
Advanced Micro Devices

Publication No. Revision Date
24593 3.30 September 2018

AMD64 Technology

AMD64 Architecture
Programmer’s Manual

Volume 2:
System Programming

Publication No. Revision Date
24593 3.30 September 2018

© 2013 – 2018 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD arrow logo, and combinations thereof, AMD Virtualization and 3DNow! are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Contents iii

24593—Rev. 3.30—September 2018 AMD64 Technology

Contents

Revision History . xxix
Preface. xxxvii

About This Book. xxxvii
Audience . xxxvii
Organization . xxxvii
Conventions and Definitions . xxxviii

Notational Conventions . xxxix
Definitions . xl
Registers . xlvi
Endian Order . xlix

Related Documents . xlix

1 System-Programming Overview .1
1.1 Memory Model . 1

Memory Addressing . 2
Memory Organization . 3
Canonical Address Form . 4

1.2 Memory Management . 5
Segmentation . 5
Paging . 7
Mixing Segmentation and Paging . 8
Real Addressing. 10

1.3 Operating Modes . 11
Long Mode. 12
64-Bit Mode. 13
Compatibility Mode. 13
Legacy Modes . 14
System Management Mode (SMM) . 15

1.4 System Registers . 15
1.5 System-Data Structures . 17
1.6 Interrupts . 19
1.7 Additional System-Programming Facilities . 20

Hardware Multitasking . 20
Machine Check . 21
Software Debugging . 21
Performance Monitoring . 22

2 x86 and AMD64 Architecture Differences .23
2.1 Operating Modes . 23

Long Mode. 23
Legacy Mode . 23
System-Management Mode . 24

2.2 Memory Model . 24
Memory Addressing . 24

iv Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Page Translation . 25
Segmentation . 26

2.3 Protection Checks . 27
2.4 Registers . 28

General-Purpose Registers. 28
YMM/XMM Registers . 28
Flags Register . 28
Instruction Pointer . 28
Stack Pointer . 28
Control Registers . 29
Debug Registers. 29
Extended Feature Register (EFER) . 29
Memory Type Range Registers (MTRRs) . 29
Other Model-Specific Registers (MSRs). 29

2.5 Instruction Set . 29
REX Prefixes . 29
Segment-Override Prefixes in 64-Bit Mode . 30
Operands and Results . 30
Address Calculations . 30
Instructions that Reference RSP . 31
Branches . 32
NOP Instruction . 34
Single-Byte INC and DEC Instructions. 34
MOVSXD Instruction . 34
Invalid Instructions . 34
Reassigned Opcodes . 36
FXSAVE and FXRSTOR Instructions. 36

2.6 Interrupts and Exceptions . 36
Interrupt Descriptor Table . 37
Stack Frame Pushes . 37
Stack Switching . 37
IRET Instruction . 37
Task-Priority Register (CR8) . 38
New Exception Conditions . 38

2.7 Hardware Task Switching . 38
2.8 Long-Mode vs. Legacy-Mode Differences . 39

3 System Resources .41
3.1 System-Control Registers . 41

CR0 Register . 42
CR2 and CR3 Registers . 45
CR4 Register . 47
Additional Control Registers in 64-Bit-Mode . 51
CR8 (Task Priority Register, TPR) . 51
RFLAGS Register . 51
Extended Feature Enable Register (EFER) . 55
Extended Control Registers (XCRn) . 58

3.2 Model-Specific Registers (MSRs) . 58

Contents v

24593—Rev. 3.30—September 2018 AMD64 Technology

System Configuration Register (SYSCFG) . 59
System-Linkage Registers . 61
Memory-Typing Registers . 61
Debug-Extension Registers . 62
Performance-Monitoring Registers . 62
Machine-Check Registers . 63

3.3 Processor Feature Identification . 63

4 Segmented Virtual Memory .65
4.1 Real Mode Segmentation. 65
4.2 Virtual-8086 Mode Segmentation . 66
4.3 Protected Mode Segmented-Memory Models . 66

Multi-Segmented Model . 66
Flat-Memory Model. 67
Segmentation in 64-Bit Mode . 67

4.4 Segmentation Data Structures and Registers . 67
4.5 Segment Selectors and Registers . 69

Segment Selectors . 69
Segment Registers . 70
Segment Registers in 64-Bit Mode . 72

4.6 Descriptor Tables. 73
Global Descriptor Table. 73
Global Descriptor-Table Register . 74
Local Descriptor Table. 75
Local Descriptor-Table Register . 76
Interrupt Descriptor Table . 78
Interrupt Descriptor-Table Register . 79

4.7 Legacy Segment Descriptors . 80
Descriptor Format . 80
Code-Segment Descriptors . 82
Data-Segment Descriptors . 83
System Descriptors . 85
Gate Descriptors . 86

4.8 Long-Mode Segment Descriptors . 88
Code-Segment Descriptors . 88
Data-Segment Descriptors . 89
System Descriptors . 90
Gate Descriptors . 92
Long Mode Descriptor Summary . 94

4.9 Segment-Protection Overview. 95
Privilege-Level Concept . 96
Privilege-Level Types . 96

4.10 Data-Access Privilege Checks . 97
Accessing Data Segments . 97
Accessing Stack Segments. 98

4.11 Control-Transfer Privilege Checks . 100
Direct Control Transfers . 100
Control Transfers Through Call Gates. 104

vi Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Return Control Transfers . 111
4.12 Limit Checks . 112

Determining Limit Violations . 112
Data Limit Checks in 64-bit Mode . 114

4.13 Type Checks . 114
Type Checks in Legacy and Compatibility Modes . 114
Long Mode Type Check Differences. 115

5 Page Translation and Protection .117
5.1 Page Translation Overview . 118

Page-Translation Options . 120
Page-Translation Enable (PG) Bit . 120
Physical-Address Extensions (PAE) Bit . 121
Page-Size Extensions (PSE) Bit . 121
Page-Directory Page Size (PS) Bit . 122

5.2 Legacy-Mode Page Translation . 122
CR3 Register . 123
Normal (Non-PAE) Paging . 124
PAE Paging . 126

5.3 Long-Mode Page Translation . 130
Canonical Address Form . 130
CR3 . 130
4-Kbyte Page Translation . 131
2-Mbyte Page Translation . 134
1-Gbyte Page Translation . 135

5.4 Page-Translation-Table Entry Fields . 137
Field Definitions . 138
Notes on Accessed and Dirty Bits . 141

5.5 Translation-Lookaside Buffer (TLB) . 141
Global Pages . 142
TLB Management . 142

5.6 Page-Protection Checks . 145
User/Supervisor (U/S) Bit . 145
Read/Write (R/W) Bit . 146
No Execute (NX) Bit . 146
Write Protect (CR0.WP) Bit . 146
Supervisor-Mode Execution Prevention (CR4.SMEP) Bit . 146

5.7 Protection Across Paging Hierarchy . 147
Access to User Pages when CR0.WP=1 . 148

5.8 Effects of Segment Protection . 148

6 System-Management Instructions .149
6.1 Fast System Call and Return . 152

SYSCALL and SYSRET. 152
SYSENTER and SYSEXIT (Legacy Mode Only) . 154
SWAPGS Instruction . 155

6.2 System Status and Control. 155
Processor Feature Identification (CPUID). 155

Contents vii

24593—Rev. 3.30—September 2018 AMD64 Technology

Accessing Control Registers . 155
Accessing the RFLAGS Register . 156
Accessing Debug Registers . 156
Accessing Model-Specific Registers . 156

6.3 Segment Register and Descriptor Register Access . 157
Accessing Segment Registers . 157
Accessing Segment Register Hidden State . 157
Accessing Descriptor-Table Registers . 158

6.4 Protection Checking. 158
Checking Access Rights . 158
Checking Segment Limits . 158
Checking Read/Write Rights . 158
Adjusting Access Rights . 159

6.5 Processor Halt . 159
6.6 Cache and TLB Management . 159

Cache Management . 159
TLB Invalidation . 160

7 Memory System .161
7.1 Single-Processor Memory Access Ordering . 164

Read Ordering . 164
Write Ordering . 165
Read/Write Barriers . 166

7.2 Multiprocessor Memory Access Ordering. 166
7.3 Memory Coherency and Protocol . 169

Special Coherency Considerations . 171
Access Atomicity. 172

7.4 .Memory Types172
Instruction Fetching from Uncacheable Memory . 174
Memory Barrier Interaction with Memory Types . 175

7.5 Buffering and Combining Memory Writes . 177
Write Buffering . 177
Write Combining . 178

7.6 Memory Caches . 179
Cache Organization and Operation . 179
Cache Control Mechanisms. 182
Cache and Memory Management Instructions . 185
Serializing Instructions . 186
Cache and Processor Topology . 186

7.7 Memory-Type Range Registers . 187
MTRR Type Fields . 188
MTRRs . 189
Using MTRRs . 195
MTRRs and Page Cache Controls . 196
MTRRs in Multi-Processing Environments . 198

7.8 Page-Attribute Table Mechanism . 198
PAT Register . 198
PAT Indexing . 199

viii Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Identifying PAT Support . 200
PAT Accesses . 200
Combined Effect of MTRRs and PAT . 201
PATs in Multi-Processing Environments . 202
Changing Memory Type . 202

7.9 Memory-Mapped I/O. 202
Extended Fixed-Range MTRR Type-Field Encodings . 203
IORRs . 204
IORR Overlapping. 206
Top of Memory . 206

7.10 Secure Memory Encryption . 208
Determining Support for Secure Memory Encryption . 208
Enabling Memory Encryption Extensions. 209
Supported Operating Modes . 209
Page Table Support . 209
I/O Accesses . 210
Restrictions . 210
SMM Interaction . 211
Encrypt-in-Place . 211

8 Exceptions and Interrupts. .213
8.1 General Characteristics . 213

Precision . 213
Instruction Restart . 214
Types of Exceptions. 214
Masking External Interrupts . 215
Masking Floating-Point and Media Instructions . 215
Disabling Exceptions . 215

8.2 Vectors . 216
#DE—Divide-by-Zero-Error Exception (Vector 0). 219
#DB—Debug Exception (Vector 1). 219
NMI—Non-Maskable-Interrupt Exception (Vector 2) . 220
#BP—Breakpoint Exception (Vector 3) . 220
#OF—Overflow Exception (Vector 4). 221
#BR—Bound-Range Exception (Vector 5) . 221
#UD—Invalid-Opcode Exception (Vector 6) . 221
#NM—Device-Not-Available Exception (Vector 7) . 222
#DF—Double-Fault Exception (Vector 8). 222
Coprocessor-Segment-Overrun Exception (Vector 9) . 223
#TS—Invalid-TSS Exception (Vector 10). 224
#NP—Segment-Not-Present Exception (Vector 11) . 225
#SS—Stack Exception (Vector 12) . 225
#GP—General-Protection Exception (Vector 13) . 226
#PF—Page-Fault Exception (Vector 14) . 227
#MF—x87 Floating-Point Exception-Pending (Vector 16). 228
#AC—Alignment-Check Exception (Vector 17). 229
#MC—Machine-Check Exception (Vector 18) . 230
#XF—SIMD Floating-Point Exception (Vector 19) . 230

Contents ix

24593—Rev. 3.30—September 2018 AMD64 Technology

#VC -- VMM Communication Exception (Vector 29) . 231
#SX—Security Exception (Vector 30). 231
User-Defined Interrupts (Vectors 32–255) . 231

8.3 Exceptions During a Task Switch . 232
8.4 Error Codes . 232

Selector-Error Code . 232
Page-Fault Error Code . 233

8.5 Priorities. 234
Floating-Point Exception Priorities . 235
External Interrupt Priorities . 236

8.6 Real-Mode Interrupt Control Transfers . 237
8.7 Legacy Protected-Mode Interrupt Control Transfers . 239

Locating the Interrupt Handler . 240
Interrupt To Same Privilege. 241
Interrupt To Higher Privilege. 242
Privilege Checks . 243
Returning From Interrupt Procedures . 246

8.8 Virtual-8086 Mode Interrupt Control Transfers . 246
Protected-Mode Handler Control Transfer . 247
Virtual-8086 Handler Control Transfer . 249

8.9 Long-Mode Interrupt Control Transfers . 249
Interrupt Gates and Trap Gates . 249
Locating the Interrupt Handler . 250
Interrupt Stack Frame . 251
Interrupt-Stack Table . 253
Returning From Interrupt Procedures . 254

8.10 Virtual Interrupts . 255
Virtual-8086 Mode Extensions . 256
Protected Mode Virtual Interrupts . 259
Effect of Instructions that Modify EFLAGS.IF. 259

9 Machine Check Architecture .263
9.1 Introduction . 263

Reliability, Availability, and Serviceability . 263
Error Detection, Logging, and Reporting . 264
Error Recovery. 266

9.2 Determining Machine-Check Architecture Support . 267
9.3 Machine Check Architecture MSRs . 267

Global Status and Control Registers . 268
Error-Reporting Register Banks . 271

9.4 Initializing the Machine-Check Mechanism . 279
9.5 Using MCA Features . 280

Determining the Scope of Detected Errors . 281
Handling Machine Check Exceptions . 281
Reporting Corrected Errors . 283

10 System-Management Mode. .285
10.1 SMM Differences . 285

x Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

10.2 SMM Resources. 286
SMRAM . 286
SMBASE Register . 287
SMRAM State-Save Area . 288
SMM-Revision Identifier. 292
SMRAM Protected Areas . 293

10.3 Using SMM . 295
System-Management Interrupt (SMI) . 295
SMM Operating-Environment. 295
Exceptions and Interrupts . 296
Invalidating the Caches . 297
Saving Additional Processor State. 297
Operating in Protected Mode and Long Mode . 298
Auto-Halt Restart. 298
I/O Instruction Restart . 299

10.4 Leaving SMM . 300
10.5 Multiprocessor Considerations . 301

11 SSE, MMX, and x87 Programming .303
11.1 Overview of System-Software Considerations . 303
11.2 Determining Media and x87 Feature Support . 303
11.3 Enabling SSE Instructions . 305

Enabling Legacy SSE Instruction Execution. 305
Enabling Extended SSE Instruction Execution . 305
SIMD Floating-Point Exception Handling . 306

11.4 Media and x87 Processor State . 306
SSE Execution Unit State . 306
MMX Execution Unit State . 307
x87 Execution Unit State . 308
Saving Media and x87 Execution Unit State . 310

11.5 XSAVE/XRSTOR Instructions . 317
CPUID Enhancements . 317
XFEATURE_ENABLED_MASK. 317
Extended Save Area. 318
Instruction Functions . 319
YMM States and Supported Operating Modes . 319
Extended SSE Execution State Management . 319
Saving Processor State. 321
Restoring Processor State . 321
MXCSR State Management. 321
Mode-Specific XSAVE/XRSTOR State Management . 321

12 Task Management .329
12.1 Hardware Multitasking Overview . 329
12.2 Task-Management Resources . 330

TSS Selector . 332
TSS Descriptor. 332
Task Register . 333

Contents xi

24593—Rev. 3.30—September 2018 AMD64 Technology

Legacy Task-State Segment. 335
64-Bit Task State Segment. 339
Task Gate Descriptor (Legacy Mode Only). 342

12.3 Hardware Task-Management in Legacy Mode . 342
Task Memory-Mapping . 342
Switching Tasks . 343
Task Switches Using Task Gates . 345
Nesting Tasks. 347

13 Software Debug and Performance Resources .349
13.1 Software-Debug Resources . 350

Debug Registers. 350
Setting Breakpoints . 357
Using Breakpoints . 359
Single Stepping . 362
Breakpoint Instruction (INT3) . 362
Control-Transfer Breakpoint Features . 362

13.2 Performance Monitoring Counters . 364
Performance Counter MSRs . 364
Detecting Hardware Support for Performance Counters. 371
Using Performance Counters . 371
Time-Stamp Counter . 371

13.3 Instruction-Based Sampling. 373
IBS Fetch Sampling. 373
IBS Fetch Sampling Registers . 374
IBS Execution Sampling . 377
IBS Execution Sampling Registers . 378

13.4 Lightweight Profiling. 386
Overview . 386
Events and Event Records . 390
Detecting LWP. 400
LWP Registers . 404
LWP Instructions . 406
LWP Control Block . 410
XSAVE/XRSTOR . 420
Implementation Notes . 424

14 Processor Initialization and Long Mode Activation. .429
14.1 Processor Initialization . 429

Built-In Self Test (BIST) . 429
Clock Multiplier Selection. 430
Processor Initialization State . 430
Multiple Processor Initialization . 432
Fetching the First Instruction. 432

14.2 Hardware Configuration . 433
Processor Implementation Information . 433
Enabling Internal Caches . 433
Initializing Media and x87 Processor State . 433

xii Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Model-Specific Initialization . 435
14.3 Initializing Real Mode . 436
14.4 Initializing Protected Mode . 436
14.5 Initializing Long Mode . 437
14.6 Enabling and Activating Long Mode . 438

Activating Long Mode. 439
Consistency Checks . 440
Updating System Descriptor Table References . 440
Relocating Page-Translation Tables . 441

14.7 Leaving Long Mode . 441
14.8 Long-Mode Initialization Example . 441

15 Secure Virtual Machine. .447
15.1 The Virtual Machine Monitor . 447
15.2 SVM Hardware Overview . 447

Virtualization Support . 447
Guest Mode . 447
External Access Protection . 448
Interrupt Support . 448
Restartable Instructions . 448
Security Support . 448

15.3 SVM Processor and Platform Extensions . 448
15.4 Enabling SVM . 449
15.5 VMRUN Instruction . 449

Basic Operation . 450
15.6 #VMEXIT . 454
15.7 Intercept Operation . 455

State Saved on Exit . 456
Intercepts During IDT Interrupt Delivery . 457
EXITINTINFO Pseudo-Code . 458

15.8 Decode Assists. 459
MOV CRx/DRx Intercepts . 459
INTn Intercepts . 459
INVLPG and INVLPGA Intercepts. 460
Nested and intercepted #PF . 460

15.9 Instruction Intercepts . 461
15.10 IOIO Intercepts . 463

I/O Permissions Map . 463
IN and OUT Behavior . 464
(REP) OUTS and INS . 465

15.11 MSR Intercepts . 465
15.12 Exception Intercepts . 466

#DE (Divide By Zero) . 467
#DB (Debug) . 467
Vector 2 (Reserved) . 467
#BP (Breakpoint) . 467
#OF (Overflow) . 467
#BR (Bound-Range) . 467

Contents xiii

24593—Rev. 3.30—September 2018 AMD64 Technology

#UD (Invalid Opcode) . 467
#NM (Device-Not-Available) . 467
#DF (Double Fault) . 468
Vector 9 (Reserved) . 468
#TS (Invalid TSS) . 468
#NP (Segment Not Present). 468
#SS (Stack Fault) . 468
#GP (General Protection) . 468
#PF (Page Fault) . 468
#MF (X87 Floating Point) . 468
#AC (Alignment Check) . 469
#MC (Machine Check) . 469
#XF (SIMD Floating Point). 469

15.13 Interrupt Intercepts. 469
INTR Intercept. 469
NMI Intercept . 469
SMI Intercept . 469
INIT Intercept . 470
Virtual Interrupt Intercept . 470

15.14 Miscellaneous Intercepts . 471
Task Switch Intercept. 471
Ferr_Freeze Intercept. 471
Shutdown Intercept . 471
Pause Intercept Filtering . 472

15.15 VMCB State Caching . 473
VMCB Clean Bits . 473
Guidelines for Clearing VMCB Clean Bits . 473
VMCB Clean Field . 474

15.16 TLB Control. 475
TLB Flush . 475
Invalidate Page, Alternate ASID . 476

15.17 Global Interrupt Flag, STGI and CLGI Instructions . 477
15.18 VMMCALL Instruction. 478
15.19 Paged Real Mode. 478
15.20 Event Injection. 478
15.21 Interrupt and Local APIC Support. 480

Physical (INTR) Interrupt Masking in EFLAGS. 480
Virtualizing APIC.TPR . 480
TPR Access in 32-Bit Mode . 480
Injecting Virtual (INTR) Interrupts . 481
Interrupt Shadows . 482
Virtual Interrupt Intercept . 482
Interrupt Masking in Local APIC . 482
INIT Support . 482
NMI Support . 483

15.22 SMM Support . 483
Sources of SMI . 483

xiv Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Response to SMI . 484
Containerizing Platform SMM . 484

15.23 Last Branch Record Virtualization . 485
Hardware Acceleration for LBR Virtualization. 486
LBR Virtualization CPUID Feature Detection . 486

15.24 External Access Protection . 486
Device IDs and Protection Domains . 486
Device Exclusion Vector (DEV) . 487
Access Checking . 487
DEV Capability Block. 489
DEV Register Access Mechanism. 489
DEV Control and Status Registers. 490
Unauthorized Access Logging. 492
Secure Initialization Support . 492

15.25 Nested Paging . 493
Traditional Paging versus Nested Paging . 493
Replicated State . 494
Enabling Nested Paging. 495
Nested Paging and VMRUN/#VMEXIT. 495
Nested Table Walk . 496
Nested versus Guest Page Faults, Fault Ordering . 496
Combining Nested and Guest Attributes . 497
Combining Memory Types, MTRRs . 498
Page Splintering. 499
Legacy PAE Mode . 499
A20 Masking . 500
Detecting Nested Paging Support . 500

15.26 Security . 500
15.27 Secure Startup with SKINIT . 500

Secure Loader . 501
Secure Loader Image . 501
Secure Loader Block . 501
Trusted Platform Module. 502
System Interface, Memory Controller and I/O Hub Logic . 503
SKINIT Operation . 503
SL Abort . 504
Secure Multiprocessor Initialization . 504

15.28 Security Exception (#SX) . 506
15.29 Advanced Virtual Interrupt Controller . 506

Introduction . 506
Architectural Definition. 507

15.30 SVM Related MSRs . 526
VM_CR MSR (C001_0114h) . 526
IGNNE MSR (C001_0115h) . 527
SMM_CTL MSR (C001_0116h). 527
VM_HSAVE_PA MSR (C001_0117h) . 528
TSC Ratio MSR (C000_0104h). 528

Contents xv

24593—Rev. 3.30—September 2018 AMD64 Technology

15.31 SVM-Lock . 529
SVM_KEY MSR (C001_0118h). 529

15.32 SMM-Lock . 530
SmmLock Bit — HWCR[0] . 530
SMM_KEY MSR (C001_0119h) . 530

15.33 Nested Virtualization . 530
VMSAVE and VMLOAD Virtualization. 531
Virtual GIF. 531

15.34 Secure Encrypted Virtualization . 532
Determining Support for SEV . 532
Key Management. 533
Enabling SEV . 533
Supported Operating Modes . 534
SEV Encryption Behavior . 534
Page Table Support . 534
Restrictions . 535
SEV Interaction with SME . 535
Page Flush MSR . 537
SEV_STATUS MSR . 537

15.35 Encrypted State (SEV-ES). 537
Determining Support for SEV-ES . 538
Enabling SEV-ES. 538
SEV-ES Overview . 538
Types of Exits . 539
#VC Exception. 540
VMGExit . 542
GHCB . 542
VMRUN . 542
Automatic Exits . 543
Control Register Write Traps. 544

16 Advanced Programmable Interrupt Controller (APIC) .545
16.1 Sources of Interrupts to the Local APIC . 546
16.2 Interrupt Control . 547
16.3 Local APIC . 547

Local APIC Enable . 547
APIC Registers . 548
Local APIC ID. 549
APIC Version Register. 550
Extended APIC Feature Register. 551
Extended APIC Control Register. 551

