation caches, nearly eliminate the performance penalty associated with page
translation. TLBs are special on-chip caches that hold the most-recently used virtual-to-physical
address translations. Each memory reference (instruction and data) is checked by the TLB. If the
translation is present in the TLB, it is immediately provided to the processor, thus avoiding external
memory references for accessing page tables.

TLBs take advantage of the principle of locality. That is, if a memory address is referenced, it is likely
that nearby memory addresses will be referenced in the near future. In the context of paging, the
proximity of memory addresses required for locality can be broad—it is equal to the page size. Thus, it

Page Translation and Protection 141



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

is possible for a large number of addresses to be translated by a small number of page translations. This
high degree of locality means that almost all translations are performed using the on-chip TLBs.

System software is responsible for managing the TLBs when updates are made to the linear-to-
physical mapping of addresses. A change to any paging data-structure entry is not automatically
reflected in the TLB, and hardware snooping of TLBs during memory-reference cycles is not
performed. Software must invalidate the TLB entry of a modified translation-table entry so that the
change is reflected in subsequent address translations. TLB invalidation is described in “TLB
Management” on page 142. Only privileged software running at CPL=0 can manage the TLBs.

5.5.1 Global Pages

The processor invalidates the TLB whenever CR3 is loaded either explicitly or implicitly. After the
TLB is invalidated, subsequent address references can consume many clock cycles until their
translations are cached as new entries in the TLB. Invalidation of TLB entries for frequently-used or
critical pages can be avoided by specifying the translations for those pages as global. TLB entries for
global pages are not invalidated as a result of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing the PGE bit in CR4 (bit 7). When
CR4.PGE is set to 1, global-page extensions are enabled. When CR4.PGE is cleared to 0, global-page
extensions are disabled. When CR4.PGE=1, setting the global (G) bit in the translation-table entry
marks the page as global.

The INVLPG instruction ignores the G bit and can be used to invalidate individual global-page entries
in the TLB. To invalidate all entries, including global-page entries, disable global-page extensions
(CR4.PGE=0).

5.5.2 TLB Management

Generally, unless system software modifies the linear-to-physical address mapping, the processor
manages the TLB transparently to software. This includes allocating entries and replacing old entries
with new entries. In general, software changes made to paging-data structures are not automatically
reflected in the TLB. In these situations, it is necessary for software to invalidate TLB entries so that
these changes are immediately propagated to the page-translation mechanism.

TLB entries can be explicitly invalidated using operations intended for that purpose or implicitly
invalidated as a result of another operation. TLB invalidation has no effect on the associated page-
translation tables in memory.

Explicit Invalidations. Three mechanisms are provided to explicitly invalidate the TLB:

e The invalidate TLB entry instruction (INVLPG) can be used to invalidate specific entries within
the TLB. This instruction invalidates a page, regardless of whether it is marked as global or not.
The Invalidate TLB entry in a Specified ASID (INVLPGA) operates similarly, but operates on the
specified ASID. See “Invalidate Page, Alternate ASID” on page 476.

142 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* Updates to the CR3 register cause the entire TLB to be invalidated except for global pages. The
CR3 register can be updated with the MOV CR3 instruction. CR3 is also updated during a task
switch, with the updated CR3 value read from the TSS of the new task.

e The TLB_CONTROL field of a VMCB can request specific flushes of the TLB to occur when the
VMRUN instruction is executed on that VMCB. See “TLB Flush” on page 475.

Implicit Invalidations. The following operations cause the entire TLB to be invalidated, including
global pages:

* Modifying the CRO.PG bit (paging enable).

* Modifying the CR4.PAE bit (physical-address extensions), the CR4.PSE bit (page-size
extensions), or the CR4.PGE bit (page-global enable).

* Entering SMM as a result of an SMI interrupt.

* Executing the RSM instruction to return from SMM.

e Updating a memory-type range register (MTRR) with the WRMSR instruction.
e External initialization of the processor.

e External masking of the A20 address bit (asserting the A20M# input signal).

e Writes to certain model-specific registers with the WRMSR instruction; see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product for more information

Invalidation of Table Entry Upgrades. If a table entry is updated to remove a permission violation,
such as removing supervisor, read-only, and/or no-execute restrictions, an invalidation is not required,
because the hardware will automatically detect the changes. If a table entry is updated and does not
remove a permission violation, it is unpredictable whether the old or updated entry will be used until
an invalidation is performed.

Speculative Caching of Address Translations. For performance reasons, AMD64 processors may
speculatively load valid address translations into the TLB on false execution paths. Such translations
are not based on references that a program makes from an “architectural state” perspective, but which
the processor may make in speculatively following an instruction path which turns out to be
mispredicted. In general, the processor may create a TLB entry for any linear address for which valid
entries exist in the page table structure currently pointed to by CR3. This may occur for both
instruction fetches and data references. Such entries remain cached in the TLBs and may be used in
subsequent translations. Loading a translation speculatively will set the Accessed bit, if not already
set. A translation will not be loaded speculatively if the Dirty bit needs to be set.

Caching of Upper Level Translation Table Entries. Similarly, to improve the performance of table
walks on TLB misses, AMD64 processors may save upper level translation table entries in special
table walk caching structures which are kept coherent with the tables in memory via the same
mechanisms as the TLBs—by means of the INVLPG instruction, moves to CR3, and modification of
paging control bits in CRO and CR4. Like address translations in the TLB, these upper level entries

Page Translation and Protection 143



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

may also be cached speculatively and by false-path execution. These entries are never cached if their P
(present) bits are set to 0.

Under certain circumstances, an upper-level table entry that cannot ultimately lead to a valid
translation (because there are no valid entries in the lower level table to which it points) may also be
cached. This can happen while executing down a false path, when an in-progress table walk gets
cancelled by the branch mispredict before the low level table entry that would cause a fault is
encountered. Said another way, the fact that a page table has no valid entries does not guarantee that
upper level table entries won't be accessed and cached in the processor, as long as those upper level
entries are marked as present. For this reason, it is not safe to modify an upper level entry, even if no
valid lower-level entries exist, without first clearing its present bit, followed by an INVLPG
instruction.

Use of Cached Entries When Reporting a Page Fault Exception. On current AMD64
processors, when any type of page fault exception is encountered by the MMU, any cached upper-
level entries that lead to the faulting entry are flushed (along with the TLB entry, if already cached) and
the table walk is repeated to confirm the page fault using the table entries in memory. This is done
because a table entry is allowed to be upgraded (by marking it as present, or by removing its write,
execute or supervisor restrictions) without explicitly maintaining TLB coherency. Such an upgrade
will be found when the table is re-walked, which resolves the fault. If the fault is confirmed on the re-
walk however, a page fault exception is reported, and upper level entries that may have been cached on
the re-walk are flushed.

Handling of D-Bit Updates. When the processor needs to set the D bit in the PTE for a TLB entry
that is already marked as writable at all cached TLB levels, the table walk that is performed to access
the PTE in memory may use cached upper level table entries. This differs from the fault situation
previously described, in which cached entries aren’t used to confirm the fault during the table walk.

Invalidation of Cached Upper-level Entries by INVLPG. The effect of INVLPG on TLB caching
of upper-level page table entries is controlled by EFER[TCE] on processors that support the
translation cache extension feature. If EFER[TCE] is 0, or if the processor does not support the
translation cache extension feature, an INVLPG will flush all upper-level page table entries in the TLB
as well as the target PTE. If EFER[TCE] is 1, INVLPG will flush only those upper-level entries that
lead to the target PTE, along with the target PTE itself. INVLPGA may flush all upper-level entries
regardless of the state of TCE. For further details, see Section 3.1.7 “Extended Feature Enable
Register (EFER)” on page 55.

Handling of PDPT Entries in PAE Mode. When 32-bit PAE mode is enabled on AMD64 processors
(CR4.PAE is set to 1) a third level of the address translation table hierarchy, the page directory pointer
table (PDPT), is enabled. This table contains four entries. On current AMD64 processors, in native
mode, these four entries are unconditionally loaded into the table walk cache whenever CR3 is written
with the PDPT base address, and remain locked in. At this point they are also checked for reserved bit
violations, and if such violations are present a general protection fault occurs.

Under SVM, however, when the processor is in guest mode with PAE enabled, the guest PDPT entries
are not cached or validated at this point, but instead are loaded and checked on demand in the normal

144 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

course of address translation, just like page directory and page table entries. Any reserved bit
violations are detected at the point of use, and result in a page fault (#PF) exception rather than a
general protection (#GP) fault. The cached PDPT entries are subject to displacement from the table
walk cache and reloading from the PDPT, hence software must assume that the PDPT entries may be
read by the processor at any point while those tables are active. Future AMD processors may
implement this same behavior in native mode as well, rather than pre-loading the PDPT entries.

5.6 Page-Protection Checks

The AMDG64 architecture provides four forms of page-level memory protection. The first form of
protection prevents non-privileged (user) code from accessing privileged (supervisor) code and data.
The second form of protection prevents writes into read-only address spaces. The remaining two forms
of page-level memory protection prevent the processor from fetching instructions from pages that are
either known to contain non-executable data or that are accessible by user-mode code.

Access protection checks are performed when a virtual address is translated into a physical address.
For those checks, the processor examines the page-level memory-protection bits in the translation
tables to determine if the access is allowed. The page table bits involved in these checks are:

e User/Supervisor (U/S)—See “User/Supervisor (U/S) Bit” on page 139.
* Read/Write (R/W)—See “Read/Write (R/W) Bit” on page 139.
* No-Execute (NX)—See “No Execute (NX) Bit” on page 140.

Access protection actions taken by the processor are controlled by the following bits:

e Write-Protect enable (CR0.WP)—See “Write Protect (WP) Bit” on page 44.

e No-Execute Enable (EFER.NXE)—See “No-Execute Enable (NXE) Bit” on page 57

e Supervisor-mode Execution Prevention enable (CR4.SMEP)—See “Supervisor Mode Execution
Prevention (SMEP)” on page 50

These protection checks are available at all levels of the page-translation hierarchy.

5.6.1 User/Supervisor (U/S) Bit

The U/S bit in the page-translation tables determines the privilege level required to access the page.
Conceptually, user (non-privileged) pages correspond to a current privilege-level (CPL) of 3, or least-
privileged. Supervisor (privileged) pages correspond to a CPL of 0, 1, or 2, all of which are jointly
regarded as most-privileged.

When the processor is running at a CPL of 0, 1, or 2, it can access both user and supervisor pages.
However, when the processor is running at a CPL of 3, it can only access user pages. If an attempt is
made to access a supervisor page while the processor is running at CPL = 3, a page-fault exception
(#PF) occurs.

See “Privilege-Level Concept” on page 96 for more information on processor privilege levels.

Page Translation and Protection 145



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

5.6.2 Read/Write (R/W) Bit

The R/W bit in the page-translation tables specifies the access type allowed for the page. If R“W=1, the
page is read/write. If R/W = 0, the page is read-only. A page-fault exception (#PF) occurs if an attempt
is made by user software to write to a read-only page. If supervisor software attempts to write a read-
only page, the outcome depends on the value of the CRO.WP bit (described below).

5.6.3 No Execute (NX) Bit

The NX bit provides the ability to mark a page as non-executable. If the NX bit is set at any level of the
page-table hierarchy in the table entries traversed during a table walk, the page mapped by those
entries is a no-execute page. When no-execute protection is enabled, any attempt to fetch an
instruction from a no-execute page results in a page-fault exception (#PF).

The no-execute protection check applies to all privilege levels. It does not distinguish between
supervisor and user-level accesses.

The no-execute protection feature is supported only in PAE-paging mode. In 32-bit PAE mode, the NX
bit is not supported at the Page Directory Pointer table level. In this mode, the value of the NX bit at
the PDP level defaults to 0.

No-execute protection is enabled by setting the NXE bit in the EFER register to 1. Before setting this
bit, system software must verify the processor supports the no-execute feature by checking the CPUID
NX feature flag (CPUID Fn8000 0001 EDX[NX]).

5.6.4 Write Protect (CR0.WP) Bit

The ability to write to read-only pages is governed by the processor mode and whether write protection
is enabled. If write protection is not enabled, a processor running at CPL 0, 1, or 2 can write to any
physical page, even if it is marked as read-only. Enabling write protection by setting the WP bit in CRO
prevents supervisor code from writing into read-only pages, including read-only user-level pages.

A page-fault exception (#PF) occurs if software attempts to write (at any privilege level) into a read-
only page while write protection is enabled.

5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit

When supported and enabled, a page-fault exception (#PF) is asserted if the processor attempts to fetch
an instruction from a user page while running at CPL 0, 1, or 2. A user page is any page with the U/S
bit set to 1, and thus accessible when the processor is running at CPL = 3.

Supervisor-mode execution prevention is enabled by setting the SMEP bit (bit 20) in the CR4 register
to 1. Before setting this bit, system software must verify the processor supports the SMEP feature by
checking the SMEP feature flag (CPUID Fn0000 0007 EBX[SMEP] x0=1).

For more information using the CPUID instruction see Section 3.3 “Processor Feature Identification”
on page 63.

146 Page Translation and Protection



AMDA
AMDG64 Technology

24593—Rev. 3.30—September 2018

5.7

The privilege level and access type specified at each level of the page-translation hierarchy have a
combined effect on the protection of the translated physical page. Enabling and disabling write
protection via CRO.WP further qualifies the protection effect on the physical page.

Protection Across Paging Hierarchy

Table 5-2 shows the overall effect that privilege level and access type have on physical-page
protection when write protection is disabled (CR0.WP=0). In this case, when any translation-table
entry is specified as supervisor level, the physical page is a supervisor page and can only be accessed
by software running at CPL 0, 1, or 2. Such a page allows read/write access even if all levels of the
page-translation hierarchy specify read-only access.

Table 5-2. Physical-Page Protection, CR0.WP=0

Page-Map Level-4 Page-Directory- Page-Directory I Effective Result on
Entry Pointer Entry Entry Page-Table Entry Physical Page
u/s R/W u/s R/W u/s R/W u/s R/IW u/s R/IW
S — — — — — — —
— — S — — — — —
S R/W
— — — — S — — —
— — — — — — S —
U R U — U — U —
U — U R U — U — 1
U R
U — U — U R U —
U — U — U — U R
U R/W U R/W U R/W U R/W U R/W
Note:
S = Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R = Read-Only Access, R/W = Read/Write Access,
— = Don't Care.
Note:
1. Supervisor-level programs can access these pages as R/W.

If all table entries in the translation hierarchy are specified as user level the physical page is a user
page, and both supervisor and user software can access it. In this case the physical page is read-only if
any table entry in the translation hierarchy specifies read-only access. All table entries in the
translation hierarchy must specify read/write access for the physical page to be read/write.

Table 5-3 shows the overall effect that privilege level and access type have on physical-page access
when write protection is enabled (CR0.WP=1). When any translation-table entry is specified as
supervisor level, the physical page is a supervisor page and can only be accessed by supervisor
software. In this case, the physical page is read-only if any table entry in the translation hierarchy
specifies read-only access. All table entries in the translation hierarchy must specify read/write access
for the supervisor page to be read/write.

Page Translation and Protection 147



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access

Page-Ma Page Page
9 P Directory- rag Page Table Physical
Level-4 . Directory
Entry Pointer Entry Entry Page
Entry
R/W R/W R/W R/W R/W
R — — —
— R — —
R
— — R —
— — — R
W W W W W
Note:
R = Read-Only Access Type, W = Read/Write Access Type, — = Don'’t Care.
Physical page is in supervisor mode, as determined by U/S settings in Table 5-2.

5.7.1 Access to User Pages when CR0.WP=1

As shown in Table 5-2 on page 147, read/write access to user-level pages behaves the same as when
write protection is disabled (CR0.WP=0), with one critical difference. When write protection is
enabled, supervisor programs cannot write into read-only user pages.

5.8 Effects of Segment Protection

Segment-protection and page-protection checks are performed serially by the processor, with
segment-privilege checks performed first, followed by page-protection checks. Page-protection
checks are not performed if a segment-protection violation is found. If a violation is found during
either segment-protection or page-protection checking, an exception occurs and no memory access is
performed. Segment-protection violations cause either a general-protection exception (#GP) or a stack
exception (#SS) to occur. Page-protection violations cause a page-fault exception (#PF) to occur.

148 Page Translation and Protection



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

6 System-Management Instructions

System-management instructions provide control over the resources used to manage the processor
operating environment. This includes memory management, memory protection, task management,
interrupt and exception handling, system-management mode, software debug and performance
analysis, and model-specific features. Most instructions used to access these resources are privileged
and can only be executed while the processor is running at CPL=0, although some instructions can be
executed at any privilege level.

Table 6-1 summarizes the instructions used for system management. These include all privileged
instructions, instructions whose privilege requirement is under the control of system software, non-
privileged instructions that are used primarily by system software, and instructions used to transfer
control to system software. Most of the instructions listed in Table 6-1 are summarized in this chapter,
although a few are introduced elsewhere in this manual, as indicated in the Reference column of
Table 6-1.

For details on individual system instructions, see “System Instruction Reference” in Volume 3.

Table 6-1. System Management Instructions

Privilege
Mnemonic Name Reference
CPL=0| O/s' | Any
ARPL Adjust Requestor Privilege Level x | Adjusting Access Rights™ on
page 159
“Global Interrupt Flag, STGI and
CLaGlI Clear Global Interrupt Flag X CLGI Instructions” on page 477
CLI Clear Interrupt Flag X CLI and STI Instructions” on
page 156
CLTS Clear Task-Switched Flag in CRO X “CLTS Instruction” on page 156
HLT Halt X “Processor Halt” on page 159
INT3 Interrupt to Debug Vector X Breakpoint Instruction (INT3)” on
page 362
INVD Invalidate Caches X Cache Management” on
page 159
INVLPG Invalidate TLB Entry X “TLB Invalidation” on page 160
Invalidate TLB Entry in a “Invalidate Page, Alternate ASID”
INVLPGA Specified ASID X on page 476
“Returning From Interrupt
IRETx Interrupt Return (all forms) X Procedures” on page 246
LAR Load Access-Rights Byte x | Checking Access Rights” on
page 158
Note:

1. The operating system controls the privilege required to use the instruction.

System-Management Instructions 149



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 6-1. System Management Instructions (continued)

Privilege
Mnemonic Name Reference
CPL=0| o/s' | Any
LGDT Loa(_j Global-Descriptor-Table X .
Register “LGDT and LIDT Instructions” on
- intor- age 158
LIDT Loa(_j Interrupt-Descriptor-Table X pag
Register
Load Local-Descriptor-Table “LLDT and LTR Instructions” on
LLDT . X
Register page 158
LMSW Load Machine-Status Word X LMSW and SMSW Instructions
on page 156
LsL Load Segment Limit X Checking Segment Limits” on
page 158
LTR Load Task Register X LLDT and LTR Instructions” on
page 158
MONITOR | Setup Monitor Address X --
MOV CRn Move to/from Control Registers X MOV CRn Instructions” on
page 155
MOV DRn Move to/from Debug Registers X Accessing Debug Registers” on
page 156
MWAIT Monitor Wait X --
RDFSBASE |Read FS Base Address X |“RDFSBASE, RDGSBASE,
WRFSBASE, and WRGSBASE
RDGSBASE |Read GS Base Address Instructions” on page 157
RDMSR Read Model-Specific Register X RDMSR and WRMSR
Instructions” on page 156
RDPMC Read Performance-Monitor X “RDPMC Instruction” on page 156
Counter
RDTSC Read Time-Stamp Counter X “‘RDTSC Instruction” on page 157
RDTSCP Read Time-Stamp Counter and X RDTSCP Instruction” on
Processor ID page 157
RSM Return from System-Management X |“Leaving SMM” on page 300
Mode
SGDT Stor_e Global-Descriptor-Table X .
Register “SGDT and SIDT Instructions” on
- intor- age 158
SIDT Storg Interrupt-Descriptor-Table X pag
Register
Secure Init and Jump with “ o
SKINIT Attestation X Security” on page 500
Store Local-Descriptor-Table “SLDT and STR Instructions” on
SLDT : X
Register page 158
Note:

1. The operating system controls the privilege required to use the instruction.

150 System-Management Instructions



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 6-1. System Management Instructions (continued)
Privilege
Mnemonic Name Reference
CPL=0| o/s' | Any
SMSW Store Machine-Status Word x | LMSWand SMSW Instructions
on page 156
“CLI and STI Instructions” on
STI Set Interrupt Flag X page 156
“Global Interrupt Flag, STGI and
STGI Set Global Interrupt Flag X CLGI Instructions” on page 477
STR Store Task Register X SLDT and STR Instructions” on
page 158
SWAPGS Swa_p GS and KernelGSbase X SWAPGS Instruction” on
Registers page 155
SYSCALL  |Fast System Cal x | SYSCALL and SYSRET" on
page 152
SYSENTER | System Call X |“SYSENTER and SYSEXIT
SYSEXIT System Return X (Legacy Mode Only)” on page 154
SYSRET Fast System Return X SYSCALL and SYSRET" on
page 152
VERR Verify Segment for Reads X |“Checking Read/Write Rights” on
VERW Verify Segment for Writes X |page 158
VMLOAD  |Load State from VMCB X Ixxﬁg\i/oigpgnvxggﬁ%
VMMCALL | call vMM X VMMCALL Instruction” on
page 478
VMRUN Run Virtual Machine X “YMRUN Instruction” on page 449
VMSAVE | Save State to VMCB X |nvs',\t/lriét\i/oigpgnvxléce)2$2
WBINVD | Writeback and Invalidate Caches | X Cache Management” on
page 159
WRFSBASE |Write FS Base Address “RDFSBASE, RDGSBASE,
- WRFSBASE, and WRGSBASE
WRGSBASE | Write GS Base Address Instructions” on page 157
WRMSR  |Write Model-Specific Register X Ii%“ﬁifsr,‘,do\évsa'\giﬁ -
Note:

1. The operating system controls the privilege required to use the instruction.

The following instructions are summarized in this chapter but are not categorized as system

instructions, because of their importance to application programming;:

e The CPUID instruction returns information critical to system software in initializing the operating
environment. It is fully described in Section 3.3, “Processor Feature Identification,” on page 63.

System-Management Instructions

151




AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* The PUSHF and POPF instructions set and clear certain rTFLAGS bits depending on the processor
operating mode and privilege level. These dependencies are described in “POPF and PUSHF
Instructions” on page 156.

e The MOV, PUSH, and POP instructions can be used to load and store segment registers, as
described in “MOV, POP, and PUSH Instructions” on page 157.

6.1 Fast System Call and Return

Operating systems can use both paging and segmentation to implement protected memory models.
Segment descriptors provide the necessary memory protection and privilege checking for segment
accesses. By setting segment-descriptor fields appropriately, operating systems can enforce access
restrictions as needed.

A disadvantage of segment-based protection and privilege checking is the overhead associated with
loading a new segment selector (and its corresponding descriptor) into a segment register. Even when
using the flat-memory model, this overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are reloaded with different segment descriptors.

To initiate a call to the operating system, an application transfers control to the operating system
through a gate descriptor (call, interrupt, trap, or task gate). In the past, control was transferred using
either a far CALL instruction or a software interrupt. Transferring control through one of these gates is
slowed by the segmentation-related overhead, as is the later return using a far RET or IRET
instruction. The following checks are performed when control is transferred in this manner:

* Selectors, gate descriptors, and segment descriptors are in the proper form.

* Descriptors lie within the bounds of the descriptor tables.

* Gate descriptors reference the appropriate segment descriptors.

e The caller, gate, and target privileges all allow the control transfer to take place.

* The stack created by the call has sufficient properties to allow the transfer to take place.

In addition to these call-gate checks, other checks are made involving the task-state segment when a
task switch occurs.

6.1.1 SYSCALL and SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SYSRET are low-latency system call and
return instructions. These instructions assume the operating system implements a flat-memory model,
which greatly simplifies calls to and returns from the operating system. This simplification comes
from eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions). As a result, SYSCALL and SYSRET can take fewer than
one-fourth the number of internal clock cycles to complete than the legacy CALL and RET
instructions. SYSCALL and SYSRET are particularly well-suited for use in 64-bit mode, which
requires implementation of a paged, flat-memory model.

152 System-Management Instructions



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

SYSCALL and SYSRET require that the code-segment base, limit, and attributes (except for DPL) are
consistent for all application and system processes. Only the DPL is allowed to vary. The processor
assumes (but does not check) that the SYSCALL target CS segment descriptor entry has DPL=0 and
the SYSRET target CS segment descriptor entry has DPL=3.

For details on the SYSCALL and SYSRET instructions, see “System Instruction Reference” in
Volume 3.

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR registers are model-specific
registers (MSRs) used to specify the target address of a SYSCALL instruction as well as the CS and
SS selectors of the called and returned procedures. The SFMASK register is used in long mode to
specify how rFLAGS is handled by these instructions. Figure 6-1 shows the STAR, LSTAR, CSTAR,
and SFMASK register formats.

63 48 47 32 31 0
STAR C000_0081h |SYSRET CS and SS| SYSCALL CS and SS 32-bit SYSCALL Target EIP
LSTAR C000_0082h Target RIP for 64-Bit-Mode Calling Software
CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software
SFMASK CO000_0084h Reserved, RAZ SYSCALL Flag Mask

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

e STAR—The STAR register has the following fields (unless otherwise noted, all bits are
read/write):

- SYSRET CSand SS Selectors—Bits 63:48. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSRET. If SYSRET is returning to 32-bit mode
(either legacy or compatibility), this field is copied directly into the CS selector field. If
SYSRET is returning to 64-bit mode, the CS selector is set to this field + 16. SS.Sel is set to
this field + 8, regardless of the target mode. Because SYSRET always returns to CPL 3, the
RPL bits 49:48 should be initialized to 11b.

- SYSCALL CSand SS Selectors—Bits 47:32. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSCALL. This field is copied directly into CS.Sel.
SS.Sel is set to this field + 8. Because SYSCALL always switches to CPL 0, the RPL bits
33:32 should be initialized to 00b.

- 32-bit SYSCALL Target EIP—Bits 31:0. This is the target EIP of the called procedure.

The legacy STAR register is not expanded in long mode to provide a 64-bit target RIP address.
Instead, long mode provides two new STAR registers—long STAR (LSTAR) and compatibility
STAR (CSTAR)—that hold a 64-bit target RIP.

System-Management Instructions 153



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e LSTAR and CSTAR—The LSTAR register holds the target RIP of the called procedure in long
mode when the calling software is in 64-bit mode. The CSTAR register holds the target RIP of the
called procedure in long mode when the calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR and CSTAR registers. If the RIP written
to either of the MSRs is not in canonical form, a #GP fault is generated on the WRMSR
instruction.

e SFMASK—The SFMASK register is used to specify which RFLAGS bits are cleared during a
SYSCALL. In long mode, SFMASK is used to specify which RFLAGS bits are cleared when
SYSCALL is executed. If a bit in SFMASK is Set to 1, the corresponding bit in RFLAGS is cleared
to 0. If a bit in SFMASK is cleared to 0, the corresponding RFLAGS bit is not modified.

6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET, SYSENTER and
SYSEXIT are low-latency system call and return instructions designed for use by system and
application software implementing a flat-memory model. However, theseinstructionsareillegal in
long mode and result in an undefined opcode exception (#UD) if software attempts to use them.
Software should use the SYSCALL and SYSRET instructions when running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specific registers (MSRs) are used to specify the
target address and stack pointers for the SYSENTER instruction as well as the CS and SS selectors of
the called and returned procedures. The register fields are:

*  SYSENTER Target CS—Holds the CS selector of the called procedure.

* SYSENTER Target ESP—Holds the called-procedure stack pointer. The SS selector is updated
automatically to point to the next descriptor entry after the SYSENTER Target CS, and ESP is the
offset into that stack segment.

e SYSENTER Target EIP—Holds the offset into the CS of the called procedure.

Figure 6-2 shows the register formats and their corresponding MSR 1Ds.

63 32 31 16 15 0
SYSENTER_CS 174h SYSENTER Target CS
SYSENTER_ESP 175h SYSENTER Target ESP
SYSENTER_EIP 176h SYSENTER Target EIP

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

154 System-Management Instructions



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

6.1.3 SWAPGS Instruction

The SWAPGS instruction provides a fast method for system software to load a pointer to system data
structures. SWAPGS can be used upon entering system-software routines as a result of a SYSCALL
instruction or as a result of an interrupt or exception. Before returning to application software,
SWAPGS can restore an application data-structure pointer that was replaced by the system data-
structure pointer.

SWAPGS exchanges the base-address value located in the KernelGSbase model-specific register
(MSR address C000_0102h) with the base-address value located in the hidden portion of the GS
selector register (GS.base). This exchange allows the system-kernel software to quickly access kernel
data structures by using the GS segment-override prefix during memory references.

The need for SwapGS arises from the requirement that, upon entry to the OS kernel, the kernel needs
to obtain a 64-bit pointer to its essential data structures. When using SYSCALL to implement system
calls, no kernel stack exists at the OS entry point. Neither is there a straightforward method to obtain a
pointer to kernel structures, from which the kernel stack pointer could be read. Thus, the kernel cannot
save GPRs or reference memory. SwapGS does not require any GPR or memory operands, so no
registers need to be saved before using it. Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SwapGS can be used to quickly get a pointer to the
kernel data structures.

See “FS and GS Registers in 64-Bit Mode” on page 72 for more information on using the GS.base
register in 64-bit mode.

6.2 System Status and Control

System-status and system-control instructions are used to determine the features supported by a
processor, gather information about the current execution state, and control the processor operating
modes.

6.2.1 Processor Feature Identification (CPUID)

CPUID Instruction. The CPUID instruction provides complete information about the processor
implementation and its capabilities. Software operating at any privilege level can execute the CPUID
instruction to collect this information. System software normally uses the CPUID instruction to
determine which optional features are available so the system can be configured appropriately. See
Section 3.3, “Processor Feature Identification,” on page 63.

6.2.2 Accessing Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to copy data between the control
registers and the general-purpose registers. These instructions are privileged and cause a general-
protection exception (#GP) if non-privileged software attempts to execute them.

System-Management Instructions 155



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

LMSW and SMSW Instructions. The machine status word is located in CRO register bits 15:0. The
load machine status word (LMSW) instruction writes only the least-significant four status-word bits
(CRO[3:0]). All remaining status-word bits (CRO[15:4]) are left unmodified by the instruction. The
instruction is privileged and causes a #GP to occur if non-privileged software attempts to execute it.

The store machine statusword (SMSW) instruction stores all 16 status-word bits (CRO[15:0]) into the
target GPR or memory location. The instruction is not privileged and can be executed by all software.

CLTS Instruction. The clear task-switched bit instruction (CLTS) clears CRO.TS to 0. The CRO.TS
bit is set to 1 by the processor every time a task switch takes place. The bit is useful to system software
in determining when the x87 and multimedia register state should be saved or restored. See “Task
Switched (TS) Bit” on page 44 for more information on using CR0.TS to manage x87-instruction
state. The CLTS instruction is privileged and causes a #GP to occur if non-privileged software
attempts to execute it.

6.2.3 Accessing the RFLAGS Register

The RFLAGS register contains both application and system bits. This section describes the
instructions used to read and write system bits. Descriptions of instruction effects on application flags
can be found in “Flags Register” in Volume 1 and “Instruction Effects on rTFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push rFLAGS instructions are used for moving data
between the rFLAGS register and the stack. They are not system-management instructions, but their
behavior is mode-dependent.

CLI and STI Instructions. The clear interrupt (CLI) and set interrupt (STI) instructions modify only
the RFLAGS.IF bit or RFLAGS.VIF bit. Clearing RFLAGS.IF to 0 causes the processor to ignore
maskable interrupts. Setting RFELAGS.IF to 1 causes the processor to allow maskable interrupts.

See “Virtual Interrupts” on page 255 for more information on the operation of these instructions when
virtual-8086 mode extensions are enabled (CR4.VME=1).

6.2.4 Accessing Debug Registers

The MOV DRninstructions are used to copy data between the debug registers and the general-purpose
registers. These instructions are privileged and cause a general-protection exception (#GP) if non-
privileged software attempts to execute them. See “Debug Registers” on page 350 for a detailed
description of the debug registers.

6.2.5 Accessing Model-Specific Registers

RDMSR and WRMSR Instructions. The read/write model-specific register instructions (RDMSR
and WRMSR) can be used by privileged software to access the 64-bit MSRs. See “Model-Specific
Registers (MSRs)” on page 58 for details about the MSRs.

RDPMC Instruction. The read performance-monitoring counter instruction, RDPMC, is used to read
the model-specific performance-monitoring counter registers.

156 System-Management Instructions



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

RDTSC Instruction. The read time-stamp counter instruction, RDTSC, is used to read the model-
specific time-stamp counter (TSC) register.

RDTSCP Instruction. The read time-stamp counter and processor ID instruction, RDTSCP, is used

to read the model-specific time-stamp counter (TSC) register. as well as the low 32 bits of the
TSC_AUX register (MSR C000 0103h).

6.3 Segment Register and Descriptor Register Access

The AMDG64 architecture supports the legacy instructions that load and store segment registers and
descriptor registers. In some cases the instruction capabilities are expanded to support long mode.

6.3.1 Accessing Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions can be used to load a selector
into a segment register from a general-purpose register or memory (MOV) or from the stack (POP).
Any segment register, except the CS register, can be loaded with the MOV and POP instructions. The
CS register must be loaded with a far-transfer instruction.

All segment register selectors can be stored in a general-purpose register or memory using the MOV
instruction or pushed onto the stack using the PUSH instruction.

When a selector is loaded into a segment register, the processor automatically loads the corresponding
descriptor-table entry into the hidden portion of the selector register. The hidden portion contains the
base address, limit, and segment attributes.

Segment-load and segment-store instructions work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is loaded into the hidden portion of the
segment descriptor register. However, the contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS segment-register base fields—see “FS and
GS Registers in 64-Bit Mode” on page 72 for more information.

The ability to use segment-load instructions allows a 64-bit operating system to set up segment
registers for a compatibility-mode application before switching to compatibility mode.

6.3.2 Accessing Segment Register Hidden State

WRMSR and RDMSR Instructions. The base address field of the hidden state of the FS and GS
registers are mapped to MSRs and may be read and written by privileged software when running in 64-
bit mode.

RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE Instructions. When supported and
enabled, these instructions allow software running at any privilege level to read and write the base
address field of the hidden state of the FS and GS segment registers. These instructions are only
defined in 64-bit mode.

System-Management Instructions 157



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

6.3.3 Accessing Descriptor-Table Registers

LGDT and LIDT Instructions. The load GDTR (LGDT) and load IDTR (LIDT) instructions load a
pseudo-descriptor from memory into the GDTR or IDTR registers, respectively.

LLDT and LTR Instructions. The load LDTR(LLDT) and load TR (LTR) instructions load a system-
segment descriptor from the GDT into the LDTR and TR segment-descriptor registers (hidden
portion), respectively.

SGDT and SIDT Instructions. The store GDTR(SGDT) and store IDTR (SIDT) instructions reverse
the operation of the LGDT and LIDT instructions. SGDT and SIDT store a pseudo-descriptor from the
GDTR or IDTR register into memory.

SLDT and STR Instructions. In all modes, the store LDTR (SLDT) and store TR (STR) instructions
store the LDT or task selector from the visible portion of the LDTR or TR register into a general-
purpose register or memory, respectively. The hidden portion of the LDTR or TR register is not stored.

6.4 Protection Checking

Several instructions are provided to allow software to determine the outcome of a protection check
before performing a memory access that could result in a protection violation. By performing the
checks before a memory access, software can avoid violations that result in a general-protection
exception (#GP).

6.4.1 Checking Access Rights

LAR Instruction. The load access-rights (LAR) instruction can be used to determine if access to a
segment is allowed, based on privilege checks and type checks. The LAR instruction uses a segment-
selector in the source operand to reference a descriptor in the GDT or LDT. LAR performs a set of
access-rights checks and, if successful, loads the segment-descriptor access rights into the destination
register. Software can further examine the access-rights bits to determine if access into the segment is
allowed.

6.4.2 Checking Segment Limits

LSL Instruction. The load segment-limit (LSL) instruction uses a segment-selector in the source
operand to reference a descriptor in the GDT or LDT. LSL performs a set of preliminary access-rights
checks and, if successful, loads the segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer offsets to prevent segment limit
violations.

6.4.3 Checking Read/Write Rights

VERR and VERW Instructions. The verify read-rights (VERR) and verify write-rights (VERW) can
be used to determine if a target code or data segment (not a system segment) can be read or written
from the current privilege level (CPL). The source operand for these instructions is a pointer to the

158 System-Management Instructions



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

segment selector to be tested. If the tested segment (code or data) is readable from the current CPL, the
VERR instruction sets RFLAGS.ZF to 1; otherwise, it is cleared to zero. Likewise, if the tested data
segment is writable, the VERW instruction sets the RFLAGS.ZF to 1. A code segment cannot be tested
for writability.