16.4 Local Interrupts . 552
APIC Timer Interrupt. 554
Local Interrupts LINT0 and LINT1. 556
Performance Monitor Counter Interrupts . 556
Thermal Sensor Interrupts . 557
Extended Interrupts . 557
APIC Error Interrupts . 557

xvi Contents

AMD64 Technology 24593—Rev. 3.30—September 2018

Spurious Interrupts. 559
16.5 Interprocessor Interrupts (IPI) . 559
16.6 Local APIC Handling of Interrupts . 563

Receiving System and IPI Interrupts . 563
Lowest Priority Messages and Arbitration . 564
Accepting System and IPI Interrupts . 565
Selecting and Handling Interrupts . 568

16.7 SVM Support for Interrupts and the Local APIC . 570
Specific End of Interrupt Register . 570
Interrupt Enable Register . 571

17 Hardware Performance Monitoring and Control .573
17.1 P-State Control. 573
17.2 Core Performance Boost . 575
17.3 Determining Processor Effective Frequency . 576

Actual Performance Frequency Clock Count (APERF) . 577
Maximum Performance Frequency Clock Count (MPERF) . 577
MPERF Read-only (MperfReadOnly). 578

17.4 Processor Feedback Interface . 578
17.5 Processor Core Power Reporting. 578

Processor Facilities . 578
Software Algorithm . 579

Appendix A MSR Cross-Reference .581
A.1 MSR Cross-Reference by MSR Address. 581
A.2 System-Software MSRs. 585
A.3 Memory-Typing MSRs . 586
A.4 Machine-Check MSRs. 589
A.5 Software-Debug MSRs . 590
A.6 Performance-Monitoring MSRs . 591
A.7 Secure Virtual Machine MSRs . 592
A.8 System Management Mode MSRs . 594
A.9 CPUID Name MSR Cross-Reference . 594

Appendix B Layout of VMCB .595
Appendix C SVM Intercept Exit Codes .607
Appendix D SMM Containerization .611

D.1 SMM Containerization Pseudocode . 611

Appendix E OS-Visible Workarounds .617
E.1 Erratum Process Overview . 619

Index . 621

 Figures xvii

24593—Rev. 3.30—September 2018 AMD64 Technology

 Figures
Figure 1-1. Segmented-Memory Model . 6

Figure 1-2. Flat Memory Model . 7

Figure 1-3. Paged Memory Model. 8

Figure 1-4. 64-Bit Flat, Paged-Memory Model. 9

Figure 1-5. Real-Address Memory Model. 10

Figure 1-6. Operating Modes of the AMD64 Architecture . 12

Figure 1-7. System Registers . 16

Figure 1-8. System-Data Structures. 18

Figure 3-1. Control Register 0 (CR0) . 43

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode . 46

Figure 3-3. Control Register 2 (CR2)—Long Mode . 46

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging. 46

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging . 46

Figure 3-6. Control Register 3 (CR3)—Long Mode . 47

Figure 3-7. RFLAGS Register . 52

Figure 3-8. Extended Feature Enable Register (EFER). 56

Figure 3-9. AMD64 Architecture Model-Specific Registers. 59

Figure 3-10. System-Configuration Register (SYSCFG) . 60

Figure 4-1. Segmentation Data Structures. 68

Figure 4-2. Segment and Descriptor-Table Registers . 69

Figure 4-3. Segment Selector. 69

Figure 4-4. Segment-Register Format . 71

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode. 72

Figure 4-6. Global and Local Descriptor-Table Access . 74

Figure 4-7. GDTR and IDTR Format—Legacy Modes . 75

Figure 4-8. GDTR and IDTR Format—Long Mode . 75

Figure 4-9. Relationship between the LDT and GDT . 76

Figure 4-10. LDTR Format—Legacy Mode . 77

Figure 4-11. LDTR Format—Long Mode. 77

Figure 4-12. Indexing an IDT . 79

Figure 4-13. Generic Segment Descriptor—Legacy Mode . 80

xviii Figures

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 4-14. Code-Segment Descriptor—Legacy Mode. 82

Figure 4-15. Data-Segment Descriptor—Legacy Mode . 83

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes . 86

Figure 4-17. Call-Gate Descriptor—Legacy Mode . 87

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode . 87

Figure 4-19. Task-Gate Descriptor—Legacy Mode . 87

Figure 4-20. Code-Segment Descriptor—Long Mode . 88

Figure 4-21. Data-Segment Descriptor—Long Mode . 89

Figure 4-22. System-Segment Descriptor—64-Bit Mode . 91

Figure 4-23. Call-Gate Descriptor—Long Mode . 92

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode . 93

Figure 4-25. Privilege-Level Relationships . 96

Figure 4-26. Data-Access Privilege-Check Examples. 98

Figure 4-27. Stack-Access Privilege-Check Examples . 99

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. 102

Figure 4-29. Conforming Code-Segment Privilege-Check Examples. 103

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism . 104

Figure 4-31. Long-Mode Call-Gate Access Mechanism. 105

Figure 4-32. Privilege-Check Examples for Call Gates . 107

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters . 109

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode. 109

Figure 4-35. Stack Switch—Long Mode. 110

Figure 5-1. Virtual to Physical Address Translation—Long Mode. 119

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode. 123

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode . 123

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode. 124

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode . 125

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode . 125

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . 126

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode . 126

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode. 127

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode . 128

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode . 128

 Figures xix

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode . 128

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode . 129

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode . 129

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode . 130

Figure 5-16. Control Register 3 (CR3)—Long Mode . 131

Figure 5-17. 4-Kbyte Page Translation—Long Mode. 132

Figure 5-18. 4-Kbyte PML4E—Long Mode . 133

Figure 5-19. 4-Kbyte PDPE—Long Mode . 133

Figure 5-20. 4-Kbyte PDE—Long Mode . 133

Figure 5-21. 4-Kbyte PTE—Long Mode. 133

Figure 5-22. 2-Mbyte Page Translation—Long Mode . 134

Figure 5-23. 2-Mbyte PML4E—Long Mode . 135

Figure 5-24. 2-Mbyte PDPE—Long Mode . 135

Figure 5-25. 2-Mbyte PDE—Long Mode . 135

Figure 5-26. 1-Gbyte Page Translation—Long Mode. 136

Figure 5-27. 1-Gbyte PML4E—Long Mode . 137

Figure 5-28. 1-Gbyte PDPE—Long Mode . 137

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs . 153

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs . 154

Figure 7-1. Processor and Memory System. 162

Figure 7-2. MOESI State Transitions . 170

Figure 7-3. Cache Organization Example . 180

Figure 7-4. MTRR Mapping of Physical Memory . 190

Figure 7-5. Fixed-Range MTRR . 191

Figure 7-6. MTRRphysBasen Register . 193

Figure 7-7. MTRRphysMaskn Register. 193

Figure 7-8. MTRRdefType Register Format . 195

Figure 7-9. MTRR Capability Register Format. 196

Figure 7-10. PAT Register. 198

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs) . 203

Figure 7-12. IORRBasen Register . 205

Figure 7-13. IORRMaskn Register . 206

Figure 7-14. Memory Organization Using Top-of-Memory Registers . 207

xx Figures

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2). 208

Figure 7-16. Encrypted Memory Accesses . 210

Figure 8-1. Control Register 2 (CR2) . 228

Figure 8-2. Selector Error Code. 233

Figure 8-3. Page-Fault Error Code . 233

Figure 8-4. Task Priority Register (CR8) . 237

Figure 8-5. Real-Mode Interrupt Control Transfer . 238

Figure 8-6. Stack After Interrupt in Real Mode. 239

Figure 8-7. Protected-Mode Interrupt Control Transfer . 241

Figure 8-8. Stack After Interrupt to Same Privilege Level . 242

Figure 8-9. Stack After Interrupt to Higher Privilege . 243

Figure 8-10. Privilege-Check Examples for Interrupts . 245

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode. 248

Figure 8-12. Long-Mode Interrupt Control Transfer. 250

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege. 252

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege. 253

Figure 8-15. Long-Mode IST Mechanism. 254

Figure 9-1. MCG_CAP Register . 268

Figure 9-2. MCG_STATUS Register . 269

Figure 9-3. MCG_CTL Register . 270

Figure 9-4. CPU Watchdog Timer Register Format . 270

Figure 9-5. MCi_CTL Register . 273

Figure 9-6. MCi_STATUS Register . 274

Figure 9-7. MCi_MISC1 Addressing . 277

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format) 278

Figure 10-1. Default SMRAM Memory Map . 287

Figure 10-2. SMBASE Register . 287

Figure 10-3. SMM-Revision Identifier . 293

Figure 10-4. SMM_ADDR Register Format . 294

Figure 10-5. SMM_MASK Register Format. 294

Figure 10-6. I/O Instruction Restart Dword. 300

Figure 11-1. SSE Execution Unit State . 307

Figure 11-2. MMX Execution Unit State . 308

 Figures xxi

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 11-3. x87 Execution Unit State . 310

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode) . 312

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes) . 313

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode) . 314

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes) . 315

Figure 11-8. XFEATURE_ENABLED_MASK Register (XCR0) . 318

Figure 11-9. FXSAVE and FXRSTOR Image (64-bit Mode). 323

Figure 11-10. FXSAVE and FXRSTOR Image (Non-64-bit Mode). 324

Figure 12-1. Task-Management Resources . 331

Figure 12-2. Task-Segment Selector . 332

Figure 12-3. TR Format, Legacy Mode. 333

Figure 12-4. TR Format, Long Mode . 334

Figure 12-5. Relationship between the TSS and GDT . 334

Figure 12-6. Legacy 32-bit TSS . 336

Figure 12-7. I/O-Permission Bitmap Example . 339

Figure 12-8. Long Mode TSS Format . 341

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only . 342

Figure 12-10. Privilege-Check Examples for Task Gates . 346

Figure 13-1. Address-Breakpoint Registers (DR0–DR3) . 351

Figure 13-2. Debug-Status Register (DR6) . 352

Figure 13-3. Debug-Control Register (DR7). 353

Figure 13-4. Debug-Control MSR (DebugCtl) . 356

Figure 13-5. Control-Transfer Recording MSRs. 357

Figure 13-6. Performance Counter Format . 365

Figure 13-7. Core Performance Event-Select Register (PerfEvtSeln). 367

Figure 13-8. Northbridge Performance Event-Select Register (NB_PerfEvtSeln) . 369

Figure 13-9. L2 Cache Performance Event-Select Register (L2I_PerfEvtSeln) . 370

Figure 13-10. Time-Stamp Counter (TSC) . 372

Figure 13-11. IBS Fetch Control Register(IbsFetchCtl) . 375

Figure 13-12. IBS Fetch Linear Address Register (IbsFetchLinAd). 376

Figure 13-13. IBS Fetch Physical Address Register (IbsFetchPhysAd) . 377

Figure 13-14. IBS Execution Control Register (IbsOpCtl) . 379

Figure 13-15. IBS Op Linear Address Register (IbsOpRip) . 380

xxii Figures

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-16. IBS Op Data 1 Register (IbsOpData1) . 381

Figure 13-17. IBS Op Data 3 Register (IbsOpData3) . 383

Figure 13-18. IBS Data Cache Linear Address Register (IbsDcLinAd) . 385

Figure 13-19. IBS Data Cache Physical Address Register (IbsDcPhysAd) . 385

Figure 13-20. IBS Branch Target Address Register (IbsBrTarget) . 386

Figure 13-21. Generic Event Record . 391

Figure 13-22. Programmed Value Sample Event Record . 392

Figure 13-23. Instructions Retired Event Record . 393

Figure 13-24. Branch Retired Event Record . 395

Figure 13-25. DCache Miss Event Record . 397

Figure 13-26. CPU Clocks not Halted Event Record . 398

Figure 13-27. CPU Reference Clocks not Halted Event Record. 399

Figure 13-28. Programmed Event Record . 400

Figure 13-29. LWP_CFG — Lightweight Profiling Features MSR. 405

Figure 13-30. LWPCB — Lightweight Profiling Control Block . 412

Figure 13-31. LWPCB Flags . 416

Figure 13-32. LWPCB Filters . 417

Figure 13-33. XSAVE Area for LWP . 421

Figure 15-1. EXITINTINFO for All Intercepts . 457

Figure 15-2. EXITINFO1 for IOIO Intercept . 464

Figure 15-3. EXITINFO1 for SMI Intercept . 470

Figure 15-4. Layout of VMCB Clean Field. 474

Figure 15-5. EVENTINJ Field in the VMCB . 479

Figure 15-6. Host Bridge DMA Checking. 488

Figure 15-7. Format of DEV_OP Register (in PCI Config Space) . 489

Figure 15-8. Format of DEV_CAP Register (in PCI Config Space). 490

Figure 15-9. Format of DEV_BASE_HI[n] Registers. 491

Figure 15-10. Format of DEV_BASE_LO[n] Registers . 491

Figure 15-11. Format of DEV_MAP[n] Registers . 492

Figure 15-12. Address Translation with Traditional Paging . 493

Figure 15-13. Address Translation with Nested Paging . 494

Figure 15-14. SLB Example Layout . 502

Figure 15-15. vAPIC Backing Page Access . 508

 Figures xxiii

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 15-16. Virtual APIC Task Priority Register Synchronization . 512

Figure 15-17. Physical APIC ID Table Entry . 516

Figure 15-18. Physical APIC Table in Memory. 517

Figure 15-19. Logical APIC ID Table Entry . 518

Figure 15-20. Logical APIC ID Table Format, Flat Mode.. 519

Figure 15-21. Logical APIC ID Table Format, Cluster Mode. 520

Figure 15-22. Doorbell Register, MSR C001_011Bh . 523

Figure 15-23. EXITINFO1 . 524

Figure 15-24. EXITINFO2 . 524

Figure 15-25. Layout of VM_CR MSR (C001_0114h) . 526

Figure 15-26. Layout of SMM_CTL MSR (C001_0116h) . 527

Figure 15-27. TSC Ratio MSR (C000_0104h) . 529

Figure 15-28. Guest Data Request. 535

Figure 15-29. EXAMPLE #VC FLOW. 541

Figure 16-1. Block Diagram of a Typical APIC Implementation . 545

Figure 16-2. APIC Base Address Register (MSR 0000_001Bh). 548

Figure 16-3. APIC ID Register (APIC Offset 20h) . 550

Figure 16-4. APIC Version Register (APIC Offset 30h). 550

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h) . 551

Figure 16-6. Extended APIC Control Register (APIC Offset 410h) . 552

Figure 16-7. General Local Vector Table Register Format . 553

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h) . 554

Figure 16-9. Timer Current Count Register (APIC Offset 390h) . 555

Figure 16-10. Timer Initial Count Register (APIC Offset 380h) . 555

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h). 555

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)556

Figure 16-13. Performance Monitor Counter Local Vector Table Register
(APIC Offset 340h)556

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h) . 557

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h). 557

Figure 16-16. APIC Error Status Register (APIC Offset 280h) . 558

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h) . 559

xxiv Figures

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 16-18. Interrupt Command Register (APIC Offset 300h–3010h) . 560

Figure 16-19. Remote Read Register (APIC Offset C0h) . 562

Figure 16-20. Logical Destination Register (APIC Offset D0h) . 563

Figure 16-21. Destination Format Register (APIC Offset E0h) . 564

Figure 16-22. Arbitration Priority Register (APIC Offset 90h). 565

Figure 16-23. Interrupt Request Register (APIC Offset 200h–270h) . 566

Figure 16-24. In Service Register (APIC Offset 100h–170h) . 567

Figure 16-25. Trigger Mode Register (APIC Offset 180h–1F0h) . 567

Figure 16-26. Task Priority Register (APIC Offset 80h). 568

Figure 16-27. Processor Priority Register (APIC Offset A0h) . 569

Figure 16-28. End of Interrupt (APIC Offset B0h) . 570

Figure 16-29. Specific End of Interrupt (APIC Offset 420h) . 571

Figure 16-30. Interrupt Enable Register (APIC Offset 480h–4F0h) . 571

Figure 17-1. P-State Current Limit Register (MSR C001_0061h) . 574

Figure 17-2. P-State Control Register (MSR C001_0062h) . 574

Figure 17-3. P-State Status Register (MSR C001_0063h) . 575

Figure 17-4. Core Performance Boost (MSRC001_0015h) . 576

Figure 17-5. Actual Performance Frequency Count (MSR0000_00E8h) . 577

Figure 17-6. Max Performance Frequency Count (MSR0000_00E7h). 577

Figure 17-7. MPERF Read Only (MSR C000_00E7h) . 578

Tables xxv

24593—Rev. 3.30—September 2018 AMD64 Technology

Tables
Table 1-1. Operating Modes. 11
Table 1-2. Interrupts and Exceptions . 20
Table 2-1. Instructions That Reference RSP . 31
Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size . 32
Table 2-3. Invalid Instructions in 64-Bit Mode . 34
Table 2-4. Invalid Instructions in Long Mode . 35
Table 2-5. Opcodes Reassigned in 64-Bit Mode . 36
Table 2-6. Differences Between Long Mode and Legacy Mode . 39
Table 4-1. Segment Registers. 71
Table 4-2. Descriptor Types . 81
Table 4-3. Code-Segment Descriptor Types . 83
Table 4-4. Data-Segment Descriptor Types . 84
Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode. 85
Table 4-6. System-Segment Descriptor Types—Long Mode . 90
Table 4-7. Descriptor-Entry Field Changes in Long Mode . 94
Table 4-8. Segment Limit Checks in 64-Bit Mode . 114
Table 5-1. Supported Paging Alternatives (CR0.PG=1) . 120
Table 5-2. Physical-Page Protection, CR0.WP=0 . 147
Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access . 148
Table 6-1. System Management Instructions . 149
Table 7-1. Memory Access by Memory Type . 174
Table 7-2. Caching Policy by Memory Type . 174
Table 7-3. Memory Access Ordering Rules . 176
Table 7-4. AMD64 Architecture Cache-Operating Modes . 183
Table 7-5. MTRR Type Field Encodings . 188
Table 7-6. Fixed-Range MTRR Address Ranges. 191
Table 7-7. Combined MTRR and Page-Level Memory Type with Unmodified PAT MSR 197
Table 7-8. PAT Type Encodings . 199
Table 7-9. PAT-Register PA-Field Indexing . 200
Table 7-10. Combined Effect of MTRR and PAT Memory Types . 201
Table 7-11. Serialization Requirements for Changing Memory Types . 202
Table 7-12. Extended Fixed-Range MTRR Type Encodings . 204
Table 8-1. Interrupt Vector Source and Cause . 217
Table 8-2. Interrupt Vector Classification . 218

xxvi Tables

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 8-3. Double-Fault Exception Conditions . 223
Table 8-4. Invalid-TSS Exception Conditions . 224
Table 8-5. Stack Exception Error Codes . 226
Table 8-6. General-Protection Exception Conditions . 226
Table 8-7. Data-Type Alignment . 229
Table 8-8. Simultaneous Interrupt Priorities . 234
Table 8-9. Simultaneous Floating-Point Exception Priorities . 236
Table 8-10. Virtual-8086 Mode Interrupt Mechanisms . 247
Table 8-11. Effect of Instructions that Modify the IF Bit . 260
Table 9-1. CPU Watchdog Timer Time Base . 271
Table 9-2. CPU Watchdog Timer Count Select . 271
Table 9-3. Error Logging Priorities . 272
Table 9-4. Error Scope . 281
Table 10-1. AMD64 Architecture SMM State-Save Area . 288
Table 10-2. Legacy SMM State-Save Area (Not used by AMD64 Architecture) . 291
Table 10-3. SMM Register Initialization . 295
Table 11-1. SSE Subsets - CPUID Feature Identifiers. 304
Table 11-2. Extended Save Area Format . 318
Table 11-3. XRSTOR Hardware-Specified Initial Values . 321
Table 11-4. Deriving FSAVE Tag Field from FXSAVE Tag Field. 327
Table 12-1. Effects of Task Nesting. 347
Table 13-1. Breakpoint-Setting Examples . 358
Table 13-2. Breakpoint Location by Condition . 359
Table 13-3. Host/Guest Only Bits . 367
Table 13-4. Count Control Using CNT_MASK and INV . 368
Table 13-5. Operating-System Mode and User Mode Bits . 368
Table 13-6. EventId Values . 391
Table 13-7. Lightweight Profiling CPUID Values. 402
Table 13-8. LWPCB — Lightweight Profiling Control Block Fields. 413
Table 13-9. LWPCB Filters Fields. 418
Table 13-10. XSAVE Area for LWP Fields. 422
Table 14-1. Initial Processor State . 430
Table 14-2. Initial State of Segment-Register Attributes . 432
Table 14-3. x87 Floating-Point State Initialization . 434
Table 14-4. Processor Operating Modes . 439
Table 14-5. Long-Mode Consistency Checks . 440

Tables xxvii

24593—Rev. 3.30—September 2018 AMD64 Technology

Table 15-1. Guest Exception or Interrupt Types . 457
Table 15-2. EXITINFO1 for MOV CRx . 459
Table 15-3. EXITINFO1 for MOV DRx . 459
Table 15-4. EXITINFO1 for INTn. 459
Table 15-5. EXITINFO1 for INVLPG. 460
Table 15-6. Guest Instruction Bytes. 460
Table 15-7. Instruction Intercepts. 461
Table 15-8. MSR Ranges Covered by MSRPM. 465
Table 15-9. TLB Control Byte Encodings . 476
Table 15-10. Effect of the GIF on Interrupt Handling . 477
Table 15-11. Guest Exception or Interrupt Types . 479
Table 15-12. INIT Handling in Different Operating Modes . 483
Table 15-13. NMI Handling in Different Operating Modes . 483
Table 15-14. SMI Handling in Different Operating Modes . 484
Table 15-15. DEV Capability Block, Overall Layout . 489
Table 15-16. DEV Capability Header (DEV_HDR) (in PCI Config Space) . 489
Table 15-17. Encoding of Function Field in DEV_OP Register . 490
Table 15-18. DEV_CR Control Register . 491
Table 15-19. Combining Guest and Host PAT Types . 499
Table 15-20. Combining PAT and MTRR Types . 499
Table 15-21. Guest vAPIC Register Access Behavior. 509
Table 15-22. Virtual Interrupt Control (VMCB offset 60h). 513
Table 15-23. New VMCB Fields Defined by AVIC . 513
Table 15-24. Physical APIC ID Table Entry Fields . 516
Table 15-25. Logical APIC ID Table Entry Fields . 518
Table 15-26. EXTINFO1 Fields. 524
Table 15-27. EXTINFO2 Fields. 524
Table 15-28. ID Field—IPI Delivery Failure Cause . 525
Table 15-29. EXTINFO1 Fields. 525
Table 15-30. EXTINFO2 Fields. 526
Table 15-31. Encryption Control . 535
Table 15-32. SEV/SME Interaction . 536
Table 15-33. AE Exitcodes. 539
Table 16-1. Interrupt Sources for Local APIC . 546
Table 16-2. APIC Registers . 549
Table 16-3. Divide Values . 555

xxviii Tables

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 16-4. Valid ICR Field Combinations . 562
Table A-1. MSRs of the AMD64 Architecture . 581
Table A-2. System-Software MSR Cross-Reference . 585
Table A-3. Memory-Typing MSR Cross-Reference. 586
Table A-4. Machine-Check MSR Cross-Reference . 589
Table A-5. Software-Debug MSR Cross-Reference . 590
Table A-6. Performance-Monitoring MSR Cross-Reference . 591
Table A-7. Secure Virtual Machine MSR Cross-Reference . 593
Table A-8. System Management Mode MSR Cross-Reference . 594
Table A-9. CPUID Namestring MSRs . 594
Table B-1. VMCB Layout, Control Area . 595
Table B-2. VMCB Layout, State Save Area . 600
Table B-3. Swap Types . 603
Table B-4. VMCB Layout, State Save Area for SEV-ES . 603
Table C-1. SVM Intercept Codes . 607

xxix

24593—Rev. 3.30—September 2018 AMD64 Technology

Revision History

Date Revision Description

September 2018 3.30

Modified Section 7.4
Modified Section 7.6.4
Modified Section 8.5.2
Modified Section 9.2
Corrected Figure 9-4
Corrected Table 9-1
Modified Section 9.3.2
Corrected Figure 9-6
Corrected Table 9-4
Modified Section 14.2.3
Modified Section 14.4
Modified Section 15.6
Modified Section 15.7
Modified Section 15.34.9
Modified Section 15.34.10
Modified Section 15.35.2
Corrected Table B-4 in Appendix B

December 2017 3.29

Modified Sections 7.10.1 and 7.10.4.
Modified Sections 15.34.1, 15.34.7.
Added new Section 15.34.10.
Modified Section 15.35.10.
Modified Appendix A, Table A-7.

March 2017 3.28

Modified CR4 Register, Section 3.1.3.
Removed UD2 in Table 6-1.
Added new bullet in Section 7.1.1.
Modified Note in Table 7-1.
Added new Section 7.4.1.
Clarified Self Modifying Code in Section 7.6.1.
Added UD0 and UD1 instructions in Section 8.2.7.
Added Instructions Retired Performance counter in Section 13.1.1.
Modified Table in Section 15.34.9.

xxx

AMD64 Technology 24593—Rev. 3.30—September 2018

December 2016 3.27

Added Resume Flag (RF) Bit in Section 3.1.6, ”RFLAGS Register,” on page
51.
Added Tom2ForceMemTypeWB in Section 3.2.1, ”System Configuration
Register (SYSCFG),” on page 59.
Clarified SYSCALL and SYSRET in Section 6.1.1, ”SYSCALL and
SYSRET,” on page 152.
Added Section 7.3.2, ”Access Atomicity,” on page 172.
Updated Note b in Table 7-11 on page 202.
Modified Table 8-1, “Interrupt Vector Source and Cause”‚ on page 217.
Modified Table 8-2, “Interrupt Vector Classification”‚ on page 218.
Added Section 8.2.20, ”#VC -- VMM Communication Exception (Vector
29),” on page 231.
Added a Note in Chapter 10, "System-Management Mode," on page 285.
Added Section 10.5, ”Multiprocessor Considerations,” on page 301.
Updated CPUID 8000_001F[EAX] and added CPUID
8000_001F[EDX] in Section 15.34.1, ”Determining Support for
SEV,” on page 532.
Added new Section 15.35, ”Encrypted State (SEV-ES),” on page 537.
Clarified TSC Ratio MSR in Section 15.30.5 ”TSC Ratio MSR
(C000_0104h)” on page 528.
Modified Appendix B, ”Layout of VMCB” on page 595.
Added Table B-3, “Swap Types”‚ on page 603.
Added Codes 8Fh, 90h-9Fh, and 403h in Table C-1, “SVM Intercept
Codes”‚ on page 607.

April 2016 3.26

Clarification on loading a null selector into FS or GS added in Section
4.5.3, ”Segment Registers in 64-Bit Mode,” on page 72
Translation table diagrams corrected for definition of bit 8 in Section 5.5,
”Translation-Lookaside Buffer (TLB),” on page 141
CR0.CD implementation-dependent behavior noted in Section 7.6.2,
”Cache Control Mechanisms,” on page 182
Added clarification on IST usage in Section 8.9.4, ”Interrupt-Stack Table,”
on page 253.
Added new Section 7.10, ”Secure Memory Encryption,” on page 208.
Added guideline for secure AP startup in Section 15.27.8, ”Secure
Multiprocessor Initialization,” on page 504
Added TLB maintenance requirement for multiprocessor VM's in Section
15.29.2.2, ”VMCB Changes in Support of AVIC,” on page 512.
Added new Section 15.34, ”Secure Encrypted Virtualization,” on page
532

Date Revision Description

xxxi

24593—Rev. 3.30—September 2018 AMD64 Technology

June 2015 3.25
Added new section 15.33 Nested Virtualization for coverage of VMSAVE
and VMLOAD and Virtual GIF.
Various minor edits.

October 2013 3.24

Added description of Supervisor-Mode Execution Prevention. See
Section 5.6.5 ”Supervisor-Mode Execution Prevention (CR4.SMEP) Bit”
on page 146.
Indicated the deprecation of the Processor Feedback Interface. See
Section 17.4, ”Processor Feedback Interface,” on page 578.
Added Section 17.5, ”Processor Core Power Reporting,” on page 578.

May 2013 3.23

Clarified guidelines for implementing cross-modifying code in the sub-
section ”Cross-Modifying Code” on page 181.
Added AVIC description. See Section 15.29, ”Advanced Virtual Interrupt
Controller,” on page 506.
Added L2I PMC architecture definition. See Section 13.2, ”Performance
Monitoring Counters,” on page 364.

September 2012 3.22

Clarified processor behavior on write of EFER[LMA] bit in Section 3.1.7
”Extended Feature Enable Register (EFER)” on page 55.
Clarified difference between cold reset and warm reset in Section 9.3,
”Machine Check Architecture MSRs,” on page 267.
Added information on FFXSR feature bit to Table 11-1 on page 304.
Clarified SMM code responsibility to manage VMCB clean bits. See
Section 15.15.2, ”Guidelines for Clearing VMCB Clean Bits,” on page
473.
Added a note to Table 15-9 on page 476 to indicate that all encodings of
TLB_CONTROL not defined are reserved.
Corrected information concerning the assignment of logical APIC IDs in
Section 16.6.1, ”Receiving System and IPI Interrupts,” on page 563.

March 2012 3.21

Added definition of processor feedback interface—frequency sensitivity
monitor (See Section 17.4, ”Processor Feedback Interface,” on page
578)
Added Instruction-Based Sampling in a new section of Chapter 13 (See
Section 13.3, ”Instruction-Based Sampling,” on page 373.)
Reworked Introduction and first section of Chapter 9, "Machine Check
Architecture," on page 263 and added deferred error handling.
Added description of CR4[FSGSBASE] bit. (See Section 3.1.3, ”CR4
Register,” on page 47.)
Added references to the RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions in discussion of FS and GS segment
descriptors. (See ”FS and GS Registers in 64-Bit Mode” on page 72)
Added Section 6.3.2, ”Accessing Segment Register Hidden State,” on
page 157.

Date Revision Description

xxxii

AMD64 Technology 24593—Rev. 3.30—September 2018

December 2011 3.20

Clarified description of the Cache Disable (CD) memory type in Section
7.4 ”Memory Types” on page 172.
Added caveat: an overflow of either APERF or MPERF can invalidate the
effective frequency calculation. See Section 17.3, ”Determining
Processor Effective Frequency,” on page 576.
Other minor editorial changes.

September 2011 3.19

Added XSAVEOPT to discussions on XSAVE.
Corrections to discussion on multiprocessor memory access ordering in
Chapter 7.
Added discussion of extended core and northbridge performance
counters and feature indicators to Chapter 13.
Added Lightweight Profiling (LWP) to Chapter 13.
Added Global Timestamp Counter, Continuous Mode to LWP description
Clarification: Function of pin A20M# is only defined in real mode.
Statement added to Section 1.2.4, ”Real Addressing,” on page 10.
Eliminated hardware P-state references

May 2011 3.18

Added information for OSXSAVE and XSAVE features.
Added Cache Topology, Pause Filter Threshold, and XSETBV
information.
Updated TSC ratio information.
Corrected description of FXSAVE/FXRSTOR exception behavior when
CR0.EM=1

June 2010 3.17 Replaced missing figures in Chapter 8, "Exceptions and Interrupts," on
page 213.

June 2010 3.16

Updated information on performance monitoring counters in
”Performance-Monitoring Counter Enable (PCE)” on page 49 and 6.2.5,
”Accessing Model-Specific Registers” on page 156.
Revised Table 4-1, ”Segment Registers” on page 71.
Add flush by ASID information to section 15.16, ”TLB Control” on page
475.
Added information on VMCB clean field to Chapter15, ”Secure Virtual
Machine” on page 447 and Appendix B, ”Layout of VMCB” on page 595.
Added section 15.10, ”IOIO Intercepts” on page 463.
Added section 15.30.5, ”TSC Ratio MSR (C000_0104h)” on page 528.
Added section 17.2, ”Core Performance Boost” on page 575.

Date Revision Description

xxxiii

24593—Rev. 3.30—September 2018 AMD64 Technology

November 2009 3.15

Added section 7.5, ”Buffering and Combining Memory Writes” on page
177
Added MFENCE to list of ”Serializing Instructions” on page 186.
Updated section 7.6.1, ”Cache Organization and Operation” on page
179.
Updated Table 7-3, “Memory Access Ordering Rules”‚ on page 176 and
notes.
Updated 7.4, ”Memory Types” on page 172.
Clarified 5.5.2, ”TLB Management” on page 142.
Added ”Invalidation of Table Entry Upgrades.” on page 143.
Updated ”Speculative Caching of Address Translations” on page 143.
Update ”Handling of D-Bit Updates” on page 144.
Revised and updated section 7.2, ”Multiprocessor Memory Access
Ordering” on page 166 ff.
Added information on long mode segment-limit checks in ”Extended
Feature Enable Register (EFER)” on page 56table on page 56 and ”Long
Mode Segment Limit Enable (LMSLE) bit” on page 57 on page 57.
Added discussion of ”Data Limit Checks in 64-bit Mode” on page 114on
page 114.
Updated Table 6-1, “System Management Instructions”‚ on page 149.
Updated ”Canonicalization and Consistency Checks” on page 453on
page 453.
Added information about the next sequential instruction pointer (nRIP) in
15.7.1, ”State Saved on Exit” on page 456.
Updated priority definition of PAUSE instruction intercept in Table 15-7,
“Instruction Intercepts”‚ on page 461.
Added nRIP field to Table B-1, “VMCB Layout, Control Area”‚ on
page 595.
Clarified information on ICEBP event injection, on page 479.
Deleted erroneous statement concerning the operation of the General
Local Vector Table register Mask bit in section 16.4.
Clarified the description of the Interrupt Command Register Delivery
Status bit in section ”Interprocessor Interrupts (IPI)” on page 559on page
559.

Date Revision Description

xxxiv

AMD64 Technology 24593—Rev. 3.30—September 2018

September
2007 3.14

Added information on ”Speculative Caching of Address Translations,”
”Caching of Upper Level Translation Table Entries,” ”Use of Cached
Entries When Reporting a Page Fault Exception,” ”Use of Cached
Entries When Reporting a Page Fault Exception,” ”Handling of D-Bit
Updates,” ”Invalidation of Cached Upper-level Entries by INVLPG” on
page 144 and ”Handling of PDPT Entries in PAE Mode” on page 144to
section 5.5.2, ”TLB Management” on page 142.
Added 15.21.7, ”Interrupt Masking in Local APIC” on page 482.
Added 16.3.6, ”Extended APIC Control Register” on page 551; clarified
the use of the ICR DS bit in 16.5, ”Interprocessor Interrupts (IPI)” on
page 559.
Added minor clarifications and corrected typographical and formatting
errors.

July 2007 3.13

Added 5.3.5, ”1-Gbyte Page Translation” on page 135.
Added 7.2, ”Multiprocessor Memory Access Ordering” on page 166
Added divide-by-zero exception to Table 8-8, “Simultaneous Interrupt
Priorities”‚ on page 234.
Added information on ”CPU Watchdog Timer Register” on page 270and
”Machine-Check Miscellaneous-Error Information Register
0(MCi_MISC0)” on page 276to Chapter 9.
Added SSE4A support to Chapter 11, ”SSE, MMX, and x87
Programming” on page 303.
Added Monitor and MWAIT intercept information to section 15.9,
”Instruction Intercepts” on page 461 and reorganized intercept
information; clarified 15.16.1, ”TLB Flush” on page 475.
Added Monitor and MWAIT intercepts to tables B-1, ”VMCB Layout,
Control Area” on page 595 and C-1, ”SVM Intercept Codes” on page 607.
Added Chapter 16, ”Advanced Programmable Interrupt Controller
(APIC)” on page 545, Chapter 17, ”OS-Visible Workaround Information”
on page 515, Chapter 17, ”Hardware Performance Monitoring and
Control” on page 573.
Added Table A-7, “Secure Virtual Machine MSR Cross-Reference”‚ on
page 593.
Added minor clarifications and corrected typographical and formatting
errors.

September
2006 3.12 Added numerous minor clarifications.

December 2005 3.11 Added Chapter 15, Secure Virtual Machine. Incorporated numerous
factual corrections and updates.

February 2005 3.10

Corrected Table 8-6, “General-Protection Exception Conditions”‚ on
page 226. Added SSE3 information. Clarified and corrected information
on the CPUID instruction and feature identification. Added information on
the RDTSCP instruction. Clarified information about MTRRs and PATs in
multiprocessing systems.

Date Revision Description

xxxv

24593—Rev. 3.30—September 2018 AMD64 Technology

September
2003 3.09 Corrected numerous minor typographical errors.

April 2003 3.08

Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor
errors of omission. Documentation of CR0.NW bit has been corrected.
Several register diagrams and figure labels have been corrected.
Description of shared cache lines has been clarified in 7.3, ”Memory
Coherency and Protocol” on page 169.

September
2002 3.07 Made numerous small grammatical changes and factual clarifications.

Added Revision History.

Date Revision Description

xxxvi

AMD64 Technology 24593—Rev. 3.30—September 2018

xxxvii

24593—Rev. 3.30—September 2018 AMD64 Technology

Preface

About This Book
This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Audience
This volume (Volume 2) is intended for programmers writing operating systems, loaders, linkers,
device drivers, or system utilities. It assumes an understanding of AMD64 architecture application-
level programming as described in Volume 1.

This volume describes the AMD64 architecture’s resources and functions that are managed by system
software, including operating-mode control, memory management, interrupts and exceptions, task and
state-change management, system-management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1. Details about each instruction are
described in Volumes 3, 4, and 5.

Organization
This volume begins with an overview of system programming and differences between the x86 and
AMD64 architectures. This is followed by chapters that describe the following details of system
programming:
• System Resources—The system registers and processor ID (CPUID) functions.
• Segmented Virtual Memory—The segmented-memory models supported by the architecture and

their associated data structures and protection checks.
• Page Translation and Protection—The page-translation functions supported by the architecture

and their associated data structures and protection checks.

Title Order No.

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

xxxviii

AMD64 Technology 24593—Rev. 3.30—September 2018

• System-Management Instructions—The instructions used to manage system functions.
• Memory System—The memory-system hierarchy and its resources and protocols, including

memory-characterization, caching, and buffering functions.
• Exceptions and Interrupts—Details about the types and causes of exceptions and interrupts, and

the methods of transferring control during these events.
• Machine-Check Mechanism—The resources and functions that support detection and handling of

machine-check errors.
• System-Management Mode—The resources and functions that support system-management mode

(SMM), including power-management functions.
• SSE, MMX, and x87 Programming—The resources and functions that support use (by application

software) and state-saving (by the operation system) of the 256-bit media, 128-bit media, 64-bit
media, and x87 floating-point instructions.

• Multiple-Processor Management—The features of the instruction set and the system resources and
functions that support multiprocessing environments.

• Debug and Performance Resources—The system resources and functions that support software
debugging and performance monitoring.

• Legacy Task Management—Support for the legacy hardware multitasking functions, including
register resources and data structures.

• Processor Initialization and Long-Mode Activation—The methods by which system software
initializes and changes operating modes.

• Mixing Code Across Operating Modes—Things to remember when running programs in different
operating modes.

• Secure Virtual Machine—The system resources that support virtualization development and
deployment.

There are appendices describing details of model-specific registers (MSRs) and machine-check
implementations. Definitions assumed throughout this volume are listed below. The index at the end of
this volume cross-references topics within the volume. For other topics relating to the AMD64
architecture, see the tables of contents and indexes of the other volumes.

Conventions and Definitions
The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xlix for further information about the legacy x86 architecture. Finally,
the Registers section lists the registers which are a part of the system programming model.

xxxix

24593—Rev. 3.30—September 2018 AMD64 Technology

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a 4-bit value.

F0EA_0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]
Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “_RRR” notation is followed by
“_xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CR0–CR4
A register range, from register CR0 through CR4, inclusive, with the low-order register first.

CR0[PE], CR0.PE
Notation for referring to a field within a register—in this case, the PE field of the CR0 register.

CR0[PE] = 1, CR0.PE = 1
The PE field of the CR0 register is set (contains the value 1).

EFER[LME] = 0, EFER.LME = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:SI
A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DS in this example) is combined with the offset contained in the second register (SI in this
example) to form a real or virtual address.

xl

AMD64 Technology 24593—Rev. 3.30—September 2018

RFLAGS[13:12]
A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

absolute
Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

ASID
Address space identifier.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct
Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

xli

24593—Rev. 3.30—September 2018 AMD64 Technology

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement
A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size
The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

exception
An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

GIF
Global interrupt flag.

GPA
Guest physical address. In a virtualized environment, the page tables maintained by the guest
operating system provide the translation from the linear (virtual) address to the guest physical

xlii

AMD64 Technology 24593—Rev. 3.30—September 2018

address. Nested page tables define the translation of the GPA to the host physical address (HPA).
See SPA and HPA.

HPA
Host physical address. The address space owned by the virtual machine monitor. In a virtualized
environment, nested page translation tables controlled by the VMM provide the translation from
the guest physical address to the host physical address. See GPA.

IDT
Interrupt descriptor table.

IGN
Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xlix for descriptions of the legacy
x86 architecture.

legacy mode
An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode
An operating mode unique to the AMD64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

xliii

24593—Rev. 3.30—September 2018 AMD64 Technology

lsb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1 in a system register, a general-protection
exception (#GP) occurs; if in a translation table entry, a reserved-bit page fault exception (#PF)
will occur if the hardware attempts to use the entry for address translation. See reserved.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

xliv

AMD64 Technology 24593—Rev. 3.30—September 2018

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Value returned on a read is always zero (0) regardless of what was previously written. See
reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative
Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.
If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.
Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

xlv

24593—Rev. 3.30—September 2018 AMD64 Technology

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SPA
System physical address. The address directly used to address system memory. Under SVM, also
known as the host physical address. See HPA.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

SVM
Secure virtual machine. AMD’s virtualization architecture. SVM is defined in Chapter 15 on
page 447.

System software
Privileged software that owns and manages the hardware resources of a system after initialization
by system firmware and controls access to these resources. In a non-virtualized environment,
system software is provided by the operating system. In a virtualized environment, system
software is largely equivalent to the virtual machine monitor (VMM), also commonly known as
the hypervisor.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single data
object. Most of the SSE and 64-bit media instructions use vectors as operands.
(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

xlvi

AMD64 Technology 24593—Rev. 3.30—September 2018

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B–R15B registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare rAX–rSP.

EFER
Extended features enable register.

xlvii

24593—Rev. 3.30—September 2018 AMD64 Technology

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W registers, or the 32-bit R8D–R15D
registers, or the 64-bit R8–R15 registers.

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

xlviii

AMD64 Technology 24593—Rev. 3.30—September 2018

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register (CR8), a new register introduced in the AMD64 architecture to speed
interrupt management.

xlix

24593—Rev. 3.30—September 2018 AMD64 Technology

TR
Task register.

YMM/XMM
Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scala and vector operands used by the SSE instructions.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Related Documents
• Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,

1995.
• Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
• AMD, BIOS and Kernel Developer’s Guide (BKDG) for particular hardware implementations of

older families of the AMD64 architecture.
• AMD, Processor Programming Reference (PPR) for particular hardware implementations of

newer families of the AMD64 architecture.
• AMD, AMD I/O Virtualization Technology (IOMMU) Specification, Revision 2.2 or later; order

number 48882.
• AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.
• Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New

York, 1995.
• Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,

1992.
• Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,

Macmillan Publishing Co., New York, 1994.
• Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,

Prentice-Hall, Englewood Cliffs, NJ, 1995.
• Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.
• Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest

McGraw-Hill, 1993.
• Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.
• Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and

Technologies, Inc., San Jose, 1992.

l

AMD64 Technology 24593—Rev. 3.30—September 2018

• John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.
• Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,

1995.
• Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.
• Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,

TX, 1996.
• Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.
• Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,

NY, 1991.
• William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New

York, 1991.
• Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.
• John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,

San Mateo, CA, 1996.
• Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.
• Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo

Park, CA, 1997.
• IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,

1993.
• IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex

Junction, VT, 1995.
• IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,

VT, 1995.
• IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,

1994.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point

Arithmetic, ANSI/IEEE Std 754-1985.
• Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-Independent Floating-

Point Arithmetic, ANSI/IEEE Std 854-1987.
• Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,

Prentice-Hall, Englewood Cliffs, NJ, 1997.
• Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.
• Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel

Pentium, Oxford University Press, New York, 1999.
• Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &

Sons, New York, 1987.

li

24593—Rev. 3.30—September 2018 AMD64 Technology

• NexGen Inc., Nx586TM Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
• NexGen Inc., Nx686TM Processor Data Book, NexGen Inc., Milpitas, CA, 1994.
• Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium® III,

www.x86.org/articles/sse_pt1/ simd1.htm, June, 2000.
• Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,

Redmond, WA, 1993.
• PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
• PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.
• Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,

New York, 1993.
• Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite

class, 1992.
• Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.
• SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson

Corporation, 1995.
• Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
• John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
• Web sites and newsgroups:

- www.amd.com
- news.comp.arch
- news.comp.lang.asm.x86
- news.intel.microprocessors
- news.microsoft

lii

AMD64 Technology 24593—Rev. 3.30—September 2018

System-Programming Overview 1

24593—Rev. 3.30—September 2018 AMD64 Technology

1 System-Programming Overview

This entire volume is intended for system-software developers—programmers writing operating
systems, loaders, linkers, device drivers, or utilities that require access to system resources. These
system resources are generally available only to software running at the highest-privilege level
(CPL=0), also referred to as privileged software. Privilege levels and their interactions are fully
described in “Segment-Protection Overview” on page 95.

This chapter introduces the basic features and capabilities of the AMD64 architecture that are
available to system-software developers. The concepts include:
• The supported address forms and how memory is organized.
• How memory-management hardware makes use of the various address forms to access memory.
• The processor operating modes, and how the memory-management hardware supports each of

those modes.
• The system-control registers used to manage system resources.
• The interrupt and exception mechanism, and how it is used to interrupt program execution and to

report errors.
• Additional, miscellaneous features available to system software, including support for hardware

multitasking, reporting machine-check exceptions, debugging software problems, and optimizing
software performance.

Many of the legacy features and capabilities are enhanced by the AMD64 architecture to support 64-
bit operating systems and applications, while providing backward-compatibility with existing
software.

1.1 Memory Model
The AMD64 architecture memory model is designed to allow system software to manage application
software and associated data in a secure fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The translation mechanisms allow system
software to relocate applications and data transparently, either anywhere in physical-memory space, or
in areas on the system hard drive managed by the operating system.

In long mode, the AMD64 architecture implements a flat-memory model. In legacy mode, the
architecture implements all legacy memory models.

2 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

1.1.1 Memory Addressing

The AMD64 architecture supports address relocation. To do this, several types of addresses are needed
to completely describe memory organization. Specifically, four types of addresses are defined by the
AMD64 architecture:
• Logical addresses
• Effective addresses, or segment offsets, which are a portion of the logical address.
• Linear (virtual) addresses
• Physical addresses

Logical Addresses. A logical address is a reference into a segmented-address space. It is comprised
of the segment selector and the effective address. Notationally, a logical address is represented as
Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or local descriptor table. The specified
descriptor-table entry describes the segment location in virtual-address space, its size, and other
characteristics. The effective address is used as an offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far pointers are used in software addressing
when the segment reference must be explicit (i.e., a reference to a segment outside the current
segment).