6.4.4 Adjusting Access Rights

ARPL Instruction. The adjust RPL-field (ARPL) instruction can be used by system software to
prevent access into privileged-data segments by lower-privileged software. This can happen if an
application passes a selector to system software and the selector RPL is less than (has greater privilege
than) the calling-application CPL. To prevent this surrogate access, system software executes ARPL
with the following operands:

* The destination operand is the data-segment selector passed to system software by the application.
e The source operand is the application code-segment selector (available on the system-software
stack as a result of the CALL into system software by the application).

ARPL is not supported in 64-bit mode.

6.5 Processor Halt

The processor halt instruction (HLT) halts instruction execution, leaving the processor in the halt state.
No registers or machine state are modified as a result of executing the HLT instruction. The processor
remains in the halt state until one of the following occurs:

* A non-maskable interrupt (NMI).

* An enabled, maskable interrupt (INTR).
* Processor reset (RESET).

e Processor initialization (INIT).

* System-management interrupt (SMI).

6.6 Cache and TLB Management

Cache-management instructions are used by system software to maintain coherency within the
memory hierarchy. Memory coherency and caches are discussed in Chapter 7, “Memory System.”
Similarly, TLB-management instructions are used to maintain coherency between page translations
cached in the TLB and the translation tables maintained by system software in memory. See
“Translation-Lookaside Buffer (TLB)” on page 141 for more information.

6.6.1 Cache Management

WBINVD Instruction. The writeback and invalidate (WBINVD) instruction is used to write all
modified cache lines to memory so that memory contains the most recent copy of data. After the writes

System-Management Instructions 159



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

are complete, the instruction invalidates all cache lines. This instruction operates on all caches in the
memory hierarchy, including caches that are external to the processor.

INVD Instruction. The invalidate (INVD) instruction is used to invalidate all cache lines in all caches
in the memory hierarchy. Unlike the WBINVD instruction, no modified cache lines are written to
memory. The INVD instruction should only be used in situations where memory coherency is not
required.

6.6.2 TLB Invalidation

INVLPG Instruction. The invalidate TLB entry (INVLPG) instruction can be used to invalidate
specific entries within the TLB. The source operand is a virtual-memory address that specifies the
TLB entry to be invalidated. Invalidating a TLB entry does not remove the associated page-table entry
from the data cache. See “Translation-Lookaside Buffer (TLB)” on page 141 for more information.

160 System-Management Instructions



AMDA

24593—Rev. 3.30—September 2018

7

Memory System

AMDG64 Technology

This chapter describes:

Cache coherency mechanisms
Cache control mechanisms
Memory typing

Memory mapped 1/O
Memory ordering rules

Serializing instructions

Figure 7-1 on page 162 shows a conceptual picture of a processor and memory system, and how data
and instructions flow between the various components. This diagram is not intended to represent a

specific microarchitectural implementation but instead is used to illustrate the major memory-system
components covered by this chapter.

Memory System

161



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Main Memory

A

System Bus Interface
A
A4
L2 Cache
A
A 4 A 4
Write-Combining
L L1 Buffers
Instruction Cache Data Cache Yy
A y
Write Buffers
A4
Load/Store Unit
A
A 4

Execution Units

Processor Chip :

Figure 7-1. Processor and Memory System

The memory-system components described in this chapter are shown as unshaded boxes in Figure 7-1.
Those items are summarized in the following paragraphs.

Main memory is external to the processor chip and is the memory-hierarchy level farthest from the
processor execution units.

Caches are the memory-hierarchy levels closest to the processor execution units. They are much
smaller and much faster than main memory, and can be either internal or external to the processor chip.
Caches contain copies of the most frequently used instructions and data. By allowing fast access to
frequently used data, software can run much faster than if it had to access that data from main memory.
Figure 7-1 shows three caches, all internal to the processor:

162 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* L1 Data Cache—The L1 (level-1) data cache holds the data most recently read or written by the
software running on the processor.

e LlInstruction Cache—The L1 instruction cache is similar to the L1 data cache except that it holds
only the instructions executed most frequently. In some processor implementations, the L1
instruction cache can be combined with the L1 data cache to form a unified L1 cache.

e L2 Cache—The L2 (level-2) cache is usually several times larger than the L1 caches, but it is also
slower. It is common for L2 caches to be implemented as a unified cache containing both
instructions and data. Recently used instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive, meaning it does not cache information
contained in the L1 cache. Conversely, inclusive L2 caches contain a copy of the L1-cached
information.

Memory-read operations from cacheable memory first check the cache to see if the requested
information is available. A read hit occurs if the information is available in the cache, and a read miss
occurs if the information is not available. Likewise, a write hit occurs if the memory write can be
stored in the cache, and a write miss occurs if it cannot be stored in the cache.

Caches are divided into fixed-size blocks called cachelines. The cache allocates lines to correspond to
regions in memory of the same size as the cache line, aligned on an address boundary equal to the
cache-line size. For example, in a cache with 32-byte lines, the cache lines are aligned on 32-byte
boundaries and byte addresses 0007h and 001Eh are both located in the same cache line. The size of a
cache line is implementation dependent. Most implementations have either 32-byte or 64-byte cache
lines. The implemented cache line size is reported by CPUID Fn8000 0005 and Fn8000 0006 for the
various caches, as described in Appendix E of Volume 3.

The process of loading data into a cache is a cache-linefill. Even if only a single byte is requested, all
bytes in a cache line are loaded from memory. Typically, a cache-line fill must remove (evict) an
existing cache line to make room for the new line loaded from memory. This process is called cache-
line replacement. If the existing cache line was modified before the replacement, the processor
performs a cache-line writeback to main memory when it performs the cache-line fill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can also maintain cache coherency by internally probing (checking) the other caches and
write buffers for a more recent version of the requested data. External devices can also check processor
caches for more recent versions of data by externally probing the processor. Throughout this
document, the term probeis used to refer to external probes, while internal probes are always qualified
with the word internal.

Write bufferstemporarily hold data writes when main memory or the caches are busy with other
memory accesses. The existence of write buffers is implementation dependent.

Implementations of the architecture can use write-combining buffersif the order and size of non-
cacheable writes to main memory is not important to the operation of software. These buffers can
combine multiple, individual writes to main memory and transfer the data in fewer bus transactions.

Memory System 163



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

71 Single-Processor Memory Access Ordering

The flexibility with which memory accesses can be ordered is closely related to the flexibility in which
a processor implementation can execute and retire instructions. Instruction execution createsresults
and status and determines whether or not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order, to software-visible resources such as
memory, caches, write-combining buffers, and registers, or it causes an exception to occur if
instruction execution created one.

Implementations of the AMD64 architecture retire instructions in program order, but implementations
can execute instructions in any order, subject only to data dependencies. Implementations can also
specul atively execute instructions—executing instructions before knowing they are needed. Internally,
implementations manage data reads and writes so that instructions complete in order. However,
because implementations can execute instructions out of order and speculatively, the sequence of
memory accesses performed by the hardware can appear to be out of program order. The following
sections describe the rules governing memory accesses to which processor implementations adhere.
These rules may be further restricted, depending on the memory type being accessed. Further, these
rules govern single processor operation; see “Multiprocessor Memory Access Ordering” on page 166
for multiprocessor ordering rules.

7.1.1 Read Ordering

Generally, reads do not affect program order because they do not affect the state of software-visible
resources other than register contents. However, some system devices might be sensitive to reads. In
such a situation software can map a read-sensitive device to a memory type that enforces strong read-
ordering, or use read/write barrier instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read ordering:

e Out-of-order reads are allowed to the extent that they can be performed transparently to software,
such that the appearance of in-order execution is maintained. Out-of-order reads can occur as a
result of out-of-order instruction execution or speculative execution. The processor can read
memory and perform cache refills out-of-order to allow out-of-order execution to proceed.

e Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows the instruction will actually complete. For example, the
processor can predict a branch will occur and begin executing instructions following the predicted
branch before it knows whether the prediction is valid. When one of the speculative instructions
reads data from memory, the read itself is speculative. Cache refills may also be performed
speculatively.

* Reads can be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

* A read cannot be reordered ahead of a prior write if the read is from the same location as the prior
write. In this case, the read instruction stalls until the write instruction completes execution. The

164 Memory System



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

read instruction requires the result of the write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to the read instruction before it is
actually written to memory.

Instruction fetching constitutes a parallel, asynchronous stream of reads that is independent from
and unordered with respect to the read accesses performed by loads in that instruction stream.

7.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The following
rules govern write ordering:

Generally, out-of-order writes are not allowed. Write instructions executed out of order cannot
commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

It is possible for writes to write-combining memory types to appear to complete out of order,
relative to writes into other memory types. See “Memory Types” on page 172 and “Write
Combining” on page 178 for additional information.

Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

Write buffering is allowed. When a write instruction completes and commits its result, that result
can be buffered until it is actually written to system memory in program order. Although the write
buffer itself is not directly accessible by software, the results in the buffer are accessible by
subsequent memory accesses to the locations that are buffered, including reads for which only a
subset of bytes being accessed are in the buffer. For example, a doubleword read that overlaps a
single modified byte in the write buffer can return the buffered value for that byte before that write
has been committed to memory.

In general, any read from cacheable memory returns the net result of all prior globally and locally
visible writes to those bytes, as performed in program order. A given implementation may provide
bytes from the write buffer to satisfy this, or may stall the read until any overlapping buffered
writes have been committed to memory. For cacheable memory types, the write buffer can be read
out-of-order and speculatively, just like memory.

Write combining is allowed. In some situations software can relax the write-ordering rules through
the use of a Write Combining memory type or non-temporal store instructions, and allow several
writes to be combined into fewer writes to memory. When write-combining is used, it is possible
for writes to other memory types to proceed ahead of (out-of-order) memory-combining writes,
unless the writes are to the same address. Write-combining should be used only when the order of
writes does not affect program order (for example, writes to a graphics frame buffer).

Memory System 165



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

7.1.3 Read/Write Barriers

When the order of memory accesses must be strictly enforced, software can use read/write barrier
instructions to force reads and writes to proceed in program order. Read/write barrier instructions force
all prior reads or writes to complete before subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated read, write, and read/write barrier
instructions (respectively). Serializing instructions, I/O instructions, and locked instructions
(including the implicitly locked XCHG instruction) can also be used as read/write barriers. Barrier
instructions are useful for controlling ordering between differing memory types as well as within one
memory type; see Section 7.3.1, “Special Coherency Considerations,” on page 171 for details.

Table 7-1 on page 174 summarizes the memory-access ordering possible for each memory type
supported by the AMDG64 architecture.

7.2 Multiprocessor Memory Access Ordering

The term memory ordering refers to the sequence in which memory accesses are performed by the
memory system, as observed by all processors or programs.

To improve performance of applications, AMD64 processors can speculatively execute instructions
out of program order and temporarily hold out-of-order results. However, certain rules are followed
with regard to normal cacheable accesses on naturally aligned boundaries to WB memory.

In the examples below, all memory values are initialized to zero.

From the point of view of a program, in ascending order of priority:

e Allloads, stores and I/O operations from a single processor appear to occur in program order to the
code running on that processor and all instructions appear to execute in program order.

* Successive stores from a single processor are committed to system memory and visible to other
processors in program order. A store by a processor cannot be committed to memory before a read
appearing earlier in the program has captured its targeted data from memory. In other words, stores
from a processor cannot be reordered to occur prior to a load preceding it in program order.

In this context:

- Loads do not pass previous loads (loads are not reordered). Stores do not pass previous stores
(stores are not reordered)

Processor 0 Processor 1
Store A « 1 Load B
Store B < 1 Load A

Load A cannot read 0 when Load B reads 1. (This rule may be violated in the case of loads as
part of a string operation, in which one iteration of the string reads 0 for Load A while another
iteration reads 1 for Load B.)

- Stores do not pass loads

166 Memory System



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Processor 0 Processor 1
Load A Load B
Store B « 1 Store A « 1

Load A and Load B cannot both read 1.

* Stores from a processor appear to be committed to the memory system in program order; however,
stores can be delayed arbitrarily by store buffering while the processor continues operation.
Therefore, stores from a processor may not appear to be sequentially consistent.

Processor 0 Processor 1

Store A « 1 Store B « 1

Store A <« 2 Store B « 2
Load B Load A

Both Load A and Load B may read 1. Also, due to possible write combining one or both
processors may not actually store a 1 at the designated location.

* Non-overlapping Loads may pass stores.

Processor 0 Processor 1
Store A « 1 Store B « 1
Load B Load A

All combinations of values (00, 01, 10, and 11) may be observed by Processors 0 and 1.

- Where sequential consistency is needed (for example in Dekker’s algorithm for mutual
exclusion), an MFENCE instruction should be used between the store and the subsequent load,
or a locked access, such as XCHG, should be used for the store.

Processor 0 Processor 1
Store A « 1 Store B «— 1
MFENCE MFENCE
Load B Load A

Load A and Load B cannot both read 0.

- Loads that partially overlap prior stores may return the modified part of the load operand from
the store buffer, combining globally visible bytes with bytes that are only locally visible. To
ensure that such loads return only a globally visible value, an MFENCE or locked access must
be used between the store and the dependent load, or the store or load must be performed with
a locked operation such as XCHG.

- Stores to different locations in memory observed from two (or more) other processors will
appear in the same order to all observers. Behavior such as that shown in this code example,

Memory System 167



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Processor 0 Processor 1 Processor X Processor Y
Store A « 1 Store B « 1
Load A (1) Load B (1)
Load B (0) Load A (0)

in which processor X sees store A from processor 0 before store B from processor 1, while
processor Y sees store B from processor 1 before store A from processor 0, is not allowed.

* Dependent stores between different processors appear to occur in program order, as shown in the
code example below.

Processor 0 Processor 1 Processor 2
Store A « 1
Load A (1)
Store B «— 1
Load B (1)
Load A (1)

If processor 1 reads a value from A (written by processor 0) before carrying out a store to B, and if
processor 2 reads the updated value from B, a subsequent read of A must also be the updated value.

e The local visibility (within a processor) for a memory operation may differ from the global
visibility (from another processor). Using a data bypass, a local load can read the result of a local
store in a store buffer, before the store becomes globally visible. Program order is still maintained
when using such bypasses.

Processor 0 Processor 1
Store A < 1 Store B « 1
Loadrl A Load r3 B
Load 2 B Loadr4 A

Load A in processor 0 can read 1 using the data bypass, while Load A in processor 1 can read 0.
Similarly, Load B in processor 1 can read 1 while Load B in processor 0 can read 0. Therefore, the
resultrl = 1,12 =0, r3 =1 and r4 = 0 may occur. There are no constraints on the relative order of
when the Store A of processor 0 is visible to processor 1 relative to when the Store B of processor
1 is visible to processor 0.

If a very strong memory ordering model is required that does not allow local store-load bypasses,
an MFENCE instruction or a synchronizing instruction such as XCHG or a locked Read-modify-
write should be used between the store and the subsequent load. This enforces a memory ordering
stronger than total store ordering.

Processor 0 Processor 1
Store A « 1 Store B «— 1
MFENCE MFENCE

168 Memory System



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Processor 0 Processor 1
Loadrl A Loadr3 B
Load 2 B Load r4 A

In this example, the MFENCE instruction ensures that any buffered stores are globally visible

before the loads are allowed to execute, so the resultrl =1,r2 =0, r3 =1 and r4 = 0 will not occur.

7.3 Memory Coherency and Protocol

Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol is also used to maintain
coherency between all processors in a multiprocessor system. The cache-coherency protocol
supported by the AMDG64 architecture is the MOES (modified, owned, exclusive, shared, invalid)
protocol. The states of the MOESI protocol are:

Invalid—A cache line in the invalid state does not hold a valid copy of the data. Valid copies of the
data can be either in main memory or another processor cache.

Exclusive—A cache line in the exclusive state holds the most recent, correct copy of the data. The
copy in main memory is also the most recent, correct copy of the data. No other processor holds a
copy of the data.

Shared—A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holds it in the owned state, then the copy in main memory is also the most recent.

Modified—A cache line in the modified state holds the most recent, correct copy of the data. The
copy in main memory is stale (incorrect), and no other processor holds a copy.

Owned—A cache line in the owned state holds the most recent, correct copy of the data. The
owned state is similar to the shared state in that other processors can hold a copy of the most recent,
correct data. Unlike the shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state—all other processors must hold the data in
the shared state.

Figure 7-2 on page 170 shows the general MOESI state transitions possible with various types of
memory accesses. This is a logical software view, not a hardware view, of how cache-line state
transitions. Instruction-execution activity and external-bus transactions can both be used to modify the
cache MOESI state in multiprocessing or multi-mastering systems.

Memory System 169



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Reset Read Hit
INVD, WBINVD

Probe Write Hit

Invalid | | Exclusive

Read Miss, Exclusive

Modified

Read Hit
Write Hit

Read Hit

Probe Read Hit L
fobe Read T Write Hit

Read Hit
Probe Read Hit

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically other processors with their own
internal caches) need to acquire the most recent copy of data before caching it internally. That copy can
be in main memory or in the internal caches of other bus-mastering devices. When an external master
has a cache read-miss or write-miss, it probesthe other mastering devices to determine whether the
most recent copy of data is held in any of their caches. If one of the other mastering devices holds the
most recent copy, it provides it to the requesting device. Otherwise, the most recent copy is provided
by main memory.

170 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

There are two general types of bus-master probes:

* Read probes indicate the external master is requesting the data for read purposes.

*  Write probes indicate the external master is requesting the data for the purpose of modifying it.

Referring back to Figure 7-2 on page 170, the state transitions involving probes are initiated by other

processors and external bus masters into the processor. Some read probes are initiated by devices that
intend to cache the data. Others, such as those initiated by I/O devices, do not intend to cache the data.
Some processor implementations do not change the data MOESI state if the read probe is initiated by a
device that does not intend to cache the data.

State transitions involving read misses and write misses can cause the processor to generate probes
into external bus masters and to read main memory.

Read hits do not cause a MOESI-state change. Write hits generally cause a MOESI-state change into
the modified state. If the cache line is already in the modified state, a write hit does not change its state.

The specific operation of external-bus signals and transactions and how they influence a cache MOESI
state are implementation dependent. For example, an implementation could convert a write miss to a
WB memory type into two separate MOESI-state changes. The first would be a read-miss placing the
cache line in the exclusive state. This would be followed by a write hit into the exclusive cache line,
changing the cache-line state to modified.

7.3.1 Special Coherency Considerations

In some cases, data can be modified in a manner that is impossible for the memory-coherency protocol
to handle due to the effects of instruction prefetching. In such situations software must use serializing
instructions and/or cache-invalidation instructions to guarantee subsequent data accesses are coherent.

An example of this type of a situation is a page-table update followed by accesses to the physical pages
referenced by the updated page tables. The following sequence of events shows what can happen when
software changes the translation of virtual-page A from physical-page M to physical-page N:

1. Software invalidates the TLB entry. The tables that translate virtual-page A to physical-page M
are now held only in main memory. They are not cached by the TLB.

2. Software changes the page-table entry for virtual-page A in main memory to point to physical-
page N rather than physical-page M.

3. Software accesses data in virtual-page A.

During Step 3, software expects the processor to access the data from physical-page N. However, it is
possible for the processor to prefetch the data from physical-page M before the page table for virtual-
page Ais updated in Step 2. This is because the physical-memory references for the page tables are
different than the physical-memory references for the data. Because the physical-memory references
are different, the processor does not recognize them as requiring coherency checking and believes it is
safe to prefetch the data from virtual-page A, which is translated into a read from physical page M.
Similar behavior can occur when instructions are prefetched from beyond the page table update
instruction.

Memory System 171



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

To prevent this problem, software must use an INVLPG or MOV CR3 instruction immediately after
the page-table update to ensure that subsequent instruction fetches and data accesses use the correct
virtual-page-to-physical-page translation. It is not necessary to perform a TLB invalidation operation
preceding the table update.

7.3.2 Access Atomicity

Cacheable, naturally-aligned single loads or stores of up to a quadword are atomic on any processor
model, as are misaligned loads or stores of less than a quadword that are contained entirely within a
naturally-aligned quadword. Misaligned load or store accesses typically incur a small latency penalty.
Model-specific relaxations of this quadword atomicity boundary, with respect to this latency penalty,
may be found in a given processor's Software Optimization Guide.

Misaligned accesses can be subject to interleaved accesses from other processors or cache-coherent
devices which can result in unintended behavior. Atomicity for misaligned accesses can be achieved
where necessary by using the XCHG instruction or any suitable LOCK-prefixed instruction. Note that
misaligned locked accesses may incur a significant performance penalty on various processor models.

7.4 Memory Types

Memory typeis an attribute that can be associated with a specific region of virtual or physical memory.
Memory type designates certain caching and ordering behaviors for loads and stores to addresses in
that region. Most memory types are explicitly assigned, although some are inferred by the hardware
from current processor state and instruction context.

The AMDG64 architecture defines the following memory types:

* Uncacheable (UC)—Reads from, and writes to, UC memory are not cacheable. Reads from UC
memory cannot be speculative. Write-combining to UC memory is not allowed. Reads from or
writes to UC memory cause the write buffers to be written to memory and be invalidated prior to
the access to UC memory.

The UC memory type is useful for memory-mapped I/O devices where strict ordering of reads and
writes is important. Note that this strong ordering is with respect to UC accesses only; reads to
memory types which support speculative operation may bypass non-conflicting UC accesses.

e CacheDisable (CD)—The CD memory type is a form of uncacheable memory type that is inferred
when the L1 caches are disabled but not invalidated, or for certain conflicting memory type
assignments from the Page Attribute Table (PAT) and Memory Type Range Register (MTRR)
mechanisms. The former case occurs when caches are disabled by setting CR0.CD to 1 without
invalidating the caches with either the INVD or WBINVD instruction for any reference to a region
designated as cacheable. The latter case occurs when a specific type has been assigned to a virtual
page via PAT, and a conflicting type has been assigned to the mapped physical page via an MTRR
(see “Combined Effect of MTRRs and PAT” on page 201 and “Combining Memory Types,
MTRRSs” on page 498 for details).

For the L1 data cache and the L2 cache, reads from, and writes to, CD memory that hit the cache,
or any other caches in the system, cause the cache line(s) to be invalidated before accessing main

172 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

memory. If a cache line is in the modified state, the line is written to main memory prior to being
invalidated. The access is allowed to proceed after any invalidations are complete.

For the L1 instruction cache, instruction fetches from CD memory that hit the cache read the
cached instructions rather than access main memory. Instruction fetches that miss the cache access
main memory and do not cause cache-line replacement. Writes to CD memory that hit in the
instruction cache cause the line to be invalidated.

*  Write-Combining (WC)—Reads from, and writes to, WC memory are not cacheable. Reads from
WC memory can be speculative.

Writes to this memory type can be combined internally by the processor and written to memory as
a single write operation to reduce memory accesses. For example, four word writes to consecutive
addresses can be combined by the processor into a single quadword write, resulting in one memory
access instead of four.

The WC memory type is useful for graphics-display memory buffers where the order of writes is
not important.

e White-Combining Plus (WC+)—WC+ is an uncacheable memory type, and combines writes in
write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to WC+
memory probe the caches on all processors (including the caches of the processor issuing the
request) to maintain coherency. This ensures that cacheable writes are observed by WC+ accesses.

* Write-Protect (WP)—Reads from WP memory are cacheable and allocate cache lines on a read
miss. Reads from WP memory can be speculative.

Writes to WP memory that hit in the cache do not update the cache. Instead, all writes update
memory (write to memory), and writes that hit in the cache invalidate the cache line. Write
buffering of WP memory is allowed.

The WP memory type is useful for shadowed-ROM memory where updates must be immediately
visible to all devices that read the shadow locations.

*  Writethrough (WT)—Reads from WT memory are cacheable and allocate cache lines on a read
miss. Reads from WT memory can be speculative.

All writes to WT memory update main memory, and writes that hit in the cache update the cache
line (cache lines remain in the same state after a write that hits a cache line). Writes that miss the
cache do not allocate a cache line. Write buffering of WT memory is allowed.

*  Writeback (WB)—Reads from WB memory are cacheable and allocate cache lines on a read miss.
Cache lines can be allocated in the shared, exclusive, or modified states. Reads from WB memory
can be speculative.

All writes that hit in the cache update the cache line and place the cache line in the modified state.
Writes that miss the cache allocate a new cache line and place the cache line in the modified state.
Writes to main memory only take place during writeback operations. Write buffering of WB
memory is allowed.

The WB memory type provides the highest-possible performance and is useful for most software
and data stored in system memory (DRAM).

Memory System 173



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 7-1 shows the memory access ordering possible for each memory type supported by the AMD64
architecture. Table 7-3 on page 176 shows the ordering behavior of various operations on various
memory types in greater detail. Table 7-2 on page 174 shows the caching policy for the same memory

types.

Table 7-1. Memory Access by Memory Type

Memory Access Memory Type
Allowed ucicb wc WP WT WB
Out-of-Order no yes yes yes yes
Read Speculative no yes yes yes yes
Reorder Before Write no yes yes yes yes
Out-of-Order no yes no no no
) Speculative no no no no no
Write .
Buffering no yes yes yes yes
Combining1 no yes no yes yes
Note:
1. Write-combining buffers are separate from write (store) buffers.

Table 7-2. Caching Policy by Memory Type

. . Memory Type
Caching Policy
uc CD wC WP WT WB
Read Cacheable no no no yes yes yes
Write Cacheable no no no no yes yes
Read Allocate no no no yes yes yes
Write Allocate no no no no no yes
Write Hits Update Memory yes?® yes1 yes2 yes3 yes no
Note:
1. Forthe L1 data cache and the L2 cache, if an access hits the cache, the cache line is invalidated. If the cache line

is in the modified state, the line is written to main memory and then invalidated. For the L1 instruction cache, read
(instruction fetch) hits access the cache rather than main memory.

The data is not cached, so a cache write hit cannot occur. However, memory is updated.
Write hits update memory and invalidate the cache line.

7.41

Instruction Fetching from Uncacheable Memory

Instruction fetches from an uncacheable memory type (including those for the CD type which don't hit
in the instruction cache) may read a naturally-aligned block of memory no larger than an instruction
cache line that contains multiple instructions, and may or may not repeat reads of a given block in the
course of extracting instructions from it. In general, the exact sequence of read accesses is not
deterministic, regardless of instruction stream contents, aside from the following constraints:

* instruction fetching of branch targets from uncacheable memory will only be done non-
speculatively

174

Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* sequential instruction fetching will not transition speculatively from a cacheable memory type to
an uncacheable memory type

* sequential instruction fetching will not speculatively cross more than one 4K page boundary

It is recommended that MMIO devices that have read side-effects be separated from memory that's
subject to uncacheable instruction fetches by at least one 4K page.

7.4.2 Memory Barrier Interaction with Memory Types

Memory types other than WB may allow weaker ordering in certain respects. When the ordering of
memory accesses to differing memory types must be strictly enforced, software can use the LFENCE,
MFENCE or SFENCE barrier instructions to force loads and stores to proceed in program order.
Table 7-3 on page 176 summarizes the cases where a memory barrier must be inserted between two
memory operations.

The table is read as follows: the ROW is the first memory operation in program order, followed by the
COLUMN, which is the second memory operation in program order. Each cell represents the ordered
combination of the two memory operations and the letters &, b, ¢, d, e, f, g, h, i, ], k, and | within the cell
represent the applicable memory ordering rule for that combination. These symbols are described in
the footnotes below the table. In the table and footnotes, the abbreviation nt stands for non-temporal
(load or store), i0 stands for input / output, |f for LFENCE, sf for SFENCE, and mf for MFENCE.

Memory System 175



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 7-3. Memory Access Ordering Rules

Second Memory Operation
% ~
s ~ | B 5 | _ 2 g
= | | ¢ = | E|l & | 2 58
H S g E S |2 | ¢ £ 28
. - -~ ~ Q - ~ o <€ 9 k= |72}
First Memory Operation g e =z \% g 2 3 S E %
= |3 8| ¢ | @ 51 8 | % 83
g 3 8 2 7§
= w £
Load (wp, wt, wb) a f b (If) c c C d d d
Load (uc) a f b (If) c c C d d d
Load (wc, wc+) a f b (If) c c c d d d
Store (wp, wt, wb) e (mf) f e (mf) g g h (sf) d d d
Store (uc) i f i g g h (sf) d d d
Store (wc, we+, non-temporal) | e (mf) f e(mf)| j(sf) | g, m | h(sf) d d d
Load/Store (io) k k k k k I d, k d, k d, k
Lock (atomic) k k k k k k d, k d, k d, k
Serialize mstructpn/ | | | | | | d | d | d |
Interrupts/Exceptions

a — A load (wp, wt, wb) may not pass a previous load (wp, wt, wb, wc, wc+, uc).

b — A load (wc, wet+) may pass a previous load (wp, wt, wb, wc, wct). To ensure memory order, an
LFENCE instruction must be inserted between the two loads.

¢ — A store (wp, wt, wb, uc, wc, wc+, nt) may not pass a previous load (wp, wt, wb, uc, we, wc+, nt).

d — All previous loads and stores complete to memory or I/O space before a memory access for an /O,
locked or serializing instruction is issued.

e — A load (wp, wt, wb, wc, wct) may pass a previous non-conflicting store (wp, wt, wb, we, wc+, nt).
To ensure memory order, an MFENCE instruction must be inserted between the store and the load.

f — A load or store (uc) does not pass a previous load or store (wp, wt, wb, uc, wc, wc+, nt).
g — A store (wp, wt, wb, uc) does not pass a previous store (wp, wt, wb, uc).

h — A store (wc, wc+, nt) may pass a previous store (wp, wt, wb) or non-conflicting store (wc, wc+, nt).
To ensure memory order, an SFENCE instruction must be inserted between these two stores. A store
(wc, wet, nt) does not pass a previous conflicting store (wc, wc+, nt).

1 — A load (wp, wt, wb, wc, wct+) may pass a previous non-conflicting store (uc). To ensure memory
order, an MFENCE instruction must be inserted between the store and the load.

j — A store (wp, wt, wb) may pass a previous store (wc, we+, nt). To ensure memory order, an SFENCE
instruction must be inserted between these two stores.

k — All loads and stores associated with the 1/0 and locked instructions complete to memory (no buffered
stores) before a load or store from a subsequent instruction is issued.

176 Memory System




AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

1 — All loads and stores complete to memory for the serializing instruction before the subsequent
instruction fetch is issued.

m — A store (uc) does not pass a previous store (wc, wect).

7.5 Buffering and Combining Memory Writes

7.5.1 Write Buffering

Writes to memory (main memory and caches) can be stored internally by the processor in write buffers
(also known as store buffers) before actually writing the data into a memory location. System
performance can be improved by buffering writes, as shown in the following examples:

*  When higher-priority memory transactions, such as reads, compete for memory access with writes,
writes can be delayed in favor of reads, which minimizes or eliminates an instruction-execution
stall due to a memory-operand read.

e When the memory is busy, buffering writes while the memory is busy removes the writes from the
instruction-execution pipeline, which frees instruction-execution resources.

The processor manages the write buffer so that it is transparent to software. Memory accesses check
the write buffer, and the processor completes writes into memory from the buffer in program order.
Also, the processor completely empties the write buffer by writing the contents to memory as a result
of performing any of the following operations:

* SFENCE Instruction—Executing a store-fence (SFENCE) instruction forces all memory writes
before the SFENCE (in program order) to be written into memory (or, for WB type, the cache)
before memory writes that follow the SFENCE instruction. The memory-fence (MFENCE)
instruction has a similar effect, but it forces the ordering of loads in addition to stores.

* Serializing Instructions—Executing a serializing instruction forces the processor to retire the
serializing instruction (complete both instruction execution and result writeback) before the next
instruction is fetched from memory.

* 1/O instructions—Before completing an I/O instruction, all previous reads and writes must be
written to memory, and the I/O instruction must complete before completing subsequent reads or
writes. Writes to I/O-address space (OUT instruction) are never buffered.

* Locked Instructions—A locked instruction (an instruction executed using the LOCK prefix) or an
XCHG instruction (which is implicitly locked) must complete after all previous reads and writes
and before subsequent reads and writes. Locked writes are never buffered, although locked reads
and writes are cacheable.

e Interrupts and Exceptions—Interrupts and exceptions are serializing events that force the
processor to write all results from the write buffer to memory before fetching the first instruction
from the interrupt or exception service routine.

* UC Memory Reads—UC memory reads are not reordered ahead of writes.

Memory System 177



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Write buffers can behave similarly to write-combining buffers because multiple writes may be
collected internally before transferring the data to caches or main memory. See the following section
for a description of write combining.

7.5.2 Write Combining

Write-combining memory uses a different buffering scheme than write buffering described above.
Writes to write-combining (WC) memory can be combined internally by the processor in a buffer for
more efficient transfer to main memory at a later time. For example, 16 doubleword writes to
consecutive memory addresses can be combined in the WC buffers and transferred to main memory as
a single burst operation rather than as individual memory writes.

The following instructions perform writes to WC memory:
* (V)MASKMOVDQU

* MASKMOVQ

* (VIMOVNTDQ

* MOVNTI

* (VIMOVNTPD

* (V)IMOVNTPS

« MOVNTQ
« MOVNTSD
« MOVNTSS

WC memory is not cacheable. A WC buffer writes its contents only to main memory.

The size and number of WC buffers available is implementation dependent. The processor assigns an
address range to an empty WC buffer when a WC-memory write occurs. The size and alignment of this
address range is equal to the buffer size. All subsequent writes to WC memory that fall within this
address range can be stored by the processor in the WC-buffer entry until an event occurs that causes
the processor to write the WC buffer to main memory. After the WC buffer is written to main memory,
the processor can assign a new address range on a subsequent WC-memory write.

Writes to consecutive addresses in WC memory are not required for the processor to combine them.
The processor combines any WC memory write that falls within the active-address range for a buffer.
Multiple writes to the same address overwrite each other (in program order) until the WC buffer is
written to main memory.

It is possible for writes to proceed out of program order when WC memory is used. For example, a
write to cacheable memory that follows a write to WC memory can be written into the cache before the
WC buffer is written to main memory. For this reason, and the reasons listed in the previous paragraph,
software that is sensitive to the order of memory writes should avoid using WC memory.

WC buffers are written to main memory under the same conditions as the write buffers, namely when:

* Executing a store-fence (SFENCE) instruction.

178 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* Executing a serializing instruction.
* Executing an I/O instruction.
- Executing an MMIO access (load or store to UC memory type)
* Executing a locked instruction (an instruction executed using the LOCK prefix).
* Executing an XCHG instruction

* An interrupt or exception occurs.

WC buffers are also written to main memory when:

* A subsequent non-write-combining operation has a write address that matches the WC-buffer
active-address range.

e A write to WC memory falls outside the WC-buffer active-address range. The existing buffer
contents are written to main memory, and a new address range is established for the latest WC
write.

7.6 Memory Caches

The AMDG64 architecture supports the use of internal and external caches. The size, organization,
coherency mechanism, and replacement algorithm for each cache is implementation dependent.
Generally, the existence of the caches is transparent to both application and system software. In some
cases, however, software can use cache-structure information to optimize memory accesses or manage
memory coherency. Such software can use the extended-feature functions of the CPUID instruction to
gather information on the caching subsystem supported by the processor. For more information, see
Section 3.3, “Processor Feature Identification,” on page 63.

7.6.1 Cache Organization and Operation

Although the detailed organization of a processor cache depends on the implementation, the general
constructs are similar. L1 caches—data and instruction, or unified—and L2 caches usually are
implemented as n-way set-associative caches. Figure 7-3 on page 180 shows a typical logical
organization of an n-way set-associative cache. The physical implementation of the cache can be quite
different.

Memory System 179



AMDAQ

24593—Rev. 3.30—September 2018

Miss

AMDG64 Technology
Way 0 Way 1
Tag Data Other Tag Data Other Tag
P Set0 5 5 5 5
v Set1 : : : :
—E—> Set 2 Line Data 0,2 Line Data 1,2
D Set3 B : : |
boSetmel [ 1 L : : :
. Miss
: Hit | [T
; ] v v
; e | MU /
Data
Hit Data
Physical Address
Tag Field ¢ IndexField +  Offset Field
| |

Figure 7-3. Cache Organization Example

As shown in Figure 7-3, the cache is organized as an array of cache lines. Each cache line consists of
three parts: a cache-data line (a fixed-size copy of a memory block), a tag, and other information.

Rows of cache lines in the cache array are Sets, and columns of cache lines are ways. In an n-way set-
associative cache, each set is a collection of n lines. For example, in a four-way set-associative cache,
each set is a collection of four cache lines, one from each way.

180

Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The cache is accessed using the physical address of the data or instruction being referenced. To access
data within a cache line, the physical address is used to select the set, way, and byte from the cache.
This is accomplished by dividing the physical address into the following three fields:

e Index—The index field selects the cache set (row) to be examined for a hit. All cache lines within
the set (one from each way) are selected by the index field.

e Tag—The tag field is used to select a specific cache line from the cache set. The physical-address
tag field is compared with each cache-line tag in the set. If a match is found, a cache hit is
signalled, and the appropriate cache line is selected from the set. If a match is not found, a cache
miss is signalled.

e Offset—The offset field points to the first byte in the cache line corresponding to the memory
reference. The referenced data or instruction value is read from (or written to, in the case of
memory writes) the selected cache line starting at the location selected by the offset field.