Effective Addresses. The offset into a memory segment is referred to as an effective address (see
“Segmentation” on page 5 for a description of segmented memory). Effective addresses are formed by
adding together elements comprising a base value, a scaled-index value, and a displacement value.
The effective-address computation is represented by the equation
Effective Address = Base + (Scale x Index) + Displacement

The elements of an effective-address computation are defined as follows:
• Base—A value stored in any general-purpose register.
• Scale—A positive value of 1, 2, 4, or 8.
• Index—A two’s-complement value stored in any general-purpose register.
• Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement value encoded as part of the

instruction.

Effective addresses are often referred to as near pointers. A near pointer is used when the segment
selector is known implicitly or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a processor implementation does not support
the full 64-bit virtual-address space, the effective address must be in canonical form (see “Canonical
Address Form” on page 4).

System-Programming Overview 3

24593—Rev. 3.30—September 2018 AMD64 Technology

Linear (Virtual) Addresses. The segment-selector portion of a logical address specifies a segment-
descriptor entry in either the global or local descriptor table. The specified segment-descriptor entry
contains the segment-base address, which is the starting location of the segment in linear-address
space. A linear address is formed by adding the segment-base address to the effective address
(segment offset), which creates a reference to any byte location within the supported linear-address
space. Linear addresses are often referred to as virtual addresses, and both terms are used
interchangeably throughout this document.
Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a segment-base address is treated as 0. In
this case, the linear address is identical to the effective address. In long mode, linear addresses must be
in canonical address form, as described in “Canonical Address Form” on page 4.

Physical Addresses. A physical address is a reference into the physical-address space, typically
main memory. Physical addresses are translated from virtual addresses using page-translation
mechanisms. See “Paging” on page 7 for information on how the paging mechanism is used for
virtual-address to physical-address translation. When the paging mechanism is not enabled, the virtual
(linear) address is used as the physical address.

1.1.2 Memory Organization

The AMD64 architecture organizes memory into virtual memory and physical memory. Virtual-
memory and physical-memory spaces can be (and usually are) different in size. Generally, the virtual-
address space is much larger than physical-address memory. System software relocates applications
and data between physical memory and the system hard disk to make it appear that much more
memory is available than really exists. System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access locations within the virtual-memory
space. System software is responsible for managing the relocation of applications and data in virtual-
memory space using segment-memory management. System software is also responsible for mapping
virtual memory to physical memory through the use of page translation. The AMD64 architecture
supports different virtual-memory sizes using the following address-translation modes:
• Protected Mode—This mode supports 4 gigabytes of virtual-address space using 32-bit virtual

addresses.
• Long Mode—This mode supports 16 exabytes of virtual-address space using 64-bit virtual

addresses.

4 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Physical Memory. Physical addresses are used to directly access main memory. For a particular
computer system, the size of the available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of physical memory accessible depends on the
processor implementation and on the address-translation mode. The AMD64 architecture supports
varying physical-memory sizes using the following address-translation modes:
• Real-Address Mode—This mode, also called real mode, supports 1 megabyte of physical-address

space using 20-bit physical addresses. This address-translation mode is described in “Real
Addressing” on page 10. Real mode is available only from legacy mode (see “Legacy Modes” on
page 14).

• Legacy Protected Mode—This mode supports several different address-space sizes, depending on
the translation mechanism used and whether extensions to those mechanisms are enabled.
Legacy protected mode supports 4 gigabytes of physical-address space using 32-bit physical
addresses. Both segment translation (see “Segmentation” on page 5) and page translation (see
“Paging” on page 7) can be used to access the physical address space, when the processor is
running in legacy protected mode.
When the physical-address size extensions are enabled (see “Physical-Address Extensions (PAE)
Bit” on page 121), the page-translation mechanism can be extended to support 52-bit physical
addresses. 52-bit physical addresses allow up to 4 petabytes of physical-address space to be
supported. (Currently, the AMD64 architecture supports 40-bit addresses in this mode, allowing
up to 1 terabyte of physical-address space to be supported.

• Long Mode—This mode is unique to the AMD64 architecture. This mode supports up to 4
petabytes of physical-address space using 52-bit physical addresses. Long mode requires the use of
page-translation and the physical-address size extensions (PAE).

1.1.3 Canonical Address Form

Long mode defines 64 bits of virtual-address space, but processor implementations can support less.
Although some processor implementations do not use all 64 bits of the virtual address, they all check
bits 63 through the most-significant implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address form. In most cases, a virtual-memory
reference that is not in canonical form causes a general-protection exception (#GP) to occur. However,
implied stack references where the stack address is not in canonical form causes a stack exception
(#SS) to occur. Implied stack references include all push and pop instructions, and any instruction
using RSP or RBP as a base register.

By checking canonical-address form, the AMD64 architecture prevents software from exploiting
unused high bits of pointers for other purposes. Software complying with canonical-address form on a
specific processor implementation can run unchanged on long-mode implementations supporting
larger virtual-address spaces.

System-Programming Overview 5

24593—Rev. 3.30—September 2018 AMD64 Technology

1.2 Memory Management
Memory management consists of the methods by which addresses generated by software are translated
by segmentation and/or paging into addresses in physical memory. Memory management is not visible
to application software. It is handled by the system software and processor hardware.

1.2.1 Segmentation

Segmentation was originally created as a method by which system software could isolate software
processes (tasks), and the data used by those processes, from one another in an effort to increase the
reliability of systems running multiple processes simultaneously.

The AMD64 architecture is designed to support all forms of legacy segmentation. However, most
modern system software does not use the segmentation features available in the legacy x86
architecture. Instead, system software typically handles program and data isolation using page-level
protection. For this reason, the AMD64 architecture dispenses with multiple segments in 64-bit mode
and, instead, uses a flat-memory model. The elimination of segmentation allows new 64-bit system
software to be coded more simply, and it supports more efficient management of multi-processing than
is possible in the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and legacy mode. Here, segmentation is a form
of base memory-addressing that allows software and data to be relocated in virtual-address space off
of an arbitrary base address. Software and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86 architecture provides several methods of
restricting access to segments from other segments so that software and data can be protected from
interfering with each other.

In compatibility and legacy modes, up to 16,383 unique segments can be defined. The base-address
value, segment size (called a limit), protection, and other attributes for each segment are contained in a
data structure called a segment descriptor. Collections of segment descriptors are held in descriptor
tables. Specific segment descriptors are referenced or selected from the descriptor table using a
segment selector register. Six segment-selector registers are available, providing access to as many as
six segments at a time.

Figure 1-1 on page 6 shows an example of segmented memory. Segmentation is described in
Chapter 4, “Segmented Virtual Memory.”

6 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the flat-memory model. In the legacy
flat-memory model, all segment-base addresses have a value of 0, and the segment limits are fixed at
4 Gbytes. Segmentation cannot be disabled but use of the flat-memory model effectively disables
segment translation. The result is a virtual address that equals the effective address. Figure 1-2 on
page 7 shows an example of the flat-memory model.

Software running in 64-bit mode automatically uses the flat-memory model. In 64-bit mode, the
segment base is treated as if it were 0, and the segment limit is ignored. This allows an effective
addresses to access the full virtual-address space supported by the processor.

Effective Address

Selectors

Base

Limit

Base

Limit

Descriptor Table

Virtual Address
Space

Virtual Address

Segment

Segment

DS

ES

FS

GS

CS

SS

System-Programming Overview 7

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 1-2. Flat Memory Model

1.2.2 Paging

Paging allows software and data to be relocated in physical-address space using fixed-size blocks
called physical pages. The legacy x86 architecture supports three different physical-page sizes of
4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment translation, access to physical pages by lesser-
privileged software can be restricted.

Page translation uses a hierarchical data structure called a page-translation table to translate virtual
pages into physical-pages. The number of levels in the translation-table hierarchy can be as few as one
or as many as four, depending on the physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must be aligned on 4-Kbyte, 2-Mbyte, or 4-
Mbyte boundaries, depending on the physical-page size.

Each table in the translation hierarchy is indexed by a portion of the virtual-address bits. The entry
referenced by the table index contains a pointer to the base address of the next-lower-level table in the
translation hierarchy. In the case of the lowest-level table, its entry points to the physical-page base
address. The physical page is then indexed by the least-significant bits of the virtual address to yield
the physical address.

Figure 1-3 on page 8 shows an example of paged memory with three levels in the translation-table
hierarchy. Paging is described in Chapter 5, “Page Translation and Protection.”

513-202.eps

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

8 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page translation enabled.

1.2.3 Mixing Segmentation and Paging

Memory-management software can combine the use of segmented memory and paged memory.
Because segmentation cannot be disabled, paged-memory management requires some minimum
initialization of the segmentation resources. Paging can be completely disabled, so segmented-
memory management does not require initialization of the paging resources.

Segments can range in size from a single byte to 4 Gbytes in length. It is therefore possible to map
multiple segments to a single physical page and to map multiple physical pages to a single segment.
Alignment between segment and physical-page boundaries is not required, but memory-management
software is simplified when segment and physical-page boundaries are aligned.

513-203.eps

Page Translation Tables

Physical Address
Space

Physical Address

Page Table Base Address

Virtual Address

Physical Page

Table 3Table 2Table 1

System-Programming Overview 9

24593—Rev. 3.30—September 2018 AMD64 Technology

The simplest, most efficient method of memory management is the flat-memory model. In the flat-
memory model, all segment base addresses have a value of 0 and the segment limits are fixed at 4
Gbytes. The segmentation mechanism is still used each time a memory reference is made, but because
virtual addresses are identical to effective addresses in this model, the segmentation mechanism is
effectively ignored. Translation of virtual (or effective) addresses to physical addresses takes place
using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat, paged-memory model for memory
management. The 4 Gbyte segment limit is ignored in 64-bit mode. Figure 1-4 shows an example of
this model.

Figure 1-4. 64-Bit Flat, Paged-Memory Model

513-204.eps

Physical Address
Space

Page Frame

Physical Address

Page Translation Tables

Page Table Base Address

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

10 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

1.2.4 Real Addressing

Real addressing is a legacy-mode form of address translation used in real mode. This simplified form
of address translation is backward compatible with 8086-processor effective-to-physical address
translation. In this mode, 16-bit effective addresses are mapped to 20-bit physical addresses, providing
a 1-Mbyte physical-address space.

Segment selectors are used in real-address translation, but not as an index into a descriptor table.
Instead, the 16-bit segment-selector value is shifted left by 4 bits to form a 20-bit segment-base
address. The 16-bit effective address is added to this 20-bit segment base address to yield a 20-bit
physical address. If the sum of the segment base and effective address carries over into bit 20, that bit
can be optionally truncated to mimic the 20-bit address wrapping of the 8086 processor by using the
A20M# input signal to mask the A20 address bit.

A20 address bit masking should only be used real mode (see next section for information on real
mode). Use in other modes may result in address translation errors.

Real-address translation supports a 1-Mbyte physical-address space using up to 64K segments aligned
on 16-byte boundaries. Each segment is exactly 64 Kbytes long. Figure 1-5 shows an example of real-
address translation.

Figure 1-5. Real-Address Memory Model

513-205.eps

Effective Address

Selectors

+

0000 Effective Address 0000Selector

Physical Address

019019

019

015

DS

ES

FS

GS

CS

SS

System-Programming Overview 11

24593—Rev. 3.30—September 2018 AMD64 Technology

1.3 Operating Modes
The legacy x86 architecture provides four operating modes or environments that support varying
forms of memory management, virtual-memory and physical-memory sizes, and protection:
• Real Mode.
• Protected Mode.
• Virtual-8086 Mode.
• System Management Mode.

The AMD64 architecture supports all these legacy modes, and it adds a new operating mode called
long mode. Table 1-1 shows the differences between long mode and legacy mode. Software can move
between all supported operating modes as shown in Figure 1-6 on page 12. Each operating mode is
described in the following sections.

Table 1-1. Operating Modes

Mode
System

Software
Required

Application
Recompile
Required

Defaults1

Register
Extensions2

Maximum
GPR

Width
(bits)

 Address
Size
(bits)

Operand
Size
(bits)

Long
Mode3

64-Bit
Mode New

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no 32
16 16

Legacy
Mode

Protected
Mode Legacy

32-bit OS
no

32 32

no

32
16 16

Virtual-8086
Mode 16 16 32

Real Mode
Legacy

16-bit OS
Note:

1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions include access to the upper eight general-purpose and YMM/XMM registers, uniform access

to lower 8 bits of all GPRs, and access to the upper 32 bits of the GPRs.
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

12 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 1-6. Operating Modes of the AMD64 Architecture

1.3.1 Long Mode

Long mode consists of two submodes: 64-bit mode and compatibility mode. 64-bit mode supports
several new features, including the ability to address 64-bit virtual-address space. Compatibility mode
provides binary compatibility with existing 16-bit and 32-bit applications when running on 64-bit
system software.

Throughout this document, references to long mode refer collectively to both 64-bit mode and
compatibility mode. If a function is specific to either 64-bit mode or compatibility mode, then those
specific names are used instead of the name long mode.

Before enabling and activating long mode, system software must first enable protected mode. The
process of enabling and activating long mode is described in Chapter 14, “Processor Initialization and

513-206.eps

System
Management

Mode

Real
Mode

Virtual
8086
Mode

Protected
Mode

Long Mode

64-bit
Mode

Compatibility
Mode

EFER.LME=1, CR4.PAE=1
then CR0.PG=1

CR0.PE=1

CR0.PG=0
then EFER.LME=0

CS.L=0

CS.L=1

CS.L=0

CR0.PE=0

EFLAGS.VM=1

EFLAGS.VM=0

RSMSMI#

RSM

SMI#

SMI#

SMI#

RSM

RSM

SMI#RSM

Reset

Reset
Reset

Reset

System-Programming Overview 13

24593—Rev. 3.30—September 2018 AMD64 Technology

Long Mode Activation.” Long mode features are described throughout this document, where
applicable.

1.3.2 64-Bit Mode

64-bit mode, a submode of long mode, provides support for 64-bit system software and applications by
adding the following features:
• 64-bit virtual addresses (processor implementations can have fewer).
• Access to General Purpose Register bits 63:32
• Access to additional registers through the REX, VEX, and XOP instruction prefixes:

- eight additional GPRs (R8–R15)
- eight additional Streaming SIMD Extension (SSE) registers (YMM/XMM8–15)

• 64-bit instruction pointer (RIP).
• New RIP-relative data-addressing mode.
• Flat-segment address space with single code, data, and stack space.

The mode is enabled by the system software on an individual code-segment basis. Although code
segments are used to enable and disable 64-bit mode, the legacy segmentation mechanism is largely
disabled. Page translation is required for memory management purposes. Because 64-bit mode
supports a 64-bit virtual-address space, it requires 64-bit system software and development tools.

In 64-bit mode, the default address size is 64 bits, and the default operand size is 32 bits. The defaults
can be overridden on an instruction-by-instruction basis using instruction prefixes. A new REX prefix
is introduced for specifying a 64-bit operand size and the new registers.

1.3.3 Compatibility Mode

Compatibility mode, a submode of long mode, allows system software to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long mode, as shown in Table 1-1 on page 11.

In compatibility mode, applications can only access the first 4 Gbytes of virtual-address space.
Standard x86 instruction prefixes toggle between 16-bit and 32-bit address and operand sizes.

Compatibility mode, like 64-bit mode, is enabled by system software on an individual code-segment
basis. Unlike 64-bit mode, however, segmentation functions the same as in the legacy-x86
architecture, using 16-bit or 32-bit protected-mode semantics. From an application viewpoint,
compatibility mode looks like a legacy protected-mode environment. From a system-software
viewpoint, the long-mode mechanisms are used for address translation, interrupt and exception
handling, and system data-structures.

14 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

1.3.4 Legacy Modes

Legacy mode consists of three submodes: real mode, protected mode, and virtual-8086 mode.
Protected mode can be either paged or unpaged. Legacy mode preserves binary compatibility not only
with existing x86 16-bit and 32-bit applications but also with existing x86 16-bit and 32-bit system
software.

Real Mode. In this mode, also called real-address mode, the processor supports a physical-memory
space of 1 Mbyte and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes). Interrupt
handling and address generation are nearly identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The mode is not supported when the processor
is operating in long mode because long mode requires that paged protected mode be enabled.

Protected Mode. In this mode, the processor supports virtual-memory and physical-memory spaces
of 4 Gbytes and operand sizes of 16 or 32 bits. All segment translation, segment protection, and
hardware multitasking functions are available. System software can use segmentation to relocate
effective addresses in virtual-address space. If paging is not enabled, virtual addresses are equal to
physical addresses. Paging can be optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3. Typically, application software runs at
privilege level 3, the system software runs at privilege levels 0 and 1, and privilege level 2 is available
to system software for other uses. The 16-bit version of this mode was first introduced in the 80286
processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to run 16-bit real-mode software on a
virtualized-8086 processor. In this mode, software written for the 8086, 8088, 80186, or 80188
processor can run as a privilege-level-3 task under protected mode. The processor supports a virtual-
memory space of 1 Mbytes and operand sizes of 16 bits (default) or 32 bits (with instruction prefixes),
and it uses real-mode address translation.

Virtual-8086 mode is enabled by setting the virtual-machine bit in the EFLAGS register
(EFLAGS.VM). EFLAGS.VM can only be set or cleared when the EFLAGS register is loaded from
the TSS as a result of a task switch, or by executing an IRET instruction from privileged software. The
POPF instruction cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is operating in long mode. When long mode is
enabled, any attempt to enable virtual-8086 mode is silently ignored.

System-Programming Overview 15

24593—Rev. 3.30—September 2018 AMD64 Technology

1.3.5 System Management Mode (SMM)

System management mode (SMM) is an operating mode designed for system-control activities that are
typically transparent to conventional system software. Power management is one popular use for
system management mode. SMM is primarily targeted for use by platform firmware and specialized
low-level device drivers. The code and data for SMM are stored in the SMM memory area, which is
isolated from main memory by the SMM output signal.

SMM is entered by way of a system management interrupt (SMI). Upon recognizing an SMI, the
processor enters SMM and switches to a separate address space where the SMM handler is located and
executes. In SMM, the processor supports real-mode addressing with 4 Gbyte segment limits and
default operand, address, and stack sizes of 16 bits (prefixes can be used to override these defaults).

1.4 System Registers
Figure 1-7 on page 16 shows the system registers defined for the AMD64 architecture. System
software uses these registers to, among other things, manage the processor operating environment,
define system resource characteristics, and to monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only from privileged software.

Except for the descriptor-table registers and task register, the AMD64 architecture defines all system
registers to be 64 bits wide. The descriptor table and task registers are defined by the AMD64
architecture to include 64-bit base-address fields, in addition to their other fields.

As shown in Figure 1-7 on page 16, the system registers include:
• Control Registers—These registers are used to control system operation and some system features.

See “System-Control Registers” on page 41 for details.
• System-Flags Register—The RFLAGS register contains system-status flags and masks. It is also

used to enable virtual-8086 mode and to control application access to I/O devices and interrupts.
See “RFLAGS Register” on page 51 for details.

• Descriptor-Table Registers—These registers contain the location and size of descriptor tables
stored in memory. Descriptor tables hold segmentation data structures used in protected mode. See
“Descriptor Tables” on page 73 for details.

• Task Register—The task register contains the location and size in memory of the task-state
segment. The hardware-multitasking mechanism uses the task-state segment to hold state
information for a given task. The TSS also holds other data, such as the inner-level stack pointers
used when changing to a higher privilege level. See “Task Register” on page 333 for details.

• Debug Registers—Debug registers are used to control the software-debug mechanism, and to
report information back to a debug utility or application. See “Debug Registers” on page 350 for
details.

16 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific registers included in the AMD64
architectural definition, and shown in Figure 1-7:
• Extended-Feature-Enable Register—The EFER register is used to enable and report status on

special features not controlled by the CRn control registers. In particular, EFER is used to control
activation of long mode. See “Extended Feature Enable Register (EFER)” on page 55 for more
information.

Control Registers
CR0
CR2
CR3
CR4
CR8

System-Flags Register
RFLAGS

Debug Registers
DR0
DR1
DR2
DR3
DR6
DR7

System_Registers_Diag.eps

Memory-Typing Registers
MTRRcap

MTRRdefType
MTRRphysBasen
MTRRphysMaskn

MTRRfixn
PAT

TOP_MEM
TOP_MEM2

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MCi_CTL

MCi_STATUS
MCi_ADDR
MCi_MISC

Model-Specific Registers

Descriptor-Table Registers
GDTR
IDTR
LDTR

Task Register
TR

Extended-Feature-Enable Register
EFER

Debug-Extension Registers
DebugCtl

LastBranchFromIP
LastBranchToIP
LastIntFromIP

LastIntToIP

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR

LSTAR
CSTAR

FS.base
GS.base

KernelGSbase
SYSENTER_CS

SYSENTER_ESP
SYSENTER_EIP

SFMASK Performance-Monitoring Registers
TSC

PerfEvtSeln
PerfCtrn

System-Programming Overview 17

24593—Rev. 3.30—September 2018 AMD64 Technology

• System-Configuration Register—The SYSCFG register is used to enable and configure system-
bus features. See “System Configuration Register (SYSCFG)” on page 59 for more information.

• System-Linkage Registers—These registers are used by system-linkage instructions to specify
operating-system entry points, stack locations, and pointers into system-data structures. See “Fast
System Call and Return” on page 152 for details.

• Memory-Typing Registers—Memory-typing registers can be used to characterize (type) system
memory. Typing memory gives system software control over how instructions and data are cached,
and how memory reads and writes are ordered. See “MTRRs” on page 189 for details.

• Debug-Extension Registers—These registers control additional software-debug reporting features.
See “Debug Registers” on page 350 for details.

• Performance-Monitoring Registers—Performance-monitoring registers are used to count
processor and system events, or the duration of events. See “Performance Monitoring Counters”
on page 364 for more information.

• Machine-Check Registers—The machine-check registers control the response of the processor to
non-recoverable failures. They are also used to report information on such failures back to system
utilities designed to respond to such failures. See “Machine Check Architecture MSRs” on
page 267 for more information.

1.5 System-Data Structures
Figure 1-8 on page 18 shows the system-data structures defined for the AMD64 architecture. System-
data structures are created and maintained by system software for use by the processor when running
in protected mode. A processor running in protected mode uses these data structures to manage
memory and protection, and to store program-state information when an interrupt or task switch
occurs.

18 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 1-8. System-Data Structures

As shown in Figure 1-8, the system-data structures include:
• Descriptors—A descriptor provides information about a segment to the processor, such as its

location, size and privilege level. A special type of descriptor, called a gate, is used to provide a
code selector and entry point for a software routine. Any number of descriptors can be defined, but
system software must at a minimum create a descriptor for the currently executing code segment
and stack segment. See “Legacy Segment Descriptors” on page 80, and “Long-Mode Segment
Descriptors” on page 88 for complete information on descriptors.

• Descriptor Tables—As the name implies, descriptor tables hold descriptors. The global-descriptor
table holds descriptors available to all programs, while a local-descriptor table holds descriptors
used by a single program. The interrupt-descriptor table holds only gate descriptors used by

513-261.eps

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

System-Programming Overview 19

24593—Rev. 3.30—September 2018 AMD64 Technology

interrupt handlers. System software must initialize the global-descriptor and interrupt-descriptor
tables, while use of the local-descriptor table is optional. See “Descriptor Tables” on page 73 for
more information.

• Task-State Segment—The task-state segment is a special segment for holding processor-state
information for a specific program, or task. It also contains the stack pointers used when switching
to more-privileged programs. The hardware multitasking mechanism uses the state information in
the segment when suspending and resuming a task. Calls and interrupts that switch stacks cause
the stack pointers to be read from the task-state segment. System software must create at least one
task-state segment, even if hardware multitasking is not used. See “Legacy Task-State Segment”
on page 335, and “64-Bit Task State Segment” on page 339 for details.

• Page-Translation Tables—Use of page translation is optional in protected mode, but it is required
in long mode. A four-level page-translation data structure is provided to allow long-mode
operating systems to translate a 64-bit virtual-address space into a 52-bit physical-address space.
Legacy protected mode can use two- or three-level page-translation data structures. See “Page
Translation Overview” on page 118 for more information on page translation.

1.6 Interrupts
The AMD64 architecture provides a mechanism for the processor to automatically suspend (interrupt)
software execution and transfer control to an interrupt handler when an interrupt or exception occurs.
An interrupt handler is privileged software designed to identify and respond to the cause of an
interrupt or exception, and return control back to the interrupted software. Interrupts can be caused
when system hardware signals an interrupt condition using one of the external-interrupt signals on the
processor. Interrupts can also be caused by software that executes an interrupt instruction. Exceptions
occur when the processor detects an abnormal condition as a result of executing an instruction. The
term “interrupts” as used throughout this volume includes both interrupts and exceptions when the
distinction is unnecessary.

System software not only sets up the interrupt handlers, but it must also create and initialize the data
structures the processor uses to execute an interrupt handler when an interrupt occurs. The data
structures include the code-segment descriptors for the interrupt-handler software and any data-
segment descriptors for data and stack accesses. Interrupt-gate descriptors must also be supplied.
Interrupt gates point to interrupt-handler code-segment descriptors, and the entry point in an interrupt
handler. Interrupt gates are stored in the interrupt-descriptor table. The code-segment and data-
segment descriptors are stored in the global-descriptor table and, optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt vector to find the appropriate interrupt gate
in the interrupt-descriptor table. The gate points to the interrupt-handler code segment and entry point,
and the processor transfers control to that location. Before invoking the interrupt handler, the
processor saves information required to return to the interrupted program. For details on how the
processor transfers control to interrupt handlers, see “Legacy Protected-Mode Interrupt Control
Transfers” on page 239, and “Long-Mode Interrupt Control Transfers” on page 249.

20 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 1-2 shows the supported interrupts and exceptions, ordered by their vector number. Refer to
“Vectors” on page 216 for a complete description of each interrupt, and a description of the interrupt
mechanism.

1.7 Additional System-Programming Facilities
1.7.1 Hardware Multitasking

A task is any program that the processor can execute, suspend, and later resume executing at the point
of suspension. During the time a task is suspended, other tasks are allowed to execute. Each task has its
own execution space, consisting of a code segment, data segments, and a stack segment for each
privilege level. Tasks can also have their own virtual-memory environment managed by the page-
translation mechanism. The state information defining this execution space is stored in the task-state
segment (TSS) maintained for each task.

Table 1-2. Interrupts and Exceptions
Vector Description

0 Integer Divide-by-Zero Exception
1 Debug Exception
2 Non-Maskable-Interrupt
3 Breakpoint Exception (INT 3)
4 Overflow Exception (INTO instruction)
5 Bound-Range Exception (BOUND instruction)
6 Invalid-Opcode Exception
7 Device-Not-Available Exception
8 Double-Fault Exception

9 Coprocessor-Segment-Overrun Exception (reserved in
AMD64)

10 Invalid-TSS Exception
11 Segment-Not-Present Exception
12 Stack Exception
13 General-Protection Exception
14 Page-Fault Exception
15 (Reserved)
16 x87 Floating-Point Exception
17 Alignment-Check Exception
18 Machine-Check Exception
19 SIMD Floating-Point Exception

0–255 Interrupt Instructions
0–255 Hardware Maskable Interrupts

System-Programming Overview 21

24593—Rev. 3.30—September 2018 AMD64 Technology

Support for hardware multitasking is provided by implementations of the AMD64 architecture when
software is running in legacy mode. Hardware multitasking provides automated mechanisms for
switching tasks, saving the execution state of the suspended task, and restoring the execution state of
the resumed task. When hardware multitasking is used to switch tasks, the processor takes the
following actions:
• The processor automatically suspends execution of the task, allowing any executing instructions to

complete and save their results.
• The execution state of a task is saved in the task TSS.
• The execution state of a new task is loaded into the processor from its TSS.
• The processor begins executing the new task at the location specified in the new task TSS.

Use of hardware-multitasking features is optional in legacy mode. Generally, modern operating
systems do not use the hardware-multitasking features, and instead perform task management entirely
in software. Long mode does not support hardware multitasking at all.

Whether hardware multitasking is used or not, system software must create and initialize at least one
task-state segment data-structure. This requirement holds for both long-mode and legacy-mode
software. The single task-state segment holds critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in Chapter 12, “Task Management,” along
with a full description of the requirements that must be met in initializing a task-state segment when
hardware multitasking is not used.

1.7.2 Machine Check

Implementations of the AMD64 architecture support the machine-check exception. This exception is
useful in system applications with stringent requirements for reliability, availability, and serviceability.
The exception allows specialized system-software utilities to report hardware errors that are generally
severe and non-recoverable. Providing the capability to report such errors can allow complex system
problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9, “Machine Check Architecture.” Much of the
error-reporting capabilities is implementation dependent. For more information, developers of
machine-check error-reporting software should refer to the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual or applicable to your product.

1.7.3 Software Debugging

A software-debugging mechanism is provided in hardware to help software developers quickly isolate
programming errors. This capability can be used to debug system software and application software
alike. Only privileged software can access the debugging facilities. Generally, software-debug support
is provided by a privileged application program rather than by the operating system itself.

The facilities supported by the AMD64 architecture allow debugging software to perform the
following:

22 System-Programming Overview

AMD64 Technology 24593—Rev. 3.30—September 2018

• Set breakpoints on specific instructions within a program.
• Set breakpoints on an instruction-address match.
• Set breakpoints on a data-address match.
• Set breakpoints on specific I/O-port addresses.
• Set breakpoints to occur on task switches when hardware multitasking is used.
• Single step an application instruction-by-instruction.
• Single step only branches and interrupts.
• Record a history of branches and interrupts taken by a program.

The debugging facilities are fully described in “Software-Debug Resources” on page 350. Some
processors provide additional, implementation-specific debug support. For more information, refer to
the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product.

1.7.4 Performance Monitoring

For many software developers, the ability to identify and eliminate performance bottlenecks from a
program is nearly as important as quickly isolating programming errors. Implementations of the
AMD64 architecture provide hardware performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-privileged software can access the
performance monitoring facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of events, or the duration of events.
Performance-analysis software can use the data to calculate the frequency of certain events, or the time
spent performing specific activities. That information can be used to suggest areas for improvement
and the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in “Performance Monitoring Counters” on
page 364. The specific events that can be monitored are generally implementation specific. For more
information, refer to the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

x86 and AMD64 Architecture Differences 23

24593—Rev. 3.30—September 2018 AMD64 Technology

2 x86 and AMD64 Architecture Differences

The AMD64 architecture is designed to provide full binary compatibility with all previous AMD
implementations of the x86 architecture. This chapter summarizes the new features and architectural
enhancements introduced by the AMD64 architecture, and compares those features and enhancements
with previous AMD x86 processors. Most of the new capabilities introduced by the AMD64
architecture are available only in long mode (64-bit mode, compatibility mode, or both). However,
some of the new capabilities are also available in legacy mode, and are mentioned where appropriate.

The material throughout this chapter assumes the reader has a solid understanding of the x86
architecture. For those who are unfamiliar with the x86 architecture, please read the remainder of this
volume before reading this chapter.

2.1 Operating Modes
See “Operating Modes” on page 11 for a complete description of the operating modes supported by the
AMD64 architecture.

2.1.1 Long Mode

The AMD64 architecture introduces long mode and its two sub-modes: 64-bit mode and compatibility
mode.

64-Bit Mode. 64-bit mode provides full support for 64-bit system software and applications. The new
features introduced in support of 64-bit mode are summarized throughout this chapter. To use 64-bit
mode, a 64-bit operating system and tool chain are required.

Compatibility Mode. Compatibility mode allows 64-bit operating systems to implement binary
compatibility with existing 16-bit and 32-bit x86 applications. It allows these applications to run,
without recompilation, under control of a 64-bit operating system in long mode. The architectural
enhancements introduced by the AMD64 architecture that support compatibility mode are
summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following two operating modes:
• Virtual-8086 Mode—The virtual-8086 mode bit (EFLAGS.VM) is ignored when the processor is

running in long mode. When long mode is enabled, any attempt to enable virtual-8086 mode is
silently ignored. System software must leave long mode in order to use virtual-8086 mode.

• Real Mode—Real mode is not supported when the processor is operating in long mode because
long mode requires that protected mode be enabled.

2.1.2 Legacy Mode

The AMD64 architecture supports a pure x86 legacy mode, which preserves binary compatibility not
only with existing 16-bit and 32-bit applications but also with existing 16-bit and 32-bit operating

24 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

systems. Legacy mode supports real mode, protected mode, and virtual-8086 mode. A reset always
places the processor in legacy mode (real mode), and the processor continues to run in legacy mode
until system software activates long mode. New features added by the AMD64 architecture that are
supported in legacy mode are summarized in this chapter.

2.1.3 System-Management Mode

The AMD64 architecture supports system-management mode (SMM). SMM can be entered from both
long mode and legacy mode, and SMM can return directly to either mode. The following differences
exist between the support of SMM in the AMD64 architecture and the SMM support found in previous
processor generations:
• The SMRAM state-save area format is changed to hold the 64-bit processor state. This state-save

area format is used regardless of whether SMM is entered from long mode or legacy mode.
• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte

instead of two bytes.
• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the

processor.
• New conditions exist that can cause a processor shutdown while exiting SMM.
• SMRAM caching considerations are modified because the legacy FLUSH# external signal

(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

See Chapter 10, “System-Management Mode,” for more information on the SMM differences.

2.2 Memory Model
The AMD64 architecture provides enhancements to the legacy memory model to support very large
physical-memory and virtual-memory spaces while in long mode. Some of this expanded support for
physical memory is available in legacy mode.

2.2.1 Memory Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded to 64 address bits in long mode.
This allows up to 16 exabytes of virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded to 52 address bits in long
mode and legacy mode. This allows up to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging and the page-size extensions.

Note that given processor may implement less than the architecturally-defined physical address size of
52 bits.

x86 and AMD64 Architecture Differences 25

24593—Rev. 3.30—September 2018 AMD64 Technology

Effective Addressing. The effective-address length is expanded to 64 bits in long mode. An
effective-address calculation uses 64-bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses remain 32 bits long.

2.2.2 Page Translation

The AMD64 architecture defines an expanded page-translation mechanism supporting translation of a
64-bit virtual address to a 52-bit physical address. See “Long-Mode Page Translation” on page 130 for
detailed information on the enhancements to page translation in the AMD64 architecture. The
enhancements are summarized below.

Physical-Address Extensions (PAE). The AMD64 architecture requires physical-address
extensions to be enabled (CR4.PAE=1) before long mode is entered. When PAE is enabled, all paging
data-structures are 64 bits, allowing references into the full 52-bit physical-address space supported by
the architecture.

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) are ignored in long mode. Long
mode does not support the 4-Mbyte page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The AMD64 architecture extends the page-translation data structures in
support of long mode. The extensions are:
• Page-map level-4 (PML4)—Long mode defines a new page-translation data structure, the PML4

table. The PML4 table sits at the top of the page-translation hierarchy and references PDP tables.
• Page-directory pointer (PDP)—The PDP tables in long mode are expanded from 4 entries to 512

entries each.
• Page-directory pointer entry (PDPE)—Previously undefined fields within the legacy-mode PDPE

are defined by the AMD64 architecture.

CR3 Register. The CR3 register is expanded to 64 bits for use in long-mode page translation. When
long mode is active, the CR3 register references the base address of the PML4 table. In legacy mode,
the upper 32 bits of CR3 are masked by the processor to support legacy page translation. CR3
references the PDP base-address when physical-address extensions are enabled, or the page-directory
table base-address when physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take advantage of the enhancements
made to the physical-address extension (PAE) support and page-size extension (PSE) support. The
four-level page translation mechanism introduced by long mode is not available to legacy-mode
software.
• PAE—When physical-address extensions are enabled (CR4.PAE=1), the AMD64 architecture

allows legacy-mode software to load up to 52-bit (maximum size) physical addresses into the PDE
and PTE. Note that addresses are expanded to the maximum physical address size supported by the
implementation.

26 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

• PSE—The use of page-size extensions allows legacy mode software to define 4-Mbyte pages
using the 32-bit page-translation tables. When page-size extensions are enabled (CR4.PSE=1), the
AMD64 architecture enhances the 4-Mbyte PDE to support 40 physical-address bits.

See “Legacy-Mode Page Translation” on page 122 for more information on these enhancements.

2.2.3 Segmentation

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:
• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit

or 32-bit protected mode semantics.
• 64-bit mode requires a flat-memory model for creating a flat 64-bit virtual-address space. Much of

the segmentation capability present in legacy mode and compatibility mode is disabled when the
processor is running in 64-bit mode.

The differences in the segmentation model as defined by the AMD64 architecture are summarized in
the following sections. See Chapter 4, “Segmented Virtual Memory,” for a thorough description of
these differences.

Descriptor-Table Registers. In long mode, the base-address portion of the descriptor-table registers
(GDTR, IDTR, LDTR, and TR) are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit mode (using the LGDT, LIDT, LLDT, and
LTR instructions, respectively). However, the full 64-bit base address is used by a processor running in
compatibility mode (in addition to 64-bit mode) when making a reference into a descriptor table.

A processor running in legacy mode can only load the low 32 bits of the base address, and the high 32
bits are ignored when references are made to the descriptor tables.

Code-Segment Descriptors. The AMD64 architecture defines a new code-segment descriptor
attribute, L (long). In compatibility mode, the processor treats code-segment descriptors as it does in
legacy mode, with the exception that the processor recognizes the L attribute. If a code descriptor with
L=1 is loaded in compatibility mode, the processor leaves compatibility mode and enters 64-bit mode.
In legacy mode, the L attribute is reserved.

The following differences exist for code-segment descriptors in 64-bit mode only:
• The CS base-address field is ignored by the processor.
• The CS limit field is ignored by the processor.
• Only the L (long), D (default size), and DPL (descriptor-privilege level) fields are used by the

processor in 64-bit mode. All remaining attributes are ignored.

Data-Segment Descriptors. The following differences exist for data-segment descriptors in 64-bit
mode only:
• The DS, ES, and SS descriptor base-address fields are ignored by the processor.

x86 and AMD64 Architecture Differences 27

24593—Rev. 3.30—September 2018 AMD64 Technology

• The FS and GS descriptor base-address fields are expanded to 64 bits and used in effective-address
calculations. The 64 bits of base address are mapped to model-specific registers (MSRs), and can
only be loaded using the WRMSR instruction.

• The limit fields and attribute fields of all data-segment descriptors (DS, ES, FS, GS, and SS) are
ignored by the processor.

In compatibility mode, the processor treats data-segment descriptors as it does in legacy mode.
Compatibility mode ignores the high 32 bits of base address in the FS and GS segment descriptors
when calculating an effective address.

System-Segment Descriptors. In 64-bit mode only, The LDT and TSS system-segment descriptor
formats are expanded by 64 bits, allowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptors into the LDTR and TR registers, respectively, from
64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT and TSS system-segment descriptors
are unchanged. Also, unlike code-segment and data-segment descriptors, system-segment descriptor
limits are checked by the processor in long mode.

Some legacy mode LDT and TSS type-field encodings are illegal in long mode (both compatibility
mode and 64-bit mode), and others are redefined to new types. See “System Descriptors” on page 90
for additional information.

Gate Descriptors. The following differences exist between gate descriptors in long mode (both
compatibility mode and 64-bit mode) and in legacy mode:
• In long mode, all 32-bit gate descriptors are redefined as 64-bit gate descriptors, and are expanded

to hold 64-bit offsets. The length of a gate descriptor in long mode is therefore 128 bits (16 bytes),
versus the 64 bits (8 bytes) in legacy mode.

• Some type-field encodings are illegal in long mode, and others are redefined to new types. See
“Gate Descriptors” on page 92 for additional information.

• The interrupt-gate and trap-gate descriptors define a new field, called the interrupt-stack table
(IST) field.

2.3 Protection Checks
The AMD64 architecture makes the following changes to the protection mechanism in long mode:
• The page-protection-check mechanism is expanded in long mode to include the U/S and R/W

protection bits stored in the PML4 entries and PDP entries.
• Several system-segment types and gate-descriptor types that are legal in legacy mode are illegal in

long mode (compatibility mode and 64-bit mode) and fail type checks when used in long mode.
• Segment-limit checks are disabled in 64-bit mode for the CS, DS, ES, FS, GS, and SS segments.

Segment-limit checks remain enabled for the LDT, GDT, IDT and TSS system segments.
All segment-limit checks are performed in compatibility mode.

28 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

• Code and data segments used in 64-bit mode are treated as both readable and writable.

See “Page-Protection Checks” on page 145 and “Segment-Protection Overview” on page 95 for
detailed information on the protection-check changes.

2.4 Registers
The AMD64 architecture adds additional registers to the architecture, and in many cases expands the
size of existing registers to 64 bits. The 80-bit floating-point stack registers and their overlaid 64-bit
MMX™ registers are not modified by the AMD64 architecture.

2.4.1 General-Purpose Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits wide, and eight additional GPRs are
available. The GPRs are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new R8–R15
registers. To access the full 64-bit operand size, or the new R8–R15 registers, an instruction must
include a new REX instruction-prefix byte (see “REX Prefixes” on page 29 for a summary of this
prefix).

In compatibility and legacy modes, the GPRs consist only of the eight legacy 32-bit registers. All
legacy rules apply for determining operand size.

2.4.2 YMM/XMM Registers

In 64-bit mode, eight additional YMM/XMM registers are available, YMM/XMM8–15. A REX
instruction prefix is used to access these registers. In compatibility and legacy modes, only registers
YMM/XMM0–7 are accessible.

2.4.3 Flags Register

The flags register is expanded to 64 bits, and is called RFLAGS. All 64 bits can be accessed in 64-bit
mode, but the upper 32 bits are reserved and always read back as zeros. Compatibility mode and
legacy mode can read and write only the lower-32 bits of RFLAGS (the legacy EFLAGS).

2.4.4 Instruction Pointer

In long mode, the instruction pointer is extended to 64 bits, to support 64-bit code offsets. This 64-bit
instruction pointer is called RIP.

2.4.5 Stack Pointer

In 64-bit mode, the size of the stack pointer, RSP, is always 64 bits. The stack size is not controlled by
a bit in the SS descriptor, as it is in compatibility or legacy mode, nor can it be overridden by an
instruction prefix. Address-size overrides are ignored for implicit stack references.

x86 and AMD64 Architecture Differences 29

24593—Rev. 3.30—September 2018 AMD64 Technology

2.4.6 Control Registers

The AMD64 architecture defines several enhancements to the control registers (CRn). In long mode,
all control registers are expanded to 64 bits, although the entire 64 bits can be read and written only
from 64-bit mode. A new control register, the task-priority register (CR8 or TPR) is added, and can be
read and written from 64-bit mode. Last, the function of the page-enable bit (CR0.PG) is expanded.
When long mode is enabled, the PG bit is used to activate and deactivate long mode.

2.4.7 Debug Registers

In long mode, all debug registers are expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. Expanded register encodings for the decode registers allow up to eight
new registers to be defined (DR8–DR15), although presently those registers are not supported by the
AMD64 architecture.

2.4.8 Extended Feature Register (EFER)

The EFER is expanded by the AMD64 architecture to include a long-mode-enable bit (LME), and a
long-mode-active bit (LMA). These new bits can be accessed from legacy mode and long mode.

2.4.9 Memory Type Range Registers (MTRRs)

The legacy MTRRs are architecturally defined as 64 bits, and can accommodate the maximum 52-bit
physical address allowed by the AMD64 architecture. From both long mode and legacy mode,
implementations of the AMD64 architecture reference the entire 52-bit physical-address value stored
in the MTRRs. Long mode and legacy mode system software can update all 64 bits of the MTRRs to
manage the expanded physical-address space.

2.4.10 Other Model-Specific Registers (MSRs)

Several other MSRs have fields holding physical addresses. Examples include the APIC-base register
and top-of-memory register. Generally, any model-specific register that contains a physical address is
defined architecturally to be 64 bits wide, and can accommodate the maximum physical-address size
defined by the AMD64 architecture. When physical addresses are read from MSRs by the processor,
the entire value is read regardless of the operating mode. In legacy implementations, the high-order
MSR bits are reserved, and software must write those values with zeros. In legacy mode on AMD64
architecture implementations, software can read and write all supported high-order MSR bits.

2.5 Instruction Set
2.5.1 REX Prefixes

REX prefixes are used in 64-bit mode to:
• Specify the new GPRs and YMM/XMM registers.
• Specify a 64-bit operand size.

30 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

• Specify additional control registers. One additional control register, CR8, is defined in 64-bit
mode.

• Specify additional debug registers (although none are currently defined).

Not all instructions require a REX prefix. The prefix is necessary only if an instruction references one
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is
ignored.

Default 64-Bit Operand Size. In 64-bit mode, two groups of instructions have a default operand size
of 64 bits and thus do not need a REX prefix for this operand size:
• Near branches.
• All instructions, except far branches, that implicitly reference the RSP. See “Instructions that

Reference RSP” on page 31 for additional information.

2.5.2 Segment-Override Prefixes in 64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override prefixes have no effect. These four prefixes
are no longer treated as segment-override prefixes in the context of multiple-prefix rules. Instead, they
are treated as null prefixes.

The FS and GS segment-override prefixes are treated as segment-override prefixes in 64-bit mode.
Use of the FS and GS prefixes cause their respective segment bases to be added to the effective address
calculation. See “FS and GS Registers in 64-Bit Mode” on page 72 for additional information on using
these segment registers.

2.5.3 Operands and Results

The AMD64 architecture provides support for using 64-bit operands and generating 64-bit results
when operating in 64-bit mode.

Operand-Size Overrides. In 64-bit mode, the default operand size is 32 bits. A REX prefix can be
used to specify a 64-bit operand size. Software uses a legacy operand-size (66h) prefix to toggle to 16-
bit operand size. The REX prefix takes precedence over the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit operations with a GPR
destination, the processor zero-extends the 32-bit result into the full 64-bit destination. Both 8-bit and
16-bit operations on GPRs preserve all unwritten upper bits of the destination GPR. This is consistent
with legacy 16-bit and 32-bit semantics for partial-width results.

2.5.4 Address Calculations

The AMD64 architecture modifies aspects of effective-address calculation to support 64-bit mode.
These changes are summarized in the following sections. See “Memory Addressing” in Volume 1 for
details.

x86 and AMD64 Architecture Differences 31

24593—Rev. 3.30—September 2018 AMD64 Technology

Address-Size Overrides. In 64-bit mode, the default-address size is 64 bits. The address size can be
overridden to 32 bits by using the address-size prefix (67h). 16-bit addresses are not supported in 64-
bit mode. In compatibility mode and legacy mode, address-size overrides function the same as in x86
legacy architecture.