In Figure 7-3 on page 180, the physical-address index field is shown selecting Set 2 from the cache.
The tag entry for each cache line in the set is compared with the physical-address tag field. The tag
entry for Way 1 matches the physical-address tag field, so the cache-line data for Set 2, Way 1 is
selected using the n:1 multiplexor. Finally, the physical-address offset field is used to point to the first
byte of the referenced data (or instruction) in the selected cache line.

Cache lines can contain other information in addition to the data and tags, as shown in Figure 7-3 on
page 180. MOESI state and the state bits associated with the cache-replacement algorithm are typical
pieces of information kept with the cache line. Instruction caches can also contain pre-decode or
branch-prediction information. The type of information stored with the cache line is implementation
dependent.

Self-Modifying Code. Software that stores into its own pending instruction stream with the intent of
then executing the modified instructions is classified as self-modifying code. To support self-
modifying code, AMD64 processors will flush any lines from the instruction cache that such stores hit,
and will additionally check whether an instruction being modified is already in decode or execution
behind the store instruction. If so, it will flush the pipeline and restart instruction fetch to acquire and
re-decode the updated instruction bytes. No special action is needed by software for such updates to
be immediately recognized. As with cache coherency, the check for instructions that are in flight is
performed using physical addresses to avoid aliasing issues that could arise with virtual (linear)
addresses.

When the modified bytes are in cacheable memory, the data cache may retain a copy of the modified
cache line in a shared state, and the instruction cache refill may be satisfied from any suitable place in
the memory hierarchy in a model-dependent manner that maintains cache coherency.

Cross-Modifying Code. Software that stores into the active instruction stream of another executing
thread with the intent that the other thread subsequently execute the modified instruction stream is
classified as cross-modifying code. There are two approaches to consider: asynchronous modification
and synchronous modification.

Memory System 181



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Asynchronous modification. This is done with a write to the target instruction stream with no
particular coordination being done between the writing and receiving threads. The nature of the code
being executed by the target thread is such that it is insensitive to the exact timing of the update, for
example executing in a known loop until an update to a branch instruction's offset takes it down a new
path (or an update to an immediate operand, or opcode, or other instruction field). Such modifications
must be done via a single store to the target thread's instruction stream that is contained entirely within
a naturally-aligned quadword, and is subject to the constraints given here. A key aspect is that,
although the store is performed atomically, the affected quadword may be read more than once in the
process of extracting instruction bytes from it. This can result in the following scenarios resulting
from a single store:

1. An update to two successive instructions, A and B, to A" and B' may result in execution of an A-B'
sequence rather than A'-B'. However it will not result in an A'-B sequence since stores become
visible to instruction fetchers in program order, and instruction fetchers read memory sequentially
between taken branches.

2. A modification to one instruction A that changes it to two instructions A'-B will only result in
execution of A'-B.

3. A modification to two instructions A-B that combines them into one instruction A' may result in a
sequence of A-X, where X starts at the point in A' where B previously started.

Note that since stores to the instruction stream are observed by the instruction fetcher in program
order, one can do multiple modifications to an area of the target thread's code that is beyond reach of
the thread's current control flow, followed by a final asynchronous update that alters the control flow to
expose the modified code to fetching and execution.

If the desired action cannot be achieved within these constraints, a synchronous modification approach
must be used for reliable operation.

Synchronous modification. This entails a producer-consumer approach to the modification, where
the target thread waits on a signal from the modifying thread, such as changing the state of a shared
variable, before executing the modified code. The modifying thread writes to the target instruction
bytes in any desired manner, then writes the synchronizing variable to release the target thread. Upon
release, the target thread must then execute a serializing instruction such as CPUID or MFENCE (a
locked operation is not sufficient) before proceeding to the modified code to avoid executing a stale
view of the instructions which may have been speculatively fetched. Note that such speculative
fetching is a function of branch predictor operation which is completely beyond the control of
software.

See Volume 1, Chapter 3, “Semaphores,” for a discussion of instructions that are useful for
interprocessor synchronization.

7.6.2 Cache Control Mechanisms

The AMD64 architecture provides a number of mechanisms for controlling the cacheability of
memory. These are described in the following sections.

182 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Cache Disable. Bit 30 of the CRO register is the cache-disable bit, CR0.CD. Caching is enabled
when CRO.CD is cleared to 0, and caching is disabled when CR0O.CD is set to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid data (or instructions). If a read or write
hits the L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:

1. Writes the cache line back if it is in the modified or owned state.
2. Invalidates the cache line.

3. Performs a non-cacheable main-memory access to read or write the data.

If an instruction fetch hits the L1 instruction cache when CR0.CD=1, some processor models may read
the cached instructions rather than access main memory. When CR0.CD=1, the exact behavior of L2
and L3 caches is model-dependent, and may vary for different types of memory accesses.

The processor also responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.

Writethrough Disable. Bit 29 of the CRO register is the not writethrough disable bit, CRO.NW. In
early x86 processors, CRO.NW is used to control cache writethrough behavior, and the combination of
CRO.NW and CRO.CD determines the cache operating mode.

In early x86 processors, clearing CRO.NW to 0 enables writeback caching for main memory,
effectively disabling writethrough caching for main memory. When CRO.NW=0, software can disable
writeback caching for specific memory pages or regions by using other cache control mechanisms.
When software sets CRO.NW to 1, writeback caching is disabled for main memory, while
writethrough caching is enabled.

In implementations of the AMDG64 architecture, CRO.NW is not used to qualify the cache operating
mode established by CR0.CD. Table 7-4 shows the effects of CRO.NW and CR0.CD on the AMD64
architecture cache-operating modes.

Table 7-4. AMDG64 Architecture Cache-Operating Modes

CRO0.CD CRO.NW Cache Operating Mode
0 0 Cache enabled with a writeback-caching policy.

Invalid setting—causes a general-protection exception (#GP).

Cache disabled. See “Cache Disable” on page 183.

0 1
1 0
1 1

Page-Level Cache Disable. Bit 4 of all paging data-structure entries controls page-level cache
disable (PCD). When a data-structure-entry PCD bit is cleared to 0, the page table or physical page
pointed to by that entry is cacheable, as determined by the CR0.CD bit. When the PCD bitis setto 1,
the page table or physical page is not cacheable. The PCD bit in the paging data-structure base-register

Memory System 183



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

(bit 4 in CR3) controls the cacheability of the highest-level page table in the page-translation
hierarchy.

Page-Level Writethrough Enable. Bit 3 of all paging data-structure entries is the page-level
writethrough enable control (PWT). When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has a writeback caching policy. When the PWT bit is set
to 1, the page table or physical page has a writethrough caching policy. The PWT bit in the paging
data-structure base-register (bit 3 in CR3) controls the caching policy of the highest-level page table in
the page-translation hierarchy.

The corresponding PCD bit must be cleared to 0 (page caching enabled) for the PWT bit to have an
effect.

Memory Typing. Two mechanisms are provided for software to control access to and cacheability of
specific memory regions:

* The memory-type range registers (MTRRs) control cacheability based on physical addresses. See
“MTRRs” on page 189 for more information on the use of MTRRs.
* The page-attribute table (PAT) mechanism controls cacheability based on virtual addresses. PAT

extends the capabilities provided by the PCD and PWT page-level cache controls. See “Page-
Attribute Table Mechanism” on page 198 for more information on the use of the PAT mechanism.

System software can combine the use of both the MTRRs and PAT mechanisms to maximize control
over memory cacheability.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs in
order for memory accesses to be cached.

Cache Control Precedence. The cache-control mechanisms are used to define the memory type and
cacheability of main memory and regions of main memory. Taken together, the most restrictive
memory type takes precedence in defining the caching policy of memory. The order of precedence is:

1. Uncacheable (UC)

2. Write-combining (WC)
3. Write-protected (WP)
4. Writethrough (WT)

5. Writeback (WB)

For example, assume a large memory region is designated a writethrough type using the MTRRs.
Individual pages within that region can have caching disabled by setting the appropriate page-table
PCD bits. However, no pages within that region can have a writeback caching policy, regardless of the
page-table PWT values.

184 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

7.6.3 Cache and Memory Management Instructions

Data Prefetch. The prefetch instructions are used by software as a hint to the processor that the
referenced data is likely to be used in the near future. The processor can preload the cache line
containing the data in anticipation of its use. PREFETCH provides a hint that the data is to be read.
PREFETCHW provides a hint that the data is to be written. The processor can mark the line as
modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructions are provided for software to enforce memory ordering (serialization)
in weakly-ordered memory types. These instructions are:

e SFENCE (store fence)—forces all memory writes (stores) preceding the SFENCE (in program
order) to be written into memory before memory writes following the SFENCE.

* LFENCE (load fence)—forces all memory reads (loads) preceding the LFENCE (in program
order) to be read from memory before memory reads following the LFENCE.

e MFENCE (memory fence)—forces all memory accesses (reads and writes) preceding the
MFENCE (in program order) to be written into or read from memory before memory accesses
following the MFENCE.

Cache Line Flush. The CLFLUSH instruction (writeback, if modified, and invalidate) takes the byte
memory-address operand (a linear address), and checks to see if the address is cached. If the address is
cached, the entire cache line containing the address is invalidated. If any portion of the cache line is
dirty (in the modified or owned state), the entire line is written to main memory before it is invalidated.
CLFLUSH affects all cachesin the memory hierarchy—internal and external to the processor. The
checking and invalidation process continues until the address has been invalidated in all caches.

In most cases, the underlying memory type assigned to the address has no effect on the behavior of this
instruction. However, when the underlying memory type for the address is UC or WC (as defined by
the MTRRs), the processor does not proceed with checking all caches to see if the address is cached. In
both cases, the address is uncacheable, and invalidation is unnecessary. Write-combining buffers are
written back to memory if the corresponding physical address falls within the buffer active-address
range.

Cache Writeback and Invalidate. Unlike the CLFLUSH instruction, the WBINVD instruction
operates on the entire cache, rather than a single cache line. The WBINVD instruction first writes back
all cache lines that are dirty (in the modified or owned state) to main memory. After writeback is
complete, the instruction invalidates all cache lines. The checking and invalidation process continues
until all internal caches are invalidated. A special bus cycle is transmitted to higher-level external
caches directing them to perform a writeback-and-invalidate operation.

Cache Invalidate. The INVD instruction is used to invalidate all cache lines. Unlike the WBINVD
instruction, dirty cache lines are not written to main memory. The process continues until all internal
caches have been invalidated. A special bus cycle is transmitted to higher-level external caches
directing them to perform an invalidation.

The INVD instruction should only be used in situations where memory coherency is not required.

Memory System 185



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

7.6.4 Serializing Instructions

Serializing instructions force the processor to retire the serializing instruction and all previous
instructions before the next instruction is fetched. A serializing instruction is retired when the
following operations are complete:

e The instruction has executed.

e All registers modified by the instruction are updated.

e All memory updates performed by the instruction are complete.

* All data held in the write buffers have been written to memory.

Serializing instructions can be used as a barrier between memory accesses to force strong ordering of
memory operations. Care should be exercised in using serializing instructions because they modify
processor state and may affect program flow. The instructions also force execution serialization, which
can significantly degrade performance. When strongly-ordered memory accesses are required, but

execution serialization is not, it is recommended that software use the memory-ordering instructions
described on page 185.

The following are serializing instructions:

* Non-Privileged Instructions
- CPUID
- IRET
- RSM
-  MFENCE
* Privileged Instructions
- MOV CRn
- MOV DRn
- LGDT, LIDT, LLDT, LTR
- SWAPGS
- WRMSR
- WBINVD, INVD
- INVLPG

7.6.5 Cache and Processor Topology

Cache and processor topology information is useful in the optimal management of system and
application resources. Exposing processor and cache topology information to the programmer allows
software to make more efficient use of hardware multithreading resources delivering optimal
performance. Shared resources in a specific cache and processor topology may require special
consideration in the optimization of multiprocessing software performance.

186 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The processor topology allows software to determine which cores are siblings in a compute unit, node,
and processor package. For example, a scheduler can then choose to either compact or scatter threads
(or processes) to cores in compute units, nodes, or across the cores in the entire physical package in
order to optimize for a power and performance profile.

Topology extensions define processor topology at both the node, compute unit and cache level.
Topology extensions include cache properties with sharing and the processor topology identified. The
result is a simplified extension to the CPUID instruction that describes the processors cache topology
and leverages existing industry cache properties folded into AMD’s topology extension description.

Topology extensions definition supports existing and future processors with varying degrees of cache
level sharing. Topology extensions also support the description of a simple compute unit with one core
or packages where the number of cores in a node and/or compute unit are not an even power of two.

CPUID Function 8000_001D: Cache Topology Definition. CPUID Function 8000 001D describes
the hierarchical relationships of cache levels relative to the cores which share these resources.
Function 8000 001D is defined to be called iteratively with the value 8000001Dh in EAX and an
additional parameter in ECX. To gather information for all cache levels, software must call CPUID
with 8000001Dh in EAX and ECX set to increasing values beginning with 0 until a value of 0 is
returned from EAX[4:0], which indicates no more cache descriptions.

If software dynamically manages cache configuration, it will need to update any stored cache
properties for the processor.

CPUID Function 8000_001E: Processor Topology Definition. CPUID Function 8000 001E
describes processor topology with component identifiers. To read the processor topology, definition
software calls the CPUID instruction with the value 8000001 Eh in EAX. After execution the APIC ID
is represented in EAX. EBX contains the compute unit description in the processor, while ECX
contains system unique node identification. Software may read this information once for each core.

The following CPUID functions provide information about processor topology:
* CPUID Fn8000_ 0001 ECX

* CPUID Fn8000_0008 ECX

e CPUID Fn8000 001D _EAX, EBX, ECX, EDX

« CPUID Fn8000 001E EAX, EBX, ECX

For more information using the CPUID instruction, see Section 3.3, “Processor Feature
Identification,” on page 63.

7.7 Memory-Type Range Registers

The AMDG64 architecture supports three mechanisms for software access-control and cacheability-
control over memory regions. These mechanisms can be used in place of similar capabilities provided
by external chipsets used with early x86 processors.

Memory System 187



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

This section describes a control mechanism that uses a set of programmable model-specific registers
(MSRs) called the memory-type-range registers (MTRRs). The MTRR mechanism provides system
software with the ability to manage hardware-device memory mapping. System software can
characterize physical-memory regions by type (e.g., ROM, flash, memory-mapped I/O) and assign
hardware devices to the appropriate physical-memory type.

Another control mechanism is implemented as an extension to the page-translation capability and is
called the page attribute table (PAT). It is described in “Page-Attribute Table Mechanism” on

page 198. Like the MTRRs, PAT provides system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can characterize physical pages and assign
virtually-mapped devices to those physical pages using the page-translation mechanism. PAT may be
used in conjunction with the MTTR mechanism to maximize flexibility in memory control.

Finally, control mechanisms are provided for managing memory-mapped I/O. These mechanisms
employ extensions to the MTRRs and a separate feature called the top-of-memory registers. The
MTRR extensions include additional MTRR type-field encodings for fixed-range MTRRs and
variable-range I/O range registers (IORRs). These mechanisms are described in “Memory-Mapped
I/O” on page 202.

7.7.1 MTRR Type Fields

The MTRR mechanism provides a means for associating a physical-address range with a memory type
(see “Memory Types” on page 172). The MTRRs contain a type field used to specify the memory type
in effect for a given physical-address range.

There are two variants of the memory type-field encodings: standard and extended. Both the standard
and extended encodings use type-field bits 2:0 to specify the memory type. For the standard
encodings, bits 7:3 are reserved and must be zero. For the extended encodings, bits 7:5 are reserved,
but bits 4:3 are defined as the RdMem and WrMem bits. “Extended Fixed-Range MTRR Type-Field
Encodings” on page 203 describes the function of these extended bits and how software enables them.
Only the fixed-range MTRRs support the extended type-field encodings. Variable-range MTRRs use
the standard encodings.

Table 7-5 on page 188 shows the memory types supported by the MTRR mechanism and their
encoding in the MTRR type fields referenced throughout this section. Unless the extended type-field
encodings are explicitly enabled, the processor uses the type values shown in Table 7-5.

Table 7-5. MTRR Type Field Encodings

Type Value Type Name Type Description

All accesses are uncacheable. Write combining is not
allowed. Speculative accesses are not allowed

All accesses are uncacheable. Write combining is
allowed. Speculative reads are allowed

Reads allocate cache lines on a cache miss. Cache
04h WT—Writethrough lines are not allocated on a write miss. Write hits update
the cache and main memory.

00h UC—Uncacheable

01h WC—Write-Combining

188 Memory System



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 7-5. MTRR Type Field Encodings (continued)

Reads allocate cache lines on a cache miss. All writes
update main memory. Cache lines are not allocated on a

05h WP—Write-Protect write miss. Write hits invalidate the cache line and
update main memory.
Reads allocate cache lines on a cache miss, and can
06h WB—Writeback allocate to either the shared, exclusive, or modified

state. Writes allocate to the modified state on a cache
miss.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default

memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are

enabled by clearing CRO.CD to 0. Cacheable memory types must be established using the MTRRs to
enable memory accesses to be cached.

7.7.2 MTRRs

Both fixed-size and variable-size address ranges are supported by the MTRR mechanism. The fixed-

size ranges are restricted to the lower 1 Mbyte of physical-address space, while the variable-size

ranges can be located anywhere in the physical-address space.

Figure 7-4 on page 190 shows an example mapping of physical memory using the fixed-size and

variable-size MTRRs. The areas shaded gray are not mapped by the MTRRs. Unmapped areas are set
to the software-selected default memory type.

Memory System

189



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Physical Memory

O_FFFF_FFFF_FFFFh

— Default (Unmapped) Ranges

Up to 8 Variable Ranges

10_0000h
64 4-Kbyte Ranges —>» 256 Kbytes OF_FFFFh

16 16-Kbyte Ranges ——»{ 226 Kbytes

8 64-Kbyte Ranges —»| 512 Kbytes

00_0000h

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are read using the RDMSR instruction and
written using the WRMSR instruction. See “Memory-Typing MSRs” on page 586 for a listing of the
MTRR MSR numbers. The following sections describe the types of MTRRs and their function.

Fixed-Range MTRRs. The fixed-range MTRRs are used to characterize the first 1 Mbyte of physical
memory. Each fixed-range MTRR contains eight type fields for characterizing a total of eight memory
ranges. Fixed-range MTRRs support extended type-field encodings as described in “Extended Fixed-
Range MTRR Type-Field Encodings” on page 203. The extended type field allows a fixed-range
MTRR to be used as a fixed-range IORR. Figure 7-5 on page 191 shows the format of a fixed-range
MTRR.

190 Memory System



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

63 56 55 48 47 40 39 32
Type Type Type Type

31 24 23 16 15 8 7 0
Type Type Type Type

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte of physical memory is segmented into
a total of 88 non-overlapping memory ranges, as follows:

e The 512 Kbytes of memory spanning addresses 00 _0000h to 07 _FFFFh are segmented into eight
64-Kbyte ranges. A single MTRR is used to characterize this address space.

e The 256 Kbytes of memory spanning addresses 08 0000h to 0B FFFFh are segmented into 16 16-
Kbyte ranges. Two MTRRs are used to characterize this address space.

* The 256 Kbytes of memory spanning addresses 0C_0000h to OF FFFFh are segmented into 64 4-
Kbyte ranges. Eight MTRRs are used to characterize this address space.

Table 7-6 shows the address ranges corresponding to the type fields within each fixed-range MTRR.
The gray-shaded heading boxes represent the bit ranges for each type field in a fixed-range MTTR.
See Table 7-5 on page 188 for the type-field encodings.

Table 7-6. Fixed-Range MTRR Address Ranges

Physical Address Range (in hexadecimal) .
63-56 | 55-48 | 47-40 | 39-32 | 31-24 | 23-16 15-8 7-0 Register Name
TOFFE |GPFFF |SPFPF |dFFRF |OFFRF |2FPRF |1FRRF |operr |  MTRRDXG4K_00000
OFFFF |OBFFF |S7FPF |SSPPF |oFFFF |oBFFF |s7eFF |sapFe |  MTRRXIGK 80000
SFFPF |BBFFF |BTFFE | BOFFE |AFFFF |ABFFF |ATFRE |Acer | MTRRIXIGK_AQDOO
CIPFF |CORFF |OSPFF |GARFF |COFF |C2FFr |GIFFE |CoFer | MTRRAXEK_CO00D
CFFPF |GEFFF |CDFFF |CFFF |CBFFF |CAPPF |CoFPr |CoFer |  MTRRAXIK_CE000
DTFFF |DEFFF |DSFRF |DAFRF |DIFFF |D2FFF |DIFFF |DORFF | MTRRAAK_DO0CO
DFFFF |DEFPF |DDFFF |DFFF |DBFFF |DAPFF |DOFPF |Darer |  MTRRAXIKDE0OO
ETPFF |EGPFF |ESFFR |EAFFR |EOFPF |EoFPF |EAFRF |FoFe | MTRRIXKEO00D

Memory System 191



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 7-6. Fixed-Range MTRR Address Ranges (continued)

Physical Address Range (in hexadecimal)
63-56 | 55-48 | 47-40 | 39-32 | 31-24 | 23-16 15-8 7-0

EF000- | EE000- | EDO0O— | EC000— |EBOOO— |EA000— | E9000— | E8000—
EFFFF |EEFFF |EDFFF |ECFFF |EBFFF |EAFFF |E9FFF |E8FFF

F7000- |F6000- |F5000- |F4000- |F3000— |F2000— |F1000- |F0000-
F7FFF |F6FFF |F5FFF |F4FFF |F3FFF |F2FFF |F1FFF |FOFFF

FFOOO— |FEO00— |FD000- | FCO00— |FBO0O— |FAOOO— |F9000— |F8000-
FFFFF |FEFFF |FDFFF |FCFFF |FBFFF |FAFFF |FOFFF |F8FFF

Register Name

MTRRfix4K_E8000

MTRRfix4K_F0000

MTRRfix4K_F8000

Variable-Range MTRRs. The variable-range MTRRs can be used to characterize any address range
within the physical-memory space, including all of physical memory. Up to eight address ranges of
varying sizes can be characterized using the MTRR. Two variable-range MTRRs are used to
characterize each address range: MTRRphysBasen and MTRRphysMaskn (n is the address-range
number from 0 to 7). For example, address-range 3 is characterized using the MTRRphysBase3 and
MTRRphysMask3 register pair.

Figure 7-6 shows the format of the MTRRphysBasen register and Figure 7-7 on page 193 shows the
format of the MTRRphysMaskn register. The fields within the register pair are read/write.

MTRRphysBasen Registers. The fields in these variable-range MTRRs, shown in Figure 7-6, are:

e Type—Bits 7:0. The memory type used to characterize the memory range. See Table 7-5 on
page 188 for the type-field encodings. Variable-range MTRRs do not support the extended type-
field encodings.

 Range Physical Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

192 Memory System



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
63 52 51 32
Reserved, MBZ PhysBase[51:32]
31 12 11 8 7 0
. Reserved,
PhysBase[31:12] MBZ Type
Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysBase Range Physical Base Address R/W
11:8 Reserved Reserved, Must be Zero
7:0 Type Default Memory Type R/W

Figure 7-6. MTRRphysBasen Register

MTRRphysMaskn Registers. The fields in these variable-range MTRRs, shown in Figure 7-7, are:

e Valid (V)—Bit 11. Indicates that the MTRR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used.

e Range Physical Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

63 52 51 32
Reserved, MBZ PhysMask[51:32]
31 12 11 10 0
PhysMask[31:12] \% Reserved, MBZ

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:12 PhysMask Range Physical Mask R/W

11 \Y MTRR Pair Enable (Valid) R/W

10:0 Reserved Reserved, Must be Zero

Figure 7-7. MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine whether a target physical-address falls within
the specified address range. PhysMask is logically ANDed with PhysBase and separately ANDed with
the upper 40 bits of the target physical-address. If the results of the two operations are identical, the

target physical-address falls within the specified memory range. The pseudo-code for the operation is:

Memory System 193



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

MaskBase = PhysMask AND PhysBase
MaskTar get = PhysMask AND Tar get _Address[51: 12]
| F MaskBase == MaskTar get
target address is in range
ELSE
target address is not in range

Variable Range Size and Alignment. The size and alignment of variable memory-ranges (MTRRs)
and I/O ranges (IORRs) are restricted as follows:

* The boundary on which a variable range is aligned must be equal to the range size. For example, a
memory range of 16 Mbytes must be aligned on a 16-Mbyte boundary.

e The range size must be a power of 2 (2", 52 > n > 11), with a minimum allowable size of 4 Kbytes.
For example, 4 Mbytes and 8 Mbytes are allowable memory range sizes, but 6 Mbytes is not
allowable.

PhysMask and PhysBase Values. Software can calculate the PhysMask value using the following
procedure:

1. Subtract the memory-range physical base-address from the upper physical-address of the memory
range.

2. Subtract the value calculated in Step 1 from the physical memory size.

3. Truncate the lower 12 bits of the result in Step 2 to create the PhysMask value to be loaded into
the MTRRphysMaskn register. Truncation is performed by right-shifting the value 12 bits.

For example, assume a 32-Mbyte memory range is specified within the 52-bit physical address space,
starting at address 200 _0000h. The upper address of the range is 3FF_FFFFh. Following the process
outlined above yields:

1. 3FF_FFFFh-200_0000h = 1FF_FFFFh
2. F_FFFF FFFF FFFF-1FF FFFFh=F FFFF FE00 0000h
3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_E000h

In this example, the 40-bit value loaded into the PhysMask field is FF_ FFFF_EO000h.

Software must also truncate the lower 12 bits of the physical base-address before loading it into the
PhysBase field. In the example above, the 40-bit PhysBase field is 00 0000 2000h.

Default-Range MTRRs. Physical addresses that are not within ranges established by fixed-range and
variable-range MTRRs are set to a default memory-type using the MTRRdefType register. The format
of this register is shown in Figure 7-8.

194 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

63 32

Reserved, MBZ

31 121110 9 8 7 0
F | Res,
Reserved, MBZ E E | MBZ Type

Bits Mnemonic Description R/W

63:12 Reserved Reserved, Must be Zero

11 E MTRR Enable R/W

10 FE Fixed Range Enable R/W

9:8 Reserved Reserved, Must be Zero

7:0 Type Default Memory Type R/W

Figure 7-8. MTRRdefType Register Format

The fields within the MTRRdefType register are read/write. These fields are:

e Type—Bits 7:0. The default memory-type used to characterize physical-memory space. See
Table 7-5 on page 188 for the type-field encodings. The extended type-field encodings are not
supported by this register.

* Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are enabled when FE is set to 1.
Clearing FE to 0 disables all fixed-range MTRRs. Setting and clearing FE has no effect on the
variable-range MTRRs. The FE bit has no effect unless the E bit is set to 1 (see below).

* MTRR Enable (E)—Bit 11. This is the MTRR memory typing enable bit. The memory typing
capabilities of all fixed-range and variable-range MTRRs are enabled when E is set to 1. Clearing
E to 0 disables the memory typing capabilities of all fixed-range and variable-range MTRRs and
sets the default memory-type to uncacheable (UC) regardless of the value of the Type field. This
bit does not affect the operation of the RdAMem and WrMem fields.

7.7.3 Using MTRRs

Identifying MTRR Features. Software determines whether a processor supports the MTRR
mechanism by executing the CPUID instruction with either function 0000 _0001h or function

8000 _0001h. If MTRRs are supported, bit 12 in the EDX register is set to 1 by CPUID. See “Processor
Feature Identification” on page 63 for more information on the CPUID instruction.

The MTRR capability register (MTRRcap) is a read-only register containing information describing
the level of MTRR support provided by the processor. Figure 7-9 shows the format of this register. If
MTRRs are supported, software can read MTRRcap using the RDMSR instruction. Attempting to
write to the MTRRcap register causes a general-protection exception (#GP).

Memory System 195



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
63 32
Reserved
31 110 9 8 7 0

W R|F
Reserved el VCNT
C
s | X
Bits Mnemonic Description R/W
63:11 Reserved Reserved
10 wcC Write Combining R
9 Reserved Reserved
8 FIX Fixed-Range Registers R
7:0 VCNT Variable-Range Register Count R

Figure 7-9. MTRR Capability Register Format

The MTRRcap register field are:

7.7

Variable-Range Register Count (VCNT)—Bits 7:0. The VCNT field contains the number of
variable-range register pairs supported by the processor. For example, a processor supporting eight
register pairs returns a O8h in this field.

Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicates whether or not the fixed-range registers
are supported. If the processor returns a 1 in this bit, all fixed-range registers are supported. If the
processor returns a 0 in this bit, no fixed-range registers are supported.

Write-Combining (WC)—Bit 10. The WC bit indicates whether or not the write-combining

memory type is supported. If the processor returns a 1 in this bit, WC memory is supported,
otherwise it is not supported.

.4 MTRRs and Page Cache Controls

When paging and the MTRRs are both enabled, the address ranges defined by the MTRR registers can
span multiple pages, each of which can characterize memory with different types (using the PCD and
PWT page bits). When caching is enabled (CR0.CD=0 and CR0O.NW=0), the effective memory typeis
determined as follows:

1.

If the page is defined as cacheable and writeback (PCD=0 and PWT=0), then the MTRR defines
the effective memory-type.

If the page is defined as not cacheable (PCD=1), then UC is the effective memory-type.

If the page is defined as cacheable and writethrough (PCD=0 and PWT=1), then the MTRR
defines the effective memory-type unless the MTRR specifies WB memory, in which case WT is
the effective memory-type.

196 Memory System



AMDA
AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 7-7 lists the MTRR and page-level cache-control combinations and their combined effect on the
final memory-type, if the PAT register holds the default settings.

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR

MTRR Page Page Effective
Memory Type PCD Bit PWT Bit Memory-Type
uc — — uc

0 — wC
wcC 1 0 WC'
1 uc
0 — WP
WP
1 — uc
0 — WT
WT
1 — uc
0 0 WB
WB 0 WT
1 — uc
Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and
an MTRR WC memory type is implementation dependent.

Large Page Sizes. When paging is enabled, software can use large page sizes (2 Mbytes and

4 Mbytes) in addition to the more typical 4-Kbyte page size. When large page sizes are used, it is
possible for multiple MTRRs to span the memory range within a single large page. Each MTRR can
characterize the regions within the page with different memory types. If this occurs, the effective
memory-type used by the processor within the large page is undefined.

Software can avoid the undefined behavior in one of the following ways:

*  Avoid using multiple MTRRs to characterize a single large page.
e Use multiple 4-Kbyte pages rather than a single large page.

e Ifmultiple MTRRs must be used within a single large page, software can set the MTRR type fields
to the same value.

e If the multiple MTRRs must have different type-field values, software can set the large page PCD
and PWT bits to the most restrictive memory type defined by the multiple MTRRs.

Overlapping MTRR Registers. If the address ranges of two or more MTRRs overlap, the following

rules are applied to determine the memory type used to characterize the overlapping address range:

1. Fixed-range MTRRs, which characterize only the first 1 Mbyte of physical memory, have
precedence over variable-range MTRRs.

2. Iftwo or more variable-range MTRRs overlap, the following rules apply:

Memory System 197



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

If the memory types are identical, then that memory type is used.
b. If at least one of the memory types is UC, the UC memory type is used.

c. If at least one of the memory types is WT, and the only other memory type is WB, then the
WT memory type is used.

d. If the combination of memory types is not listed Steps A through C immediately above, then
the memory type used is undefined.

7.7.5 MTRRs in Multi-Processing Environments

In multi-processing environments, the MTRRs located in all processors must characterize memory in
the same way. Generally, this means that identical values are written to the MTRRs used by the
processors. This also means that values CR0.CD and the PAT must be consistent across processors.
Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR settings in other processors to ensure consistency. It is the responsibility of
system software to initialize and maintain MTRR consistency across all processors.

7.8 Page-Attribute Table Mechanism

The page-attribute table (PAT) mechanism extends the page-table entry format and enhances the
capabilities provided by the PCD and PWT page-level cache controls. PAT (and PCD, PWT) allow
memory-type characterization based on the virtual (linear) address. The PAT mechanism provides the
same memory-typing capabilities as the MTRRs but with the added flexibility of the paging
mechanism. Software can use both the PAT and MTRR mechanisms to maximize flexibility in
memory-type control.

7.8.1 PAT Register

Like the MTRRs, the PAT register is a 64-bit model-specific register (MSR). The format of the PAT
registers is shown in Figure 7-10. See “Memory-Typing MSRs” on page 586 for more information on
the PAT MSR number and reset value.

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

Reserved PA7 Reserved PAG Reserved PA5 Reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PAO

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields, numbered from PAO to PA7. The PA fields
hold the encoding of a memory type, as found in Table 7-8 on page 199. The PAT type-encodings

198 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

match the MTRR type-encodings, with the exception that PAT adds the 07h encoding. The 07h
encoding corresponds to a UC— type. The UC— type (07h) is identical to the UC type (00h) except it
can be overridden by an MTRR type of WC.

Software can write any supported memory-type encoding into any of the eight PA fields. An attempt to
write anything but zeros into the reserved fields causes a general-protection exception (#GP). An
attempt to write an unsupported type encoding into a PA field also causes a #GP exception.

The PAT register fields are initiated at processor reset to the default values shown in Table 7-9 on

page 200.

Table 7-8. PAT Type Encodings
Type Value Type Name Type Description

All accesses are uncacheable. Write combining is not allowed.

00h UC—Uncacheable :
Speculative accesses are not allowed.

All accesses are uncacheable. Write combining is allowed.

0th WC—Write-Combining Speculative reads are allowed.

Reads allocate cache lines on a cache miss, but only to the shared
04h WT—Writethrough |state. Cache lines are not allocated on a write miss. Write hits
update the cache and main memory.

Reads allocate cache lines on a cache miss, but only to the shared
state. All writes update main memory. Cache lines are not allocated
on a write miss. Write hits invalidate the cache line and update main
memory.

05h WP—Write-Protect

Reads allocate cache lines on a cache miss, and can allocate to
06h WB—Writeback either the shared or exclusive state. Writes allocate to the modified
state on a cache miss.

All accesses are uncacheable. Write combining is not allowed.
uc- . .
07h (UC minus) Speculative accesses are not allowed. Can be overridden by an
MTRR with the WC type.

7.8.2 PAT Indexing

PA fields in the PAT register are selected using three bits from the page-table entries. These bits are:

e PAT (page attribute table)}—The PAT bit is bit 7 in 4-Kbyte PTEs; it is bit 12 in 2-Mbyte and 4-
Mbyte PDEs. Page-table entries that don’t have a PAT bit (PML4 entries, for example) assume PAT
=0.

* PCD (page cache disable)—The PCD bit is bit 4 in all page-table entries. The PCD from the PTE
or PDE is selected depending on the paging mode.

e PWT (page writethrough)}—The PWT bit is bit 3 in all page-table entries. The PWT from the PTE
or PDE is selected depending on the paging mode.

Table 7-9 on page 200 shows the various combinations of the PAT, PCD, and PWT bits used to select a
PA field within the PAT register. Table 7-9 also shows the default memory-type values established in
the PAT register by the processor after a reset. The default values correspond to the memory types

Memory System 199



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

established by the PCD and PWT bits alone in processor implementations that do not support the PAT
mechanism. In such implementations, the PAT field in page-table entries is reserved and cleared to 0.
See “Page-Translation-Table Entry Fields” on page 137 for more information on the page-table
entries.

Table 7-9. PAT-Register PA-Field Indexing

Page Table Entry Bits PAT Register Field | Default Memory Type
PAT PCD PWT
0 0 0 PAO WB
0 0 1 PAl WT
0 1 0 PA2 uc-!
0 1 1 PA3 uc
1 0 0 PA4 WB
1 0 1 PA5 WT
1 1 0 PA6 uc-!
1 1 1 PA7 ucC
Note:
1. Can be overridden by WC memory type set by an MTRR.

7.8.3 ldentifying PAT Support

Software determines whether a processor supports the PAT mechanism by executing the CPUID
instruction with either function 0000 0001h or function 8000 0001h. If PAT is supported, bit 16 in the
EDX register is set to 1 by CPUID. See Section 3.3, “Processor Feature Identification,” on page 63 for
more information on the CPUID instruction.

If PAT is supported by a processor implementation, it is always enabled. The PAT mechanism cannot
be disabled by software. Software can effectively avoid using PAT by:

* Not setting PAT bits in page-table entries to 1.
* Not modifying the reset values of the PA fields in the PAT register.

In this case, memory is characterized using the same types that are used by implementations that do
not support PAT.

7.8.4 PAT Accesses

In implementations that support the PAT mechanism, all memory accesses that are translated through
the paging mechanism use the PAT index bits to specify a PA field in the PAT register. The memory
type stored in the specified PA field is applied to the memory access. The process is summarized as:

1. A virtual address is calculated as a result of a memory access.
2. The virtual address is translated to a physical address using the page-translation mechanism.