Displacements and Immediates. Generally, displacement and immediate values in 64-bit mode are
not extended to 64 bits. They are still limited to 32 bits and are sign extended during effective-address
calculations. In 64-bit mode, however, support is provided for some 64-bit displacement and
immediate forms of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16-bit and 32-bit address calculations are zero-
extended in long mode to form 64-bit addresses. Address calculations are first truncated to the
effective-address size of the current mode (64-bit mode or compatibility mode), as overridden by any
address-size prefix. The result is then zero-extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative (instruction-pointer relative)
addressing, is implemented in 64-bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that Reference RSP

With the exception of far branches, all instructions that implicitly reference the 64-bit stack pointer,
RSP, default to a 64-bit operand size in 64-bit mode (see Table 2-1 for a listing). Pushes and pops of
32-bit stack values are not possible in 64-bit mode with these instructions, but they can be overridden
to 16 bits.

Table 2-1. Instructions That Reference RSP

Mnemonic Opcode
(hex) Description

ENTER C8 Create Procedure Stack Frame
LEAVE C9 Delete Procedure Stack Frame
POP reg/mem 8F/0 Pop Stack (register or memory)
POP reg 58-5F Pop Stack (register)
POP FS 0F A1 Pop Stack into FS Segment Register
POP GS 0F A9 Pop Stack into GS Segment Register
POPF, POPFD, POPFQ 9D Pop to rFLAGS Word, Doubleword, or Quadword
PUSH imm32 68 Push onto Stack (sign-extended doubleword)
PUSH imm8 6A Push onto Stack (sign-extended byte)
PUSH reg/mem FF/6 Push onto Stack (register or memory)
PUSH reg 50-57 Push onto Stack (register)
PUSH FS 0F A0 Push FS Segment Register onto Stack
PUSH GS 0F A8 Push GS Segment Register onto Stack
PUSHF, PUSHFD, PUSHFQ 9C Push rFLAGS Word, Doubleword, or Quadword onto Stack

32 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

2.5.6 Branches

The AMD64 architecture expands two branching mechanisms to accommodate branches in the full
64-bit virtual-address space:
• In 64-bit mode, near-branch semantics are redefined.
• In both 64-bit and compatibility modes, a 64-bit call-gate descriptor is defined for far calls.

In addition, enhancements are made to the legacy SYSCALL and SYSRET instructions.

Near Branches. In 64-bit mode, the operand size for all near branches defaults to 64 bits (see
Table 2-2 for a listing). Therefore, these instructions update the full 64-bit RIP without the need for a
REX operand-size prefix. The following aspects of near branches default to 64 bits:
• Truncation of the instruction pointer.
• Size of a stack pop or stack push, resulting from a CALL or RET.
• Size of a stack-pointer increment or decrement, resulting from a CALL or RET.
• Size of operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bits in 64-bit mode.

The address size of near branches is not forced in 64-bit mode. Such addresses are 64 bits by default,
but they can be overridden to 32 bits by a prefix.

The size of the displacement field for relative branches is still limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the 32-bit call-gate
descriptor type as a 64-bit call-gate descriptor and expands the call-gate descriptor size to hold a 64-bit
offset. The long-mode call-gate descriptor allows far branches to reference any location in the
supported virtual-address space. In long mode, the call-gate mechanism is changed as follows:
• In long mode, CALL and JMP instructions that reference call-gates must reference 64-bit call

gates.
• A 64-bit call-gate descriptor must reference a 64-bit code-segment.

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic Opcode
(hex) Description

CALL E8, FF/2 Call Procedure Near
Jcc many Jump Conditional Near
JMP E9, EB, FF/4 Jump Near
LOOP E2 Loop
LOOPcc E0, E1 Loop Conditional
RET C3, C2 Return From Call (near)

x86 and AMD64 Architecture Differences 33

24593—Rev. 3.30—September 2018 AMD64 Technology

• When a control transfer is made through a 64-bit call gate, the 64-bit target address is read from the
64-bit call-gate descriptor. The base address in the target code-segment descriptor is ignored.

Stack Switching. Automatic stack switching is also modified when a control transfer occurs through
a call gate in long mode:
• The target-stack pointer read from the TSS is a 64-bit RSP value.
• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested

control transfers in 64-bit mode to be handled properly. The SS.RPL value is updated to remain
consistent with the newly loaded CPL value.

• The size of pushes onto the new stack is modified to accommodate the 64-bit RIP and RSP values.
• Automatic parameter copying is not supported in long mode.

Far Returns. In long mode, far returns can load a null SS selector from the stack under the following
conditions:
• The target operating mode is 64-bit mode.
• The target CPL<3.

Allowing RET to load SS with a null selector under these conditions makes it possible for the
processor to unnest far CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not supported in long mode.

Branches to 64-Bit Offsets. Because immediate values are generally limited to 32 bits, the only way
a full 64-bit absolute RIP can be specified in 64-bit mode is with an indirect branch. For this reason,
direct forms of far branches are eliminated from the instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The AMD64 architecture expands the function of the legacy
SYSCALL and SYSRET instructions in long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIP for the instructions when they are executed in long
mode. The legacy STAR register is not expanded in long mode. See “SYSCALL and SYSRET” on
page 152 for additional information.

SWAPGS Instruction. The AMD64 architecture provides the SWAPGS instruction as a fast method
for system software to load a pointer to system data-structures. SWAPGS is valid only in 64-bit mode.
An undefined-opcode exception (#UD) occurs if software attempts to execute SWAPGS in legacy
mode or compatibility mode. See “SWAPGS Instruction” on page 155 for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT instructions are invalid in
long mode, and result in an invalid opcode exception (#UD) if software attempts to use them. Software
should use the SYSCALL and SYSRET instructions when running in long mode. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” on page 154 for additional information.

34 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

2.5.7 NOP Instruction

The legacy x86 architecture commonly uses opcode 90h as a one-byte NOP. In 64-bit mode, the
processor treats opcode 90h specially in order to preserve this NOP definition. This is necessary
because opcode 90h is actually the XCHG EAX, EAX instruction in the legacy architecture. Without
special handling in 64-bit mode, the instruction would not be a true no-operation. Therefore, in 64-bit
mode the processor treats opcode 90h (the legacy XCHG EAX, EAX instruction) as a true NOP,
regardless of a REX operand-size prefix.

This special handling does not apply to the two-byte ModRM form of the XCHG instruction. Unless a
64-bit operand size is specified using a REX prefix byte, using the two-byte form of XCHG to
exchange a register with itself does not result in a no-operation, because the default operation size is 32
bits in 64-bit mode.

2.5.8 Single-Byte INC and DEC Instructions

In 64-bit mode, the legacy encodings for the 16 single-byte INC and DEC instructions (one for each of
the eight GPRs) are used to encode the REX prefix values. The functionality of these INC and DEC
instructions is still available, however, using the ModRM forms of those instructions (opcodes FF /0
and FF /1). See “Single-Byte INC and DEC Instructions in 64-Bit Mode” in Volume 3 for additional
information.

2.5.9 MOVSXD Instruction

MOVSXD is a new instruction in 64-bit mode (the legacy ARPL instruction opcode, 63h, is
reassigned as the MOVSXD opcode). It reads a fixed-size 32-bit source operand from a register or
memory and (if a REX prefix is used with the instruction) sign-extends the value to 64 bits. MOVSXD
is analogous to the MOVSX instruction, which sign-extends a byte to a word or a word to a
doubleword, depending on the effective operand size. See the instruction reference page for the
MOVSXD instruction in Volume 3 for additional information.

2.5.10 Invalid Instructions

Table 2-3 lists instructions that are illegal in 64-bit mode. Table 2-4 on page 35 lists instructions that
are invalid in long mode (both compatibility mode and 64-bit mode). Attempted use of these
instructions causes an invalid-opcode exception (#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode

Mnemonic Opcode
(hex) Description

AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds

x86 and AMD64 Architecture Differences 35

24593—Rev. 3.30—September 2018 AMD64 Technology

CALL (far) 9A Procedure Call Far (absolute)
DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LDS C5 Load DS Segment Register
LES C4 Load ES Segment Register
POP DS 1F Pop Stack into DS Segment
POP ES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS 0E Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSH ES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA,
PUSHAD 60 Push All GPR Words or Doublewords onto

Stack
Redundant Grp1
(undocumented) 82 Redundant encoding of group1 Eb,Ib

opcodes
SALC
(undocumented) D6 Set AL According to CF

Table 2-4. Invalid Instructions in Long Mode

Mnemonic Opcode
(hex) Description

SYSENTER 0F 34 System Call
SYSEXIT 0F 35 System Return

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic Opcode
(hex) Description

36 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

2.5.11 Reassigned Opcodes

Table 2-5 below lists opcodes that are assigned functions in 64-bit mode that differ from their legacy
functions.

2.5.12 FXSAVE and FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and restore the entire 128-bit media
(XMM), 64-bit media, and x87 instruction-set environment during a context switch. The AMD64
architecture modifies the memory format used by these instructions in order to save and restore the full
64-bit instruction and data pointers, as well as the XMM8–15 registers. Selection of the 32-bit legacy
format or the expanded 64-bit format is accomplished by using the corresponding operand size with
the FXSAVE and FXRSTOR instructions. When 64-bit software executes an FXSAVE and FXRSTOR
with a 32-bit operand size (no operand-size override) the 32-bit legacy format is used. When 64-bit
software executes an FXSAVE and FXRSTOR with a 64-bit operand size, the 64-bit format is used.

For more information on the save area formats, see Section 11.4.4, “Saving Media and x87 Execution
Unit State,” on page 310

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE and FXRSTOR do not
save or restore the XMM0–15 registers when executed in 64-bit mode at CPL 0. The x87 environment
and MXCSR are saved whether fast-FXSAVE/FXRSTOR is enabled or not. The fast-
FXSAVE/FXRSTOR feature has no effect on FXSAVE/FXRSTOR in non 64-bit mode or when CPL >
0.

Software can use the CPUID instruction to determine whether the fast-FXSAVE/FXRSTOR feature is
available (CPUID Fn8000_0001h_EDX[FFXSR]). For information on using the CPUID instruction to
obtain processor feature information, see Section 3.3, “Processor Feature Identification,” on page 63.

2.6 Interrupts and Exceptions
When a processor is running in long mode, an interrupt or exception causes the processor to enter 64-
bit mode. All long-mode interrupt handlers must be implemented as 64-bit code. The AMD64
architecture expands the legacy interrupt-processing and exception-processing mechanism to support

Table 2-5. Opcodes Reassigned in 64-Bit Mode

Opcode (hex) Compatibility and Legacy
Modes 64-Bit Mode

63 ARPL—Adjust Requestor
Privilege Level

MOVSXD—Move Doubleword
with Sign Extension

40–4F DEC—Decrement by 1
INC—Increment by 1 REX Prefix

Note: Two-byte versions of DEC and INC are still available in 64-bit mode.

x86 and AMD64 Architecture Differences 37

24593—Rev. 3.30—September 2018 AMD64 Technology

handling of interrupts by 64-bit operating systems and applications. The changes are summarized in
the following sections. See “Long-Mode Interrupt Control Transfers” on page 249 for detailed
information on these changes.

2.6.1 Interrupt Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain 64-bit mode interrupt-gate or trap-gate
descriptors for all interrupts or exceptions that can occur while the processor is running in long mode.
Task gates cannot be used in the long-mode IDT, because control transfers through task gates are not
supported in long mode. In long mode, the IDT index is formed by scaling the interrupt vector by 16.
In legacy protected mode, the IDT is indexed by scaling the interrupt vector by eight.

2.6.2 Stack Frame Pushes

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-
frame pushes, and SS:eSP is pushed only on a CPL change. In long mode, the size of interrupt stack-
frame pushes is fixed at eight bytes, because interrupts are handled in 64-bit mode. Long mode
interrupts also cause SS:RSP to be pushed unconditionally, rather than pushing only on a CPL change.

2.6.3 Stack Switching

Legacy mode provides a mechanism to automatically switch stack frames in response to an interrupt.
In long mode, a slightly modified version of the legacy stack-switching mechanism is implemented,
and an alternative stack-switching mechanism—called the interrupt stack table (IST)—is supported.

Long-Mode Stack Switches. When stacks are switched as part of a long-mode privilege-level
change resulting from an interrupt, the following occurs:
• The target-stack pointer read from the TSS is a 64-bit RSP value.
• The SS register is loaded with a null selector. Setting the new SS selector to null allows nested

control transfers in 64-bit mode to be handled properly. The SS.RPL value is cleared to 0.
• The old SS and RSP are saved on the new stack.

Interrupt Stack Table. In long mode, a new interrupt stack table (IST) mechanism is available as an
alternative to the modified legacy stack-switching mechanism. The IST mechanism unconditionally
switches stacks when it is enabled. It can be enabled for individual interrupt vectors using a field in the
IDT entry. This allows mixing interrupt vectors that use the modified legacy mechanism with vectors
that use the IST mechanism. The IST pointers are stored in the long-mode TSS. The IST mechanism is
only available when long mode is enabled.

2.6.4 IRET Instruction

In compatibility mode, IRET pops SS:eSP off the stack only if there is a CPL change. This allows
legacy applications to run properly in compatibility mode when using the IRET instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the interrupt stack frame, even if the CPL
does not change. This is done because the original interrupt always pushes SS:RSP. Because interrupt

38 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

stack-frame pushes are always eight bytes in long mode, an IRET from a long-mode interrupt handler
(64-bit code) must pop eight-byte items off the stack. This is accomplished by preceding the IRET
with a 64-bit REX operand-size prefix.

In long mode, an IRET can load a null SS selector from the stack under the following conditions:
• The target operating mode is 64-bit mode.
• The target CPL<3.

Allowing IRET to load SS with a null selector under these conditions makes it possible for the
processor to unnest interrupts (and far CALLs) in long mode.

2.6.5 Task-Priority Register (CR8)

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, also called the task-priority register (TPR), uses the four low-order bits for specifying a
task priority. How external interrupts are organized into these priority classes is implementation
dependent. See “External Interrupt Priorities” on page 236 for information on this feature.

2.6.6 New Exception Conditions

The AMD64 architecture defines a number of new conditions that can cause an exception to occur
when the processor is running in long mode. Many of the conditions occur when software attempts to
use an address that is not in canonical form. See “Vectors” on page 216 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching
The legacy hardware task-switch mechanism is disabled when the processor is running in long mode.
However, long mode requires system software to create data structures for a single task—the long-
mode task.
• TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS type, is defined for use in long

mode. It is the only valid TSS type that can be used in long mode, and it must be loaded into the TR
by executing the LTR instruction in 64-bit mode. See “TSS Descriptor” on page 332 for additional
information.

• Task Gates—Because the legacy task-switch mechanism is not supported in long mode, software
cannot use task gates in long mode. Any attempt to transfer control to another task through a task
gate causes a general-protection exception (#GP) to occur.

• Task-State Segment—A 64-bit task state segment (TSS) is defined for use in long mode. This new
TSS format contains 64-bit stack pointers (RSP) for privilege levels 0–2, interrupt-stack-table

x86 and AMD64 Architecture Differences 39

24593—Rev. 3.30—September 2018 AMD64 Technology

(IST) pointers, and the I/O-map base address. See “64-Bit Task State Segment” on page 339 for
additional information.

2.8 Long-Mode vs. Legacy-Mode Differences
Table 2-6 on page 39 summarizes several major system-programming differences between 64-bit
mode and legacy protected mode. The third column indicates whether the difference also applies to
compatibility mode. “Differences Between Long Mode and Legacy Mode” in Volume 3 summarizes
the application-programming model differences.

Table 2-6. Differences Between Long Mode and Legacy Mode

Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes
Task Switching Task switching not supported Yes

Addressing
64-bit virtual addresses No
4-level paging structures

Yes
PAE must always be enabled

Loaded Segment (Usage
during memory reference)

CS, DS, ES, SS segment bases are ignored

No
CS, DS, ES, FS, GS, SS segment limits are ignored
DS, ES, FS, GS attribute are ignored
CS, DS, ES, SS Segment prefixes are ignored

Exception and Interrupt
Handling

All pushes are 8 bytes

Yes
IDT entries are expanded to 16 bytes
SS is not changed for stack switch
SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

Yes
16-bit call gates are illegal
32-bit call gate type is redefined as 64-bit call gate and is
expanded to 16 bytes
SS is not changed for stack switch

System-Descriptor
Registers GDT, IDT, LDT, TR base registers expanded to 64 bits Yes

System-Descriptor Table
Entries and Pseudo-
Descriptors

LGDT and LIDT use expanded 10-byte pseudo-descriptors
No

LLDT and LTR use expanded 16-byte table entries

40 x86 and AMD64 Architecture Differences

AMD64 Technology 24593—Rev. 3.30—September 2018

System Resources 41

24593—Rev. 3.30—September 2018 AMD64 Technology

3 System Resources

The operating system manages the software-execution environment and general system operation
through the use of system resources. These resources consist of system registers (control registers and
model-specific registers) and system-data structures (memory-management and protection tables).
The system-control registers are described in detail in this chapter; many of the features they control
are described elsewhere in this volume. The model-specific registers supported by the AMD64
architecture are introduced in this chapter.

Because of their complexity, system-data structures are described in separate chapters. Refer to the
following chapters for detailed information on these data structures:
• Descriptors and descriptor tables are described in “Segmentation Data Structures and Registers”

on page 67.
• Page-translation tables are described in “Legacy-Mode Page Translation” on page 122 and “Long-

Mode Page Translation” on page 130.
• The task-state segment is described in “Legacy Task-State Segment” on page 335 and “64-Bit Task

State Segment” on page 339.

Not all processor implementations are required to support all possible features. The last section in this
chapter addresses processor-feature identification. System software uses the capabilities described in
that section to determine which features are supported so that the appropriate service routines are
loaded.

3.1 System-Control Registers
The registers that control the AMD64 architecture operating environment include:
• CR0—Provides operating-mode controls and some processor-feature controls.
• CR2—This register is used by the page-translation mechanism. It is loaded by the processor with

the page-fault virtual address when a page-fault exception occurs.
• CR3—This register is also used by the page-translation mechanism. It contains the base address of

the highest-level page-translation table, and also contains cache controls for the specified table.
• CR4—This register contains additional controls for various operating-mode features.
• CR8—This new register, accessible in 64-bit mode using the REX prefix, is introduced by the

AMD64 architecture. CR8 is used to prioritize external interrupts and is referred to as the task-
priority register (TPR).

• RFLAGS—This register contains processor-status and processor-control fields. The status and
control fields are used primarily in the management of virtual-8086 mode, hardware multitasking,
and interrupts.

42 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

• EFER—This model-specific register contains status and controls for additional features not
managed by the CR0 and CR4 registers. Included in this register are the long-mode enable and
activation controls introduced by the AMD64 architecture.

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.

In legacy mode, all control registers and RFLAGS are 32 bits. The EFER register is 64 bits in all
modes. The AMD64 architecture expands all 32-bit system-control registers to 64 bits. In 64-bit mode,
the MOV CRn instructions read or write all 64 bits of these registers (operand-size prefixes are
ignored). In compatibility and legacy modes, control-register writes fill the low 32 bits with data and
the high 32 bits with zeros, and control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CR0 and CR4 are reserved and must be written with zeros. Writing
a 1 to any of the high 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are
writable. However, the MOV CRn instructions do not check that addresses written to CR2 are within
the virtual-address limitations of the processor implementation.

All CR3 bits are writable, except for unimplemented physical address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are always read as zero by the processor. Attempts to load the upper 32
bits of RFLAGS with anything other than zero are ignored by the processor.

3.1.1 CR0 Register

The CR0 register is shown in Figure 3-1 on page 43. The legacy CR0 register is identical to the low 32
bits of this register (CR0 bits 31:0).

System Resources 43

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 3-1. Control Register 0 (CR0)

The functions of the CR0 control bits are (unless otherwise noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected mode by setting PE to 1, and
disables protected mode by clearing PE to 0. When the processor is running in protected mode,
segment-protection mechanisms are enabled.

See “Segment-Protection Overview” on page 95 for information on the segment-protection
mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software uses the MP bit with the task-switched control bit
(CR0.TS) to control whether execution of the WAIT/FWAIT instruction causes a device-not-available
exception (#NM) to occur, as follows:
• If both the monitor-coprocessor and task-switched bits are set (CR0.MP=1 and CR0.TS=1), then

executing the WAIT/FWAIT instruction causes a device-not-available exception (#NM).
• If either the monitor-coprocessor or task-switched bits are clear (CR0.MP=0 or CR0.TS=0), then

executing the WAIT/FWAIT instruction proceeds normally.

63 32

Reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0

P
G

C
D

N
W Reserved A

M R W
P Reserved N

E
E
T

T
S

E
M

M
P

P
E

Bits Mnemonic Description R/W
63:32 Reserved Reserved, Must be Zero
31 PG Paging R/W
30 CD Cache Disable R/W
29 NW Not Writethrough R/W
28:19 Reserved Reserved
18 AM Alignment Mask R/W
17 Reserved Reserved
16 WP Write Protect R/W
15:6 Reserved Reserved
5 NE Numeric Error R/W

4 ET Extension Type R
3 TS Task Switched R/W
2 EM Emulation R/W
1 MP Monitor Coprocessor R/W
0 PE Protection Enabled R/W

44 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Software typically should set MP to 1 if the processor implementation supports x87 instructions. This
allows the CR0.TS bit to completely control when the x87-instruction context is saved as a result of a
task switch.

Emulate Coprocessor (EM) Bit. Bit 2. Software forces all x87 instructions to cause a device-not-
available exception (#NM) by setting EM to 1. Likewise, setting EM to 1 forces an invalid-opcode
exception (#UD) when an attempt is made to execute any of the 64-bit or 128-bit media instructions
except the FXSAVE and FXRSTOR instructions. Attempting to execute these instructions when EM is
set results in an #NM exception instead.The exception handlers can emulate these instruction types if
desired. Setting the EM bit to 1 does not cause an #NM exception when the WAIT/FWAIT instruction
is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute an x87 or media instruction
while TS=1, a device-not-available exception (#NM) occurs. Software can use this mechanism—
sometimes referred to as “lazy context-switching”—to save the unit contexts before executing the next
instruction of those types. As a result, the x87 and media instruction-unit contexts are saved only when
necessary as a result of a task switch.

When a hardware task switch occurs, TS is automatically set to 1. System software that implements
software task-switching rather than using the hardware task-switch mechanism can still use the TS bit
to control x87 and media instruction-unit context saves. In this case, the task-management software
uses a MOV CR0 instruction to explicitly set the TS bit to 1 during a task switch. Software can clear
the TS bit by either executing the CLTS instruction or by writing to the CR0 register directly. Long-
mode system software can use this approach even though the hardware task-switch mechanism is not
supported in long mode.

The CR0.MP bit controls whether the WAIT/FWAIT instruction causes an #NM exception when
TS=1.

Extension Type (ET) Bit. Bit 4, read-only. In some early x86 processors, software set ET to 1 to
indicate support of the 387DX math-coprocessor instruction set. This bit is now reserved and forced to
1 by the processor. Software cannot clear this bit to 0.

Numeric Error (NE) Bit. Bit 5. Clearing the NE bit to 0 disables internal control of x87 floating-point
exceptions and enables external control. When NE is cleared to 0, the IGNNE# input signal controls
whether x87 floating-point exceptions are ignored:
• When IGNNE# is 1, x87 floating-point exceptions are ignored.
• When IGNNE# is 0, x87 floating-point exceptions are reported by setting the FERR# input signal

to 1. External logic can use the FERR# signal as an external interrupt.

When NE is set to 1, internal control over x87 floating-point exception reporting is enabled and the
external reporting mechanism is disabled. It is recommended that software set NE to 1. This enables
optimal performance in handling x87 floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pages are protected from supervisor-level writes when the
WP bit is set to 1. When WP is cleared to 0, supervisor software can write into read-only pages.

System Resources 45

24593—Rev. 3.30—September 2018 AMD64 Technology

See “Page-Protection Checks” on page 145 for information on the page-protection mechanism.