3. The PAT, PCD and PWT bits are read from the corresponding page-table entry during the virtual-
address to physical-address translation.

200 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

4. The PAT, PCD and PWT bits are used to select a PA field from the PAT register.
5. The memory type is read from the appropriate PA field.
6. The memory type is applied to the physical-memory access using the translated physical address.

Page-Translation Table Access. The PAT bit exists only in the PTE (4-K paging) or PDEs (2/4
Mbyte paging). In the remaining upper levels (PML4, PDP, and 4K PDEs), only the PWT and PCD
bits are used to index into the first 4 entries in the PAT register. The resulting memory type is used for
the next lower paging level.

7.8.5 Combined Effect of MTRRs and PAT

The memory types established by the PAT mechanism can be combined with MTRR-established
memory types to form an effective memory-type. The combined effect of MTRR and PAT memory
types are shown in Figure 7-10. In the AMD64 architecture, reserved and undefined combinations of
MTRR and PAT memory types result in undefined behavior. If the MTRRs are disabled in
implementations that support the MTRR mechanism, the default memory type is set to uncacheable
(UC).

Table 7-10. Combined Effect of MTRR and PAT Memory Types

PAT Memory Type MTRR Memory Type Effective Memory Type
uc uc uc
uc WC, WP, WT, WB CD

uc uc

uc- wC wC
WP, WT, WB CcD

wC — wC
uc uc

wC CD

WP WP WP
WT CD

WB WP

uc uc

WT WC, WP CD
WT, WB WT

uc uc

wC wC

WB WP WP
WT WT

WB WB

Memory System 201



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

7.8.6 PATs in Multi-Processing Environments

In multi-processing environments, values of CR0.CD and the PAT must be consistent across all
processors and the MTRRs in all processors must characterize memory in the same way. In other
words, matching address ranges and cachability types are written to the MTRRs for each processor.

Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR, CR0O.CD and PAT values in other processors to ensure consistency. It is the
responsibility of system software to initialize and maintain consistency across all processors.

7.8.7 Changing Memory Type

A physical page should not have differing cacheability types assigned to it through different virtual
mappings; they should be either all of a cacheable type (WB, WT, WP) or all of a non-cacheable type
(UC, WC). Otherwise, this may result in a loss of cache coherency, leading to stale data and
unpredictable behavior. For this reason, certain precautions must be taken when changing the memory
type of a page. In particular, when changing from a cachable memory type to an uncachable type the
caches must be flushed, because speculative execution by the processor may have resulted in memory
being cached even though it was not programatically referenced. The following table summarizes the
serialization requirements for safely changing memory types.

Table 7-11. Serialization Requirements for Changing Memory Types

New Type

WB WT WP uc wC

wB - a b b

§ WT a - b b

- WP a a - b b
k)

(@) uc a a - a

wcC a a a -

a. Remove the previous mapping (make it not present in the page tables); Flush the TLBs including
the TLBs of other processors that may have used the mapping, even speculatively; Create a
new mapping in the page tables using the new type.

b. In addition to the steps described in note a, software should flush the page from the caches of
any processor that may have used the previous mapping. This must be done after the TLB
flushing in note a has been completed.

7.9 Memory-Mapped I/O

Processor implementations can independently direct reads and writes to either system memory or
memory-mapped I/O. The method used for directing those memory accesses is implementation
dependent. In some implementations, separate system-memory and memory-mapped I/O buses can be
provided at the processor interface. In other implementations, system memory and memory-mapped
I/O share common data and address buses, and system logic uses sideband signals from the processor
to route accesses appropriately. Refer to AMD data sheets and application notes for more information
about particular hardware implementations of the AMD64 architecture.

202 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The I/0O range registers (IORRs), and the top-of-memory registers allow system software to specify
where memory accesses are directed for a given address range. The MTRR extensions are described in
the following section. “IORRs” on page 204 describes the IORRs and “Top of Memory” on page 206
describes the top-of-memory registers. |nimplementations that support these features, the default
action taken when the features are disabled is to direct memory accesses to memory-mapped |/O.

7.9.1 Extended Fixed-Range MTRR Type-Field Encodings

The fixed-range MTRRs support extensions to the type-field encodings that allow system software to
direct memory accesses to system memory or memory-mapped I/O. The extended MTRR type-field
encodings use previously reserved bits 4:3 to specify whether reads and writes to a physical-address
range are to system memory or to memory-mapped I/O. The format for this encoding is shown in
Figure 7-11 on page 203. The new bits are:

* WMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped I/O.

 RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped 1/O.

The type subfield (bits 2:0) allows the encodings specified in Table 7-5 on page 188 to be used for
memory characterization.

7 5 4 3 2 0

Reserved RdMem | WrMem Type

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs)

These extensions are enabled using the following bits in the SYSCFG MSR:

e MtrrFixDramgEn—Bit 18. When set to 1, RdMem and WrMem attributes are enabled. When
cleared to 0, these attributes are disabled. When disabled, accesses are directed to memory-mapped
1/O space.

e MtrrFixDramModEn—Bit 19. When set to 1, software can read and write the RdMem and
WrMem bits. When cleared to 0, writes do not modify the RdMem and WrMem bits, and reads
return 0.

To use the MTRR extensions, system software must first set MtrrFixDramModEn=1 to allow
modification to the RdMem and WrMem bits. After the attribute bits are properly initialized in the
fixed-range registers, the extensions can be enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently direct reads and writes to either system
memory or memory-mapped I/O. The RdMem and WrMem controls are particularly useful when
shadowing ROM devices located in memory-mapped /O space. It is often useful to shadow such
devices in RAM system memory to improve access performance, but writes into the RAM location can

Memory System 203



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

corrupt the shadowed ROM information. The MTRR extensions solve this problem. System software
can create the shadow location by setting WrMem = 1 and RdMem = 0 for the specified memory range
and then copy the ROM location into itself. Reads are directed to the memory-mapped ROM, but
writes go to the same physical addresses in system memory. After the copy is complete, system
software can change the bit values to WrMem = 0 and RdMem = 1. Now reads are directed to the faster
copy located in system memory, and writes are directed to memory-mapped ROM. The ROM
responds as it would normally to a write, which is to ignore it.

Not all combinations of RdMem and WrMem are supported for each memory type encoded by bits 2:0.
Table 7-12 on page 204 shows the allowable combinations. The behavior of reserved encoding
combinations (shown as gray-shaded cells) is undefined and results in unpredictable behavior.

Table 7-12. Extended Fixed-Range MTRR Type Encodings

RdMem | WrMem Type Implication or Potential Use
0 (UC) uc /o
1(WC) WC 1/0
0 0 4 (WT) WT I/O
5 (WP) WP I/0
6 (WB) Reserved
0 (UC) , ,
Used while creating a shadowed ROM
1 (WC)
0 1 4 (WT)
5 (WP) Reserved
6 (WB)
0 (UC) Used to access a shadowed ROM
1 (WC)
Reserved
1 0 el WP Memory
5 (WP) (Can be used to access shadowed ROM)
6 (WB) Reserved
0 (UC) UC Memory
1 (WC) WC Memory
1 1 4 (WT) WT Memory
5 (WP) Reserved
6 (WB) WB Memory

7.9.2 IORRs

The IORRs operate similarly to the variable-range MTRRs. The IORRs specify whether reads and
writes in any physical-address range map to system memory or memory-mapped I/O. Up to two

204 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

address ranges of varying sizes can be controlled using the IORRs. A pair of IORRSs are used to control
each address range: [ORRBasen and IORRMaskn (n is the address-range number from 0 to 1).

Figure 7-12 on page 205 shows the format of the IORRBasen registers and Figure 7-13 on page 206
shows the format of the IORRMaskn registers. The fields within the register pair are read/write.

The intersection of the IORR range with the equivalent effective MTRR range follows the same type
encoding table (Table 7-12) as the fixed-range MTRR, where the RdAMem/WrMem and memory type
are directly tied together.

IORRBasen Registers. The fields in these IORRs are:

*  WMem—Bit 3. When set to 1, the processor directs write requests for this physical address range
to system memory. When cleared to 0, writes are directed to memory-mapped 1/O.

* RdMem—Bit4. When set to 1, the processor directs read requests for this physical address range to
system memory. When cleared to 0, reads are directed to memory-mapped /0.

* Range Physical-Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

The format of these registers is shown in Figure 7-12.

63 52 51 32
Reserved, MBZ PhysBase[51:32]

31 12 11 5 4 3 0

) R | W |Reserved,
PhysBase[31:12] Reserved, MBZ dlr MBZ

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:12 PhysBase Range Physical Base Address R/W

11:5 Reserved Reserved, Must be Zero

4 Rd RdMem Enable R/W

3 Wr WrMem Enable R/W

2:0 Reserved Reserved, Must be Zero

Figure 7-12. IORRBasen Register

IORRMaskn Registers. The fields in these IORRs are:

Memory System 205



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e Valid (V)—Bit 11. Indicates that the IORR pair is valid (enabled) when set to 1. When the valid bit
is cleared to O the register pair is not used for memory-mapped I/O control (disabled).

* Range Physical-Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

The format of these registers is shown in Figure 7-13 on page 206.

63 52 51 32
Reserved, MBZ PhysMask[51:32]
31 12 11 10 0
PhysMask[31:12] \Y Reserved, MBZ

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:12 PhysMask Range Physical Mask R/W

11 \% I/0 Register Pair Enable (Valid) R/W

10:0 Reserved Reserved, Must be Zero

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fields is identical to that of the variable-range MTRRs.
See page 193 for a description of this operation.

7.9.3 IORR Overlapping

The use of overlapping IORRs is not recommended. If overlapping IORRs are specified, the resulting
behavior is implementation-dependent.

7.9.4 Top of Memory

The top-of-memory registers, TOP_. MEM and TOP_ MEM2, allow system software to specify physical
addresses ranges as memory-mapped I/O locations. Processor implementations can direct accesses to
memory-mapped /O differently than system I/O, and the precise method depends on the
implementation. System software specifies memory-mapped I/O regions by writing an address into
each of the top-of-memory registers. The memory regions specified by the TOP_ MEM registers are
aligned on 8-Mbyte boundaries as follows:

* Memory accesses from physical address 0 to one less than the value in TOP_ MEM are directed to
system memory.

* Memory accesses from the physical address specified in TOP_ MEM to FFFF FFFFh are directed
to memory-mapped 1/O.

206 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* Memory accesses from physical address 1 0000 _0000h to one less than the value in TOP. MEM?2
are directed to system memory.

* Memory accesses from the physical address specified in TOP. MEM2 to the maximum physical
address supported by the system are directed to memory-mapped I/O.

Figure 7-14 on page 207 shows how the top-of-memory registers organize memory into separate
system-memory and memory-mapped I/O regions.

The intersection of the top-of-memory range with the equivalent effective MTRR range follows the
same type encoding table (Table 7-12 on page 204) as the fixed-range MTRR, where the
RdMem/WrMem and memory type are directly tied together.

Physical Memory

o -M_aiiﬁwﬂrﬁéystem Memory
Memory-Mapped
/O
__y JOP_MEM:2
TOP_MEM2 -1
Systern Mermary
w48
Memory-Mapped 4CB-1
0 .y TOP MEM
TOP_MEM -1
Systern Memory
- _D ______

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 shows the format of the TOP. MEM and TOP_ MEM2 registers. Bits 51:23 specify an 8-
Mbyte aligned physical address. All remaining bits are reserved and ignored by the processor. System
software should clear those bits to zero to maintain compatibility with possible future extensions to the
registers. The TOP_MEM registers are model-specific registers. See “Memory-Typing MSRs” on
page 586 for information on the MSR address and reset values for these registers.

Memory System 207



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

63 52 51 32
Reserved, IGN Top-of-Memory Physical Address[51:32]

31 23 22 0

Top-of-Memory Physical

Address[31:23] Reserved, IGN

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2)

The TOP_MEM register is enabled by setting the MtrrVarDramEn bit in the SYSCFG MSR (bit 20) to
1 (one). The TOP_MEM2 register is enabled by setting the MtrrTom2En bit in the SYSCFG MSR (bit
21) to 1 (one). The registers are disabled when their respective enable bits are cleared to 0. When the
top-of-memory registers are disabled, memory accesses default to memory-mapped I/O space.

Note that a given processor may implement fewer than the architecturally-defined number of physical
address bits.

710 Secure Memory Encryption

Software running in non-virtualized (native) mode can utilize the Secure Memory Encryption (SME)

feature to mark individual pages of memory as encrypted through the page tables. A page of memory
marked encrypted will be automatically decrypted when read by software and automatically encrypted
when written to DRAM. SME may therefore be used to protect the contents of DRAM from physical
attacks on the system.

All memory encrypted using SME is encrypted with the same AES key which is created randomly
each time a system is booted. The memory encryption key cannot be read or modified by software.

For details on using memory encryption in virtualized environments, please see Section 15.34,
“Secure Encrypted Virtualization,” on page 532.

7.10.1 Determining Support for Secure Memory Encryption

Support for memory encryption features is reported in CPUID Fn8000 001F[EAX]. Bit 0 indicates
support for Secure Memory Encryption. When this feature is present, CPUID Fn8000 001F[EBX]
supplies additional information regarding the use of memory encryption such as which page table bit is
used to mark pages as encrypted.

Additionally, in some implementations, the physical address size of the processor may be reduced
when memory encryption features are enabled, for example from 48 to 43 bits. In this case the upper
physical address bits are treated as reserved when the feature is enabled except where otherwise
indicated. When memory encryption is supported in an implementation, CPUID Fn8000 001F[EBX]
reports any physical address size reduction present. Bits reserved in this mode are treated the same as

208 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

other page table reserved bits, and will generate a page fault if found to be non-zero when used for
address translation.

Complete CPUID details for encrypted memory features can be found in Volume 3, section E.4.17.

7.10.2 Enabling Memory Encryption Extensions

Prior to using SME, memory encryption features must be enabled by setting SYSCFG MSR bit 23
(MemEncryptionModEn) to 1. In implementations where the physical address size of the processor is
reduced when memory encryption features are enabled, software must ensure it is executing from
addresses where these upper physical address bits are 0 prior to setting
SYSCFG[MemEncryptionModEn]. Memory encryption is then further controlled via the page tables.

Note that software should keep the value of SYSCFG[MemEncryptionModEn] consistent across all
CPU cores in the system. Failure to do so may lead to unexpected results.

7.10.3 Supported Operating Modes

SME is supported in all CPU modes when CR4.PAE=1 and paging is enabled. This includes long
mode as well as legacy PAE-enabled protected mode.

7.10.4 Page Table Support

Software utilizes the page tables to indicate if a memory page is encrypted or unencrypted. The
location of the specific attribute bit (C-bit, or enCrypted bit) used is implementation-specific but may
be determined by referencing CPUID Fn8000 001F[EBX] (see Volume 3, section E.4.17 for details) .
In some implementations, the bit used may be a physical address bit (e.g., address bit 47), especially in
cases where the physical address size is reduced by hardware when memory encryption features are
enabled.

To mark a memory page for encryption when stored in DRAM, software sets the C-bit to 1 for the
page. Ifthe C-bit is 0, the page is not encrypted when stored in DRAM. The C bit can be applied to
translation table entries for any size of page - 4KB, 2MB, or 1GB.

Note that it is possible for the page tables themselves to be located in encrypted memory. For instance,
if the C-bit is set in a PML4 entry, the PDP table it points to (and thus all PDPEs in that table) will be
loaded from encrypted memory.

Memory System 209



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
Memory Read
PTE C-Bit
Data
DRAM | =t 3> 0
€ LD
AES Decrypt 1
Memory Write
PTE C-Bit

y
o[+ > cPU
e

Figure 7-16. Encrypted Memory Accesses

7.10.5 /0 Accesses

In implementations where the physical address size is reduced when memory encryption features are
enabled, memory range checks (e.g. MTRR/TOM/IORR/etc.) to determine memory types or
DRAM/MMIO are performed using the reduced physical address size. In particular, the C-bit is not
considered a physical address bit and is masked by hardware for purposes of these checks.

Additionally, any pages corresponding to MMIO addresses must be configured with the C-bit clear.
Encrypted I/O pages are not allowed and accesses with the C-bit set will result in a machine check
error.

7.10.6 Restrictions

Hardware does not enforce coherency between the encrypted and unencrypted mappings of the same
physical page. Consequently, prior to changing the value of the C-bit for that page, software should
flush the page from all CPU caches in the system.

Simply changing the value of a C-bit on a page will not automatically encrypt the existing contents of
a page, and any data in the page prior to the C-bit modification will become unintelligible. To set the
C-bit on a page and cause its contents to become encrypted so the data remains accessible, see
Section 7.10.8, “Encrypt-in-Place,” on page 211.

In legacy PAE mode, if the C-bit location is in the upper 32 bits of the page table entry, the first level
page table (the PDP table) cannot be located in encrypted memory. This is because when the CPU is in
32-bit PAE mode, the CR3 value is only 32-bits in length.

210 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

7.10.7 SMM Interaction

SME is available when the processor is executing in SMM, once it has enabled paging. Any physical
address bit restrictions that exist due to memory encryption features being enabled remain in place
while in SMM.

7.10.8 Encrypt-in-Place

It is possible to perform an in-place encryption of data in physical memory. This technique is useful
for setting the C-bit on a page while maintaining visibility to the page's contents such as during SME
initialization. This is accomplished by creating two linear mappings of the same page where one
mapping has the C-bit set to 0 and the other has the C-bit set to 1. To avoid possible data corruption,
software should use the following algorithm for performing in-place encryption of memory:

1. Create two linear mappings X and Y that map to the same physical page. Mapping X has C-bit=0
and uses the WP (Write Protect) memory type. Mapping Y has C-bit=1 and uses the WB (Write-
Back) memory type.

2. Perform a WBINVD on all cores in the system.

3. Copy N bytes from mapping X to a temporary buffer in conventionally-mapped memory (for
which the C bit may or may not be set, as desired). N must be equal to the L1 cache line size as
specified by CPUID Fn8000 0005[ECX].

4. Write N bytes from the temporary buffer to Y. Note that the initial cache refill of the line for this
step will cause it to be decrypted, which corrupts the contents since it is not yet encrypted. This
step restores the original contents. (If the line were evicted before this step was completed, the
unwritten portion would get corrupted by the outgoing encryption, which is why the line can't be
copied in-place, but rather must be copied from the temporary buffer.)

5. Repeat steps 3-4 until the entire page has been copied

Memory System 211



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

212 Memory System



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8 Exceptions and Interrupts

Exceptions and interrupts force control transfers from the currently-executing program to a system-
software service routine that handles the interrupting event. These routines are referred to as exception
handlers and interrupt handlers, or collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted program. During the control transfer to
the service routine, the processor stops executing the interrupted program and saves its return pointer.
The system-software service routine that handles the exception or interrupt is responsible for saving
the state of the interrupted program. This allows the processor to restart the interrupted program after
system software has handled the event.

When an exception or interrupt occurs, the processor uses the interrupt vector number as an index into
the interrupt-descriptor table (IDT). An IDT is used in all processor operating modes, including real
mode (also called real-address mode), protected mode, and long mode.

Exceptions and interrupts come from three general sources:

» Exceptions occur as a result of software execution errors or other internal-processor errors.
Exceptions also occur during non-error situations, such as program single stepping or address-
breakpoint detection. Exceptions are considered Ssynchronous events because they are a direct
result of executing the interrupted instruction.

o Software interrupts occur as a result of executing interrupt instructions. Unlike exceptions and
external interrupts, software interrupts allow intentional triggering of the interrupt-handling
mechanism. Like exceptions, software interrupts are synchronous events.

e External interrupts are generated by system logic in response to an error or some other event
outside the processor. They are reported over the processor bus using external signaling. External
interrupts are asynchronous events that occur independently of the interrupted instruction.

Throughout this section, the term masking can refer to either disabling or delaying an interrupt. For
example, masking external interrupts delays the interrupt, with the processor holding the interrupt as
pending until it is unmasked. With floating-point exceptions (SSE and x87), masking prevents an
interrupt from occurring and causes the processor to perform a default operation on the exception
condition.

8.1 General Characteristics

Exceptions and interrupts have several different characteristics that depend on how events are reported
and the implications for program restart.

8.1.1 Precision

Precision describes how the exception is related to the interrupted program:

e Precise exceptions are reported on a predictable instruction boundary. This boundary is generally
the first instruction that has not completed when the event occurs. All previous instructions (in

Exceptions and Interrupts 213



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

program order) are allowed to complete before transferring control to the event handler. The
pointer to the instruction boundary is saved automatically by the processor. When the event
handler completes execution, it returns to the interrupted program and restarts execution at the
interrupted-instruction boundary.

Imprecise exceptions are not guaranteed to be reported on a predictable instruction boundary. The
boundary can be any instruction that has not completed when the interrupt event occurs. Imprecise
events can be considered asynchronous, because the source of the interrupt is not necessarily
related to the interrupted instruction. Imprecise exception and interrupt handlers typically collect
machine-state information related to the interrupting event for reporting through system-
diagnostic software. The interrupted program is not restartable.

8.1.2 Instruction Restart

As mentioned above, precise exceptions are reported on an instruction boundary. The instruction
boundary can be reported in one of two locations:

Most exceptions report the boundary before the instruction causing the exception. In this case, all
previous instructions (in program order) are allowed to complete, but the interrupted instruction is
not. No program state is updated as a result of partially executing an interrupted instruction.

Some exceptions report the boundary after the instruction causing the exception. In this case, all
previous instructions—including the one executing when the exception occurred—are allowed to
complete.

Program state can be updated when the reported boundary is after the instruction causing the
exception. This is particularly true when the event occurs as a result of a task switch. In this case,
the general registers, segment-selector registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event handler cannot rely on the state of
those registers when it begins execution and must be careful in validating the state of the segment-
selector registers before restarting the interrupted task. This is not an issue in long mode, however,
because the hardware task-switch mechanism is disabled in long mode.

8.1.3 Types of Exceptions

There are three types of exceptions, depending on whether they are precise and how they affect
program restart:

Faults are precise exceptions reported on the boundary before the instruction causing the
exception. Generally, faults are caused by an error condition involving the faulted instruction. Any
machine-state changes caused by the faulting instruction are discarded so that the instruction can
be restarted. The saved rIP points to the faulting instruction.

Traps are precise exceptions reported on the boundary following the instruction causing the
exception. The trapped instruction is completed by the processor and all state changes are saved.
The saved rIP points to the instruction following the faulting instruction.

Abortsare imprecise exceptions. Because they are imprecise, aborts typically do not allow reliable
program restart.

214 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.1.4 Masking External Interrupts

General Masking Capabilities. Software can mask the occurrence of certain exceptions and
interrupts. Masking can delay or even prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External interrupts are classified as maskable or
nonmaskable:

e Maskable interrupts trigger the interrupt-handling mechanism only when RFLAGS.IF=1.
Otherwise they are held pending for as long as the RFLAGS.IF bit is cleared to 0.

* Nonmaskable interrupts (NMI) are unaffected by the value of the RFLAGS.IF bit. However, the
occurrence of an NMI masks further NMIs until an IRET instruction is executed.

Masking During Stack Switches. The processor delays recognition of maskable external interrupts
and debug exceptions during certain instruction sequences that are often used by software to switch
stacks. The typical programming sequence used to switch stacks is:

1. Load a stack selector into the SS register.

2. Load a stack offset into the ESP register.

If an interrupting event occurs after the selector is loaded but before the stack offset is loaded, the
interrupted-program stack pointer is invalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the processor does not allow external
interrupts or debug exceptions to occur until the instruction immediately following the MOV SS or
POP SS instruction completes execution.

The recommended method of performing this sequence is to use the LSS instruction. LSS loads both
SS and ESP, and the instruction inhibits interrupts until both registers are updated successfully.

8.1.5 Masking Floating-Point and Media Instructions

Any x87 floating-point exceptions can be masked and reported later using bits in the x87 floating-
point status register (FSW) and the x87 floating-point control register (FCW). The floating-point
exception-pending exception is used for unmasked x87 floating-point exceptions (see section “1” on
page 228).

The SIMD floating-point exception is used for unmasked SSE floating-point exceptions (see section
“1” on page 230). SSE floating-point exceptions are masked using the MXCSR register. The exception
mechanism is not triggered when these exceptions are masked. Instead, the processor handles the
exceptions in a default manner.

8.1.6 Disabling Exceptions

Disabling an exception prevents the exception condition from being recognized, unlike masking an
exception which prevents triggering the exception mechanism after the exception is recognized. Some
exceptions can be disabled by system software running at CPL=0, using bits in the CRO register or
CR4 register:

Exceptions and Interrupts 215



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Alignment-check exception (see section “1” on page 229).
* Device-not-available exception (see section “1” on page 222).

* Machine-check exception (see section “1” on page 230).

The debug-exception mechanism provides control over when specific breakpoints are enabled and
disabled. See section “1” on page 357 for more information on how breakpoint controls are used for
triggering the debug-exception mechanism.

8.2 Vectors

Specific exception and interrupt sources are assigned a fixed vector-identification number (also called
an “interrupt vector” or simply “vector”). The interrupt vector is used by the interrupt-handling
mechanism to locate the system-software service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. The first 32 vectors are reserved for predefined exception
and interrupt conditions. Software-interrupt sources can trigger an interrupt using any available
interrupt vector.

Table 8-1 on page 217 lists the supported interrupt vector numbers, the corresponding exception or
interrupt name, the mnemonic, the source of the interrupt event, and a summary of the possible causes.

216 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 8-1. Interrupt Vector Source and Cause

Vector Exception/Interrupt Mnemonic Cause
0 Divide-by-Zero-Error #DE D1V, IDIV, AAM instructions
1 Debug #DB Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External NMI signal
3 Breakpoint #BP INT3 instruction
4 Overflow #OF INTO instruction
5 Bound-Range #BR BOUND instruction
6 Invalid-Opcode #UD Invalid instructions
7 Device-Not-Available #NM x87 instructions
8 | Double-Faul #OF | xcoption ormtertupt o
9 Coprocessor-Segment-Overrun — Unsupported (Reserved)
10 Invalid-TSS #TS Task-state segment access and task switch
11 Segment-Not-Present #NP Segment register loads
12 Stack #SS SS register loads and stack references
13 General-Protection #GP Memory accesses and protection checks
14 Page-Fault #PF Memory accesses when paging enabled
15 Reserved —
16 );i?(lj:ilr(]);ting-Point Exception- #MF | x87 floating-point instructions
17 Alignment-Check #AC Misaligned memory accesses
18 Machine-Check #MC Model specific
19 SIMD Floating-Point #XF SSE floating-point instructions

20-28 |Reserved —
29 VMM Communication Exception #VC Virtualization event
30 Security Exception #SX Security-sensitive event in host
31 Reserved —

0-255 |External Interrupts (Maskable) #INTR | External interrupts

0-255 | Software Interrupts — INTn instruction

Table 8-2 on page 218 shows how each interrupt vector is classified. Reserved interrupt vectors are

indicated by the gray-shaded rows.

Exceptions and Interrupts

217



AMDA1
AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 8-2. Interrupt Vector Classification
Vector Interrupt (Exception) Type Precise Class?
0 Divide-by-Zero-Error Fault Contributory
es
1 Debug Fault or Trap y
2 Non-Maskable-Interrupt — —
3 Breakpoint
Trap
4 Overflow _
Benign
5 Bound-Range yes
6 Invalid-Opcode Fault
7 Device-Not-Available
8 Double-Fault Abort no
9 Coprocessor-Segment-Overrun
10 Invalid-TSS
11 Segment-Not-Present )
Contributory
12 Stack
Fault yes
13 General-Protection
Benign or
14 | Page-Fault Contributory
15 Reserved
16 x87 EIoatmg—Pomt Exception- no
Pending Fault
17 Alignment-Check yes Benign
18 Machine-Check Abort no
19 SIMD Floating-Point Fault yes
20-28 |Reserved
29 VMM Communication Exception Fault yes Contributory
30 Security Exception - yes Contributory
31 Reserved
0-255 |External Interrupts (Maskable) 1 1 )
— — Benign
0-255 | Software Interrupts
Note:
1. External interrupts are not classified by type or whether or not they are precise.
2. See section “1” on page 222 for a definition of benign and contributory classes.

The following sections describe each interrupt in detail. The format of the error code reported by each
interrupt is described in section “1” on page 232.

218 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)

A #DE exception occurs when the denominator of a DIV instruction or an IDIV instruction is 0. A
#DE also occurs if the result is too large to be represented in the destination.

#DE cannot be disabled.
Error Code Returned. None.

Program Restart. #DE is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #DE.

8.2.2 #DB—Debug Exception (Vector 1)

When the debug-exception mechanism is enabled, a #DB exception can occur under any of the
following circumstances:

* Instruction execution.

* Instruction single stepping.

e Data read.

e Data write.

e J/Oread.

e [/O write.

e Task switch.

» Debug-register access, or general detect fault (debug register accesswhen DR7.GD=1).
* Executing the INT1 instruction (opcode 0F1h).

#DB conditions are enabled and disabled using the debug-control register, DR7 and RFLAGS.TF.
Each #DB condition is described in more detail in section “1” on page 357.

Error Code Returned. None. #DB information is returned in the debug-status register, DR6.
Program Restart. #DB can be either a fault-type or trap-type exception. In the following cases, the
saved instruction pointer points to the instruction that caused the #DB:

e Instruction execution.
e Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is completed, and the saved instruction pointer
points to the instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction following an instruction breakpoint resulting
in a #DB. In most cases, the processor clears RFLAGS.RF to 0 after every instruction is successfully
executed. However, in the case of the IRET, JMP, CALL, and INTn (through a task gate) instructions,
RFLAGS.RF is not cleared to 0 until the next instruction successfully executes.

Exceptions and Interrupts 219



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

When a non-debug exception occurs (or when a string instruction is interrupted), the processor
normally sets RFLAGS.RF to 1 in the rFLAGS image that is pushed on the interrupt stack. A
subsequent IRET back to the interrupted program pops the rFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted instruction executes without causing an
instruction breakpoint, after which the processor clears RFLAGS.RF to 0.

However, when a #DB exception occurs, the processor clears RFLAGS.RF to 0 in the rTFLAGS image
that is pushed on the interrupt stack. The #DB handler has two options:

e Disable the instruction breakpoint completely.

* Set RFLAGS.RF to 1 in the interrupt-stack rTFLAGS image. The instruction breakpoint condition
is ignored immediately after the IRET, but reoccurs if the instruction address is accessed later, as
can occur in a program loop.

8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)

An NMI exception occurs as a result of system logic signaling a non-maskable interrupt to the
processor.

Error Code Returned. None.

Program Restart. NMI is an interrupt. The processor recognizes an NMI at an instruction boundary.
The saved instruction pointer points to the instruction immediately following the boundary where the
NMI was recognized.

Masking. NMI cannot be masked. However, when an NMI is recognized by the processor,
recognition of subsequent NMlIs are disabled until an IRET instruction is executed.

8.2.4 #BP—Breakpoint Exception (Vector 3)

A #BP exception occurs when an INT3 instruction is executed. The INT3 is normally used by debug
software to set instruction breakpoints by replacing instruction-opcode bytes with the INT3 opcode.

#BP cannot be disabled.
Error Code Returned. None.

Program Restart. #BP is a trap-type exception. The saved instruction pointer points to the byte after
the INT3 instruction. This location can be the start of the next instruction. However, ifthe INT3 is used
to replace the first opcode bytes of an instruction, the restart location is likely to be in the middle of an
instruction. In the latter case, the debug software must replace the INT3 byte with the correct
instruction byte. The saved RIP instruction pointer must then be decremented by one before returning
to the interrupted program. This allows the program to be restarted correctly on the interrupted-
instruction boundary.

220 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.2.5 #OF—Overflow Exception (Vector 4)

An #OF exception occurs as a result of executing an INTO instruction while the overflow bit in
RFLAGS is set to 1 (RFLAGS.OF=1).

#OF cannot be disabled.
Error Code Returned. None.

Program Restart. #OF is a trap-type exception. The saved instruction pointer points to the
instruction following the INTO instruction that caused the #OF.

8.2.6 #BR—Bound-Range Exception (Vector 5)

A #BR exception can occur as a result of executing the BOUND instruction. The BOUND instruction
compares an array index (first operand) with the lower bounds and upper bounds of an array (second
operand). If the array index is not within the array boundary, the #BR occurs.

#BR cannot be disabled.
Error Code Returned. None.

Program Restart. #BR is a fault-type exception. The saved instruction pointer points to the BOUND
instruction that caused the #BR.

8.2.7 #UD—Invalid-Opcode Exception (Vector 6)

A #UD exception occurs when an attempt is made to execute an invalid or undefined opcode. The
validity of an opcode often depends on the processor operating mode. A #UD occurs under the
following conditions:

* Execution of any reserved or undefined opcode in any mode.

e Execution of the UDO, UD1 or UD2 instructions.

* Use of the LOCK prefix on an instruction that cannot be locked.

* Use of the LOCK prefix on a lockable instruction with a non-memory target location.
* Execution of an instruction with an invalid-operand type.

* Execution of the SYSENTER or SYSEXIT instructions in long mode.

* Execution of any of the following instructions in 64-bit mode: AAA, AAD, AAM, AAS, BOUND,
CALL (opcode 9A), DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LDS, LES, POP (DS, ES,
SS), POPA, PUSH (CS, DS, ES, SS), PUSHA, SALC.

e Execution of the ARPL, LAR, LLDT, LSL, LTR, SLDT, STR, VERR, or VERW instructions when
protected mode is not enabled, or when virtual-8086 mode is enabled.

* Execution of any legacy SSE instruction when CR4.OSFXSR is cleared to 0. (For further
information, see section “1” on page 50.

Exceptions and Interrupts 221



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* Execution of any SSE instruction (uses YMM/XMM registers), or 64-bit media instruction (uses
MMX™ registers) when CRO.EM = 1.

* Execution of any SSE floating-point instruction (uses YMM/XMM registers) that causes a
numeric exception when CR4.0SXMMEXCPT = 0.

e Use of the DR4 or DRS5 debug registers when CR4.DE = 1.
* Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes) for additional information on invalid
conditions.

#UD cannot be disabled.
Error Code Returned. None.

Program Restart. #UD is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #UD.

8.2.8 #NM—Device-Not-Available Exception (Vector 7)

A #NM exception occurs under any of the following conditions:

* An FWAIT/WAIT instruction is executed when CR0.MP=1 and CRO.TS=1.
* Any x87 instruction other than FWAIT is executed when CR0.EM=1.

* Any x87 instruction is executed when CRO.TS=1. The CRO.MP bit controls whether the
FWAIT/WAIT instruction causes an #NM exception when TS=1.

* Any 128-bit or 64-bit media instruction when CR0O.TS=1.

#NM can be enabled or disabled under the control of the CR0.MP, CR0.EM, and CRO.TS bits as
described above. See section “1” on page 42 for more information on the CRO bits used to control the
#NM exception.

Error Code Returned. None.

Program Restart. #NM is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #NM.

8.2.9 #DF—Double-Fault Exception (Vector 8)

A #DF exception can occur when a second exception occurs during the handling of a prior (first)
exception or interrupt handler.

Usually, the first and second exceptions can be handled sequentially without resulting in a #DF. In this
case, the first exception is considered benign, as it does not harm the ability of the processor to handle
the second exception.

In some cases, however, the first exception adversely affects the ability of the processor to handle the
second exception. These exceptions contribute to the occurrence of a #DF, and are called contributory

222 Exceptions and Interrupts



AMDA
AMDG64 Technology

24593—Rev. 3.30—September 2018

exceptions. If a contributory exception is followed by another contributory exception, a double-fault
exception occurs. Likewise, if a page fault is followed by another page fault or a contributory
exception, a double-fault exception occurs.

Table 8-3 shows the conditions under which a #DF occurs. Page faults are either benign or
contributory, and are listed separately. See the “Class” column in Table 8-2 on page 218 for
information on whether an exception is benign or contributory.

Table 8-3. Double-Fault Exception Conditions

First Interrupting Event Second Interrupting Event

Contributory Exceptions

 Divide-by-Zero-Error Exception
* Invalid-TSS Exception

» Segment-Not-Present Exception
» Stack Exception

Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

» General-Protection Exception

Page Fault Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

Page Fault Exception

If a third interrupting event occurs while transferring control to the #DF handler, the processor shuts
down. Only an NMI, RESET, or INIT can restart the processor in this case. However, if the processor
shuts down as it is executing an NMI handler, the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.
Error Code Returned. Zero.

Program Restart. #DF is an abort-type exception. The saved instruction pointer is undefined, and the
program cannot be restarted.