Alignment Mask (AM) Bit. Bit 18. Software enables automatic alignment checking by setting the
AM bit to 1 when RFLAGS.AC=1. Alignment checking can be disabled by clearing either AM or
RFLAGS.AC to 0. When automatic alignment checking is enabled and CPL=3, a memory reference to
an unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. Ignored. This bit can be set to 1 or cleared to 0, but its value is
ignored. The NW bit exists only for legacy purposes.

Cache Disable (CD) Bit. Bit 30. When CD is cleared to 0, the internal caches are enabled. When CD
is set to 1, no new data or instructions are brought into the internal caches. However, the processor still
accesses the internal caches when CD = 1 under the following situations:
• Reads that hit in an internal cache cause the data to be read from the internal cache that reported the

hit.
• Writes that hit in an internal cache cause the cache line that reported the hit to be written back to

memory and invalidated in the cache.

Cache misses do not affect the internal caches when CD = 1. Software can prevent cache access by
setting CD to 1 and invalidating the caches.

Setting CD to 1 also causes the processor to ignore the page-level cache-control bits (PWT and PCD)
when paging is enabled. These bits are located in the page-translation tables and CR3 register. See
“Page-Level Writethrough (PWT) Bit” on page 139 and “Page-Level Cache Disable (PCD) Bit” on
page 139 for information on page-level cache control.

See “Memory Caches” on page 179 for information on the internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation by setting PG to 1, and disables
page translation by clearing PG to 0. Page translation cannot be enabled unless the processor is in
protected mode (CR0.PE=1). If software attempts to set PG to 1 when PE is cleared to 0, the processor
causes a general-protection exception (#GP).

See “Page Translation Overview” on page 118 for information on the page-translation mechanism.

Reserved Bits. Bits 28:19, 17, 15:6, and 63:32. When writing the CR0 register, software should set
the values of reserved bits to the values found during the previous CR0 read. No attempt should be
made to change reserved bits, and software should never rely on the values of reserved bits. In long
mode, bits 63:32 are reserved and must be written with zero, otherwise a #GP occurs.

3.1.2 CR2 and CR3 Registers

The CR2 (page-fault linear address) register, shown in Figure 3-2 on page 46 and Figure 3-3 on
page 46, and the CR3 (page-translation-table base address) register, shown in Figure 3-4 and
Figure 3-5 on page 46, and Figure 3-6 on page 47, are used only by the page-translation mechanism.

46 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

Figure 3-3. Control Register 2 (CR2)—Long Mode

See “CR2 Register” on page 227 for a description of the CR2 register.

The CR3 register is used to point to the base address of the highest-level page-translation table.

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

31 0

Page-Fault Virtual Address

63 32

Page-Fault Virtual Address

31 0

Page-Fault Virtual Address

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C
D

P
W
T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

Reserved

System Resources 47

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 3-6. Control Register 3 (CR3)—Long Mode

The legacy CR3 register is described in “CR3 Register” on page 123, and the long-mode CR3 register
is described in “CR3” on page 130.

3.1.3 CR4 Register

The CR4 register is shown in Figure 3-7. In legacy mode, the CR4 register is identical to the low 32
bits of the register (CR4 bits 31:0). The features controlled by the bits in the CR4 register are model-
specific extensions. Except for the performance-counter extensions (PCE) feature, software can use
the CPUID instruction to verify that each feature is supported before using that feature. See
Section 3.3, “Processor Feature Identification,” on page 63 for information on using the CPUID
instruction.

63 52 51 32

Reserved, MBZ Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Reserved
P
C
D

P
W
T

Reserved

63 32

Reserved, MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, MBZ

SM
AP

SM
EP

R
es

er
ve

d
O

SX
SA

VE
R

es
er

ve
d

FS
G

SB
AS

E

Reserved, MBZ

O
SX

M
M

EX
C

PT
O

SF
XS

R
PC

E
PG

E
M

C
E

PA
E

PS
E

D
E

TS
D

PV
I

VM
E

Bits Mnemonic Description Access Type
63:22 — Reserved Reserved, MBZ
21 SMAP Supervisor Mode Access Protection R/W
20 SMEP Supervisor Mode Execution Prevention R/W
19 — Reserved Reserved, MBZ
18 OSXSAVE XSAVE and Processor Extended States Enable Bit R/W
17 — Reserved Reserved, MBZ

16 FSGSBASE Enable RDFSBASE, RDGSBASE, WRFSBASE, and
WRGSBASE instructions R/W

15:11 — Reserved Reserved, MBZ
10 OSXMMEXCPT Operating System Unmasked Exception Support R/W

48 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

:The function of the CR4 control bits are (all bits are read/write):

Virtual-8086 Mode Extensions (VME). Bit 0. Setting VME to 1 enables hardware-supported
performance enhancements for software running in virtual-8086 mode. Clearing VME to 0 disables
this support. The enhancements enabled when VME=1 include:
• Virtualized, maskable, external-interrupt control and notification using the VIF and VIP bits in the

RFLAGS register. Virtualizing affects the operation of several instructions that manipulate the
RFLAGS.IF bit.

• Selective intercept of software interrupts (INTn instructions) using the interrupt-redirection
bitmap in the TSS.

Protected-Mode Virtual Interrupts (PVI). Bit 1. Setting PVI to 1 enables support for protected-
mode virtual interrupts. Clearing PVI to 0 disables this support. When PVI=1, hardware support of
two bits in the RFLAGS register, VIF and VIP, is enabled.

Only the STI and CLI instructions are affected by enabling PVI. Unlike the case when CR0.VME=1,
the interrupt-redirection bitmap in the TSS cannot be used for selective INTn interception.

PVI enhancements are also supported in long mode. See “Virtual Interrupts” on page 255 for more
information on using PVI.

Time-Stamp Disable (TSD). Bit 2. The TSD bit allows software to control the privilege level at
which the time-stamp counter can be read. When TSD is cleared to 0, software running at any privilege
level can read the time-stamp counter using the RDTSC or RDTSCP instructions. When TSD is set to
1, only software running at privilege-level 0 can execute the RDTSC or RDTSCP instructions.

Debugging Extensions (DE). Bit 3. Setting the DE bit to 1 enables the I/O breakpoint capability and
enforces treatment of the DR4 and DR5 registers as reserved. Software that accesses DR4 or DR5
when DE=1 causes a invalid opcode exception (#UD).

When the DE bit is cleared to 0, I/O breakpoint capabilities are disabled. Software references to the
DR4 and DR5 registers are aliased to the DR6 and DR7 registers, respectively.

9 OSFXSR Operating System FXSAVE/FXRSTOR Support R/W
8 PCE Performance-Monitoring Counter Enable R/W
7 PGE Page-Global Enable R/W
6 MCE Machine Check Enable R/W
5 PAE Physical-Address Extension R/W
4 PSE Page Size Extensions R/W
3 DE Debugging Extensions R/W
2 TSD Time Stamp Disable R/W
1 PVI Protected-Mode Virtual Interrupts R/W
0 VME Virtual-8086 Mode Extensions R/W

Bits Mnemonic Description Access Type

System Resources 49

24593—Rev. 3.30—September 2018 AMD64 Technology

Page-Size Extensions (PSE). Bit 4. Setting PSE to 1 enables the use of 4-Mbyte physical pages.
With PSE=1, the physical-page size is selected between 4 Kbytes and 4 Mbytes using the page-
directory entry page-size field (PS). Clearing PSE to 0 disables the use of 4-Mbyte physical pages and
restricts all physical pages to 4 Kbytes.

The PSE bit has no effect when physical-address extensions are enabled (CR4.PAE=1). Because long
mode requires CR4.PAE=1, the PSE bit is ignored when the processor is running in long mode.

See “4-Mbyte Page Translation” on page 125 for more information on 4-Mbyte page translation.

Physical-Address Extension (PAE). Bit 5. Setting PAE to 1 enables the use of physical-address
extensions and 2-Mbyte physical pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-translation data structures are expanded from 32 bits to 64 bits, allowing the
translation of up to 52-bit physical addresses. Also, the physical-page size is selectable between
4 Kbytes and 2 Mbytes using the page-directory-entry page-size field (PS). Long mode requires PAE
to be enabled in order to use the 64-bit page-translation data structures to translate 64-bit virtual
addresses to 52-bit physical addresses.

See “PAE Paging” on page 126 for more information on physical-address extensions.

Machine-Check Enable (MCE). Bit 6. Setting MCE to 1 enables the machine-check exception
mechanism. Clearing this bit to 0 disables the mechanism. When enabled, a machine-check exception
(#MC) occurs when an uncorrectable machine-check error is encountered.

Regardless of whether machine-check exceptions are enabled, the processor records enabled-errors
when they occur. Error-reporting is performed by the machine-check error-reporting register banks.
Each bank includes a control register for enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but they do not cause a machine-check
exception.

See Chapter 9, “Machine Check Architecture,” for a description of the machine-check mechanism, the
registers used, and the types of errors captured by the mechanism.

Page-Global Enable (PGE). Bit 7. When page translation is enabled, system-software performance
can often be improved by making some page translations global to all tasks and procedures. Setting
PGE to 1 enables the global-page mechanism. Clearing this bit to 0 disables the mechanism.

When PGE is enabled, system software can set the global-page (G) bit in the lowest level of the page-
translation hierarchy to 1, indicating that the page translation is global. Page translations marked as
global are not invalidated in the TLB when the page-translation-table base address (CR3) is updated.
When the G bit is cleared, the page translation is not global. All supported physical-page sizes also
support the global-page mechanism. See “Global Pages” on page 142 for information on using the
global-page mechanism.

Performance-Monitoring Counter Enable (PCE). Bit 8. Setting PCE to 1 allows software running
at any privilege level to use the RDPMC instruction. Software uses the RDPMC instruction to read the

50 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

performance-monitoring counter MSRs, *PerfCtrn. Clearing PCE to 0 allows only the most-privileged
software (CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR). Bit 9. System software must set the OSFXSR bit to 1 to
enable use of the legacy SSE instructions. When this bit is set to 1, it also indicates that system
software uses the FXSAVE and FXRSTOR instructions to save and restore the processor state for the
x87, 64-bit media, and 128-bit media instructions.

Clearing the OSFXSR bit to 0 indicates that legacy SSE instructions cannot be used. Attempts to use
those instructions while this bit is clear result in an invalid-opcode exception (#UD). Software can
continue to use the FXSAVE/FXRSTOR instructions for saving and restoring the processor state for
the x87 and 64-bit media instructions.

Unmasked Exception Support (OSXMMEXCPT). Bit 10. System software must set the
OSXMMEXCPT bit to 1 when it supports the SIMD floating-point exception (#XF) for handling of
unmasked 256-bit and 128-bit media floating-point errors. Clearing the OSXMMEXCPT bit to 0
indicates the #XF handler is not supported. When OSXMMEXCPT=0, unmasked 128-bit media
floating-point exceptions cause an invalid-opcode exception (#UD). See “SIMD Floating-Point
Exception Causes” in Volume 1 for more information on unmasked SSE floating-point exceptions.

FSGSBASE. Bit 16. System software must set this bit to 1 to enable the execution of the
RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions when supported. When
enabled, these instructions allow software running in 64-bit mode at any privilege level to read and
write the FS.base and GS.base hidden segment register state. See the discussion of segment registers in
64-bit mode in Section 4.5.3, “Segment Registers in 64-Bit Mode,” on page 72. Also see descriptions
of the RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE instructions in Volume 3.

XSAVE and Extended States (OSXSAVE). Bit 18. After verifying hardware support for the
extended processor state management instructions, operating system software sets this bit to indicate
support for the XGETBV, XSAVE and XRSTOR instructions.

Setting this bit also:
• allows the execution of the XGETBV and XSETBV instructions, and
• enables the XSAVE and XRSTOR instructions to save and restore the x87 FPU state (including

MMX registers), along with other processor extended states enabled in XCR0.

After initializing the XSAVE/XRSTOR save area, XSAVEOPT (if supported) may be used to save x87
FPU and other enabled extended processor state. For more information on XSAVEOPT, see individual
instruction listing in Chapter 2 of Volume 4.

Note that legacy SSE instruction execution must be enabled prior to enabling extended processor state
management.

Supervisor Mode Execution Prevention (SMEP). Bit 20. Setting this bit enables the supervisor
mode execution prevention feature, if supported. This feature prevents the execution of instructions

System Resources 51

24593—Rev. 3.30—September 2018 AMD64 Technology

that reside in pages accessible by user-mode software when the processor is in supervisor-mode. See
Section 5.6, “Page-Protection Checks,” on page 145 for more information.

CR1 and CR5–CR7 Registers. Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.
Attempts by software to use these registers result in an undefined-opcode exception (#UD).

3.1.4 Additional Control Registers in 64-Bit-Mode

In 64-bit mode, additional encodings are available to address up to eight additional control registers.
The REX.R bit, in a REX prefix, is used to modify the ModRM reg field when that field encodes a
control register, as shown in “REX Prefixes” in Volume 3. These additional encodings enable the
processor to address CR8–CR15.

One additional control register, CR8, is defined in 64-bit mode for all hardware implementations, as
described in “CR8 (Task Priority Register, TPR),” below. Access to the CR9–CR15 registers is
implementation-dependent. Any attempt to access an unimplemented register results in an invalid-
opcode exception (#UD).

3.1.5 CR8 (Task Priority Register, TPR)

The AMD64 architecture introduces a new control register, CR8, defined as the task priority register
(TPR). The register is accessible in 64-bit mode using the REX prefix. See “External Interrupt
Priorities” on page 236 for a description of the TPR and how system software can use the TPR for
controlling external interrupts.

3.1.6 RFLAGS Register

The RFLAGS register contains two different types of information :
• Control bits provide system-software controls and directional information for string operations.

Some of these bits can have privilege-level restrictions.
• Status bits provide information resulting from logical and arithmetic operations. These are written

by the processor and can be read by software running at any privilege level.

Figure 3-7 on page 52 shows the format of the RFLAGS register. The legacy EFLAGS register is
identical to the low 32 bits of the register shown in Figure 3-7 (RFLAGS bits 31:0). The term rFLAGS
is used to refer to the 16-bit, 32-bit, or 64-bit flags register, depending on context.

52 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 3-7. RFLAGS Register

The functions of the RFLAGS control and status bits used by application software are described in
“Flags Register” in Volume 1. The functions of RFLAGS system bits are (unless otherwise noted, all
bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software sets the TF bit to 1 to enable single-step mode during software
debug. Clearing this bit to 0 disables single-step mode.

When single-step mode is enabled, a debug exception (#DB) occurs after each instruction completes
execution. Single stepping begins with the instruction following the instruction that sets TF. Single
stepping is disabled (TF=0) when the #DB exception occurs or when any exception or interrupt
occurs.

63 32

Reserved, RAZ

31 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved, RAZ I
D

V
I
P

V
I
F

A
C

V
M

R
F 0 N

T IOPL O
F

D
F

I
F

T
F

S
F

Z
F 0 A

F 0 P
F 1 C

F

Bits Mnemonic Description R/W
63:22 Reserved Reserved, Read as Zero
21 ID ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtual Interrupt Flag R/W
18 AC Alignment Check R/W
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W
15 Reserved Reserved, Read as Zero
14 NT Nested Task R/W
13:12 IOPL I/O Privilege Level R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W
8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
5 Reserved Reserved, Read as Zero
4 AF Auxiliary Flag R/W
3 Reserved Reserved, Read as Zero
2 PF Parity Flag R/W
1 Reserved Reserved, Read as One
0 CF Carry Flag R/W

System Resources 53

24593—Rev. 3.30—September 2018 AMD64 Technology

See “Single Stepping” on page 362 for information on using the single-step mode during debugging.

Interrupt Flag (IF) Bit. Bit 9. Software sets the IF bit to 1 to enable maskable interrupts. Clearing this
bit to 0 causes the processor to ignore maskable interrupts. The state of the IF bit does not affect the
response of a processor to non-maskable interrupts, software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:
• The current privilege-level (CPL)
• The I/O privilege level (RFLAGS.IOPL)
• Whether or not virtual-8086 mode extensions are enabled (CR4.VME=1)
• Whether or not protected-mode virtual interrupts are enabled (CR4.PVI=1)

See “Masking External Interrupts” on page 215 for information on interrupt masking. See “Accessing
the RFLAGS Register” on page 156 for information on the specific instructions used to modify the IF
bit.

I/O Privilege Level Field (IOPL) Field. Bits 13:12. The IOPL field specifies the privilege level
required to execute I/O address-space instructions (i.e., instructions that address the I/O space rather
than memory-mapped I/O, such as IN, OUT, INS, OUTS, etc.). For software to execute these
instructions, the current privilege-level (CPL) must be equal to or higher than (lower numerical value
than) the privilege specified by IOPL (CPL <= IOPL). If the CPL is lower than (higher numerical
value than) that specified by the IOPL (CPL > IOPL), the processor causes a general-protection
exception (#GP) when software attempts to execute an I/O instruction. See “Protected-Mode I/O” in
Volume 1 for information on how IOPL controls access to address-space I/O.

Virtual-8086 mode uses IOPL to control virtual interrupts and the IF bit when virtual-8086 mode
extensions are enabled (CR4.VME=1). The protected-mode virtual-interrupt mechanism (PVI) also
uses IOPL to control virtual interrupts and the IF bit when PVI is enabled (CR4.PVI=1). See “Virtual
Interrupts” on page 255 for information on how IOPL is used by the virtual interrupt mechanism.

Nested Task (NT) Bit. Bit 14, IRET reads the NT bit to determine whether the current task is nested
within another task. When NT is set to 1, the current task is nested within another task. When NT is
cleared to 0, the current task is at the top level (not nested).

The processor sets the NT bit during a task switch resulting from a CALL, interrupt, or exception
through a task gate. When an IRET is executed from legacy mode while the NT bit is set, a task switch
occurs. See “Task Switches Using Task Gates” on page 345 for information on switching tasks using
task gates, and “Nesting Tasks” on page 347 for information on task nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit, when set to 1, temporarily disables instruction breakpoint
reporting to prevent repeated debug exceptions (#DB) from occurring. This allows an instruction
which had been inhibited by an instruction-breakpoint debug exception to be restarted by the debug
exception handler.

The processor clears the RF bit after every instruction is successfully executed, except when the

54 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

instruction is:
• An IRET that sets the RF bit.
• JMP, CALL, or INTn through a task gate.

In both of the above cases, RF is not cleared to 0 until the next instruction successfully executes.

When an exception occurs (or when a string instruction is interrupted), the processor normally sets
RF=1 in the RFLAGS image saved on the interrupt stack. However, when a #DB exception occurs as a
result of an instruction breakpoint, the processor clears the RF bit to 0 in the interrupt-stack RFLAGS
image.

For instruction restart to work properly following an instruction breakpoint, the #DB exception
handler must set RF to 1 in the interrupt-stack RFLAGS image. When an IRET is later executed to
return to the instruction that caused the instruction-breakpoint #DB exception, the set RF bit (RF=1) is
loaded from the interrupt-stack RFLAGS image. RF is not cleared by the processor until the
instruction causing the #DB exception successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software sets the VM bit to 1 to enable virtual-8086 mode.
Software clears the VM bit to 0 to disable virtual-8086 mode. System software can only change this bit
using a task switch or an IRET. It cannot modify the bit using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic alignment checking by setting the
AC bit to 1 when CR0.AM=1. Alignment checking can be disabled by clearing either AC or CR0.AM
to 0. When automatic alignment checking is enabled and the current privilege-level (CPL) is 3 (least
privileged), a memory reference to an unaligned operand causes an alignment-check exception (#AC).

Virtual Interrupt (VIF) Bit. Bit 19. The VIF bit is a virtual image of the RFLAGS.IF bit. It is enabled
when either virtual-8086 mode extensions are enabled (CR4.VME=1) or protected-mode virtual
interrupts are enabled (CR4.PVI=1), and the RFLAGS.IOPL field is less than 3. When enabled,
instructions that ordinarily would modify the IF bit actually modify the VIF bit with no effect on the
RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable the VIF bit using CR4.VME. This
allows 8086 software to execute instructions that can set and clear the RFLAGS.IF bit without causing
an exception. With VIF enabled in virtual-8086 mode, those instructions set and clear the VIF bit
instead, giving the appearance to the 8086 software that it is modifying the RFLAGS.IF bit. System
software reads the VIF bit to determine whether or not to take the action desired by the 8086 software
(enabling or disabling interrupts by setting or clearing the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 255 for more information on virtual interrupts.

Virtual Interrupt Pending (VIP) Bit. Bit 20. The VIP bit is provided as an extension to both virtual-
8086 mode and protected mode. It is used by system software to indicate that an external, maskable
interrupt is pending (awaiting) execution by either a virtual-8086 mode or protected-mode interrupt-

System Resources 55

24593—Rev. 3.30—September 2018 AMD64 Technology

service routine. Software must enable virtual-8086 mode extensions (CR4.VME=1) or protected-
mode virtual interrupts (CR4.PVI=1) before using VIP.

VIP is normally set to 1 by a protected-mode interrupt-service routine that was entered from virtual-
8086 mode as a result of an external, maskable interrupt. Before returning to the virtual-8086 mode
application, the service routine sets VIP to 1 if EFLAGS.VIF=1. When the virtual-8086 mode
application attempts to enable interrupts by clearing EFLAGS.VIF to 0 while VIP=1, a general-
protection exception (#GP) occurs. The #GP service routine can then decide whether to allow the
virtual-8086 mode service routine to handle the pending external, maskable interrupt. (EFLAGS is
specifically referred to in this case because virtual-8086 mode is supported only from legacy mode.)

In long mode, the use of the VIP bit is supported when CR4.PVI=1. See “Virtual Interrupts” on
page 255 for more information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit 21. The ability of software to modify this bit
indicates that the processor implementation supports the CPUID instruction. See Section 3.3,
“Processor Feature Identification,” on page 63 for more information on the CPUID instruction.

3.1.7 Extended Feature Enable Register (EFER)

The extended-feature-enable register (EFER) contains control bits that enable additional processor
features not controlled by the legacy control registers. The EFER is a model-specific register (MSR)
with an address of C000_0080h (see “Model-Specific Registers (MSRs)” on page 58 for more
information on MSRs). It can be read and written only by privileged software. Figure 3-8 on page 56
shows the format of the EFER register.

56 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 3-8. Extended Feature Enable Register (EFER)
The defined EFER bits shown in Figure 3-8 above are described below:

System-Call Extension (SCE) Bit. Bit 0, read/write. Setting this bit to 1 enables the SYSCALL and
SYSRET instructions. Application software can use these instructions for low-latency system calls
and returns in a non-segmented (flat) address space. See “Fast System Call and Return” on page 152
for additional information.

Long Mode Enable (LME) Bit. Bit 8, read/write. Setting this bit to 1 enables the processor to activate
long mode. Long mode is not activated until software enables paging some time later. When paging is
enabled after LME is set to 1, the processor sets the EFER.LMA bit to 1, indicating that long mode is
not only enabled but also active. See Chapter 14, “Processor Initialization and Long Mode
Activation,” for more information on activating long mode.

Long Mode Active (LMA) Bit. Bit 10, read/write. This bit indicates that long mode is active. The
processor sets LMA to 1 when both long mode and paging have been enabled by system software. See
Chapter 14, “Processor Initialization and Long Mode Activation,” for more information on activating
long mode.

When LMA=1, the processor is running either in compatibility mode or 64-bit mode, depending on the
value of the L bit in a code-segment descriptor, as shown in Figure 1-6 on page 12.