8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)

Thisinterrupt vector isreserved. It is for a discontinued exception originally used by processors that
supported external x87-instruction coprocessors. On those processors, the exception condition is
caused by an invalid-segment or invalid-page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general-protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

Exceptions and Interrupts 223



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

8.2.11 #TS—Invalid-TSS Exception (Vector 10)

A #TS exception occurs when an invalid reference is made to a segment selector as part of a task
switch. A #T8S also occurs during a privilege-changing control transfer (through a call gate or an
interrupt gate), if a reference is made to an invalid stack-segment selector located in the TSS. Table §8-4
lists the conditions under which a #TS occurs and the error code returned by the exception mechanism.

#TS cannot be disabled.
Error Code Returned. See Table 8-4 for a list of error codes returned by the #TS exception.

Program Restart. #TS is a fault-type exception. If the exception occurs before loading the segment
selectors from the TSS, the saved instruction pointer points to the instruction that caused the #TS.
However, most #T'S conditions occur due to errors with the loaded segment selectors. When an error is
found with a segment selector, the hardware task-switch mechanism completes loading the new task
state from the TSS, and then triggers the #TS exception mechanism. In this case, the saved instruction
pointer points to the first instruction in the new task.

In long mode, a #T'S cannot be caused by a task switch, because the hardware task-switch mechanism
is disabled. A #TS occurs only as a result of a control transfer through a gate descriptor that results in
an invalid stack-segment reference using an SS selector in the TSS. In this case, the saved instruction
pointer always points to the control-transfer instruction that caused the #TS.

Table 8-4. Invalid-TSS Exception Conditions

Selector
Reference

Error Condition Error Code

- TSS limit check on a task switch
Task-State TSS Selector Index

Segment TSS limit check on an inner-level stack pointer
LDT does not point to GDT
LDT reference outside GDT

LDT Segment . . LDT Selector Index
GDT entry is not an LDT descriptor

LDT descriptor is not present
CS reference outside GDT or LDT

Privilege check (conforming DPL > CPL)
Code Segment CS Selector Index
Privilege check (non-conforming DPL # CPL)

Type check (CS not executable)

Data segment reference outside GDT or LDT
Data Segment DS, ES, FS or GS Selector Index
Type check (data segment not readable)

SS reference outside GDT or LDT

Privilege check (stack segment descriptor DPL # CPL)
Stack Segment SS Selector Index
Privilege check (stack segment selector RPL # CPL)

Type check (stack segment not writable)

224 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.2.12 #NP—Segment-Not-Present Exception (Vector 11)

An #NP occurs when an attempt is made to load a segment or gate with a clear present bit, as described
in the following situations:

e Using the MOV, POP, LDS, LES, LFS, or LGS instructions to load a segment selector (DS, ES, FS,
and GS) that references a segment descriptor containing a clear present bit (descriptor.P=0).

* Far transfer to a CS that is not present.
* Referencing a gate descriptor containing a clear present bit.

» Referencing a TSS descriptor containing a clear present bit. This includes attempts to load the TSS
descriptor using the LTR instruction.

* Attempting to load a descriptor containing a clear present bit into the LDTR using the LLDT
instruction.

* Loading a segment selector (CS, DS, ES, FS, or GS) as part of a task switch, with the segment
descriptor referenced by the segment selector having a clear present bit. In long mode, an #NP
cannot be caused by a task switch, because the hardware task-switch mechanism is disabled.

When loading a stack-segment selector (SS) that references a descriptor with a clear present bit, a
stack exception (#SS) occurs. For information on the #SS exception, see the next section, “#SS—
Stack Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment descriptor causing the #NP
exception.

Program Restart. #NP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that loaded the segment selector resulting in the #NP. See section “1” on page 232 for a
description of the consequences when this exception occurs during a task switch.

8.2.13 #SS—Stack Exception (Vector 12)

An #SS exception can occur in the following situations:

e Implied stack references in which the stack address is not in canonical form. Implied stack
references include all push and pop instructions, and any instruction using RSP or RBP as a base
register.

e Attempting to load a stack-segment selector that references a segment descriptor containing a clear
present bit (descriptor.P=0).

* Any stack access that fails the stack-limit check.
#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the #SS, as shown in Table 8-5 on
page 226:

Exceptions and Interrupts 225



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 8-5. Stack Exception Error Codes

Stack Exception Cause Error Code
Stack-segment descriptor present bit is clear SS Selector Index
Stack-limit violation 0
Stack reference using a non-canonical address 0

Program Restart. #SS is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #SS. See section “1” on page 232 for a description of the consequences
when this exception occurs during a task switch.

8.2.14 #GP—General-Protection Exception (Vector 13)

Table 8-6 describes the general situations that can cause a #GP exception. The table is not an
exhaustive, detailed list of #GP conditions, but rather a guide to the situations that can cause a #GP. If
an invalid use of an AMDG64 architectural feature results in a #GP, the specific cause of the exception is
described in detail in the section describing the architectural feature.

#GP cannot be disabled.

Error Code Returned. As shown in Table 8-6, a selector index is reported as the error code if the
#GP is due to a segment-descriptor access. In all other cases, an error code of 0 is returned.

Program Restart. #GP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #GP. See section “1” on page 232 for a description of the consequences
when this exception occurs during a task switch.

Table 8-6. General-Protection Exception Conditions

Error Condition Error Code

Any segment privilege-check violation, while loading a segment register.

Any segment type-check violation, while loading a segment register.

Loading a null selector into the CS, SS, or TR register.

Accessing a gate-descriptor containing a null segment selector.

Referencing an LDT descriptor or TSS descriptor located in the LDT.

Attempting a control transfer to a busy TSS (except IRET).

In 64-bit mode, loading a non-canonical base address into the GDTR or IDTR. Selector Index

In long mode, accessing a system or call-gate descriptor whose extended type field is not 0.

In long mode, accessing a system descriptor containing a non-canonical base address.

In long mode, accessing a gate descriptor containing a non-canonical offset.

In long mode, accessing a gate descriptor that does not point to a 64-bit code segment.

In long mode, accessing a 16-bit gate descriptor.

In long mode, attempting a control transfer to a TSS or task gate.

226 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 8-6. General-Protection Exception Conditions (continued)

Error Condition

Error Code

Any segment limit-check or non-canonical address violation (except when using the SS
register).

Accessing memory using a null segment register.

Writing memory using a read-only segment register.

Attempting to execute an SSE instruction specifying an unaligned memory operand.

Attempting to execute code that is past the CS segment limit or at a non-canonical RIP.

Executing a privileged instruction while CPL > 0.

Executing an instruction that is more than 15 bytes long.

Writing a 1 into any register field that is reserved, must be zero (MBZ).

Using WRMSR to write a read-only MSR.

Using WRMSR to write a non-canonical value into an MSR that must be canonical.

Using WRMSR to set an invalid type encoding in an MTRR or the PAT MSR.

Enabling paging while protected mode is disabled.

Setting CR0.NW=1 while CR0.CD=0.

Any long-mode consistency-check violation.

8.2.15 #PF—Page-Fault Exception (Vector 14)

A #PF exception can occur during a memory access in any of the following situations:

* A page-translation-table entry or physical page involved in translating the memory access is not
present in physical memory. This is indicated by a cleared present bit (P=0) in the translation-table

entry.

* An attempt is made by the processor to load the instruction TLB with a translation for a non-

executable page.

* The memory access fails the paging-protection checks (user/supervisor, read/write, or both).

* A reserved bit in one of the page-translation-table entries is set to 1. A #PF occurs for this reason

only when CR4.PSE=1 or CR4.PAE=I.
#PF cannot be disabled.

CR2 Register. The virtual (linear) address that caused the #PF is stored in the CR2 register. The
legacy CR2 register is 32 bits long. The CR2 register in the AMDG64 architecture is 64 bits long, as
shown in Figure 8-1 on page 228. In AMD64 implementations, when either software or a page fault
causes a write to the CR2 register, only the low-order 32 bits of CR2 are used in legacy mode; the

processor clears the high-order 32 bits.

Exceptions and Interrupts

227



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

63 0

Page-Fault Virtual Address

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error code is pushed onto the page-fault exception-handler
stack. See section “1”” on page 233 for a description of this error code.

Program Restart. #PF is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #PF. See section “1” on page 232 for a description of what can happen if
this exception occurs during a task switch.

8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)

The #MF exception is used to handle unmasked x87 floating-point exceptions. An #MF occurs when
all of the following conditions are true:

* CRO.NE=I.

* An unmasked x87 floating-point exception is pending. This is indicated by an exception bit in the
x87 floating-point status-word register being set to 1

e The corresponding mask bit in the x87 floating-point control-word register is cleared to 0.
e The FWAIT/WAIT instruction or any waiting floating-point instruction is executed.

If there is an exception mask bit (in the FPU control word) set, the exception is not reported. Instead,
the x87-instruction unit responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF exception are (including mnemonics):
* [E—Invalid-operation exception (also called #I), which is either:
- IE alone—Invalid arithmetic-operand exception (also called #1A), or
- SF and IE together—x87 Stack-fault exception (also called #IS).
e DE—Denormalized-operand exception (also called #D).
e ZE—Zero-divide exception (also called #Z).
e OE—Overflow exception (also called #O).
e UE—Underflow exception (also called #U).
* PE—Precision exception (also called #P or inexact-result exception).

Error Code Returned. None. Exception information is provided by the x87 status-word register. See
“x87 Floating-Point Programming” in Volume 1 for more information on using this register.

Program Restart. #MF is a fault-type exception. The #MF exception is not precise, because multiple
instructions and exceptions can occur before the #MF handler is invoked. Also, the saved instruction

228 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

pointer does not point to the instruction that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point instruction or FWAIT/WAIT instruction that
is about to be executed when the #MF occurs. The address of the last instruction that caused an x87
floating-point exception is in the x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this register.

Masking. Each type of x87 floating-point exception can be masked by setting the appropriate bits in
the x87 control-word register. See “x87 Floating-Point Programming” in Volume 1 for more
information on using this register.

#MF can also be disabled by clearing the CRO.NE bit to 0. See section “1” on page 44 for more
information on using this bit.

8.2.17 #AC—Alignment-Check Exception (Vector 17)

An #AC exception occurs when an unaligned-memory data reference is performed while alignment
checking is enabled.

After a processor reset, #AC exceptions are disabled. Software enables the #AC exception by setting
the following register bits:

* CRO.AM=I.
* RFLAGS.AC=1.

When the above register bits are set, an #AC can occur only when CPL=3. #AC never occurs when
CPL<3.

Table 8-7 lists the data types and the alignment boundary required to avoid an #AC exception when the
mechanism is enabled.

Table 8-7. Data-Type Alignment

Supported Data Type R?g;:::g:::]g dnar?;)nt

Word 2
Doubleword 4
Quadword 8

Bit string 2, 4 or 8 (depends on operand size)
256-bit media 16
128-bit media 16
64-bit media 8
Segment selector 2
32-bit near pointer 4
32-bit far pointer 2
48-bit far pointer 4

Exceptions and Interrupts 229



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 8-7. Data-Type Alignment (continued)

Supported Data Type Rt(ag;:;eg:l«jl:‘g dnan:ye)nt
x87 Floating-point single-precision 4
x87 Floating-point double-precision 8
x87 Floating-point extended-precision 8
x87 Floating-point save areas 2 or 4 (depends on operand size)

Error Code Returned. Zero.

Program Restart. #AC is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #AC.

8.2.18 #MC—Machine-Check Exception (Vector 18)

The #MC exception is model specific. Processor implementations are not required to support the #MC
exception, and those implementations that do support #MC can vary in how the #MC exception
mechanism works.

The exception is enabled by setting CR4.MCE to 1. The machine-check architecture can include
model-specific masking for controlling the reporting of some errors. Refer to Chapter 9, “Machine
Check Architecture,” for more information.

Error Code Returned. None. Error information is provided by model-specific registers (MSRs)
defined by the machine-check architecture.

Program Restart. #MC is an abort-type exception. There is no reliable way to restart the program. If
the EIPV flag (EIP valid) is set in the MCG_Status MSR, the saved CS and rIP point to the instruction
that caused the error. If EIP is clear, the CS:rIP of the instruction causing the failure is not known or the
machine check is not related to a specific instruction.

8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)

The #XF exception is used to handle unmasked SSE floating-point exceptions. A #XF exception
occurs when all of the following conditions are true:

* A SSE floating-point exception occurs. The exception causes the processor to set the appropriate
exception-status bit in the MXCSR register to 1.

* The exception-mask bit in the MXCSR that corresponds to the SSE floating-point exception is
clear (=0).

*  CR4.0SXMMEXCPT=I, indicating that the operating system supports handling of SSE floating-
point exceptions.

The exception-mask bits are used by software to specify the handling of SSE floating-point
exceptions. When the corresponding mask bit is cleared to 0, an exception occurs under the control of

230 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

the CR4.OSXMMEXCPT bit. However, if the mask bit is set to 1, the SSE floating-point unit responds
in a default manner and execution proceeds normally.

The CR4.0SXMMEXCPT bit specifies the interrupt vector to be taken when an unmasked SSE
floating-point exception occurs. When CR4.0SXMMEXCPT=1, the #XF interrupt vector is taken
when an exception occurs. When CR4.0SXMMEXCPT=0, the #UD (undefined opcode) interrupt
vector is taken when an exception occurs.

The SSE floating-point exceptions reported by the #XF exception are (including mnemonics):
e [E—Invalid-operation exception (also called #I).

e DE—Denormalized-operand exception (also called #D).

e ZE—Zero-divide exception (also called #Z).

*  OE—Overflow exception (also called #O).

e UE—Underflow exception (also called #U).

* PE—Precision exception (also called #P or inexact-result exception).

Each type of SSE floating-point exception can be masked by setting the appropriate bits in the
MXCSR register. #XF can also be disabled by clearing the CR4.0SXMMEXCPT bit to 0.

Error Code Returned. None. Exception information is provided by the SSE floating-point MXCSR
register. See “Instruction Reference” in Volume 4 for more information on using this register.

Program Restart. #XF is a fault-type exception. Unlike the #MF exception, the #XF exception is
precise. The saved instruction pointer points to the instruction that caused the #XF.

8.2.20 #VC -- VMM Communication Exception (Vector 29)

The #VC exception is generated when certain events occur inside a secure guest VM. See "#VC
Exception" in section 15.35.5 for more details

8.2.21 #SX—Security Exception (Vector 30)

The #SX exception is generated by security-sensitive events under SVM. See section “1” on page 506
for details.

8.2.22 User-Defined Interrupts (Vectors 32-255)

User-defined interrupts can be initiated either by system logic or software. They occur when:

* System logic signals an external interrupt request to the processor. The signaling mechanism and
the method of communicating the interrupt vector to the processor are implementation dependent.

* Software executes an INTn instruction. The INTn instruction operand provides the interrupt vector
number.

Exceptions and Interrupts 231



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Both methods can be used to initiate an interrupt into vectors 0 through 255. However, because vectors
0 through 31 are defined or reserved by the AMD64 architecture, software should not use vectors in
this range for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the interrupt source:

* External interrupts are recognized on instruction boundaries. The saved instruction pointer points
to the instruction immediately following the boundary where the external interrupt was
recognized.

e If the interrupt occurs as a result of executing the INTn instruction, the saved instruction pointer
points to the instruction after the INTnN.

Masking. The ability to mask user-defined interrupts depends on the interrupt source:

* External interrupts can be masked using the RFLAGS.IF bit. Setting RFLAGS.IF to 1 enables
external interrupts, while clearing RFLAGS.IF to 0 inhibits them.

* Software interrupts (initiated by the INTnN instruction) cannot be disabled.

8.3 Exceptions During a Task Switch

An exception can occur during a task switch while loading a segment selector. Page faults can also
occur when accessing a TSS. In these cases, the hardware task-switch mechanism completes loading
the new task state from the TSS, and then triggers the appropriate exception mechanism. No other
checks are performed. When this happens, the saved instruction pointer points to the first instruction in
the new task.

In long mode, an exception cannot occur during a task switch, because the hardware task-switch
mechanism is disabled.

8.4 Error Codes

The processor exception-handling mechanism reports error and status information for some
exceptions using an error code. The error code is pushed onto the stack by the exception-mechanism
during the control transfer into the exception handler. The error code has two formats: a selector
format for most error-reporting exceptions, and a page-fault format for page faults. These formats are
described in the following sections.

8.4.1 Selector-Error Code

Figure 8-2 shows the format of the selector-error code.

232 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
31 16 15 3 2 10
T I | E
Reserved Selector Index | DX
T|T

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:

EXT—Bit 0. If this bit is set to 1, the exception source is external to the processor. If cleared to 0,
the exception source is internal to the processor.

IDT—RBIt 1. If this bit is set to 1, the error-code selector-index field references a gate descriptor
located in the interrupt-descriptor table (IDT). If cleared to 0, the selector-index field references a
descriptor in either the global-descriptor table (GDT) or local-descriptor table (LDT), as indicated
by the TI bit.

TI—Bit 2. If this bit is set to 1, the error-code selector-index field references a descriptor in the
LDT. If cleared to 0, the selector-index field references a descriptor in the GDT. The TI bit is
relevant only when the IDT bit is cleared to 0.

Selector Index—Bits 15:3. The selector-index field specifies the index into either the GDT, LDT,
or IDT, as specified by the IDT and TI bits.

Some exceptions return a zero in the selector-error code.

8.4.2 Page-Fault Error Code

Figure 8-3 shows the format of the page-fault error code.

31

Reserved /D

<WAOw

nw~-CciN

= ~3=
U

Figure 8-3. Page-Fault Error Code

The information reported by the page-fault error code includes:

P—RBit 0. If this bit is cleared to 0, the page fault was caused by a not-present page. If this bit is set
to 1, the page fault was caused by a page-protection violation.

R/W—Bit 1. If this bit is cleared to 0, the access that caused the page fault is a memory read. If this
bit is set to 1, the memory access that caused the page fault was a write. This bit does not
necessarily indicate the cause of the page fault was a read or write violation.

U/S—Bit 2. If this bit is cleared to 0, an access in supervisor mode (CPL=0, 1, or 2) caused the
page fault. If this bit is set to 1, an access in user mode (CPL=3) caused the page fault. This bit does
not necessarily indicate the cause of the page fault was a privilege violation.

Exceptions and Interrupts 233



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* RSV—BAIt 3. If this bit is set to 1, the page fault is a result of the processor reading a 1 from a
reserved field within a page-translation-table entry. This type of page fault occurs only when
CR4.PSE=1 or CR4.PAE=1. If this bit is cleared to 0, the page fault was not caused by the
processor reading a 1 from a reserved field.

* |/D—Bit 4. If this bit is set to 1, it indicates that the access that caused the page fault was an
instruction fetch. Otherwise, this bit is cleared to 0. This bit is only defined if no-execute feature is
enabled (EFER.NXE=1 && CR4.PAE=1).

8.5 Priorities

To allow for consistent handling of multiple-interrupt conditions, simultaneous interrupts are
prioritized by the processor. The AMD64 architecture defines priorities between groups of interrupts,
and interrupt prioritization within a group is implementation dependent. Table 8-8 shows the interrupt
priorities defined by the AMD64 architecture.

When simultaneous interrupts occur, the processor transfers control to the highest-priority interrupt
handler. Lower-priority interrupts from external sources are held pending by the processor, and they
are handled after the higher-priority interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when the high-priority interrupt handler
completes and transfers control back to the interrupted instruction. Software interrupts are discarded as
well, and reoccur when the software-interrupt instruction is restarted.

Table 8-8. Simultaneous Interrupt Priorities

"I:tr?c::li‘tst Interrupt Condition ":;z:;gft
(High) Processor Reset —
0 Machine-Check Exception 18
External Processor Initialization (INIT)
1 SMI Interrupt —
External Clock Stop (Stpclk)
5 Data, and I/O Breakpoint (Debug Register) 1
Single-Step Execution Instruction Trap (RFLAGS.TF=1)
3 Non-Maskable Interrupt 2
Maskable External Interrupt (INTR) 32-255
Instruction Breakpoint (Debug Register) 1
5 Code-Segment-Limit Violation® 13
Instruction-Fetch Page Fault! 14
Invalid Opcode Exception1
6 Device-Not-Available Exception
Instruction-Length Violation (> 15 Bytes) 13

234 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 8-8. Simultaneous Interrupt Priorities (continued)

Irl;tr?;:?t‘;t Interrupt Condition Ir:;z;:gft
Divide-by-zero Exception 0
Invalid-TSS Exception 10
Segment-Not-Present Exception 11
Stack Exception 12
7 General-Protection Exception 13
Data-Access Page Fault 14
Floating-Point Exception-Pending Exception 16
Alignment-Check Exception 17
SIMD Floating-Point Exception 19
Note:
1. This reflects the relative priority for faults encountered when fetching the first byte of an instruction. In the fetching
and decoding of subsequent bytes of an instruction, an Invalid Opcode exception may be detected and raised
before a fetch-related fault would be seen on a later byte. This behavior is model-dependent.

8.5.1 Floating-Point Exception Priorities

Floating-point exceptions (SSE and x87 floating-point) can be handled in one of two ways:

* Unmasked exceptions are reported in the appropriate floating-point status register, and a software-
interrupt handler is invoked. See section “1” on page 228 and section “1” on page 230 for more
information on the floating-point interrupts.

* Masked exceptions are also reported in the appropriate floating-point status register. Instead of
transferring control to an interrupt handler, however, the processor handles the exception in a
default manner and execution proceeds.

If the processor detects more than one exception while executing a single floating-point instruction, it
prioritizes the exceptions in a predictable manner. When responding in a default manner to masked
exceptions, it is possible that the processor acts only on the high-priority exception and ignores lower-
priority exceptions. In the case of vector (SIMD) floating-point instructions, priorities are set on sub-
operations, not across all operations. For example, if the processor detects and acts on a QNaN
operand in one sub-operation, the processor can still detect and act on a denormal operand in another
sub-operation.

When reporting SSE floating-point exceptions before taking an interrupt or handling them in a default
mannet, the processor first classifies the exceptions as follows:

e Input exceptions include SNaN operand (#I), invalid operation (#1), denormal operand (#D), or
zero-divide (#Z). Using a NaN operand with a maximum, minimum, compare, or convert
instruction is also considered an input exception.

»  Output exceptions include numeric overflow (#0), numeric underflow (#U), and precision (#P).

Exceptions and Interrupts 235



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Using the above classification, the processor applies the following procedure to report the exceptions:
1. The exceptions for all sub-operations are prioritized.

2. The exception conditions for all sub-operations are logically ORed together to form a single set of
exceptions covering all operations. For example, if two sub-operations produce a denormal result,
only one denormal exception is reported.

3. If'the set of exceptions includes any unmasked input exceptions, all input exceptions are reported
in MCXSR, and no output exceptions are reported. Otherwise, all input and output exceptions are
reported in MCXSR.

4. If any exceptions are unmasked, control is transferred to the appropriate interrupt handler.

Table 8-9 on page 236 lists the priorities for simultaneous floating-point exceptions.

Table 8-9. Simultaneous Floating-Point Exception Priorities

Exc_ep!ion Exception Condition
Priority
SNaN Operand
. NaN Operand of Maximum, Minimum, Compare, and
(High) Convert Instructions (Vector Floating-Point) #
0 Stack Overflow (x87 Floating-Point)
Stack Underflow (x87 Floating-Point)
1 QNaN Operand —
5 Invalid Operation (Remaining Conditions) #l
Zero Divide #Z
3 Denormal Operand #D
4 Numeric Overflow #0O
Numeric Underflow #U
(wa) Precision #P

8.5.2 External Interrupt Priorities

The AMDG64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest. The organization of these priority classes is implementation dependent. A typical method is to
use the upper four bits of the interrupt vector number to define the priority. Thus, interrupt vector 53h
has a priority of 5 and interrupt vector 37h has a priority of 3.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, called the task-priority register (TPR), uses its four low-order bits to specify a task
priority. The remaining 60 bits are reserved and must be written with zeros. Figure 8-4 shows the
format of the TPR.

236 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The TPR is available only in 64-bit mode.

63 4 3 0

Task Priority

Reserved, MBZ (TPR)

Figure 8-4. Task Priority Register (CR8)

System software can use the TPR register to temporarily block low-priority interrupts from
interrupting a high-priority task. This is accomplished by loading TPR with a value corresponding to
the highest-priority interrupt that is to be blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority class of 9 or less, while allowing all interrupts with a priority class
of 10 or more to be recognized. Loading TPR with 0 enables all external interrupts. Loading TPR with
15 (1111b) disables all external interrupts. The TPR is cleared to 0 on reset.

System software reads and writes the TPR using a MOV CRS instruction. The MOV CR& instruction
requires a privilege level of 0. Programs running at any other privilege level cannot read or write the
TPR, and an attempt to do so results in a general-protection exception (#GP).

A serializing instruction is not required after loading the TPR, because a new priority level is
established when the MOV instruction completes execution. For example, assume two sequential TPR
loads are performed, in which a low value is first loaded into TPR and immediately followed by a load
of a higher value. Any pending, lower-priority interrupt enabled by the first MOV CRS is recognized
between the two MOVs.

The TPR is an architectural abstraction of the interrupt controller (IC), which prioritizes and manages
external interrupt delivery to the processor. The IC can be an external system device, or it can be
integrated on the chip like the local advanced programmable interrupt controller (APIC). Typically, the
IC contains a priority mechanism similar, if not identical to, the TPR. The IC, however, is
implementation dependent, and the underlying priority mechanisms are subject to change. The TPR,
by contrast, is part of the AMDG64 architecture.

Effect of IC on TPR. The features of the implementation-specific IC can impact the operation of the
TPR. For example, the TPR might affect interrupt delivery only if the IC is enabled. Also, the mapping
of an external interrupt to a specific interrupt priority is an implementation-specific behavior of the IC.

While the CR8 register provides the same functionality as the TPR at offset 80h of the local APIC,
software should only use one mechanism to access the TPR. For example, updating the TPR with a
write to the local APIC offset 0x80 but then reading it with a MOV CRS is not guaranteed to return the
same value that was written by the local APIC write.

8.6 Real-Mode Interrupt Control Transfers

In real mode, the IDT is a table of 4-byte entries, one entry for each of the 256 possible interrupts
implemented by the system. The real mode IDT is often referred to as an interrupt vector table, or IVT.

Exceptions and Interrupts 237



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

Table entries contain a far pointer (CS:IP pair) to an exception or interrupt handler. The base of the
IDT is stored in the IDTR register, which is loaded with a value of 00h during a processor reset.
Figure 8-5 on page 238 shows how the real-mode interrupt handler is located by the interrupt

mechanism.
Memory
Interrupt-Descriptor

Table

Interrupt Vector (G TN i N AR

"""""""" Interrupt Handler
Offset IR
4 -+ -
IDT Base Address »

Interrupt-Descriptor-Table Register

Figure 8-5. Real-Mode Interrupt Control Transfer

When an exception or interrupt occurs in real mode, the processor performs the following:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears EFLAGS.IF to 0 and EFLAGS.TF to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the IDT by scaling the interrupt vector by four
and adding the result to the value in the IDTR.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

Figure 8-6 on page 239 shows the stack after control is transferred to the interrupt handler in real

mode.

238 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Interrupt-Handler and
Interrupted-Program
Stack

Return FLAGS | +4
Return CS +2

Return IP j¢&—— SS:SP

Figure 8-6. Stack After Interrupt in Real Mode

An IRET instruction is used to return to the interrupted program. When an IRET is executed, the
processor performs the following:

1. Pops the saved CS value off the stack and into the CS register. The saved IP value is popped into
RIP[15:0].

2. Pops the FLAGS value off of the stack and into EFLAGS[15:0].

3. Execution begins at the saved CS.IP location.

8.7 Legacy Protected-Mode Interrupt Control Transfers

In protected mode, the interrupt mechanism transfers control to an exception or interrupt handler
through gate descriptors. In protected mode, the IDT is a table of 8-byte gate entries, one for each of
the 256 possible interrupt vectors implemented by the system. Three gate types are allowed in the IDT:

e Interrupt gates.
e Trap gates.
e Task gates.

If a reference is made to any other descriptor type in the IDT, a general-protection exception (#GP)
occurs.

Interrupt-gate control transfers are similar to CALLs and JMPs through call gates. The interrupt
mechanism uses gates (interrupt, trap, and task) to establish protected entry-points into the exception
and interrupt handlers.

The remainder of this chapter discusses control transfers through interrupt gates and trap gates. If the
gate descriptor in the IDT is a task gate, a TSS-segment selector is referenced, and a task switch

Exceptions and Interrupts 239



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

occurs. See Chapter 12, “Task Management,” for more information on the hardware task-switch
mechanism.

8.7.1 Locating the Interrupt Handler

When an exception or interrupt occurs, the processor scales the interrupt vector number by eight and
uses the result as an offset into the IDT. If the gate descriptor referenced by the IDT offset is an
interrupt gate or a trap gate, it contains a segment-selector and segment-offset field (see section “1”” on
page 80 for a detailed description of the gate-descriptor format and fields). These two fields perform
the same function as the pointer operand in a far control-transfer instruction. The gate-descriptor
segment-selector field points to the target code-segment descriptor located in either the GDT or LDT.
The gate-descriptor segment-offset field is the instruction-pointer offset into the interrupt-handler
code segment. The code-segment base taken from the code-segment descriptor is added to the gate-
descriptor segment-offset field to create the interrupt-handler virtual address (linear address).

Figure 8-7 on page 241 shows how the protected-mode interrupt handler is located by the interrupt
mechanism.

240 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Interrupt
Descriptor Table

(S Selector DPL

____________________________ Interrupt Vector
Code-Segment Offset Cz
< +
8

« IDT Base Address ¢ IDT Limit

Interrupt-Descriptor-Table Register

Virtual-Address
Space

Global or Local
Descriptor Table

CSLimit ! DPL:
............................ Code Segment
Code-Segment Base

v

v

Figure 8-7. Protected-Mode Interrupt Control Transfer

8.7.2 Interrupt To Same Privilege

When a control transfer to an exception or interrupt handler at the same privilege level occurs (through
an interrupt gate or a trap gate), the processor performs the following:

1. Pushes the EFLAGS register onto the stack.
2. Clears the TF, NT, RF, and VM bits in EFLAGS to 0.

Exceptions and Interrupts 241



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

7.

The processor handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

Saves the return CS register and EIP register (RIP[31:0]) by pushing them onto the stack. The CS
value is padded with two bytes to form a doubleword.

If the interrupt has an associated error code, the error code is pushed onto the stack.

The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-8 shows the stack after control is transferred to the interrupt handler.

Interrupt-Handler and
Interrupted Program

With Error Code Stack With No Error Code

Return EFLAGS +12

Return CS| +8 Return EFLAGS +8
Return EIP +4 Return CS|| +4
Error Code «— SS:ESP Return EIP 4—SS:ESP

Figure 8-8. Stack After Interrupt to Same Privilege Level

8.7.3 Interrupt To Higher Privilege

When a control transfer to an exception or interrupt handler running at a higher privilege occurs
(numerically lower CPL value), the processor performs a stack switch using the following steps:

1. The target CPL is read by the processor from the target code-segment DPL and used as an index
into the TSS for selecting the new stack pointer (SS:ESP). For example, if the target CPL is 1, the
processor selects the SS:ESP for privilege-level 1 from the TSS.

2. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

Pushes the EFLAGS register onto the new stack.
4. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.
242 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

5. The processor handles the EFLAGS.IF bit based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

6. Saves the return-address pointer (CS:EIP) by pushing it onto the stack. The CS value is padded
with two bytes to form a doubleword.

7. 1If the interrupt vector number has an error code associated with it, the error code is pushed onto
the stack.

8. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

9. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-9 shows the new stack after control is transferred to the interrupt handler.

Interrupt-Handler Stack

With Error Code With No Error Code

| Return SS || +20

Return ESP +16 | Return SS | +16
Return EFLAGS +12 Return ESP +12
| Retum Cs | +8 Return EFLAGS | +8
Return EIP +4 | Return CS | +4
Error Code — New SS:ESP Return EIP «— New SS:ESP

Figure 8-9. Stack After Interrupt to Higher Privilege

8.7.4 Privilege Checks

Before loading the CS register with the interrupt-handler code-segment selector (located in the gate
descriptor), the processor performs privilege checks similar to those performed on call gates. The
checks are performed when either conforming or nonconforming interrupt handlers are referenced:

1. The processor reads the gate DPL from the interrupt-gate or trap-gate descriptor. The gate DPL is
the minimum privilege-level (numerically-highest value) needed by a program to access the gate.
The processor compares the CPL with the gate DPL. The CPL must be numerically less-than or
equal-to the gate DPL for this check to pass.

Exceptions and Interrupts 243



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

2. The processor compares the CPL with the interrupt-handler code-segment DPL. For this check to
pass, the CPL must be numerically greater-than or equal-to the code-segment DPL. This check
prevents control transfers to less-privileged interrupt handlers.

Unlike call gates, no RPL comparison takes place. This is because the gate descriptor is referenced in
the IDT using the interrupt vector number rather than a selector, and no RPL field exists in the
interrupt vector number.

Exception and interrupt handlers should be made reachable from software running at any privilege
level that requires them. If the gate DPL value is too low (requiring more privilege), or the interrupt-
handler code-segment DPL is too high (runs at lower privilege), the interrupt control transfer can fail
the privilege checks. Setting the gate DPL=3 and interrupt-handler code-segment DPL=0 makes the
exception handler or interrupt handler reachable from any privilege level.

Figure 8-10 on page 245 shows two examples of interrupt privilege checks. In Example 1, both
privilege checks pass:

e The interrupt-gate DPL is at the lowest privilege (3), which means that software running at any
privilege level (CPL) can access the interrupt gate.

* The interrupt-handler code segment is at the highest-privilege level, as indicated by DPL=0. This
means software running at any privilege can enter the interrupt handler through the interrupt gate.

244 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
cs CPL=2
Interrupt Vector Access
Allowed
Pl 1 Access Allowed
Interrupt
- . Handler
Gate Descriptor
Access

Allowed

DPL=0

Code Descriptor

Example 1: Privilege Check Passes

cs CPL=2
Interrupt Vector Access
.|, Denied
¢

oo @..-f\_c_ﬂ?s_s_'??nl?si__,
. Interrupt

Handler

Gate Descriptor

|
I

Access
Denied

DPL=3

Code Descriptor

Example 2: Privilege Check Fails

Figure 8-10. Privilege-Check Examples for Interrupts

In Example 2, both privilege checks fail:

* The interrupt-gate DPL specifies that only software running at privilege-level 0 can access the
gate. The current program does not have a high enough privilege level to access the interrupt gate,
since its CPL is set at 2.

Exceptions and Interrupts 245



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e The interrupt handler has a lower privilege (DPL=3) than the currently-running software (CPL=2).
Transitions from more-privileged software to less-privileged software are not allowed, so this
privilege check fails as well.

Although both privilege checks fail, only one such failure is required to deny access to the interrupt
handler.

8.7.5 Returning From Interrupt Procedures

A return to an interrupted program should be performed using the IRET instruction. An IRET is a far
return to a different code segment, with or without a change in privilege level. The actions of an IRET
in both cases are described in the following sections.

IRET, Same Privilege. Before performing the IRET, the stack pointer must point to the return EIP. If
there was an error code pushed onto the stack as a result of the exception or interrupt, that error code
should have been popped off the stack earlier by the handler. The IRET reverses the actions of the
interrupt mechanism:

1. Pops the return pointer off of the stack, loading both the CS register and EIP register (RIP[31:0])
with the saved values. The return code-segment RPL is read by the processor from the CS value
stored on the stack to determine that an equal-privilege control transfer is occurring.

2. Pops the saved EFLAGS image off of the stack and into the EFLAGS register.

3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the return program must be at a lower
privilege than the interrupt handler. The IRET in this case causes a stack switch to occur:

1. The return pointer is popped off of the stack, loading both the CS register and EIP register
(RIP[31:0]) with the saved values. The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that a lower-privilege control transfer is occurring.

2. The saved EFLAGS image is popped off of the stack and loaded into the EFLAGS register.

3. The return-program stack pointer is popped off of the stack, loading both the SS register and ESP
register (RSP[31:0]) with the saved values.

4. Control is transferred to the return program at the target CS:EIP.

8.8 Virtual-8086 Mode Interrupt Control Transfers

This section describes interrupt control transfers as they relate to virtual-8086 mode. Virtual-8086
mode is not supported by long mode. Therefore, the control-transfer mechanism described here is not
applicable to long mode.

When a software interrupt occurs (not external interrupts, INT1, or INT3) while the processor is
running in virtual-8086 mode (EFLAGS.VM=1), the control transfer that occurs depends on three
system controls:

246 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

EFLAGSIOPL—This field controls interrupt handling based on the CPL. See section “1” on
page 53 for more information on this field.

Setting IOPL<3 redirects the interrupt to the general-protection exception (#GP) handler.

CR4A.VME—This bit enables virtual-mode extensions. See section “1” on page 48 for more
information on this bit.

TSS Interrupt-Redirection Bitmap—The TSS interrupt-redirection bitmap contains 256 bits, one
for each possible INTN vector (software interrupt). When CR4.VME=1, the bitmap is used by the
processor to direct interrupts to the handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-system interrupt handler (bitmap entry is
1). See section “1” on page 335 for information on the location of this field within the TSS.

If IOPL<3, CR4.VME-=1, and the corresponding interrupt redirection bitmap entry is 0, the processor
uses the virtual-interrupt mechanism. See section “1”” on page 255 for more information on this
mechanism.

Table 8-10 summarizes the actions of the above system controls on interrupts taken when the
processor is running in virtual-8086 mode.

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms
TSS Interrupt

EFLAGS.IOPL CR4.VME Redirection Interrupt Mechanism
Bitmap Entry
0 J—
General-Protection Exception

0,1,0r2 1
1 0 Virtual Interrupt
0 J—

3 1 Protected-Mode Handler

1

0 Virtual 8086 Handler

8.8.1 Protected-Mode Handler Control Transfer

Control transfers to protected-mode handlers from virtual-8086 mode differ from standard protected-
mode transfers in several ways. The processor follows these steps in making the control transfer:

l.
2.

Reads the CPL=0 stack pointer (SS:ESP) from the TSS.

Pushes the GS, FS, DS, and ES selector registers onto the stack. Each push is padded with two
bytes to form a doubleword.

Clears the GS, FS, DS, and ES selector registers to 0. This places a null selector in each of the
four registers

Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

Pushes the EFLAGS register onto the new stack.

Exceptions and Interrupts 247



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

6. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

7. Handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- Ifthe gate descriptor is a trap gate, EFLAGS.IF is not modified.

8. Pushes the return-address pointer (CS:EIP) onto the stack. The CS value is padded with two bytes
to form a doubleword.

9. If the interrupt has an associated error code, pushes the error code onto the stack.

10. Loads the segment-selector field from the gate descriptor into the CS register, and loads the offset
field from the gate descriptor into the EIP register.

11. Begins execution of the interrupt handler with the instruction referenced by the new CS:EIP.

Figure 8-11 shows the new stack after control is transferred to the interrupt handler with an error code.

Interrupt-Handler Stack

With Error Code With No Error Code

Return GS|| +36
Return FS | +32 Return GS | +32
Return DS| +28 Return FS | +28
Return ES | +24 Return DS I +24
Return SS | +20 Return ES | +20

Return ESP +16 Return SS § +16

Return EFLAGS +12 Return ESP +12

Return CS | +8 Return EFLAGS +8

Return EIP +4 Return CS | +4

Error Code +— New SS:ESP Return EIP <+— New SS:ESP

(From TSS, CPL=0)

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to virtual-8086 mode reverses the stack-
build process. After the return pointer, EFLAGS, and return stack-pointer are restored, the processor
restores the ES, DS, FS, and GS registers by popping their values off the stack.

248 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.8.2 Virtual-8086 Handler Control Transfer

When a control transfer to an 8086 handler occurs from virtual-8086 mode, the processor creates an
interrupt-handler stack identical to that created when an interrupt occurs in real mode (see Figure 8-6
on page 239). The processor performs the following actions during a control transfer:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears the EFLAGS.IF and EFLAGS.RF bits to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.
4

. Locates the interrupt-handler pointer (CS:IP) in the 8086 IDT by scaling the interrupt vector by
four and adding the result to the virtual (linear) address 0. The value in the IDTR is not used.

5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

An IRET from the 8086 handler back to virtual-8086 mode reverses the stack-build process.

8.9 Long-Mode Interrupt Control Transfers

The long-mode architecture expands the legacy interrupt-mechanism to support 64-bit operating
systems and applications. These changes include:

e All interrupt handlers are 64-bit code and operate in 64-bit mode.

e The size of an interrupt-stack push is fixed at 64 bits (8 bytes).

e The interrupt-stack frame is aligned on a 16-byte boundary.

e The stack pointer, SS:RSP, is pushed unconditionally on interrupts, rather than conditionally based
on a change in CPL.

* The SS selector register is loaded with a null selector as a result of an interrupt, if the CPL changes.

e The IRET instruction behavior changes, to unconditionally pop SS:RSP, allowing a null SS to be
popped.
* A new interrupt stack-switch mechanism, called the interrupt-stack table or IST, is introduced.

8.9.1 Interrupt Gates and Trap Gates

Only long-mode interrupt and trap gates can be referenced in long mode (64-bit mode and
compatibility mode). The legacy 32-bit interrupt-gate and 32-bit trap-gate types (OEh and OFh, as
described in section “1” on page 90) are redefined in long mode as 64-bit interrupt-gate and 64-bit
trap-gate types. 32-bit and 16-bit interrupt-gate and trap-gate types do not exist in long mode, and
software is prohibited from using task gates. If a reference is made to any gate other than a 64-bit
interrupt gate or a 64-bit trap gate, a general-protection exception (#GP) occurs.

The long-mode gate types are 16 bytes (128 bits) long. They are an extension of the legacy-mode gate
types, allowing a full 64-bit segment offset to be stored in the descriptor. See section “1”” on page 80
for a detailed description of the gate-descriptor format and fields.

Exceptions and Interrupts 249



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

8.9.2 Locating the Interrupt Handler

When an interrupt occurs in long mode, the processor multiplies the interrupt vector number by 16 and
uses the result as an offset into the IDT. The gate descriptor referenced by the IDT offset contains a
segment-selector and a 64-bit segment-offset field. The gate-descriptor segment-offset field contains
the complete virtual address for the interrupt handler. The gate-descriptor segment-selector field
points to the target code-segment descriptor located in either the GDT or LDT. The code-segment
descriptor is only used for privilege-checking purposes and for placing the processor in 64-bit mode.
The code segment-descriptor base field, limit field, and most attributes are ignored.

Figure 8-12 shows how the long-mode interrupt handler is located by the interrupt mechanism.

Interrupt-Descriptor

Table
________ Code-Segment Offset Interrupt Vector
CS Selector ' DPL!
< +
16
< IDT Base Address IDT Limit
Global- or Local- Interrupt-Descriptor-Table Register
Descriptor Table
Virtual-Address
Space
CSlimit  !DPL:
- Code-Segment Base
»| ... nterupt Handler

Figure 8-12. Long-Mode Interrupt Control Transfer

250 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.9.3 Interrupt Stack Frame

In long mode, the return-program stack pointer (SS:RSP) is always pushed onto the interrupt-handler
stack, regardless of whether or not a privilege change occurs. Although the SS register is not used in
64-bit mode, SS is pushed to allow returns into compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-frame size for all interrupts, except for
error codes. Interrupt service-routine entry points that handle interrupts generated by non-error-code
interrupts can push an error code on the stack for consistency.

In long mode, when a control transfer to an interrupt handler occurs, the processor performs the
following:

1. Aligns the new interrupt-stack frame by masking RSP with FFFF_FFFF FFFF FFFOh.
2. IfIST field in interrupt gate is not 0, reads IST pointer into RSP.

3. Ifaprivilege change occurs, the target DPL is used as an index into the long-mode TSS to select a
new stack pointer (RSP).

4. If a privilege change occurs, SS is cleared to zero indicating a null selector.

5. Pushes the return stack pointer (old SS:RSP) onto the new stack. The SS value is padded with six
bytes to form a quadword.

6. Pushes the 64-bit RFLAGS register onto the stack. The upper 32 bits of the RFLAGS image on
the stack are written as zeros.

7. Clears the TF, NT, and RF bits in RFLAGS bits to 0.

8. Handles the RFLAGS.IF bit according to the gate-descriptor type:
- Ifthe gate descriptor is an interrupt gate, RFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, RFLAGS.IF is not modified.

9. Pushes the return CS register and RIP register onto the stack. The CS value is padded with six
bytes to form a quadword.

10. If the interrupt vector number has an error code associated with it, pushes the error code onto the
stack. The error code is padded with four bytes to form a quadword.

11. Loads the segment-selector field from the gate descriptor into the CS register. The processor
checks that the target code-segment is a 64-bit mode code segment.

12. Loads the offset field from the gate descriptor into the target RIP. The interrupt handler begins
execution when control is transferred to the instruction referenced by the new RIP.

Figure 8-13 on page 252 shows the stack after control is transferred to the interrupt handler.

Exceptions and Interrupts 251



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Interrupt-Handler Stack
With Error Code With No Error Code

| Return SS §+40

Return RSP +32 Return SS §+32
Return RFLAGS +24 Return RSP +24
| Return CS | +16 Return RFLAGS +16
Return RIP +8 Return CS | +8
| Eorcode  Jersp Return RIP — RSP

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. Inlegacy mode, the interrupt-stack pointer can be aligned at any address
boundary. Long mode, however, aligns the stack on a 16-byte boundary. This alignment is performed
by the processor in hardware before pushing items onto the stack frame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism. A subsequent IRET instruction
automatically restores the previous RSP.

Aligning the stack on a 16-byte boundary allows optimal performance for saving and restoring the 16-
byte XMM registers. The interrupt handler can save and restore the XMM registers using the faster 16-
byte aligned loads and stores (MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode, it is only of consequence when the
interrupted program is already running at CPL=0, and it is generally used only within the operating-
system kernel. The operating system should put 16-byte aligned RSP values in the TSS for interrupts
that change privilege levels.

Stack Switch. Inlong mode, the stack-switch mechanism differs slightly from the legacy stack-
switch mechanism (see section “1” on page 242). When stacks are switched during a long-mode
privilege-level change resulting from an interrupt, a new SS descriptor is not loaded from the TSS.
Long mode only loads an inner-level RSP from the TSS. However, the SS selector is loaded with a null
selector, allowing nested control transfers, including interrupts, to be handled properly in 64-bit mode.
The SS.RPL is set to the new CPL value. See section “1” on page 255 for additional information.

The interrupt-handler stack that results from a privilege change in long mode looks identical to a long-
mode stack when no privilege change occurs. Figure 8-14 shows the stack after the switch is
performed and control is transferred to the interrupt handler.

252 Exceptions and Interrupts



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology
Interrupt-Handler Stack
With Error Code Without Error Code
| Return SS J+40
Return RSP +3) Return SS §+32
Return RFLAGS +24 Return RSP +24
| Return CS | +16 Return RFLAGS +16
Return RIP +8 Return CS §+8
| Error Code <+—New RSP Return RIP 4—New RSP
(from TSS) (from TSS)
SS=0 SS=0
(if CPL changes) (if CPL changes)

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege

8.9.4 Interrupt-Stack Table

In long mode, a new interrupt-stack table (IST) mechanism is introduced as an alternative to the
modified legacy stack-switch mechanism described above. The IST mechanism provides a method for
specific interrupts, such as NMI, double-fault, and machine-check, to always execute on a known-
good stack. In legacy mode, interrupts can use the hardware task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However,
the hardware task-switch mechanism is not supported in long mode.

When enabled, the IST mechanism unconditionally switches stacks. It can be enabled on an individual
interrupt vector basis using a new field in the IDT gate-descriptor entry. This allows some interrupts to
use the modified legacy mechanism, and others to use the IST mechanism. The IST mechanism is only
available in long mode.

The IST mechanism uses new fields in the 64-bit TSS format and the long-mode interrupt-gate and
trap-gate descriptors:

* Figure 12-8 on page 341 shows the format of the 64-bit TSS and the location of the seven IST
pointers. The 64-bit TSS offsets from 24h to 5Bh provide space for seven IST pointers, each of
which are 64 bits (8 bytes) long.

* The long-mode interrupt-gate and trap-gate descriptors define a 3-bit IST-index field in bits 2:0 of
byte +4. Figure 4-24 on page 93 shows the format of long-mode interrupt-gate and trap-gate
descriptors and the location of the IST-index field.

Exceptions and Interrupts 253



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

To enable the IST mechanism for a specific interrupt, system software stores a non-zero value in the
interrupt gate-descriptor IST-index field. If the IST index is zero, the modified legacy stack-switching
mechanism (described in the previous section) is used.

Figure 8-15 shows how the IST mechanism is used to create the interrupt-handler stack. When an
interrupt occurs and the IST index is non-zero, the processor uses the index to select the corresponding
IST pointer from the TSS. The IST pointer is loaded into the RSP to establish a new stack for the
interrupt handler. The SS register is loaded with a null selector if the CPL changes and the SS.RPL is
set to the new CPL value. After the stack is loaded, the processor pushes the old stack pointer,
RFLAGS, the return pointer, and the error code (if applicable) onto the stack. Control is then
transferred to the interrupt handler.

64-Bit
Interrupt-Handler Stack

|Return SS |+40

64-Bit TSS Return RSP +32

Return RFLAGS +24

Long-Mode |Return csf+16
Interrupt- or Trap- Return RIP 8 550

Gate Descriptor :
> BT 1517 | Error Code <—| RSP I
A
_________ L IST RSPO : RSP2

Figure 8-15. Long-Mode IST Mechanism

Software must make sure that an interrupt or exception handler using an IST pointer doesn't take
another exception using the same IST pointer, as this will result in the first stack exception frame being
overwritten.

8.9.5 Returning From Interrupt Procedures

As with legacy mode, a return to an interrupted program in long mode should be performed using the
IRET instruction. However, in long mode, the IRET semantics are different from legacy mode:

* In 64-bit mode, IRET pops the return-stack pointer unconditionally off the interrupt-stack frame
and into the SS:RSP registers. This reverses the action of the long-mode interrupt mechanism,

254 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

which saves the stack pointer whether or not a privilege change occurs. IRET also allows a null
selector to be popped off the stack and into the SS register. See section “1” on page 255 for
additional information.

e In compatibility mode, IRET behaves as it does in legacy mode. The SS:ESP is popped off the
stack only if a control transfer to less privilege (numerically greater CPL) is performed. Otherwise,
it is assumed that a stack pointer is not present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack when saving values for the interrupt
handler, and the interrupt handler is always entered in 64-bit mode. To work properly, an IRET used to
exit the 64-bit mode interrupt-handler requires a series of eight-byte pops off the stack. This is
accomplished by using a 64-bit operand-size prefix with the IRET instruction. The default stack size
assumed by an IRET in 64-bit mode is 32 bits, so a 64-bit REX prefix is needed by 64-bit mode
interrupt handlers.

Nested IRETs to 64-Bit Mode Procedures. In long mode, an interrupt causes a null selector to be
loaded into the SS register if the CPL changes (this is the same action taken by a far CALL in long
mode). If the interrupt handler performs a far call, or is itself interrupted, the null SS selector is pushed
onto the stack frame, and another null selector is loaded into the SS register. Using a null selector in
this way allows the processor to properly handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle nested returns to 64-bit mode (which do not
use the SS register), and returns to compatibility mode (which do use the SS register). Normally, an
IRET that pops a null selector into the SS register causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the existence of nested interrupt handlers
and/or privileged software in 64-bit mode. Long mode allows an IRET to pop a null selector into SS
from the stack under the following conditions:

e The target mode is 64-bit mode.
e The target CPL<3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

8.10 Virtual Interrupts

The term virtual interruptsincludes two classes of extensions to the interrupt-handling mechanism:

e \irtual-8086 Mode Extensions (VME)—These allow virtual interrupts and interrupt redirection in
virtual-8086 mode. VME has no effect on protected-mode programs.

e Protected-Mode Virtual Interrupts (PVI)—These allow virtual interrupts in protected mode when
CPL=3. Interrupt redirection is not available in protected mode. PVI has no effect on virtual-8086-
mode programs.

Exceptions and Interrupts 255



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Because virtual-8086 mode is not supported in long mode, VME extensions are not supported in long
mode. PVI extensions are, however, supported in long mode.

8.10.1 Virtual-8086 Mode Extensions

The virtual-8086-mode extensions (VME) enable performance enhancements for 8086 programs
running as protected tasks in virtual-8086 mode. These extensions are enabled by setting CR4.VME
(bit 0) to 1. The extensions enabled by CR4.VME are:

* Virtualizing control and notification of maskable external interrupts with the EFLAGS VIF (bit
19) and VIP (bit 20) bits.

* Selective interception of software interrupts (INTn instructions) using the TSS interrupt
redirection bitmap (IRB).

Background. Legacy-8086 programs expect to have full access to the EFLAGS interrupt flag (IF)
bit, allowing programs to enable and disable maskable external interrupts. When those programs run in
virtual-8086 mode under a multitasking protected-mode environment, it can disrupt the operating
system if programs enable or disable interrupts for their own purposes. This is particularly true if
interrupts associated with one program can occur during execution of another program. For example, a
program could request that an area of memory be copied to disk. System software could suspend the
program before external hardware uses an interrupt to acknowledge that the block has been copied.
System software could subsequently start a second program which enables interrupts. This second
program could receive the external interrupt indicating that the memory block of the first program has
been copied. If that were to happen, the second program would probably be unprepared to handle the
interrupt properly.

Access to the IF bit must be managed by system software on a task-by-task basis to prevent corruption
of system resources. In order to completely manage the IF bit, system software must be able to
interrupt all instructions that can read or write the bit. These instructions include STI, CLI, PUSHF,
POPF, INTn, and IRET. These instructions are part of an instruction class that is |OPL-sensitive. The
processor takes a general-protection exception (#GP) whenever an IOPL-sensitive instruction is
executed and the EFLAGS.IOPL field is less than the CPL. Because all virtual-8086 programs run at
CPL=3, system software can interrupt all instructions that modify the IF bit by setting IOPL<3.

System software maintains a virtual image of the IF bit for each virtual-8086 program by emulating
the actions of IOPL-sensitive instructions that modify the IF bit. When an external maskable-interrupt
occurs, system software checks the state of the IF image for the current virtual-8086 program to
determine whether the program is masking interrupts. If the program is masking interrupts, system
software saves the interrupt information until the virtual-8086 program attempts to re-enable
interrupts. When the virtual-8086 program unmasks interrupts with an IOPL-sensitive instruction,
system software traps the action with the #GP handler.

The performance of a processor can be significantly degraded by the overhead of trapping and
emulating [OPL-sensitive instructions, and the overhead of maintaining images of the IF bit for each
virtual-8086 program. This performance loss can be eliminated by running virtual-8086 programs

256 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

with IOPL set to 3, thus allowing changes to the real IF flag from any privilege level. Unfortunately,
this can leave critical system resources unprotected.

In addition to the performance problems caused by virtualizing the IF bit, software interrupts (INTN
instructions) cannot be masked by the IF bit or virtual copies of the IF bit. The IF bit only affects
maskable external interrupts. Software interrupts in virtual-8086 mode are normally directed to the
real mode interrupt vector table (IVT), but it can be desirable to redirect certain interrupts to the
protected-mode interrupt-descriptor table (IDT).

The virtual-8086-mode extensions are designed to support both external interrupts and software
interrupts, with mechanisms that preserve high performance without compromising protection.
Virtualization of external interrupts is supported using two bits in the EFLAGS register: the virtual-
interrupt flag (VIF) bit and the virtual-interrupt pending (VIP) bit. Redirection of software interrupts is
supported using the interrupt-redirection bitmap (IRB) in the TSS. A separate TSS can be created for
each virtual-8086 program, allowing system software to control interrupt redirection independently
for each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions are enabled, the IF-
modifying instructions normally trapped by system software are allowed to execute. However, instead
of modifying the IF bit, they modify the EFLAGS VIF bit. This leaves control over maskable
interrupts to the system software. It can also be used as an indicator to system software that the virtual-
8086 program is able to, or is expecting to, receive external interrupts.

When an unmasked external interrupt occurs, the processor transfers control from the virtual-8086
program to a protected-mode interrupt handler. If the interrupt handler determines that the interrupt is
for the virtual-8086 program, it can check the state of the VIF bit in the EFLAGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set (indicating the virtual-8086 program attempted
to unmask interrupts), system software can allow the interrupt to be handled by the appropriate virtual-
8086 interrupt handler.

If the VIF bit is clear (indicating the virtual-8086 program attempted to mask interrupts) and the
interrupt is for the virtual-8086 program, system software can hold the interrupt pending. System
software holds an interrupt pending by saving appropriate information about the interrupt, such as the
interrupt vector, and setting the virtual-8086 program's VIP bit in the EFLAGS image on the stack.
When the virtual-8086 program later attempts to set IF, the previously set VIP bit causes a general-
protection exception (#GP) to occur. System software can then pass the saved interrupt information to
the virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled (CR4.VME=1), the VIF and VIP bits are set and
cleared as follows:

* VIF Bit—This bit is set and cleared by the processor in virtual-8086 mode in response to an
attempt by a virtual-8086 program to set and clear the EFLAGS.IF bit. VIF is used by system
software to determine whether a maskable external interrupt should be passed on to the virtual-
8086 program, emulated by system software, or held pending. VIF is also cleared during software
interrupts through interrupt gates, with the original VIF value preserved in the EFLAGS image on
the stack.

Exceptions and Interrupts 257



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* VIP Bit—System software sets and clears this bit in the EFLAGS image saved on the stack after an
interrupt. It can be set when an interrupt occurs for a virtual-8086 program that has a clear VIF bit.
The processor examines the VIP bit when an attempt is made by the virtual-8086 program to set
the IF bit. If VIP is set when the program attempts to set IF, a general-protection exception (#GP)
occurs before execution of the IF-setting instruction. System software must clear VIP to avoid
repeated #GP exceptions when returning to the interrupted instruction.

The VIF and VIP bits can be used by system software to minimize the overhead associated with
managing maskable external interrupts because virtual copies of the IF flag do not have to be
maintained by system software. Instead, VIF and VIP are maintained during context switches along
with the remaining EFLAGS bits.

Table 8-11 on page 260 shows how the behavior of instructions that modify the IF bit are affected by
the VME extensions.

Interrupt Redirection of Software Interrupts. In virtual-8086 mode, software interrupts (INTN
instructions) are trapped using a #GP exception handler if the IOPL is less than 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and emulate 8086-interrupt handlers. System
software can set the [OPL to 3, in which case the INTn instruction is vectored through a gate descriptor
in the protected-mode IDT. System software can use the gate to control access to the virtual-8086
mode interrupt vector table (IVT), or to redirect the interrupt to a protected-mode interrupt handler.

When VME extensions are enabled, for INTn instructions to execute normally, vectoring directly to a
virtual-8086 interrupt handler through the virtual-8086 IVT (located at address 0 in the virtual-address
space of the task). For security or performance reasons, however, it can be necessary to intercept INTn
instructions on a vector-specific basis to allow servicing by protected-mode interrupt handlers. This is
performed by using the interrupt-redirection bitmap (IRB), located in the TSS and enabled when
CR4.VME=I. The IRB is available only in virtual-8086 mode.

Figure 12-6 on page 336 shows the format of the TSS, with the interrupt redirection bitmap located
near the top. The IRB contains 256 bits, one for each possible software-interrupt vector. The most-
significant bit of the IRB controls interrupt vector 255, and is located immediately before the IOPB
base. The least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB function as follows:

e  When set to 1, the INTn instruction behaves as if the VME extensions are not enabled. The
interrupt is directed through the IDT to a protected-mode interrupt handler if IOPL=3. If IOPL<3,
the INTn causes a #GP exception.

e When cleared to 0, the INTn instruction is directed through the IVT for the virtual-8086 program
to the corresponding virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB mechanism. External interrupts are
asynchronous events that occur outside the context of a virtual-8086 program. Therefore, external
interrupts require system-software intervention to determine the appropriate context for the interrupt.
The VME extensions described in section “1” on page 257 are provided to assist system software with
external-interrupt intervention.

258 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

8.10.2 Protected Mode Virtual Interrupts

The protected-mode virtual-interrupt (PVI) bit in CR4 enables support for interrupt virtualization in
protected mode. When enabled, the processor maintains program-specific VIF and VIP bits similar to
the manner defined by the virtual-8086 mode extensions (VME). However, unlike VME, only the STI
and CLI instructions are affected by the PVI extension. When a program is running at CPL=3, it can
use STI and CLI to set and clear its copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-11 on page 260 describes the behavior of instructions that
modify the IF bit when PVI extensions are enabled.

The interrupt redirection bitmap (IRB) defined by the VME extensions is not supported by the PVI
extensions.

8.10.3 Effect of Instructions that Modify EFLAGS.IF

Table 8-11 on page 260 shows how the behavior of instructions that modify the IF bit are affected by
the VME and PVI extensions. The table columns specify the following:

» Operating Mode—the processor mode in effect when the instruction is executed.
* Instruction—the IF-modifying instruction.

* |OPL—the value of the EFLAGS.IOPL field.

e  VIP—the value of the EFLAGS.VIP bit.

* #GP—indicates whether the conditions in the first four columns cause a general-protection
exception (#GP) to occur.

o« [Effect on |IF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.IF bit and the image of EFLAGS.IF on the stack.

+ Effect on VIF Bit—indicates the effect the conditions in the first four columns have on the
EFLAGS.VIF bit and the image of EFLAGS.VIF on the stack.

Exceptions and Interrupts 259



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 8-11. Effect of Instructions that Modify the IF Bit

Operating Mode | Instruction | IOPL | VIP | #GP Effect on IF Bit Effect on VIF Bit
CLI IF=0
Real Mode ST IF=1
CRO.PE=0 PUSHF EFLAGS.IF Stack Image = IF
EFLAGS.VM=0 |POPF no IF = EFLAGS.IF stack image
CR4.VME=0 EFLAGS.IF Stack Image = IF
CR4.PVI=0 INTn B
IF=0
IRET IF = EFLAGS.IF Stack Image
>CPL no IF=0
CLI
<CPL yes |—
>CPL no |IF=1
STI cPL
Protected Mode < yes |—
CRO.PE=1 PUSHF X EFLAGS.IF Stack Image = IF
EFLAGS.VM=0 POPF >CPL IF = EFLAGS.IF Stack Image
CR4.VME=x <CPL No Change
CR4.PVIZ0 no EFLAGS.IF Stack | IF
INTn gate IF Stack Image =
IF=0
IRET X
IF = EFLAGS.IF Stack Image
IRETD
3 no IF=0
CLI
<3 yes |—
3 no IF=1
STI
<3 yes |—
3 no |EFLAGS.IF Stack Image =IF
PUSHF 3
Virtual-8086 Mode < yes | —
CRO.PE=1 POPE 3 no |IF =EFLAGS.IF Stack Image
EFLAGS.VM=1 <3 yes |—
CR4.VME=0 EFLAGS.IF Stack Image = IF
CR4.PVI=x 3 no B
INTn gate IF=0
<3 yes |—
3 no IF = EFLAGS.IF Stack Image
IRET
<3 yes |—
3 no IF = EFLAGS.IF Stack Image
IRETD
<3 yes |—
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. Ifthe EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. Ifthe EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

260 Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)

Operating Mode | Instruction | IOPL | VIP | #GP Effect on IF Bit Effect on VIF Bit
3 IF=0 No Change
CLI X no
<3 No Change VIF=0
3 X no |[IF=1 No Change
STI 3 0 no |No Change VIF =1
<
yes |—
3 EFLAGS.IF Stack Image =IF | Not Pushed
PUSHF X no
<3 Not Pushed EFLAGS.IF Stack Image = VIF
3 no EFLAGS.IF Stack Image =IF | EFLAGS.VIF Stack Image = VIF
PUSHFD X
<3 yes |—
Virtual-8086 Mode 3 X no |IF=EFLAGS.IF Stack Image |No Change
with VME POPF 0 |no |NoChange VIF = EFLAGS.IF Stack Image
Extensions <3 —
yes
CRO.PE=1
EFLAGS.VM=1 |pOPED 3 < no |IF=EFLAGS.IF Stack Image |No Change
CR4.VME=1 <3 yes |—
CR4.PVI=x —
3 ﬁ:Fl_g\GS.IF Stack Image = IF No Change
INTn gate X no
3 No Change EFLAGS.IF Stack Image = VIF
g VIF=0
3 X no |IF=EFLAGS.IF Stack Image |No Change
no No Change VIF = EFLAGS.IF Stack Image
IRET <3 no! |No Change VIF = EFLAGS.IF Stack Image
1
yes? | —
3 no |IF=EFLAGS.IF Stack Image |VIF =EFLAGS.IF Stack Image
IRETD X
<3 yes |—

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—" indicates the instruction causes a general-protection exception (#GP).
Note:
1. Ifthe EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. Ifthe EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Exceptions and Interrupts 261



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)

Note:

Operating Mode | Instruction | IOPL | VIP | #GP Effect on IF Bit Effect on VIF Bit
3 IF=0 No Change
CLI X no
<3 No Change VIF=0
3 no |[IF=1 No Change
Protected Mode STI 3 no |No Change VIF =1
<
with PVI yes |—
Extensions PUSHF Not Pushed
CRO.PE=1 EFLAGS.IF Stack Image =IF
. PUSHFD EFLAGS.VIF Stack Image = VIF
EFLAGS.VM=0 SOPF NoCh
CR4.VME=x o Change
IF = EFLAGS.IF Stack Image
CR4.PVI=1 POPFD 9 VIF=0
CPL=3 X |ho
INTn gate EFLAGS.IF Stack Image =IF No Change
9 IF = 0 (if interrupt gate) g
IRET No Change
IF = EFLAGS.IF Stack Image
IRETD VIF = EFLAGS.VIF Stack Image
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—" indicates the instruction causes a general-protection exception (#GP).

1. Ifthe EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. Ifthe EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

262

Exceptions and Interrupts



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

9 Machine Check Architecture

The AMD64 Machine Check Architecture (MCA) plays a vital role in the reliability, availability, and
serviceability (RAS) of AMD processors, as well as the RAS of the computer systems in which they
are embedded. MCA defines the facilities by which processor and system hardware errors are logged
and reported to system software. This allows system software to serve a strategic role in recovery from
and diagnosis of hardware errors.

Error checking hardware is configured and information about detected error conditions is conveyed
via an architecturally-defined set of registers. The system programming interface of MCA is described
below in Section 9.3 “Machine Check Architecture MSRs” on page 267.

9.1 Introduction

All computer systems are susceptible to errors—results that are contrary to the system design. Errors
can be categorized as Soft or hard. Soft errors are caused by transient interference and are not
necessarily indicative of any damage to the computer circuitry. These external events include noise
from electromagnetic radiation and the incursion of sub-atomic particles that cause bit cell storage
capacitors to change state.

Hard errors are repeatable malfunctions that are generally attributable to physical damage to computer
circuitry. Damage may be caused by external forces (for example, voltage surges) or wear processes
inherent in the circuit technology. Damaged circuit elements can manifest symptoms similar to those
that are caused by soft error processes. An increase in the frequency of errors attributable to one circuit
element may indicate that the element has sustained damage or is wearing-out and may, in the future,
cause a hard error.

9.1.1 Reliability, Availability, and Serviceability

This section describes the concepts of reliability, availability, and serviceability (RAS) and shows how
they are interrelated.

The rate at which errors occur in a computer system is a measure of the system’s reliability.
Availability is the percentage of time that the system is available to do useful work. Errors that prevent
a computer system from continued operation result in down-time, that is, periods of unavailability.
Down-time includes the amount of time required to restore the system to operation. This may include
the time to diagnose a failure, determine the field replaceable unit (FRU) containing the faulty
circuitry, carry out the repair action required to replace the identified FRU, and restart the system. This
time directly impacts the system’s availability and is a measure of the system’s serviceability.

The availability of a computer system can be increased without decreasing performance or
significantly increasing cost through the judicious addition of data and control path redundancy in
concert with dedicated error-checking hardware. Together, redundancy and error checking detect and

Machine Check Architecture 263



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

often correct hardware errors. When errors are corrected by hardware, system operation continues
without any perceptible disruption or loss in performance.

Another important technique that can prevent down-time is error containment. Error containment
limits the propagation of an erroneous data. This enhances system availability by limiting the effects of
errors to a subset of software or hardware resources. System software may either correct the error and
resume the interrupted program or, if the error cannot be corrected, terminate software processes that
cannot continue due to the error.

Error logging enhances serviceability by providing information that is used to identify the FRU that
contains the failed circuitry. The mechanical design of the computer system can enhance serviceability
(and thus availability) by making the task of physically replacing a failed FRU quicker and easier.

9.1.2 Error Detection, Logging, and Reporting

Error detection requires specific error-checking hardware that compares the actual result of some data
transfer or transformation to the expected result. Any disparity indicates that an error has occurred.
Error detection is controlled through implementation-specific means. Disabling detection is normally
only appropriate when hardware is being debugged in the laboratory.

When an error is detected, hardware autonomously acts to either correct the error or contain the
propagation of the corrupting effects of an uncorrected error. For some error sources, hardware action
can be disabled by software through the MCA interface.

As hardware acts to correct or contain a detected error, it gathers information about the error to aid in
recovery, diagnosis, and repair. The architecture provides software control of error logging and
reporting. The following describes the characteristics of each:

* Logging
Logging involves saving information about the error in specific MCA registers. If the error

reporting bank associated with the error source is enabled, logging occurs; if disabled, error
information is generally discarded (there are implementation-specific exceptions).

* Reporting
An uncorrected error may be reported to system software via a machine-check exception, if error
reporting for the specific error source is enabled.

Reporting is the hardware-initiated action of interrupting the processor using a machine-check
exception (#¥MC). Reporting for each specific error type can be enabled or disabled by system software
though the MCA register interface. Even if reporting for an error type is disabled, logging may
continue.

Disabling reporting can negatively impact both error containment and error recovery (see the next
section) and should be avoided.

Hardware categorizes errors into three classes. These are:

e corrected

264 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

e uncorrected
* deferred

The following sections describe the characteristics of each of these error classes:

If an error can be corrected by hardware, no immediate action by software is required. In this case,
information is logged, if enabled, to aid in later diagnosis and possible repair.

If correction is not possible, the error is classified as uncorrected. The occurrence of an uncorrected
error requires immediate action by system software to either correct the error and resume the
interrupted program or, if software-based correction is not possible, to determine the extent of the
impact of the uncorrected error to any executing instruction stream or the architectural state of the
processor or system and take actions to contain the error condition by terminating corrupted software
processes.

For errors that are not corrected, but have no immediate impact on the architectural state of the system,
processor core, or any current thread of execution, the error may be classified by hardware as a
deferred error. Information about deferred errors is logged, if enabled, but not reported via a machine-
check exception. Instead hardware monitors the error and escalates the error classification to
uncorrected at the point in time where the error condition is about to impact the execution of an
instruction stream or cause the corruption of the processor core or system architectural state.

This escalation results in a #MC exception, assuming that reporting for that error source is enabled. If
software can correct the error, it may be possible to resume the affected program. If not, software can

terminate the affected program rather than bringing down the entire system. This is referred to as error
localization.

A common example of deferred error processing and localization is the conversion of globally
uncorrected DRAM errors to process-specific consumed memory errors. In this example, uncorrected
ECC-protected data that has not yet been consumed by any processor core is tagged as “poison.”
Hardware reports the uncorrected data as a localized error via a #MC exception when it is about to be
used (“consumed”) by an instruction execution stream.

In contrast, an error that cannot be contained and is of such severity that it has compromised the
continued operation of a processor core requires immediate action to terminate system processing and
may result in a hardware-enforced shutdown. In the shutdown state, the execution of instructions by
that processor core is halted. See Section 8.2.9 “#DF—Double-Fault Exception (Vector 8)” on

page 222 for a description of the shutdown processor state.

If supported, system software can chose to configure and enable hardware to generate an interrupt
when a deferred error is first detected. Corrected errors may be counted as they are logged. If
supported and enabled, exceeding a software-configured count threshold may be signalled via an
interrupt. These notification mechanisms are independent of machine-check reporting.

Specific details on hardware error detection, logging, and reporting are implementation-dependent and
are described in the BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manualapplicable to your product.

Machine Check Architecture 265



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

9.1.3 Error Recovery

When errors cannot be corrected by hardware, error recovery comes into play. Error recovery, as
defined by MCA, always involves software intervention. Logged information about the uncorrected
error condition that caused the exception allows system software to take actions to either correct the
error and resume the interrupted execution stream or terminate software processes (or higher-level
software constructs) that are known to be affected by the uncorrected error.

From a system perspective, all errors are either recoverable or unrecoverable. The following outlines
the characteristics of each:

* Recoverable—Hardware has determined that the architectural state of the processor experiencing
the uncorrected error has not been compromised. Software execution can continue if system
software can determine the extent of the error and take actions to either:

- correct the error and resume the interrupted stream of execution or,

- if this is not possible, terminate software processes that have incurred a loss of architectural
state and continue other software processes that are unaffected by the error.

e Unrecoverable—Hardware has determined that the architectural state of the processor
experiencing the uncorrected error has been corrupted. Software execution cannot reliably
continue.

Software saves any diagnostic information that it may be able to gather and halts.

The fact that an error is recoverable does not mean that recovery software will be able to resume
program execution. If it is unable to determine the extent of the corruption or if it determines that
essential state information has been lost, it may only be able to save information about the error and
halt processing.

System software has many options to recover from an uncorrected error. The following is a partial list
of possible actions that system software might take:

e Ifit can be determined that the corruption caused by the uncorrected error is contained within a
software process, software can kill the process.

* Ifthe uncorrected error has corrupted the architectural state of a virtual machine, the VMM can
rebuild the container (using only hardware resources that are known to be good) and reboot the
guest operating system.

e Ifthe uncorrected error is a part of a block of data being transferred to or from an I/O device, the
data transfer can be flushed and retried or terminated with an error.

e Ifthe uncorrected error is due to a hard link failure, software can reconfigure the network to route
information around the failed link.

e Ifthe uncorrected error is in a cache and the cache line containing the uncorrected (known bad)
data is in the shared state, software can invalidate the line so that it will be reloaded from memory
or another cache that has the line in the owned state.

266 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

Many more error scenarios are recoverable depending on the effectiveness of hardware error
containment, the logging capabilities of the system, and the sophistication of the recovery software
that acts on the information conveyed through the MCA reporting structure.

If recovery software is unable to restore a valid system architectural state at some level of software
abstraction (process, guest operating system, virtual machine, or virtual machine monitor), the
uncorrected error is considered systemfatal. In this situation, system software must halt the execution
of instructions. A system reset is required to restore the system to a known-good architectural state.

9.2 Determining Machine-Check Architecture Support

Support for the machine-check architecture is implementation-dependent. System software executes
the CPUID instruction to determine whether a processor implements the machine-check exception
(#MC) and the global MCA MSRs. The CPUID Fn0000 0001 EDX[MCE] feature bit indicates
support for the machine-check exception and the CPUID Fn0000 0001 EDX[MCA] feature bit
indicates support for the base set of global machine-check MSRs.

Once system software determines that the base set of MCA MSRs is available, it determines the
implemented number of machine-check reporting banks by reading the machine-check capabilities
register (MCG_CAP), which is the first of the global MCA MSRs.

For a processor implementation to provide an architecturally compliant MCA interface, it must
provide support for the machine-check exception, the global machine-check MSRs, the watchdog
timer (see “CPU Watchdog Timer Register” on page 270.), and at least one bank of the machine-check
reporting registers.

Support for the deferred reporting and software-based containment of uncorrected data errors is
indicated by the feature bit CPUID Fn8000 0007 EBX[SUCCOR]. See “Machine-Check Recovery”
on page 273.

Support for recoverable MCA overflow conditions is indicated by feature bit CPUID
Fn8000 0007 EBX[McaOverflowRecov]. See the discussion of recoverable status overflow in
Section “MCA Overflow” on page 272.

Implementation-specific information concerning the machine-check mechanism can be found in the
BIOSand Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product. For more information on using the CPUID instruction, see Section 3.3,
“Processor Feature Identification,” on page 63.

9.3 Machine Check Architecture MSRs

The AMD64 Machine-Check Architecture defines the set of model-specific registers (MCA MSRs)
used to log and report hardware errors. These registers are:

* Global status and control registers:
- Machine-check global-capabilities register (MCG_CAP)

Machine Check Architecture 267



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

- Machine-check global-status register (MCG_STATUS)
- Machine-check global-control register (MCG_CTL)
*  One or more error-reporting register banks, each containing:
- Machine-check control register (MCi_CTL)
- Machine-check status register (MCi_STATUS)
- Machine-check address register (MCi_ ADDR)
- Atleast one machine-check miscellaneous error-information register (MCi_ MISCO0)

Each error-reporting register bank is associated with a specific processor unit (or group of
processor units).

e CPU Watchdog Timer register (CPU_WATCHDOG_TIMER)

The error-reporting registers retain their values through a warm reset. (A warm reset occurs while
power to the processor is stable. This in contrast to a cold reset, which occurs during the application of
power after a period of power loss.) This preservation of error information allows the platform
firmware or other system-boot software to recover and report information associated with the error
when the processor is forced into a shutdown state.

The RDMSR and WRMSR instructions are used to read and write the machine-check MSRs. See
“Machine-Check MSRs” on page 589 for a listing of the machine-check MSR numbers and their reset
values. The following sections describe each MCA MSR and its function.

9.3.1 Global Status and Control Registers
The global status and control MSRs are the MCG_CAP, MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9-1 shows the format of the machine-check
global-capabilities register MCG_CAP). MCG_CAP is a read-only register that specifies the
machine-check mechanism capabilities supported by the processor implementation.

63 32
Reserved

31 9 8 7 0

Cc
Reserved I BANK_CNT

P

Bits Mnemonic Description R/W

63:9 Reserved

8 CTLP MCG_CTL register present R

7:0 BANK_CNT Number of reporting banks R

Figure 9-1. MCG_CAP Register

268 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

The fields within the MCG_CAP register are:

e BANK_CNT (MCi Bank Count)—RBits 7:0. This field specifies how many error-reporting register
banks are supported by the processor implementation.

e CTLP(MCG_CTL Register Present)—Bit 8. This bit specifies whether or not the Machine-Check
Global-Control (MCG_CTL) Register is supported by the processor. When the bit is set to 1, the
register is supported. When the bit is cleared to 0, the register is unsupported. The MCG_CTL
register is described on page 270.

All remaining bits in the MCG_CAP register are reserved. Writing values to the MCG_CAP register
produces undefined results.

Machine-Check Global-Status Register. Figure 9-2 shows the format of the machine-check global-
status register (MCG_STATUS). MCG_STATUS provides basic information about the processor state
after the occurrence of a machine-check error.

63 32
Reserved
31 3 210
M| E|R
ClI]1
Reserved L lplp
PlV]|V
Bits Mnemonic Description R/W
63:3 Reserved
2 MCIP Machine Check In-Progress R/W
1 EIPV Error IP Valid Flag R/W
0 RIPV Restart IP Valid Flag R/W

Figure 9-2. MCG_STATUS Register

The fields within the MCG_STATUS register are:

e Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the interrupted program can be reliably
restarted at the instruction addressed by the instruction pointer pushed onto the stack by the
machine-check error mechanism. If this bit is cleared to 0, the interrupted program cannot be
reliably restarted.

e Error-IP Valid (EIPV)—Bit 1. When this bit is set to 1, the instruction that is referenced by the
instruction pointer pushed onto the stack by the machine-check error mechanism is responsible for
the machine-check error. If this bit is cleared to 0, it is possible that the instruction referenced by
the instruction pointer is not responsible for the machine-check error.

e Machine Check In-Progress (MCIP)—Bit 2. When this bit is set to 1, it indicates that a machine-
check error is in progress. If another machine-check error occurs while this bit is set, the processor

Machine Check Architecture 269



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

enters the shutdown state. The processor sets this bit whenever a machine check exception is
generated. Software is responsible for clearing it after the machine check exception is handled.

All remaining bits in the MCG_STATUS register are reserved.

Machine-Check Global-Control Register. Figure 9-3 shows the format of the machine-check
global-control register (MCG_CTL). MCG_CTL is used by software to enable or disable the logging
and reporting of machine-check errors from the implemented error-reporting banks. Depending on the
implementation, detected errors from some error sources associated with a reporting bank that is
disabled are still logged. Setting all bits to 1 in this register enables all implemented error-reporting
register banks to log errors.

63 2 10
:\El E|E|E
6 Error-Reporting Register-Bank Enable Bits N|IN|[N
3 21110

Figure 9-3. MCG_CTL Register

CPU Watchdog Timer Register. The CPU watchdog timer is used to generate a machine check
condition when an instruction does not complete within a time period specified by the CPU Watchdog
Timer register. The timer restarts the count each time an instruction completes, when enabled by the
CPU Watchdog Timer Enable bit. The time period is determined by the Count Select and Time Base
fields. The timer does not count during halt or stop-grant.

The format of the CPU watchdog timer is shown in Figure 9-4.

63 32

Reserved, MBZ

31 7 6 3 210
Model dependent; see BKDG or PPR for desired processor. CSs B E

Bits Mnemonic Description R/W

63:7 Reserved Reserved, Must be Zero

6:3 CS CPU Watchdog Timer Count Select R/W

21 TB CPU Watchdog Timer Time Base R/W

0 EN CPU Watchdog Timer Enable R/W

Figure 9-4. CPU Watchdog Timer Register Format

270 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

CPU Watchdog Timer Enable (EN) - Bit 0. This bit specifies whether the CPU Watchdog Timer is
enabled. When the bit is set to 1, the timer increments and generates a machine check when the timer
expires. When cleared to 0, the timer does not increment and no machine check is generated.

CPU Watchdog Timer Time Base (TB) - Bits 2:1. Specifies the time base for the time-out period
indicated in the Count Select field. The allowable time base values are provided in Table 9-1.

Table 9-1. CPU Watchdog Timer Time Base

TB[1:0] Time Base
00b 1 millisecond
01b 1 microsecond
10b Reserved
11b Reserved

CPU Watchdog Timer Count Select (CS) - Bits 6:3. Specifies the time period required for the CPU
Watchdog Timer to expire. The time period is this value times the time base specified in the Time Base
field. The allowable values are shown in Table 9-2.

Table 9-2. CPU Watchdog Timer Count Select

CS[3:0] Value
0000b 4095
0001b 2047
0010b 1023
0011b 511
0100b 255
0101b 127
0110b 63
0111b 31
1000b 8191
1001b 16383
1?1110;_ Reserved

9.3.2 Error-Reporting Register Banks

Each error-reporting register bank contains the following registers:
e Machine-check control register (MCi_CTL).

e Machine-check status register (MCi_STATUS).

e Machine-check address register (MCi_ ADDR).

e Machine-check miscellaneous error-information register 0 (MCi_MISCO).

Machine Check Architecture 271



AMDA1
AMDG64 Technology

24593—Rev. 3.30—September 2018

The i in each register name corresponds to the number of a supported register bank. Each error-
reporting register bank is normally associated with a specific execution unit. The number of error-
reporting register banks is implementation-specific. For more information, see the BIOSand Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manualapplicable to your product.

Software reads the MCG_CAP register to determine the number of supported register banks. The first
error-reporting register (MCO_CTL) always starts with MSR address 400h, followed by

MCO _STATUS (401h), MCO_ADDR (402h), and MCO_MISCO (403h). The addresses of any
additional error-reporting MSRs are assigned sequentially starting at 404h through the remaining
supported register banks.

MCA Overflow. If an error occurs within an error reporting bank while the status register for that
bank contains valid data (MCi_STATUS[VAL] = 1), an MCA overflow condition results. In this
situation, information about the new error will either be discarded or will replace the information about
the prior error.

Hardware sets the MCi_ STATUS[OVER] bit to indicate this condition has occurred and follows a set
of rules to determine whether to overwrite the previously logged error information or discard the new
error information. These rules are shown in Table 9-3 below.

Table 9-3. Error Logging Priorities

Previous Error Type

Corrected Deferred Uncorrected
Current Corrected Discard Current Discard Current Discard Current
Error Deferred Overwrite Previous Discard Current Discard Current
Type Uncorrected Overwrite Previous | Overwrite Previous Discard Current
Note(s):

1. Logging a deferred error has priority over the retention of information concerning a prior corrected
error.

2. Logging an uncorrected error has priority over the retention of information concerning either a prior
deferred or corrected error.

3. Valid Information concerning an uncorrected error is not overwritten by any subsequent errors.

If the VAL bit is not set, hardware writes the appropriate logging registers based on the type of error
(writing the MCi_STATUS register last) and then sets the VAL bit to indicate to software that the
information currently contained in the MCi_ STATUS register is valid. Software clears the VAL bit
after reading the contents of this register (after reading and saving valid information stored in any of
the other logging registers) to indicate to hardware that it has saved the information, making the
registers available to log the next error.

If survivable MCA overflow is supported by the implementation (as indicated by CPUID

Fn8000 0007 EBX[McaOverflowRecov] = 1), the state of the MCi_ STATUS[PCC] bit indicates
whether system execution can continue. If a particular processor does not support survivable MCA
overflow and overflow occurs, software must halt instruction execution on that processor core
regardless of the state of the PCC bit because critical information may have been lost as a result of the

272 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

overflow. See the description of the Machine-Check Status registers below for more information on
the PCC bit.

Machine-Check Recovery. Machine Check Recovery is a feature allowing recovery of the system
when the hardware cannot correct an error. Machine Check Recovery is supported when
Fn8000 0007 EBX[SUCCOR]=I.

When Machine Check Recovery is supported and an uncorrected error has been detected that the
hardware can contain to the task or process to which the machine check has been delivered, it logs a
context-synchronous uncorrectable error (MCi_STATUS[UC]=1, MCi_STATUS[PCC]=0). The rest

of the system is unaffected and may continue running if supervisory software can terminate only the
affected process context.

Machine-Check Control Registers. The machine-check control registers (MCi_CTL), as shown in
Figure 9-5, contain an enable bit for each error source within an error-reporting register bank. Setting
an enable bit to 1 enables error reporting for the specific feature controlled by the bit, and clearing the
bit to 0 disables error reporting for the feature. It is recommended that the value
FFFF_FFFF_FFFF_FFFFh be programmed into each MCi_CTL register.

Disabling the reporting of errors from error sources that are capable of detecting uncorrected errors
can compromise future error recovery and is not recommended. Other implementation-specific values
are documented in the product’s BIOSand Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual.

63 2 10
:\E‘ E|E|E
6 Error-Reporting Register-Bank Enable Bits N|IN|[N
3 21110

Figure 9-5. MCi_CTL Register

Machine-Check Status Registers. Each error-reporting register bank includes a machine-check
status register (MCi_STATUS) that the processor uses to log error information. Hardware writes the
status register bits when an error is detected, and sets the VAL bit of the register to 1, indicating that the
status information is valid. Error reporting for the error source associated with the detected error does
not need to be enabled in the MCi_CTL Register for the processor to write the status register. Error
reporting must be enabled for the error to be reported via a #MC exception. Software is responsible for
clearing the status register after the exception has been handled. Attempting to write a value other than
0 to an MCi_STATUS register will raise a general protection (#GP) exception.

Figure 9-6 on page 274 shows the format of the MCi_STATUS register.

Machine Check Architecture 273



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

63 62 61 60 59 58 57 56 55 54 45 44 43 42 32
0 M|A
Viiviule|L PP T . L |88 . o :
A S|D|C C | Implementation-specific information | § |.2 Implementation-specific information
E[C|N < |'©
L R C|R|C C 8|z
V|V
31 16 15 0
Model-Specific Extended Error Code MCA Error Code
Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 uc Uncorrected Error R/W*
60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*
57 PCC Processor-Context Corrupt R/W*
56 Implementation-specific information R/W*
55 TCC Task-Context Corrupt R/W*
54:45 Implementation-specific information R/W*
44 Deferred Deferred error R/W*
43 Poison Poisoned data consumed R/W*
42:32 Implementation-specific information R/W*
31:16 Model-Specific Extended Error Code R/W*
15:0 MCA Error Code R/W*

*System software can only clear this bit to 0.

Figure 9-6. MCi_STATUS Register

The fields within the MCi_ STATUS register are:

*  MCAError Code—Bits 15:0. This field encodes information about the error, including:
- The type of transaction that caused the error.
- The memory-hierarchy level involved in the error.
- The type of request that caused the error.
- Other information concerning the transaction type.

See the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference
Manual applicable to your product for information on the format and encoding of the MCA error
code.

e Model-Specific Extended Error Code—Bits 31:16. This field encodes model-specific information
about the error. For further information, see the documentation for particular implementations of
the architecture.

274 Machine Check Architecture



AMDA

24593—Rev. 3.30—September 2018 AMDG64 Technology

I mplementati on-specific Information—ABits 56, 54:45, 42:32. These bit ranges hold model-specific
error information. Software should not rely on the field definitions in these ranges being consistent
between processor implementations. For details see the BKDG or PPR for desired
implementations of the architecture.

Poison—Bit 43. When set to 1, this bit indicates that the uncorrected error condition being
reported is due to the attempted use of data that was previous detected as in error (and could not be
corrected) and marked as known-bad.

Deferred—Bit 44. When set to 1, this bit indicates that hardware has determined that the error
condition being logged has not affected the execution of any instruction stream and that action by
system software to prevent or correct an error is not required. No machine-check exception is
signalled. Hardware will monitor the error and log an uncorrected error when the execution of any
thread of execution is impacted.

TCC—Bit 55. When set to 1, this bit indicates that the hardware context of the process thread to
which the error was reported may have been corrupted. Continued operation of the thread may
have unpredictable results. When this bit is cleared, the hardware context of the process thread to
which the error was reported is not corrupted and recovery of the process thread is possible. This

bit is only meaningful when MCA_STATUS[PCC]=0.

PCC—Bit 57. When set to 1, this bit indicates that the processor state is likely to be corrupt due to
an uncorrected error. In this case, it is possible that software cannot reliably continue execution.
When this bit is cleared, the processor state is not corrupted and recovery is still possible. If the
PCC bit is set in any error bank, the processor will clear RIPV and EIPV in the MCG_STATUS
register.

ADDRV—RBIt 58. When set to 1, this bit indicates that the contents of the corresponding error-
reporting address register (MCi_ADDR) are valid. When this bit is cleared, the contents of
MCi_ADDR are not valid.

MISCV—BIit 59. When set to 1, this bit indicates that additional information about the error is
saved in the corresponding error-reporting miscellaneous register (MCi_ MISCO). When cleared,
this bit indicates that the contents of the MCi_MISCO register are not valid.

EN—BIt 60. When set to 1, this bit indicates that the error condition is enabled in the
corresponding error-reporting control register (MCi_CTL). Errors disabled by MCi_CTL do not
cause a machine-check exception.

UC—Bit 61. When set to 1, this bit indicates that the logged error status is for an uncorrected error.
When cleared, the error class is determined by looking at the Deferred bit; the error is a Corrected
error if the Deferred bit is clear or a Deferred error if the Deferred bit is set. (See Section 9.1.2,
“Error Detection, Logging, and Reporting,” on page 264, for more detail on these error classes.)

OVER—BIt 62. This bit is set to 1 by the processor if the VAL bit is already set to 1 as the
processor attempts to write error information into MCi_STATUS. In this situation, the machine-
check mechanism handles the contents of MCi_STATUS as follows:

- For processor implementations that log errors for disabled reporting banks, status for an
enabled error replaces status for a disabled error.

- Status for a deferred error replaces status for a corrected error.

Machine Check Architecture 275



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

- Status for an uncorrected error replaces status for a corrected or deferred error.
- Status for an enabled uncorrected error is never replaced.
See Section “MCA Overflow” on page 272 for more information on this field.

* VAL—BIt 63. This bit is set to 1 by the processor if the contents of MCi_ STATUS are valid.
Software should clear the VAL bit after reading the MCi_ STATUS register, otherwise a subsequent
machine-check error sets the OVER bit as described above.

When a machine-check error occurs, the processor writes an error code into the appropriate
MCi_STATUS register MCA error-code field. The MCi_ STATUS[VAL] bit is set to 1, indicating that
the MCi_ STATUS register contents are valid.

MCA error-codes are used to report errors in the memory hierarchy, the system bus, and the system-
interconnection logic. Error-codes are divided into subfields that are used to describe the cause of an
error. The information is implementation-specific. For further information, see the BIOSand Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

Machine-Check Address Registers. Each error-reporting register bank includes a machine-check
address register (MCi_ ADDR) that the processor uses to report the address or location associated with
the logged error. The address field can hold a virtual (linear) address, a physical address, or a value
indicating an internal physical location, depending on the type of error. For further information, see the
documentation for particular implementations of the architecture. The contents of this register are
valid only if the ADDRYV bit in the corresponding MCi_STATUS register is set to 1.

Machine-Check Miscellaneous-Error Information Register 0(MCi_MISCO0). Each error-reporting
register bank includes the Machine-Check Miscellaneous 0 register that the processor uses to report
additional error information.

In some implementations, the MCi_ MISCO register is used for error thresholding. Thresholding is a
mechanism provided by hardware to:
e count detected errors, and

* (optionally) generate an APIC-based interrupt when a programmed number of errors has been
counted.

Processor hardware counts detected errors and ensures that multiple error sources do not share the
same thresholding register. Software can use corrected error counts to help predict which components
might soon fail (begin generating uncorrectable errors) and schedule their replacement.

Threshold counters increment for error sources that are enabled for logging.

The MCi_MISCO[BIkPtr] field is used to point to any additional MCi_MISCj registers, where j > 0. If
this field is zero, no additional MCi_MISC registers are implemented. If this field is one, and
Fn8000 0007 EBX][ScalableMca]=1, additional MCi_MISC registers are implemented.

Additional Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj). Ifthe
MCi_ MISCO[BIkPtr] field is non-zero and Fn8000 0007 EBX][ScalableMca]=0, up to 8 additional

276 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

MCi_MISC]j registers can be implemented for the error-reporting bank i (for a total of 9). These
registers are allocated in contiguous blocks of 8, with MCi_ MISC1 addressed by:

MCi_MISC] address = C000_0400h + (MCi_MISCO[BIkPtr] << 3)

This is illustrated in Figure 9-7 below.

MCi_CTL
MCi_STATUS
MCi_ADDR
MCi_MISCO
> MCi_MISC1
C000_0400h + (MCi_MISCO[BIkPtr] << 3) MCi MISC2
MCi_MISC3
MCi_MISC8

Figure 9-7. MCi_MISC1 Addressing

The format of implemented MCi_ MISC]j registers depends upon their use and use can vary from one
implementation to another. Figure 9-8 below illustrates the format of a miscellaneous error
information register when used as an error thresholding register.

All miscellaneous error information registers will contain the VAL field in bit position 63.
MCi_ MISCO must contain the BLKP field in bits 31:24.

Machine Check Architecture 277



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018
63 62 61 60 59 56 55 52 51 50 49 48 47 32
viTIL TR
A K |% Reserved LVTOFF ERRCT
L R D £ T T F
P E T
31 24 23 0
BLKP Reserved
Bits Mnemonic Description R/W Reset
63 VAL Valid R 1b
62 CTRP Counter Present R 1b
61 LKD Locked R/W 0b
60 IntP Thresholding Interrupt Supported R Xb
59:56 Reserved
55:52 LVTOFF LVT Offset R/W 0000b
51 CNTE Counter Enable R/W 0b
50:49 INTT Interrupt Type R/W 00b
48 OF Overflow R/W  Xb
47:32 ERRCT Error Counter R/W  XXXXh
31:24 BLKP Block pointer for additional MISC registers R
23:0 Reserved

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format)

The fields within the MCi_ MISC] register are:

Valid (VAL)—Bit 63. When set to 1, indicates that the counter present (CTRP) and block pointer
(BLKP) fields in this register are valid.

Counter Present (CTRP)—Bit 62. When set to 1, indicates the presence of a threshold counter.

Locked (LKD)—Bit 61. When set to 1, indicates that the threshold counter is not available for OS
use. If this is the case, writes to bits 60:0 of this register are ignored and do not generate a fault.
Software must check the Locked bit before writing into the thresholding register.

This field is write-enabled by MSR C001_0015h Hardware Configuration Register
[MCSTATUSWrEn].

IntP (Thresholding Interrupt Supported)—Bit 60. When set, this bit indicates that the reporting of
threshold overflow via interrupt is supported. Interrupt type is determined by the setting of the
INTT field.

LVT Offset (LVTOFF)—Bits 55:52. This field specifies the address of the APIC LVT entry to
deliver the threshold counter interrupt. Software must initialize the APIC LVT entry before
enabling the threshold counter to generate the APIC interrupt; otherwise, undefined behavior may
result.

APIC LVT address = (MCi_MISCj[LvtOff] << 4) + 500h

278 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

» Counter Enable (CNTE)—Bit 51. When set to 1, counting of implementation-dependent errors is
enabled; otherwise, counting is disabled.

e Interrupt Type (INTT)—Bits 50:49. The value of this field specifies the type of interrupt signaled
when the value of the overflow bit changes from 0 to 1.

- 00b = No interrupt

- 01b = APIC-based interrupt
- 10b=Reserved

- 11b=Reserved

e Overflow (OF)—Bit 48. The value of this field is maintained through a warm reset. This bit is set
by hardware when the error counter increments to its maximum implementation-supported value
(from FFFEh to FFFFh for the maximum implementation-supported value). This is defined as the
threshold level. When the overflow bit is set, the interrupt selected by the interrupt type field is
generated. Software must reset this bit to zero in the interrupt handler routine when they update the
error counter.

» Error Counter (ERRCT)—Bits 47:32. This field is maintained through a warm reset. The size of
the threshold counter is implementation-dependent. Implementations with less than 16 bits fill the
most significant unimplemented bits with zeros.

Software enumerates the counter bits to discover the size of the counter and the threshold level
(when counter increments to the maximum count implemented). Software sets the starting error
count as follows:

Sarting error count = threshold level — desired software error count to cause overflow

The error counter is incremented by hardware when errors for the associated error counter are
logged. When this counter overflows, it stays at the maximum error count (with no rollover).

» Block pointer for additional MISC registers (BLKP)—Bits 31:24. This field is only valid when
valid (VAL) bit is set. When non-zero, this field is used to indicate the presence of additional
MCi_MISC registers.

Other formats for miscellaneous information registers are implementation-dependent, see the BIOS
and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to
your product for more details.

9.4 Initializing the Machine-Check Mechanism

Following a processor reset, all machine-check error-reporting enable bits are disabled. System
software must enable these bits before machine-check errors can be reported. Generally, system
software should initialize the machine-check mechanism using the following process:

* Execute the CPUID instruction and verify that the processor supports the machine-check
exception (MCE) and machine-check registers (MCA). Software should not proceed with
initializing the machine-check mechanism if the machine-check registers are not supported.

» Ifthe machine-check registers are supported, system software should take the following steps:

Machine Check Architecture 279



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

- Check to see if the CTLP bit in the MCG_CAP register is set to 1. If it is, then the MCG_CTL
register is supported by the processor. If the MCG_CTL register is supported, software should
set its enable bits to 1 for the machine-check features it uses. Software can load MCG_CTL
with all Is to enable all available machine-check reporting banks.

- Read the COUNT field from the MCG_CAP register to determine the number of error-
reporting register banks supported by the processor. For each error-reporting register bank,
software should set the enable bits to 1 in the MCi_ CTL register for the error types it wants the
processor to report. Software can write each MCi_ CTL with all 1s to enable all error-reporting
mechanisms.

Not enabling reporting banks that may be involved in the reporting of uncorrected errors can
lead to the loss of system reliability and error recoverability.

- Check the VAL bit on each implemented MCi_STATUS register. It is possible that valid error-
status information has already been logged in the MCi_ STATUS registers at the time software
is attempting to initialize them. The status can reflect errors logged prior to a warm reset or
errors recorded during the system power-up and boot process. Before clearing the
MCi_STATUS registers, software should examine their contents and log any errors found.

- After saving any valid error information contained in the MCi_STATUS, MCi_ADDR, and
any implemented miscellaneous error information registers for each implemented reporting
bank, software should clear all status fields in the MCi_STATUS register for each bank by
writing all Os to the register.

As a final step in the initialization process, system software should enable the machine-check
exception by setting CR4[MCE] to 1.

A machine-check condition that occurs while CR4[MCE] is cleared will result in the processor core
entering the shutdown state.

9.5 Using MCA Features

System software can detect and handle logged errors using three methods:

1.

Polling

Software can periodically examine the machine-check status registers for errors, and save any
error information found. Uncorrected errors found during polling will require some type of
immediate response to initiate recovery or shutdown.

Enabling machine-check reporting

When reporting is enabled, any uncorrected error that occurs causes control to be transferred to the
machine-check exception handler. The exception handler can be designed for a specific processor
implementation or can be generalized to work on multiple implementations.

Setting up and enabling interrupts for deferred and corrected errors

In many implementations, MCA hardware can be configured to generate an interrupt hardware on
the detection of a deferred error or when a programmed corrected error threshold is reached.

280

Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

These methods are not mutually exclusive.

9.5.1 Determining the Scope of Detected Errors

Table 9-4 details the actions that recovery software should take and the level of recovery possible
based on status information returned in the MCi_STATUS and MCG_STATUS registers.

Table 9-4. Error Scope

MCi_STATUS
PCC | TCC UC |Deferred

Error Scope

System fatal error. Error has corrupted the processor core architectural

1 o 1 - state. System processing must be terminated.

Recoverable error. If software can correct the error, the interrupted
program can be resumed.

Containable error. The interrupted instruction stream cannot be resumed.
0 1 1 — System-level recovery may be possible if software can localize the error
and terminate any affected software processes.

Deferred error. Immediate software action is not required. A latent error
has been discovered, but not yet consumed. Error handling software may
0 0 0 1 attempt to correct this data error, or prevent access by processes which
map the data, or make the physical resource containing the data
inaccessible.

Hardware corrected error. No software action is required. Error
information should be saved for analysis.

9.5.2 Handling Machine Check Exceptions

The processor uses the interrupt control-transfer mechanism to invoke an exception handler after a
machine-check exception occurs. This requires system software to initialize the interrupt-descriptor
table (IDT) with either an interrupt gate or a trap gate that references the interrupt handler. See
“Legacy Protected-Mode Interrupt Control Transfers” on page 239 and “Long-Mode Interrupt Control
Transfers” on page 249 for more information on interrupt control transfers.

At a minimum, the machine-check exception handler must be capable of logging errors for later
examination. This can be a sufficient implementation for some handlers. More thorough exception-
handler implementations can analyze the error to determine if it is unrecoverable, and whether it can
be recovered in software.

Machine-check exception handlers that attempt recovery must be thorough in their analysis and their
corrective actions. The following guidelines should be used when writing such a handler:

* The status registers in all the enabled error-reporting register banks must be examined to identify
the cause of the machine-check exception. Read the COUNT field from MCG_CAP to determine
the number of status registers supported by the processor.

e Check the valid bit in each status register (MCi_ STATUS[VAL]). The MCi_STATUS register does
not need to be examined when its valid bit is clear.

Machine Check Architecture 281



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e Check the valid MCi_STATUS registers to see if error recovery is possible. Error recovery is not
possible when:

- The processor-context corrupt bit (MCi_STATUS[PCC]) is set to 1.

- The error-overflow status bit (MCi_ STATUS[OVERY]) is set and the processor does not support
recoverable MCi_STATUS overflow (as indicated by feature bit CPUID
Fn8000 0007 EBX[McaOverflowRecov] = 0).

- The processor does not support Machine Check Recovery as indicated by feature bit CPUID
Fn8000 0007 EBX[SUCCOR].

If error recovery is not possible, the handler should log the error information and return to the
system software responsible for shutting down the processor core.

e Check the MCi_STATUS[UC] bit to see if the processor corrected the error. If UC is set, the
processor did not correct the error and the exception handler must correct the error before
restarting the interrupted program.

- If MCA Recovery is supported:
* Check MCA_STATUS[TCC].

* If TCC is set, the context of the process thread executing on the interrupted logical core may
be corrupt and the thread cannot be recovered. The rest of the system is unaffected; it is
possible to terminate only the affected process thread.

* [f TCC is clear, the context of the process thread executing on the interrupted logical core is
not corrupt. Recovery of the process thread may be possible, but only if the uncorrected
error condition is first corrected by software; otherwise, the interrupted process thread must
be terminated.

If the handler cannot correct the error or the MCG_STATUS[RIPV] bit is cleared, it should not
return control to the interrupted program, but should log the error information and terminate the
software process that was about to consume the uncorrected data. If the error has compromised the
state of a guest operating system, the guest should be restarted. If the state of the virtual machine
has been corrupted, the virtual machine must be reinitialized.

*  When identifying the error condition, portable exception handlers should examine only the
architecturally defined fields of the MCi_STATUS register.

e Ifthe MCG_STATUS[RIPV] bit is set, the interrupted program can be restarted reliably at the
instruction pointer address pushed onto the exception handler stack. If RIPV = 0, the interrupted
program cannot be restarted reliably at that location, although it can be restarted at that location for
debugging purposes.

*  When logging errors, particularly those that are not recoverable, check the MCG STATUS[EIPV]
bit to see if the instruction-pointer address pushed onto the exception handler stack is related to the
machine-check error. If EIPV = 0, the address is not guaranteed to be related to the error.

e Before exiting the machine-check handler, clear the MCG_STATUS[MCIP] bit. MCIP indicates a
machine-check exception occurred. If this bit is set when another machine-check exception occurs,
the processor enters the shutdown state.

282 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

*  When an exception handler is able to, at a minimum, successfully log an error condition, the
MCi_STATUS registers should be cleared before exiting the machine-check handler. Software is
responsible for clearing at least the MCi_ STATUS[VAL] bits.

* Additional machine-check exception-handler portability can be added by having the handler use
the CPUID instruction to identify the processor and its capabilities. Implementation-specific
software can be added to the machine-check exception handler based on the processor information
reported by CPUID.

9.5.3 Reporting Corrected Errors

Machine-check exceptions do not occur if the error is corrected by the processor. If system software
wishes to detect and save information concerning corrected machine-check errors, a system-service
routine must be provided to check the contents of the machine-check status registers for corrected
errors. The service routine can be invoked by system software on a periodic basis, or by an error-
thresholding interrupt.

A service routine that gathers error information for corrected errors should perform the following:

* Examine the status register (MCi_STATUS) in each of the enabled error-reporting register banks.
For each MCi_STATUS register with a set valid bit (VAL=1), the service routine should:

- Save the contents of the MCi_STATUS register.
- Save the contents of the corresponding MCi_ ADDR register if MCi_ STATUS[ADDRV] = 1.
- Save the contents of the corresponding MCi_MISC register if MCi_ STATUS[MISCV] = 1.

e  Once the information found in the error-reporting register banks is saved, the MCi_STATUS
register should be cleared. This allows the processor to properly report any subsequent errors in the
MCi_STATUS registers.

e The service routine can save the time-stamp counter with each error logged. This can help in
determining how frequently errors occur. For further information, see “Time-Stamp Counter” on
page 371.

* In multiprocessor configurations, the service routine can save the processor-node identifier. This
can help locate a failing multiprocessor-system component, which can then be isolated from the
rest of the system. For further information, see the documentation for particular implementations
of the architecture.

Machine Check Architecture 283



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

284 Machine Check Architecture



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

10 System-Management Mode

System-management mode (SMM) is an operating mode designed for system-control activities like
power management. Normally, these activities are transparent to conventional operating systems and
applications. SMM is used by platform firmware and specialized low-level device drivers, rather than
the operating system.

The SMM interrupt-handling mechanism differs substantially from the standard interrupt-handling
mechanism described in Chapter 8, “Exceptions and Interrupts.” SMM is entered using a special
external interrupt called the system-management interrupt (SMI). After an SMI is received by the
processor, the processor saves the processor state in a separate address space, called SIRAM. The
SMM-handler software and data structures are also located in the SMRAM space. Interrupts and
exceptions that ordinarily cause control transfers to the operating system are disabled when SMM is
entered. The processor exits SMM, restores the saved processor state, and resumes normal execution
by using a special instruction, RSM.

In SMM, address translation is disabled and addressing is similar to real mode. SMM programs can
address up to 4 Gbytes of physical memory. See “SMM Operating-Environment” on page 295 for
additional information on memory addressing in SMM.

The following sections describe the components of the SMM mechanism:

* “SMM Resources’ on page 286—this section describes SMRAM, the SMRAM save-state area
used to hold the processor state, and special SMRAM save-state entries used in support of SMM.

e “Using SMM” on page 295—this section describes the mechanism of entering and exiting SMM.
It also describes SMM memory allocation, addressing, and interrupts and exceptions.

Of these mechanisms, only the format of the SMRAM save-state area differs between the AMD64
architecture and the legacy architecture.

Note: Model-independent aspects of SMM operation are described here; see the BIOSand Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual of a given processor
family for possible model-specific details.

10.1 SMM Differences

There are functional differences between the SMM support in the AMD64 architecture and the SMM
support found in previous architectures. These are:

* The SMRAM state-save area layout is changed to hold the 64-bit processor state.

* The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the
processor.

* New conditions exist that can cause a processor shutdown while in SMM.

System-Management Mode 285



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
each instead of two bytes each.

e SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

* Some previous AMD x86 processors saved and restored the CR2 register in the SMRAM state-
save area. This register is not saved by the SMM implementation in the AMDG64 architecture.
SMM handlers that save and restore CR2 must perform the operation in software.

10.2 SMM Resources

The SMM resources supported by the processor consist of SMRAM, the SMRAM state-save area, and
special entries within the SMRAM state-save area. In addition to the save-state area, SMRAM
includes space for the SMM handler.

10.2.1 SMRAM

SMRAM is the memory-address space accessed by the processor when in SMM. The default size of
SMRAM is 64 Kbytes and can range in size between 32 Kbytes and 4 Gbytes. System logic can use
physically separate SMRAM and main memory, directing memory transactions to SMRAM after
recognizing SMM is entered, and redirecting memory transactions back to system memory after
recognizing SMM is exited. When separate SMRAM and main memory are used, the system designer
needs to provide a method of mapping SMRAM into main memory so that the SMI handler and data
structures can be loaded.

Figure 10-1 on page 287 shows the default SMRAM memory map. The default SMRAM code-
segment (CS) has a base address of 0003_0000h (the base address is automatically scaled by the
processor using the CS-selector register, which is set to the value 3000h). This default SMRAM-base
address is known as SMBASE. A 64-Kbyte memory region, addressed from 0003 _0000h to

0003 FFFFh, makes up the default SMRAM memory space. The top 32 Kbytes (0003 _8000h to
0003 _FFFFh) must be supported by system logic, with physical memory covering that entire address
range. The top 512 bytes (0003 _FEOOh to 0003 FFFFh) of this address range are the default SMIM
state-save area. The default entry point for the SMM interrupt handler is located at 0003 8000h.

286 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

SMRAM

0003_FFFFh

SMM State-Save Area (SMBASE+FFFFh)

«— 0003_FE0Oh

SMM Handler

«— 0003_8000h
(SMBASE+8000h)

e 0003_0000h
(SMBASE)

Figure 10-1. Default SMRAM Memory Map

10.2.2 SMBASE Register

The format of the SMBASE register is shown in Figure 10-2. SMBASE is an internal processor
register that holds the value of the SMRAM-base address. SMBASE is set to 30000h after a processor

reset.

31 0

SMRAM Base

Figure 10-2. SMBASE Register

In some operating environments, relocation of SMRAM to a higher memory area can provide more
low memory for legacy software. SMBASE relocation is supported when the SMM-base relocation bit
in the SMM-revision identifier (bit 17) is set to 1. In processors implementing the AMD64
architecture, SMBASE relocation is always supported.

Software can only modify SMBASE (relocate the SMRAM-base address) by entering SMM,
modifying the SMBASE image stored in the SMRAM state-save area, and exiting SMM. The SMM-

System-Management Mode 287



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

handler entry point must be loaded at the new memory location specified by SMBASE+8000h. The
next time SMM is entered, the processor saves its state in the new state-save area at
SMBASE+0OFEQOOh, and begins executing the SMM handler at SMBASE+8000h. The new SMBASE
address is used for every SMM until it is changed, or a hardware reset occurs.

When SMBASE is used to relocate SMRAM to an address above 1 Mbyte, 32-bit address-size-
override prefixes must be used to access this memory. This is because addressing in SMM behaves as
it does in real mode, with a 16-bit default operand size and address size. The values in the 16-bit
segment-selector registers are left-shifted four bits to form a 20-bit segment-base address. Without
using address-size overrides, the maximum computable address is 10FFEFh.

Because SMM memory-addressing is similar to real-mode addressing, the SMBASE address must be
less than 4 Gbytes.

10.2.3 SMRAM State-Save Area

When an SMI occurs, the processor saves its state in the 512-byte SMRAM state-save area during the
control transfer into SMM. The format of the state-save area defined by the AMD64 architecture is
shown in Table 10-1. This table shows the offsets in the SMRAM state-save area relative to the
SMRAM-base address. The state-save area is located between offset 0 FEOOh (SMBASE+0 FE0Oh)
and offset 0 FFFFh (SMBASE+0 FFFFh). Software should not modify offsets specified as read-only
or reserved, otherwise unpredictable results can occur.

Table 10-1. AMDG64 Architecture SMM State-Save Area

Offset (Hex) Contents Size Allowable
from SMBASE Access
FEOOh Selector Word
FEO2h Attributes Word
ES - Read-Only
FEO4h Limit Doubleword
FEO8h Base Quadword
FE10h Selector Word
FE12h Attributes Word
CS — Read-Only
FE14h Limit Doubleword
FE18h Base Quadword
FE20h Selector Word
FE22h Attributes Word
SS — Read-Only
FE24h Limit Doubleword
FE28h Base Quadword
Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

288 System-Management Mode



AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 10-1. AMDG64 Architecture SMM State-Save Area (continued)

Offset (Hex) Contents Size Allowable
from SMBASE Access

FE30h Selector Word
FE32h Attributes Word

DS — Read-Only
FE34h Limit Doubleword
FE38h Base Quadword
FE40h Selector Word
FE42h Attributes Word

FS — Read-Only
FE44h Limit Doubleword
FE48h Base Quadword
FE50h Selector Word
FES52h Attributes Word

GS _ Read-Only
FE54h Limit Doubleword
FE58h Base Quadword
FE60h—FE63h Reserved 4 Bytes
FE64h Limit Word

GDTR Read-Only
FE66h—FEG67h Reserved 2 Bytes
FE68h Base Quadword
FE70h Selector Word
FE72h Attributes Word

LDTR — Read-Only
FE74h Limit Doubleword
FE78h Base Quadword
FE80h—FEB3h Reserved 4 Bytes
FE84h Limit Word

IDTR Read-Only
FEB6h—FEB7h Reserved 2 Bytes
FE88h Base Quadword
FE9Oh Selector Word
FE92h Attributes Word

TR — Read-Only
FE94h Limit Doubleword
FE98h Base Quadword
FEAOh I/O Instruction Restart RIP Quadword Read-Only
FEA8h I/O Instruction Restart RCX Quadword Read-Only
FEBOh I/O Instruction Restart RSI Quadword Read-Only
FEB8h I/O Instruction Restart RDI Quadword Read-Only
FECOh I/O Instruction Restart Dword Doubleword | Read-Only
FEC4h—FECT7h Reserved 4 Bytes —
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode

289



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 10-1. AMDG64 Architecture SMM State-Save Area (continued)

from SMBASE Contents size | Apccess
FEC8h I/O Instruction Restart Byte )
FECS%h Auto-Halt Restart Byte Read/Write
FECAh—FECFh |Reserved 5 Bytes —
FEDOh EFER Quadword Read-Only
FED8h SVM Guest Quadword
FEEOh SVM Guest VMCB Physical Address Quadword Read-Only
FEES8h SVM Guest Virtual Interrupt Quadword
FEFOh—FEFBh Reserved 10 Bytes —
FEFCh SMM-Revision Identifier’ Doubleword | Read-Only
FFOOh SMBASE Doubleword | Read/Write
FFO4h—FF1Fh Reserved 27 Bytes —
FF20h SVM Guest PAT Quadword
FF28h SVM Host EFER Quadword
FF30h SVM Host CR4 Quadword Read-Only
FF38h SVM Host CR3 Quadword
FF40h SVM Host CRO Quadword
FF48h CR4 Quadword
FF50h CR3 Quadword Read-Only
FF58h CRO Quadword
FF60h DR7 Quadword

Read-Only

FF68h DR6 Quadword
FF70h RFLAGS Quadword Read/Write
FF78h RIP Quadword
FF80h R15 Quadword
FF88h R14 Quadword
FF90h R13 Quadword
FF98h R12 Quadword Read/Write
FFAOh R11 Quadword
FFA8h R10 Quadword
FFBOh R9 Quadword
FFB8h R8 Quadword
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

290

System-Management Mode




AMDA

24593—Rev. 3.30—September 2018

AMDG64 Technology

Table 10-1. AMDG64 Architecture SMM State-Save Area (continued)

Offset (Hex) Contents Size Allowable
from SMBASE Access
FFCOh RDI Quadword
FFC8h RSI Quadword
FFDOh RBP Quadword
FFD8h RSP Quadword )
Read/Write
FFEOh RBX Quadword
FFE8h RDX Quadword
FFFOh RCX Quadword
FFF8h RAX Quadword
Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

A number of other registers are not saved or restored automatically by the SMM mechanism. See
“Saving Additional Processor State” on page 297 for information on using these registers in SMM.

As areference for legacy processor implementations, the legacy SMM state-save area format is shown
in Table 10-2. Implementations of the AMD®64 architecture do not use this format.

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64

Architecture)

Offset (Hex) Contents Size Allowable
from SMBASE Access
FEOOh—FEF7h Reserved 248 Bytes —
FEF8h SMBASE Doubleword | Read/Write
FEFCh SMM-Revision Identifier Doubleword Read-Only
FFOOh I/O Instruction Restart Word )
Read/Write
FFO2h Auto-Halt Restart Word
FFO4h—FF87h Reserved 132 Bytes —
FF88h GDT Base Doubleword Read-Only
FF8Ch—FF93h Reserved Quadword —
FF94h IDT Base Doubleword Read-Only
FFO98h—FFA7h Reserved 16 Bytes —
Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode

2901



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64

Architecture) (continued)

Offset (Hex) Contents Size Allowable
from SMBASE Access
FFA8h ES Doubleword
FFACh CS Doubleword
FFBOh SS Doubleword
Read-Only
FFB4h DS Doubleword
FFB8h FS Doubleword
FFBCh GS Doubleword
FFCOh LDT Base Doubleword
Read-Only
FFC4h TR Doubleword
FFC8h DR7 Doubleword
Read-Only
FFCCh DR6 Doubleword
FFDOh EAX Doubleword
FFD4h ECX Doubleword
FFD8h EDX Doubleword
FFDCh EBX Doubleword
Read/Write
FFEOh ESP Doubleword
FFE4h EBP Doubleword
FFE8h ESI Doubleword
FFECh EDI Doubleword
FFFOh EIP Doubleword Read/Write
FFF4h EFLAGS Doubleword Read/Write
FFF8h CR3 Doubleword
Read-Only
FFFCh CRO Doubleword
Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

10.2.4 SMM-Revision Identifier

The SMM-revision identifier specifies the SMM version and the available SMM extensions
implemented by the processor. Software reads the SMM-revision identifier from offset FEFCh in the
SMM state-save area of SMRAM. This offset location is compatible with earlier versions of SMM.
Software must not write to this location. Doing so can produce undefined results. Figure 10-3 on
page 293 shows the format of the SMM-revision identifier.

292 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

|:| Reserved

SMM-Revision Level 15:0
/O Instruction Restart 16
SMM Base Relocation 17 |
3] 181716 15 0

1 SMM-Revision Level

Figure 10-3. SMM-Revision Identifier

The fields within the SMM-revision identifier are:

e SMM-revision Level—Bits 15:0. Specifies the version of SMM supported by the processor. The
SMM-revision level is of the form 0 xx64h, where XX starts with 00 and is incremented for later
revisions to the SMM mechanism.

e |/O Instruction Restart—Bit 16. When set to 1, the processor supports restarting I/O instructions
that are interrupted by an SMI. This bit is always set to 1 by implementations of the AMD64
architecture. See “I/O Instruction Restart” on page 299 for information on using this feature.

* SMVIM Base Relocation—Bit 17. When set to 1, the processor supports relocation of SMRAM. This
bit is always set to 1 by implementations of the AMD64 architecture. See “SMBASE Register” on
page 287 for information on using this feature.

All remaining bits in the SMM-revision identifier are reserved.

10.2.5 SMRAM Protected Areas

Two areas are provided as safe areas for SMM code and data that are not readily accessible by non-
SMM applications. The SMI handler can be located in one of these two ranges, or it can be located
outside of these ranges. The handler is placed in the desired range by setting SMBASE accordingly.

The ASeg range is located at a fixed address from A_0000h to B FFFFh. The TSeg range is located at
a variable base specified by the SMM_ADDR MSR with a variable size specified by the
SMM_MASK MSR. These ranges must never overlap.

Each CPU memory access is in the TSeg range if the following is true:

Phys Addr[51:17] & SMM_MASK[51:17] = SMM_ADDR{[51:17] & SMM_MASK][51:17].

System-Management Mode 293



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

For example, if the TSeg range spans 256 Kbytes starting at address 10_0000h, then SMM_ADDR
=0010_0000h and SMM_MASK=FFFC _0000h. This results in a TSeg address range from 0010 0000
to 0013 FFFFh. The TSeg range must be aligned to a 128 Kbyte boundary and the minimum TSeg
size is 128 Kbytes.

63 52 51 32
Reserved, MBZ BASE[51:32]
31 17 16 0
BASE[31:17] Reserved, MBZ
Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:17 BASE SMM TSeg Base Address R/W

16:0 Reserved Reserved, Must be Zero

Figure 10-4. SMM_ADDR Register Format

* SMM TSeg Base Address (BASE)—Bits 51:17. Specifies the base address of the TSeg range of
protected addresses.

63 52 51 32
Reserved, MBZ MASK[51:32]

31 17 16 2 10
MASK([31:17] Reserved, MBZ TE|AE

Bits Mnemonic Description R/W

63:52 Reserved Reserved, Must be Zero

51:17 MASK TSeg Mask R/W

16:2 Reserved Reserved, Must be Zero

1 TE Tseg Address Range Enable R/W

0 AE Aseg Address Range Enable R/W

Figure 10-5. SMM_MASK Register Format

e ASeg Address Range Enable (AE)—Bit 0. Specifies whether the ASeg address range is enabled for
protection. When the bit is set to 1, the ASeg address range is enabled for protection. When cleared
to 0, the ASeg address range is disabled for protection.

294 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

* TSeg Address Range Enable (TE)—Bit 1. Specifies whether the TSeg address range is enabled for
protection. When the bit is set to 1, the TSeg address range is enabled for protection. When cleared
to 0, the TSeg address range is disabled for protection.

e TSegMask (MASK)—RBits 51:17. Specifies the mask used to determine the TSeg range of protected
addresses. The physical address is in the TSeg range if the following is true:

Phys Addr[51:17] & SMM_MASK][51:17]=SMM_ADDR[51:17] & SMM_MASK][51:17].

Note that a processor is not required to implement all 52 bits of the physical address.

10.3 Using SMM

10.3.1 System-Management Interrupt (SMl)

SMM is entered using the system-management interrupt (SMI). SMI is an external non-maskable
interrupt that operates differently from and independently of other interrupts. SMI has priority over all
other external interrupts, including NMI (see “Priorities” on page 234 for a list of the interrupt
priorities). SMIs are disabled when in SMM, which prevents reentrant calls to the SMM handler.

When an SMI is received by the processor, the processor stops fetching instructions and waits for
currently-executing instructions to complete and write their results. The SMI also waits for all
buffered memory writes to update the caches or system memory. When these activities are complete,
the processor uses implementation-dependent external signaling to acknowledge back to the system
that it has received the SMI.

10.3.2 SMM Operating-Environment

The SMM operating-environment is similar to real mode, except that the segment limits in SMM are 4
Gbytes rather than 64 Kbytes. This allows an SMM handler to address memory in the range from Oh to
OFFFF_FFFFh. As with real mode, segment-base addresses are restricted to 20 bits in SMM, and the
default operand-size and address-size is 16 bits. To address memory locations above 1 Mbyte, the
SMM handler must use the 32-bit operand-size-override and address-size-override prefixes.

After saving the processor state in the SMRAM state-save area, a processor running in SMM sets the
segment-selector registers and control registers into a state consistent with real mode. Other registers
are also initialized upon entering SMM, as shown in Table 10-3.

Table 10-3. SMM Register Initialization

Register Initial SMM Contents
Selector | SMBASE right-shifted 4 bits
Base SMBASE

Limit FFFF_FFFFh

Attr Read-Write-Execute

CS

System-Management Mode 295



AMDAQ

AMDG64 Technology 24593—Rev. 3.30—September 2018

Table 10-3. SMM Register Initialization (continued)

Register Initial SMM Contents
Selector | 0000h

Base 0000_0000_0000_0000h
Limit FFFF_FFFFh

DS, ES, FS, GS, SS

Attr Read-Write
RIP 0000_0000_0000_8000h
RFLAGS 0000_0000_0000_0002h
CRO PE, EM, TS, PG bits cleared to 0.
All other bits are unmodified.
CR4 0000_0000_0000_0000h
DR7 0000_0000_0000_0400h
EFER 0000_0000_0000_0000h

10.3.3 Exceptions and Interrupts

All hardware interrupts are disabled upon entering SMM, but exceptions and software interrupts are
not disabled. If necessary, the SMM handler can re-enable hardware interrupts. Software that handles
interrupts in SMM should consider the following:

SMI—If an SMI occurs while the processor is in SMM, it is latched by the processor. The latched
SMI occurs when the processor leaves SMM.

NMI—If an NMI occurs while the processor is in SMM, it is latched by the processor, but the NMI
handler is not invoked until the processor leaves SMM with the execution of an RSM instruction.
A pending NMI causes the handler to be invoked immediately after the RSM completes and before
the first instruction in the interrupted program is executed.

An SMM handler can unmask NMI interrupts by simply executing an IRET. Upon completion of
the IRET instruction, the processor recognizes the pending NMI, and transfers control to the NMI
handler. Once an NMI is recognized within SMM using this technique, subsequent NMIs are
recognized until SMM is exited. Later SMIs cause NMIs to be masked, until the SMM handler
unmasks them.

Exceptions—Exceptions (internal processor interrupts) are not disabled and can occur while in
SMM. Therefore, the SMM-handler software should be written to avoid generating exceptions.

Software Interrupts—The software-interrupt instructions (BOUND, INTn, INT3, and INTO) can
be executed while in SMM. However, it is not recommended that the SMM handler use these
instructions.

Maskable Interrupts—RFLAGS.IF is cleared to 0 by the processor when SMM is entered.
Software can re-enable maskable interrupts while in SMM, but it must follow the guidelines listed
below for handling interrupts.

Debug Interrupts—The processor disables the debug interrupts when SMM is entered by clearing
DR7 to 0 and clearing RFLAGS.TF to 0. The SMM handler can re-enable the debug facilities
while in SMM, but it must follow the guidelines listed below for handling interrupts.

296 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

e INIT—The processor does not recognize INIT while in SMM.

Because the RFLAGS.IF bit is cleared when entering SMM, the HLT instruction should not be
executed in SMM without first setting the RFLAGS.IF bit to 1. Setting this bit to 1 allows the
processor to exit the halt state by using an external maskable interrupt.

In the cases where an SMM handler must accept and handle interrupts and exceptions, several
guidelines must be followed:

* Interrupt handlers must be loaded and accessible before enabling interrupts.
* A real-mode interrupt vector table located at virtual (linear) address 0 is required.

* Segments accessed by the interrupt handler cannot have a base address greater than 20 bits because
of the real-mode addressing used in SMM. In SMM, the 16-bit value stored in the segment-selector
register is left-shifted four bits to form the 20-bit segment-base address, like real mode.

*  Only the IP (rIP[15:0]) is pushed onto the stack as a result of an interrupt in SMM, because of the
real-mode addressing used in SMM. If the SMM handler is interrupted at a code-segment offset
above 64 Kbytes, then the return address on the stack must be adjusted by the interrupt-handler,
and a RET instruction with a 32-bit operand-size override must be used to return to the SMM
handler.

* Ifthe interrupt-handler is located below 1 Mbyte, and the SMM handler is located above 1 Mbyte,
a RET instruction cannot be used to return to the SMM handler. In this case, the interrupt handler
can adjust the return pointer on the stack, and use a far CALL to transfer control back to the SMM
handler.

10.3.4 Invalidating the Caches

The processor can cache SMRAM-memory locations. If the system implements physically separate
SMRAM and system memory, it is possible for SMRAM and system memory locations to alias into
identical cache locations. In some processor implementations, the cache contents must be written to
memory and invalidated when SMM is entered and exited. This prevents the processor from using
previously-cached main-memory locations as aliases for SMRAM-memory locations when SMM is
entered, and vice-versa when SMM is exited.

Implementations of the AMDG64 architecture do not require cache invalidation when entering and
exiting SMM. Internally, the processor keeps track of SMRAM and system-memory accesses
separately and properly handles situations where aliasing occurs. Cached system memory and
SMRAM locations can persist across SMM mode changes. Removal of the requirement to writeback
and invalidate the cache simplifies SMM entry and exit and allows SMM code to execute more
rapidly.

10.3.5 Saving Additional Processor State

Several registers are not saved or restored automatically by the SMM mechanism. These are:

e The 128-bit media instruction registers.

* The 64-bit media instruction registers.

System-Management Mode 297



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

* The x87 floating-point registers.

* The page-fault linear-address register (CR2).

* The task-priority register (CRS8).

e The debug registers, DRO, DR1, DR2, and DR3.
* The memory-type range registers (MTRRs).

*  Model-specific registers (MSRs).

These registers are not saved because SMM handlers do not normally use or modify them. If an SMI
results in a processor reset (due to powering down the processor, for example) or the SMM handler
modifies the contents of the unsaved registers, the SMM handler should save and restore the original
contents of those registers. The unsaved registers, along with those stored in the SMRAM state-save
area, need to be saved in a non-volatile storage location if a processor reset occurs. The SMM handler
should execute the CPUID instruction to determine the feature set available in the processor, and be
able to save and restore the registers required by those features. For more information on using the
CPUID instruction, see Section 3.3, “Processor Feature Identification,” on page 63.

The SMM handler can execute any of the 128-bit media, 64-bit media, or x87 instructions. A simple
method for saving and restoring those registers is to use the FXSAVE and FXRSTOR instructions,
respectively, if it is supported by the processor. See “Saving Media and x87 Execution Unit State” on
page 310 for information on saving and restoring those registers.

Floating-point exceptions can occur when the SMM handler uses media or x87 floating-point
instructions. If the SMM handler uses floating-point exception handlers, they must follow the usage
guidelines established in “Exceptions and Interrupts” on page 296. A simple method for dealing with
floating-point exceptions while in SMM is to simply mask all exception conditions using the
appropriate floating-point control register. When the exceptions are masked, the processor handles
floating-point exceptions internally in a default manner, and allows execution to continue
uninterrupted.

10.3.6 Operating in Protected Mode and Long Mode

Software can enable protected mode from SMM and it can also enable and activate long mode. An
SMM handler can use this capability to enter 64-bit mode and save additional processor state that
cannot be accessed from outside 64-bit mode (for example, the most-significant 32 bits of CR2).

10.3.7 Auto-Halt Restart

The auto-halt restart entry is located at offset FEC9h in the SMM state-save area. The size of this field
is one byte, as compared with two bytes in previous versions of SMM.

When entering SMM, the processor loads the auto-halt restart entry to indicate whether SMM was
entered from the halt state, as follows:

* Bit 0 indicates the processor state upon entering SMM:
- When set to 1, the processor entered SMM from the halt state.

298 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

- When cleared to 0, the processor did not enter SMM from the halt state.
* Bits 7:1 are cleared to 0.

The SMM handler can write the auto-halt restart entry to specify whether the return from SMM should
take the processor back to the halt state or to the instruction-execution state specified by the SMM
state-save area. The values written are:

* Clear to 00h—The processor returns to the state specified by the SMM state-save area.
* Setto any non-zero value—The processor returns to the halt state.

If the return from SMM takes the processor back to the halt state, the HLT instruction is not re-
executed. However, the halt special bus-cycle is driven on the processor bus after the RSM instruction
executes.

The result of entering SMM from a non-halt state and returning to a halt state is not predictable.

10.3.8 /O Instruction Restart

The I/O-instruction restart entry is located at offset FEC8h in the SMM state-save area. The size of this
field is one byte, as compared with two bytes in previous versions of SMM. The I/O-instruction restart
mechanism is supported when the I/O-instruction restart bit (bit 16) in the SMM-revision identifier is
set to 1. This bit is always set to 1 in the AMDG64 architecture.

When an I/O instruction is interrupted by an SMI, the I/O-instruction restart entry specifies whether
the interrupted I/O instruction should be re-executed following an RSM that returns from SMM. Re-
executing a trapped I/O instruction is useful, for example, when an I/O write is performed to a
powered-down disk drive. When this occurs, the system logic monitoring the access can issue an SMI
to have the SMM handler power-up the disk drive and retry the I/O write. The SMM handler does this
by querying system logic and detecting the failed I/O write, asking system logic to initiate the disk-
drive power-up sequence, enabling the I/O instruction restart mechanism, and returning from SMM.
Upon returning from SMM, the I/O write to the disk drive is restarted.

When an SMI occurs, the processor always clears the I/O-instruction restart entry to 0. If the SMI
interrupted an I/O instruction, then the SMM handler can modify the I/O-instruction restart entry as
follows:

e Clear to 00h (default value)—The I/0O instruction is not restarted, and the instruction following the
interrupted I/O-instruction is executed. When a REP (repeat) prefix is used with an I/O instruction,
it is possible that the next instruction to be executed is the next I/O instruction in the repeat loop.

e Settoany non-zero value—The I/0 instruction is restarted.

While in SMM, the handler must determine the cause of the SMI and examine the processor state at the
time the SMI occurred to determine whether or not an I/O instruction was interrupted.
Implementations provide state information in the SMM save-state area to assist in this determination:

e I/O Instruction Restart DWORD—indicates whether the SMI interrupted an I/O instruction, and
saves extra information describing the I/O instruction.

System-Management Mode 299



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e I/O Instruction Restart RIP—the RIP of the interrupted I/O instruction.

* I/O Instruction Restart RCX—the RCX of the interrupted I/O instruction.
* I/O Instruction Restart RSI—the RSI of the interrupted I/O instruction.

e I/O Instruction Restart RDI—the RDI of the interrupted I/O instruction.

31 16 15 7 4 3 2 1 0
s|s|s|rR|s|v $

PORT Reserved Z|Z|Z|E|T|A p

32|16 | 8 | P | R| L E

Figure 10-6. 1/O Instruction Restart Dword

The fields are as follows:

e  PORT—Intercepted I/O port

e SZ32—32-bit I/O port size

e SZ16—16-bit I/O port size

* SZ8—8-bit I/O port size

* REP—Repeated port access

e STR—String based port access (INS, OUTS)

*  VAL—Valid (SMI was detected during an I/O instruction.)

*  TYPE—Access type (0 = OUT instruction, 1 =IN instruction).

10.4 Leaving SMM

Software leaves SMM and returns to the interrupted program by executing the RSM instruction. RSM
causes the processor to load the interrupted state from the SMRAM state-save area and then transfer
control back to the interrupted program. RSM cannot be executed in any mode other than SMM,
otherwise an invalid-opcode exception (#UD) occurs.

An RSM causes a processor shutdown if an invalid-state condition is found in the SMRAM state-save
area. Only an external reset, external processor-initialization, or non-maskable external interrupt
(NMI) can cause the processor to leave the shutdown state. The invalid SMRAM state-save-area
conditions that can cause a processor shutdown during an RSM are:

e CRO.PE=0 and CRO.PG=1.

* CRO0.CD=0 and CRO.NW=1.

* Certain reserved bits are set to 1, including:
- Any CRO bit in the range 63:32 is set to 1.
- Any unsupported bit in CR3 is set to 1.
- Any unsupported bit in CR4 is set to 1.

300 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

- Any DR6 bit or DR7 bit in the range 63:32 is set to 1.
- Any unsupported bit in EFER is set to 1.
e Invalid returns to long mode, including:
- EFER.LME=1, CR0.PG=1, and CR4.PAE=0.
- EFER.LME=1, CR0.PG=1, CR4.PAE=1, CS.L=1, and CS.D=1.
* The SSM revision identifier is modified.
Some SMRAM state-save-area conditions are ignored, and the registers, or bits within the registers,

are restored in a default manner by the processor. This avoids a processor shutdown when an invalid
condition is stored in SMRAM. The default conditions restored by the processor are:

* The EFER.LMA register bit is set to the value obtained by logically ANDing the SMRAM values
of EFER.LME, CRO.PG, and CR4.PAE.

 The RFLAGS.VM register bit is set to the value obtained by logically ANDing the SMRAM
values of RFLAGS.VM, CRO.PE, and the inverse of EFER.LMA.

e The base values of FS, GS, GDTR, IDTR, LDTR, and TR are restored in canonical form. Those
values are sign-extended to bit 63 using the most-significant implemented bit.

* Unimplemented segment-base bits in the CS, DS, ES, and SS registers are cleared to 0.

10.5 Multiprocessor Considerations

For multiprocessor operation, each logical processor must be given a separate SMBASE value so that
the save-state areas do not overlap. For systems with fewer than 64 logical processors it is sufficient to
stagger the SMBASE values by 512 bytes. Note that this also offsets theSMI entry point by the same
amount for each processor. With 64 or more logical processors, the entry points will start to collide
with the save-state areas. Staggering the SMBASE values by 1024 bytes results in 512-byte entry
point areas interleaved with the 512-byte state-save areas, and so provides scaling beyond 63 logical
processors.

Further details on multiprocessor aspects of SMM may be found in the BIOSand Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual for a given processor family.

System-Management Mode 301



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

302 System-Management Mode



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

11 SSE, MMX, and x87 Programming

This chapter describes the system-software implications of supporting applications that use the
Streaming SIMD Extensions (SSE), MMX™, and x87 instructions. Throughout this chapter, these
instructions are collectively referred to as media and x87 (media/x87) instructions. A complete listing
of the instructions that fall in this category—and the detailed operation of each instruction—can be
found in volumes 4 and 5. Refer to Volume 1 for information on using these instructions in application
software.

The SSE instruction set is comprised of the legacy SSE instruction set which includes the SSE1, SSE2,
SSE3, SSSE3, SSE4A, SSE4.1, and SSE4.2 subsets and the extended SSE instruction set which
includes the AVX, FMA4, and XOP subsets. Many of the extended SSE instructions support both 128-
bit and 256-bit data types.

11.1 Overview of System-Software Considerations

Processor implementations can support different combinations of the SSE, MMX, and x87 instruction
sets. Two sets of registers—independent of the general-purpose registers—support these instructions.
The SSE instructions operate on the YMM/XMM registers, and the 64-bit media and x87-instructions
operate on the aliased MMX/x87 registers. The SSE and x87 floating-point instruction sets have
distinct status registers, control registers, exception vectors, and system-software control bits for
managing the operating environment. System software that supports use of these instructions must be
able to manage these resources properly including:

* Detecting support for the instruction set, and enabling any optional features, as necessary.
* Saving and restoring the processor media or x87 state.

* Execution of floating-point instructions (media or x87) can produce exceptions. System software
must supply exception handlers for all unmasked floating-point exceptions.

11.2 Determining Media and x87 Feature Support

Support for the architecturally defined subsets within the media and x87 instructions is
implementation dependent. System software executes the CPUID instruction to determine whether a
processor implements any of these features (see Section 3.3, “Processor Feature Identification,” on
page 63 for more information on using the CPUID instruction). After CPUID is executed feature
support can be determined by examining specific bit fields returned in the EAX, ECX, and EDX
registers.

The following table summarizes the architecturally defined SSE subsets and state management
instructions and gives the feature bits returned by the CPUID function. If the indicated bit is set, the
feature is supported by the processor.

SSE, MMX, and x87 Programming 303



AMDAQ

AMDG64 Technology

24593—Rev. 3.30—September 2018

Table 11-1. SSE Subsets - CPUID Feature Identifiers
CPUID Fn | Field Name | Field Bit ‘ Instruction Subset
Legacy SSE
0000_0001h EDX[SSE] EDX[25] Original Streaming SIMD Extensions (SSE1)
0000_0001h EDX[SSE2] EDX[26] SSE2
0000_0001h ECX[SSE3] ECX[0] SSE3
0000_0001h ECX[SSSE3] ECX][9] SSSE3
0000_0001h ECX[SSE41] ECX[19] SSE4.1
0000 _0001h ECX[SSE42] ECX[20] SSE4.2
8000_0001h | ECX[SSE4A] ECX(6] SSE4A: EXIJ S\C}N'TNSSDE:E:&C'\S&\;NTSS’ and
Extended SSE
0000_0001h ECX[AVX] ECX[28] AVX
8000_0001h ECX[XOP] ECX[11] AMD XOP
0000_0001h ECX[FMA] ECX[12] FMA
8000_0001h ECX[FMA4] ECX[16] AMD FMA4
MMX

0000_0001h

or EDX[MMX] EDX][23] Original MMX™ [nstructions
8000_0001h
8000_0001h EDX[MmxExt] EDX[22] AMD Extensions to MMX
8000_0001h EDX[3DNow] EDX[31] AMD 3DNow!™
8000_0001h | EDX[3DNowEXxt] EDX[30] AMD Extensions to 3DNow!

x87

0000_0001h

or EDX[FPU] EDX[O0] x87 instruction set and facilities
8000_0001h

Context Management Instructions

0000_0001h

or EDX[FXSR] EDX[24] FXSAVE / FXRSTOR instructions
8000 _0001h
8000_0001h EDX[FFXSR] EDX[25] |Hardware optimizations for FXSAVE / FXRSTOR
0000_0001h ECX[XSAVE] ECX[26] XSAVE / XRSTOR instructions
Océog)zgggﬁh EAX[XSAVEOPT] EAX]O0] XSAVEOPT

Some instructions may be listed in more than one subset. If software attempts to execute an instruction
belonging to an unsupported instruction subset, an invalid-opcode exception (#UD) occurs. Refer to
Appendix D, “Instruction Subsets and CPUID Feature Flags” in Volume 3 for specific information.

304

SSE, MMX, and x87 Programming



AMDA
24593—Rev. 3.30—September 2018 AMDG64 Technology

11.3 Enabling SSE Instructions

Use of the 256-bit and 128-bit media instructions by application software requires system software
support. System software must determine which SSE subsets are supported, enable those that are to be
used, and supply code to handle the various exceptions that may occur during the execution of these
instructions. The legacy SSE instructions and the extended SSE instructions often require unique
exception handling.

11.3.1 Enabling Legacy SSE Instruction Execution

When legacy SSE instructions are supported, system software must set CR4.OSFXSR to let the
processor know that the software supports the FXSAVE/FXRSTOR instructions. When the processor
detects CR4.OSFXSR = 1, it allows execution of the legacy SSE instructions. If system software does
not set CR4.0SFXSR, any attempt to execute these instructions causes an invalid-opcode exception
(#UD). System software must also clear the CR0.EM (emulate coprocessor) bit to 0, otherwise an
attempt to execute a legacy SSE instruction causes a #UD exception. An attempt to execute either
FXSAVE or FXRSTOR when CR0O.EM is set results in a #NM exception.

System software should also set the CRO.MP (monitor coprocessor) bit to 1. When CR0.EM=0 and
CR0O.MP=1, all media instructions, x87 instructions, and the FWAIT/WAIT instructions cause a
device-not-available exception (#NM) when the CRO.TS bit is set. System software can use the #NM
exception to perform lazy context switching, saving and restoring media and x87 state only when
necessary after a task switch. See “CR0 Register” on page 42 for more information.

11.3.2 Enabling Extended SSE Instruction Execution

After the steps specified above are completed to enable legacy SSE instruction execution, additional
steps are required to enable the extended SSE instructions and state management. System software
must carry out the following process:

e Confirm that the hardware supports the XSAVE, XRSTOR, XSETBY, and XGETBYV instructions
and the XCRO register (XFEATURE ENABLED MASK) by executing the CPUID instruction
function 0000_0001h. If CPUID Fn0000 0001 ECX[XSAVE] is set, hardware support is verified.

e Optionally confirm hardware support of the XSAVEOPT instruction by executing CPUID function
0000 _000Dh, sub-function 1 (ECX = 1). If CPUID Fn0000 000D _EAX x1[XSAVEOPT] is set,
the processor supports the XSAVEOPT instruction. XSAVEOPT is a performance optimized
version of XSAVE.

* Confirm that hardware supports the extended SSE instructions by verifying

XFeatureSupportedMask[2:0] = 111b. XFeatureSupportedMask is accessed via the CPUID
instruction function 0000 _000Dh, sub-function 0 (ECX = 0). XFeatureSupportedMask[31:0] is
returned in the EAX register.
If CPUID Fn0000 000D _EAX x0[2:0] = 111b, hardware supports x87, legacy SSE, and extended
SSE instructions. Bit 0 of EAX signifies x87 floating-point and MMX support, bit 1 signifies
legacy SSE support, and bit 2 signifies extended SSE support. Support for both x87 and legacy
SSE instructions are required for processors that support the extended SSE instructions.

SSE, MMX, and x87 Programming 305



AMDA1
AMDG64 Technology 24593—Rev. 3.30—September 2018

e Set CR4[OSXSAVE] (bit 18) to enable the use of the XSETBV and XGETBV instructions.
XSETBV is a privileged instruction that writes the XCRn registers. XCRO is the
XFEATURE ENABLED MASK used to manage media and x87 processor state using the
XSAVE, XSAVEOPT, and XRSTOR instructions.

* Enable the x87/MMX, legacy SSE, and extended SSE instructions and processor state
management by  setting the x87, SSE, and YMM bits of XCRO
(XFEATURE _ENABLED MASK). This is done via the privileged instruction XSETBV.
Enabling extended SSE capabilities without enabling legacy SSE capabilities is not allowed. The
x87 flag (bit 0) of the XFEATURE ENABLED MASK must be set when writing XCRO.

e Determine the XSAVE/XRSTOR memory save area size requirement. The field
XFeatureEnabledSizeMax specifies the size requirement in bytes based on the currently enabled
extended features and is returned in the EBX register after execution of CPUID Function
0000 _000Dh, sub-function 0 (ECX = 0).

e Allocate the save/restore area based on the information obtained in the previous step.

For a detailed description of the XSETBV and XGETBYV instructions, see individual instruction
reference pages in Volume 4. See the section entitled “XFEATURE ENABLED MASK” in Volume 4
for details on the field definitions for XFEATURE ENABLED MASK.

For more information on using the CPUID instruction to obtain processor feature information, see
Section 3.3, “Processor Feature Identification,” on page 63.

11.3.3 SIMD Floating-Point Exception Handling

System software must supply an exception handler if unmasked SSE floating-point exceptions are
allowed to occur. When an unmasked exception is detected, the processor transfers control to the
SIMD floating-point exception (#XF) handler provided by the operating system. System software
must let the processor know that the #XF handler is available by setting CR4.OSXMMEXCPT to 1. If
this bit is set to 1, the processor transfers control to the #XF handler when it detects an unmasked
exception, otherwise a #UD exception occurs. When the processor detects a masked exception, it
handles it in a default manner regardless of the 