63 32

Reserved, MBZ

31 16 15 14 13 12 11 10 9 8 7 1 0

Reserved, MBZ
T
C
E

F
F
X
S
R

L
M
S
L
E

S
V
M
E

N
X
E

L
M
A

M
B
Z

L
M
E

Reserved, RAZ
S
C
E

Bits Mnemonic Description R/W
63:16 Reserved, MBZ Reserved, Must be Zero
15 TCE Translation Cache Extension R/W
14 FFXSR Fast FXSAVE/FXRSTOR R/W
13 LMSLE Long Mode Segment Limit Enable R/W
12 SVME Secure Virtual Machine Enable R/W
11 NXE No-Execute Enable R/W
10 LMA Long Mode Active R/W
9 Reserved, MBZ Reserved, Must be Zero
8 LME Long Mode Enable R/W
7:1 Reserved, RAZ Reserved, Read as Zero
0 SCE System Call Extensions R/W

System Resources 57

24593—Rev. 3.30—September 2018 AMD64 Technology

When LMA=0, the processor is running in legacy mode. In this mode, the processor behaves like a
standard 32-bit x86 processor, with none of the new 64-bit features enabled. When writing the EFER
register the value of this bit must be preserved. Software must read the EFER register to determine the
value of LMA, change any other bits as required and then write the EFER register. An attempt to write
a value that differs from the state determined by hardware results in a #GP fault.

No-Execute Enable (NXE) Bit. Bit 11, read/write. Setting this bit to 1 enables the no-execute page-
protection feature. The feature is disabled when this bit is cleared to 0. See “No Execute (NX) Bit” on
page 140 for more information.

Before setting NXE, system software should verify the processor supports the feature by examining
the feature flag CPUID Fn8000_0001_EDX[NX]. See Section 3.3, “Processor Feature Identification,”
on page 63 for information on using the CPUID instruction.

Secure Virtual Machine Enable (SVME) Bit. Bit 12, read/write. Enables the SVM extensions.
When this bit is zero, the SVM instructions cause #UD exceptions. EFER.SVME defaults to a reset
value of zero. The effect of turning off EFER.SVME while a guest is running is undefined; therefore,
the VMM should always prevent guests from writing EFER. SVM extensions can be disabled by
setting VM_CR.SVME_DISABLE. For more information, see descriptions of LOCK and
SMVE_DISABLE bits in Section 15.30.1, “VM_CR MSR (C001_0114h),” on page 526.

Long Mode Segment Limit Enable (LMSLE) bit. Bit 13, read/write. Setting this bit to 1 enables
certain limit checks in 64-bit mode. See Section 4.12.2, “Data Limit Checks in 64-bit Mode,” on
page 114, "Data Limit Checks in 64-bit Mode", for more information on these limit checks.

Fast FXSAVE/FXRSTOR (FFXSR) Bit. Bit 14, read/write. Setting this bit to 1 enables the FXSAVE
and FXRSTOR instructions to execute faster in 64-bit mode at CPL 0. This is accomplished by not
saving or restoring the XMM registers (XMM0-XMM15). The FFXSR bit has no effect when the
FXSAVE/FXRSTOR instructions are executed in non 64-bit mode, or when CPL > 0. The FFXSR bit
does not affect the save/restore of the legacy x87 floating-point state, or the save/restore of MXCSR.

Before setting FFXSR, system software should verify whether this feature is supported by examining
the feature flag CPUID Fn8000_0001_EDX[FFXSR]. See Section 3.3, “Processor Feature
Identification,” on page 63 for information on using the CPUID instruction.

Translation Cache Extension (TCE) Bit. Bit 15, read/write. Setting this bit to 1 changes how the
INVLPG instruction operates on TLB entries. When this bit is 0, INVLPG will remove the target PTE
from the TLB as well as all upper-level table entries that are cached in the TLB, whether or not they
are associated with the target PTE. When this bit is set, INVLPG will remove the target PTE and only
those upper-level entries that lead to the target PTE in the page table hierarchy, leaving unrelated
upper-level entries intact. This may provide a performance benefit.

Page table management software must be written in a way that takes this behavior into account.
Software that was written for a processor that does not cache upper-level table entries may result in
stale entries being incorrectly used for translations when TCE is enabled. Software that is compatible
with TCE mode will operate in either mode.

58 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Before setting TCE, system software should verify that this feature is supported by examining the
feature flag CPUID Fn8000_0001_ECX[TCE]. See Section 3.3, “Processor Feature Identification,”
on page 63 for information on using the CPUID instruction.

3.1.8 Extended Control Registers (XCRn)

Extended control registers (XCRn) form a new register space that is available for managing processor
architectural features and capabilities. Currently only XCR0 is defined. All other XCR registers are
reserved. For more details on the Extended Control Registers, see “Extended Control Registers” in
Volume 4, Chapter 1.

3.2 Model-Specific Registers (MSRs)
Processor implementations provide model-specific registers (MSRs) for software control over the
unique features supported by that implementation. Software reads and writes MSRs using the
privileged RDMSR and WRMSR instructions. Implementations of the AMD64 architecture can
contain a mixture of two basic MSR types:
• Legacy MSRs. The AMD family of processors often share model-specific features with other x86

processor implementations. Where possible, AMD implementations use the same MSRs for the
same functions. For example, the memory-typing and debug-extension MSRs are implemented on
many AMD and non-AMD processors.

• AMD model-specific MSRs. There are many MSRs common to the AMD family of processors but
not to legacy x86 processors. Where possible, AMD implementations use the same AMD-specific
MSRs for the same functions.

Every model-specific register, as the name implies, is not necessarily implemented by all members of
the AMD family of processors. Appendix A, “MSR Cross-Reference,” lists MSR-address ranges
currently used by various AMD and other x86 processors.

The AMD64 architecture includes a number of features that are controlled using MSRs. Those MSRs
are shown in Figure 3-9. The EFER register—described in “Extended Feature Enable Register
(EFER)” on page 55—is also an MSR.

System Resources 59

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 3-9. AMD64 Architecture Model-Specific Registers

The following sections briefly describe the MSRs in the AMD64 architecture.

3.2.1 System Configuration Register (SYSCFG)

The system-configuration register (SYSCFG) contains control bits for enabling and configuring
system bus features. SYSCFG is a model-specific register (MSR) with an address of C001_0010h.
Figure 3-10 on page 60 shows the format of the SYSCFG register. Some features are implementation
specific, and are described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product. Implementation-specific features are not
shown in Figure 3-10.

AMD64_MSRs.eps

Memory-Typing Registers
MTRRcap

MTRRdefType
MTRRphysBasen
MTRRphysMaskn

MTRRfixn
PAT

TOP_MEM
TOP_MEM2

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MCi_CTL

MCi_STATUS
MCi_ADDR
MCi_MISC

Performance-Monitoring Registers
TSC

PerfEvtSeln
PerfCtrn

Debug-Extension Registers
DebugCtl

LastBranchFromIP
LastBranchToIP
LastIntFromIP

LastIntToIP

System-Configuration Register
SYSCFG

System-Linkage Registers
STAR

LSTAR
CSTAR

FS.base
GS.base

KernelGSbase
SYSENTER_CS

SYSENTER_ESP
SYSENTER_EIP

SFMASK

60 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 3-10. System-Configuration Register (SYSCFG)

The function of the SYSCFG bits are (all bits are read/write unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting this bit to 1 enables use of the RdMem and WrMem attributes in
the fixed-range MTRR registers. When cleared, these attributes are disabled. The RdMem and
WrMem attributes allow system software to define fixed-range IORRs using the fixed-range MTRRs.
See “Extended Fixed-Range MTRR Type-Field Encodings” on page 203 for information on using this
feature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software to read and write the RdMem
and WrMem bits. When cleared, writes do not modify the RdMem and WrMem bits, and reads return
0. See “Extended Fixed-Range MTRR Type-Field Encodings” on page 203 for information on using
this feature.

MtrrVarDramEn Bit. Bit 20. Setting this bit to 1 enables the TOP_MEM register and the variable-
range IORRs. These registers are disabled when the bit is cleared to 0. See “IORRs” on page 204 and
“Top of Memory” on page 206 for information on using these features.

MtrrTom2En Bit. Bit 21. Setting this bit to 1 enables the TOP_MEM2 register. The register is
disabled when this bit is cleared to 0. See “Top of Memory” on page 206 for information on using this
feature.

Tom2ForceMemTypeWB. Bit 22. Setting this bit to 1 forces the default memory type for memory
between 4GB and the address specified by TOP_MEM2 to be write back instead of the memory type
defined by MTRRdefType[Type]. For this bit to have any effect, MTRRdefType[E] must be 1. MTRR
variable-range settings and PAT can be used to override this memory type.

31 24 23 22 21 20 19 18 17 0

Reserved

M
E
M
E

F
W
B

T
O
M
2

M
V
D
M

M
F
D
M

M
F
D
E

Reserved

Bits Mnemonic Description R/W
31:24 Reserved
23 MEME MemEncryptionModeEn R/W
22 FWB Tom2ForceMemTypeWB R/W
21 TOM2 MtrrTom2En R/W
20 MVDM MtrrVarDramEn R/W
19 MFDM MtrrFixDramModEn R/W
18 MFDE MtrrFixDramEn R/W
17:0 Reserved

System Resources 61

24593—Rev. 3.30—September 2018 AMD64 Technology

MemEncryptionModeEn. Bit 23. Setting this bit to 1 enables the SME (Section 7.10, “Secure
Memory Encryption,” on page 208) and SEV (Section 15.34, “Secure Encrypted Virtualization,” on
page 532) memory encryption features. When cleared, these features are disabled. If
MSRC001_0015[SmmLock] is set, the MemEncryptionModeEn bit is sticky and cannot be changed
from a 1 to a 0.

3.2.2 System-Linkage Registers

System-linkage MSRs are used by system software to allow fast control transfers between applications
and the operating system. The functions of these registers are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used to provide mode-
dependent linkage information for the SYSCALL and SYSRET instructions. STAR is used in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility mode. SFMASK is used by the
SYSCALL instruction for RFLAGS in long mode.

FS.base and GS.base Registers. These registers allow 64-bit base-address values to be specified
for the FS and GS segments, for use in 64-bit mode. See “FS and GS Registers in 64-Bit Mode” on
page 72 for a description of the special treatment the FS and GS segments receive.

KernelGSbase Register. This register is used by the SWAPGS instruction. This instruction
exchanges the value located in KernelGSbase with the value located in GS.base.

SYSENTERx Registers. The SYSENTER_CS, SYSENTER_ESP, and SYSENTER_EIP registers
are used to provide linkage information for the SYSENTER and SYSEXIT instructions. These
instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are described in “Fast System Call and Return”
on page 152.

3.2.3 Memory-Typing Registers

Memory-typing MSRs are used to characterize, or type, memory. Memory typing allows software to
control the cacheability of memory, and determine how accesses to memory are ordered. The memory-
typing registers perform the following functions:

MTRRcap Register. This register contains information describing the level of MTRR support
provided by the processor.

MTRRdefType Register. This register establishes the default memory type to be used for physical
memory that is not specifically characterized using the fixed-range and variable-range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. These registers form a register pair that can
be used to characterize any address range within the physical-memory space, including all of physical
memory. Up to eight address ranges of varying sizes can be characterized using these registers.

62 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

MTRRfixn Registers. These registers are used to characterize fixed-size memory ranges in the first 1
Mbytes of physical-memory space.

PAT Register. This register allows memory-type characterization based on the virtual (linear)
address. It is an extension to the PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-typing capabilities as the MTRRs, but
with the added flexibility provided by the paging mechanism.

TOP_MEM and TOP_MEM2 Registers. These top-of-memory registers allow system software to
specify physical addresses ranges as memory-mapped I/O locations.

Refer to “Memory-Type Range Registers” on page 187 for more information on using these registers.

3.2.4 Debug-Extension Registers

The debug-extension MSRs provide software-debug capability not available in the legacy debug
registers (DR0–DR7). These MSRs allow single stepping and recording of control transfers to take
place. The debug-extension registers perform the following functions:

DebugCtl Register. This MSR register provides control over control-transfer recording and single
stepping, and external-breakpoint reporting and trace messages.

LastBranchx and LastIntx Registers. The four registers, LastBranchToIP, LastBranchFromIP,
LastIntToIP, and LastIntFromIP, are all used to record the source and target of control transfers when
branch recording is enabled.

Refer to “Control-Transfer Breakpoint Features” on page 362 for more information on using these
debug registers.

3.2.5 Performance-Monitoring Registers

The time-stamp counter and performance-monitoring registers are useful in identifying performance
bottlenecks. The number of performance counters can vary based on the implementation. These
registers perform the following functions:

TSC Register. This register is used to count processor-clock cycles. It can be read using the RDMSR
instruction, or it can be read using the either of the read time-stamp counter instructions, RDTSC or
RDTSCP. System software can make RDTSC or RDTSCP available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to 0.

*PerfEvtSeln Registers. These registers are used to specify the events counted by the corresponding
performance counter, and to control other aspects of its operation.

*PerfCtrn Registers. These registers are performance counters that hold a count of processor,
northbridge, or L2 cache events or the duration of events, under the control of the corresponding
*PerfEvtSeln register. Each *PerfCtrn register can be read using the RDMSR instruction, or they can
be read using the read performance-monitor counter instruction, RDPMC. System software can make

System Resources 63

24593—Rev. 3.30—September 2018 AMD64 Technology

RDPMC available for use by non-privileged software by setting the performance-monitor counter
enable bit (CR4.PCE) to 1.

Refer to “Using Performance Counters” on page 371 for more information on using these registers.

3.2.6 Machine-Check Registers

The machine-check registers control the detection and reporting of hardware machine-check errors.
The types of errors that can be reported include cache-access errors, load-data and store-data errors,
bus-parity errors, and ECC errors. Two types of machine-check MSRs are shown in Figure 3-9 on
page 59.

The first type is global machine-check registers, which perform the following functions:

MCG_CAP Register. This register identifies the machine-check capabilities supported by the
processor.

MCG_CTL Register. This register provides global control over machine-check-error reporting.

MCG_STATUS Register. This register reports global status on detected machine-check errors.

The second type is error-reporting register banks, which report on machine-check errors associated
with a specific processor unit (or group of processor units). There can be different numbers of register
banks for each processor implementation, and each bank is numbered from 0 to i. The registers in each
bank perform the following functions:

MCi_CTL Registers. These registers control error-reporting.

MCi_STATUS Registers. These registers report machine-check errors.

MCi_ADDR Registers. These registers report the machine-check error address.

MCi_MISC Registers. These registers report miscellaneous-error information.

Refer to “Using MCA Features” on page 280 for more information on using these registers.

3.3 Processor Feature Identification
The CPUID instruction provides information about the processor implementation and its capabilities.
Software operating at any privilege level can execute the CPUID instruction to collect this
information. Software can utilize this information to optimize performance.

The CPUID instruction supports multiple functions, each providing specific information about the
processor implementation, including the vendor, model number, revision (stepping), features, cache
organization, and name. The multifunction approach allows the CPUID instruction to return a detailed
picture of the processor implementation and its capabilities — more detailed information than could be
returned by a single function. This flexibility also allows for the addition of new CPUID functions in
future processor generations.

64 System Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

The desired function number is loaded into the EAX register before executing the CPUID instruction.
CPUID functions are divided into two types:
• Standard functions return information about features common to all x86 implementations,

including the earliest features offered in the x86 architecture, as well as information about the
presence of features such as support for the AVX and FMA instruction subsets. Standard function
numbers are in the range 0000_0000h–0000_FFFFh.

• Extended functions return information about AMD-specific features such as long mode and the
presence of features such as support for the FMA4 and XOP instruction subsets. Extended function
numbers are in the range 8000_0000h–8000_FFFFh.

Feature information is returned in the EAX, EBX, ECX, and EDX registers. Some functions accept a
second input parameter passed to the instruction in the ECX register.

In this and the other three volumes of this Programmer’s Manual, the notation CPUID
FnXXXX_XXXX_RRR[FieldName]_xYY is used to represent the input parameters and return value that
corresponds to a particular processor capability or feature.

In this notation, XXXX_XXXX represents the 32-bit value to be placed in the EAX register prior to
executing the CPUID instruction. This value is the function number. RRR is either EAX, EBX, ECX,
or EDX and represents the register to be examined after the execution of the instruction. If the contents
of the entire 32-bit register provides the capability information, the notation [FieldName] is omitted,
otherwise this provides the name of the field within the return value that represents the capability or
feature.

When the field is a single bit, this is called a feature flag. Normally, if a feature flag bit is set, the
corresponding processor feature is supported and if it is cleared, the feature is not supported. The
optional input parameter passed to the CPUID instruction in the ECX register is represented by the
notation _xYY appended after the return value notation. If a CPUID function does not accept this
optional input parameter, this notation is omitted.

For more specific information on the CPUID instruction, see the instruction reference page in Volume
3. For a description of all feature flags related to instruction subset support, see Volume 3, Appendix
D, "Instruction Subsets and CPUID Feature Flags." For a comprehensive list of all processor
capabilities and feature flags, see Volume 3, Appendix E, "Obtaining Processor Information Via the
CPUID Instruction."

Segmented Virtual Memory 65

24593—Rev. 3.30—September 2018 AMD64 Technology

4 Segmented Virtual Memory

The legacy x86 architecture supports a segment-translation mechanism that allows system software to
relocate and isolate instructions and data anywhere in the virtual-memory space. A segment is a
contiguous block of memory within the linear address space. The size and location of a segment within
the linear address space is arbitrary. Instructions and data can be assigned to one or more memory
segments, each with its own protection characteristics. The processor hardware enforces the rules
dictating whether one segment can access another segment.

The segmentation mechanism provides ten segment registers, each of which defines a single segment.
Six of these registers (CS, DS, ES, FS, GS, and SS) define user segments. User segments hold
software, data, and the stack and can be used by both application software and system software. The
remaining four segment registers (GDT, LDT, IDT, and TR) define system segments. System
segments contain data structures initialized and used only by system software. Segment registers
contain a base address pointing to the starting location of a segment, a limit defining the segment size,
and attributes defining the segment-protection characteristics.

Although segmentation provides a great deal of flexibility in relocating and protecting software and
data, it is often more efficient to handle memory isolation and relocation with a combination of
software and hardware paging support. For this reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be completely disabled, and an understanding
of the segmentation mechanism is important to implementing long-mode system software.

In long mode, the effects of segmentation depend on whether the processor is running in compatibility
mode or 64-bit mode:
• In compatibility mode, segmentation functions just as it does in legacy mode, using legacy 16-bit

or 32-bit protected mode semantics.
• 64-bit mode, segmentation is disabled, creating a flat 64-bit virtual-address space. As will be seen,

certain functions of some segment registers, particularly the system-segment registers, continue to
be used in 64-bit mode.

4.1 Real Mode Segmentation
After reset or power-up, the processor always initially enters real mode. Protected modes are entered
from real mode.

As noted in “Real Addressing” on page 10, real mode (real-address mode), provides a physical-
memory space of 1 Mbyte. In this mode, a 20-bit physical address is determined by shifting a 16-bit
segment selector to the left four bits and adding the 16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte boundaries. The segment base is
the lowest address in a given segment, and is equal to the segment selector * 16. The POP and MOV
instructions can be used to load a (possibly) new segment selector into one of the segment registers.

66 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

When this occurs, the selector is updated and the segment base is set to selector * 16. The segment
limit and segment attributes are unchanged, but are normally 64K (the maximum allowable limit) and
read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the new value, and the CS segment base is
set to selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and
read/write, respectively.

If the interrupt descriptor table (IDT) is used to find the real mode IDT see “Real-Mode Interrupt
Control Transfers” on page 237.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation
Virtual-8086 mode supports 16-bit real mode programs running under protected mode (see below). It
uses a simple form of memory segmentation, optional paging, and limited protection checking.
Programs running in virtual-8086 mode can access up to 1MB of memory space.

As with real mode segmentation, each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte
boundaries. The segment base is the lowest address in a given segment, and is equal to the segment
selector * 16. The POP and MOV instructions work exactly as in real mode and can be used to load a
(possibly) new segment selector into one of the segment registers. When this occurs, the selector is
updated and the segment base is set to selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions, operate as in real mode. On FAR
transfers, the CS (code segment) selector is updated to the new value, and the CS segment base is set to
selector * 16. The CS segment limit and attributes are unchanged, but are usually 64K and read/write,
respectively. Interrupts and exceptions switch the processor to protected mode. (See Chapter 8,
“Exceptions and Interrupts” for more information.)

4.3 Protected Mode Segmented-Memory Models
System software can use the segmentation mechanism to support one of two basic segmented-memory
models: a flat-memory model or a multi-segmented model. These segmentation models are supported
in legacy mode and in compatibility mode. Each type of model is described in the following sections.

4.3.1 Multi-Segmented Model

In the multi-segmented memory model, each segment register can reference a unique base address
with a unique segment size. Segments can be as small as a single byte or as large as 4 Gbytes. When
page translation is used, multiple segments can be mapped to a single page and multiple pages can be
mapped to a single segment. Figure 1-1 on page 6 shows an example of the multi-segmented model.

Segmented Virtual Memory 67

24593—Rev. 3.30—September 2018 AMD64 Technology

The multi-segmented memory model provides the greatest level of flexibility for system software
using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be used in support of legacy software.
However, in compatibility mode, the multi-segmented memory model is restricted to the first 4 Gbytes
of virtual-memory space. Access to virtual memory above 4 Gbytes requires the use of 64-bit mode,
which does not support segmentation.

4.3.2 Flat-Memory Model

The flat-memory model is the simplest form of segmentation to implement. Although segmentation
cannot be disabled, the flat-memory model allows system software to bypass most of the segmentation
mechanism. In the flat-memory model, all segment-base addresses have a value of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to 0 effectively disables segment
translation, resulting in a single segment spanning the entire virtual-address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on page 7 shows an example of the flat-
memory model.

4.3.3 Segmentation in 64-Bit Mode

In 64-bit mode, segmentation is disabled. The segment-base value is ignored and treated as 0 by the
segmentation hardware. Likewise, segment limits and most attributes are ignored. There are a few
exceptions. The CS-segment DPL, D, and L attributes are used (respectively) to establish the privilege
level for a program, the default operand size, and whether the program is running in 64-bit mode or
compatibility mode. The FS and GS segments can be used as additional base registers in address
calculations, and those segments can have non-zero base-address values. This facilitates addressing
thread-local data and certain system-software data structures. See “FS and GS Registers in 64-Bit
Mode” on page 72 for details about the FS and GS segments in 64-bit mode. The system-segment
registers are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers
Figure 4-1 on page 68 shows the following data structures used by the segmentation mechanism:
• Segment Descriptors—As the name implies, a segment descriptor describes a segment, including

its location in virtual-address space, its size, protection characteristics, and other attributes.
• Descriptor Tables—Segment descriptors are stored in memory in one of three tables. The global-

descriptor table (GDT) holds segment descriptors that can be shared among all tasks. Multiple
local-descriptor tables (LDT) can be defined to hold descriptors that are used by specific tasks and
are not shared globally. The interrupt-descriptor table (IDT) holds gate descriptors that are used to
access the segments where interrupt handlers are located.

• Task-State Segment—A task-state segment (TSS) is a special type of system segment that contains
task-state information and data structures for each task. For example, a TSS holds a copy of the
GPRs and EFLAGS register when a task is suspended. A TSS also holds the pointers to privileged-

68 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

software stacks. The TSS and task-switch mechanism are described in Chapter 12, “Task
Management.”

• Segment Selectors—Descriptors are selected for use from the descriptor tables using a segment
selector. A segment selector contains an index into either the GDT or LDT. The IDT is indexed
using an interrupt vector, as described in “Legacy Protected-Mode Interrupt Control Transfers” on
page 239, and in “Long-Mode Interrupt Control Transfers” on page 249.

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 69 shows the registers used by the segmentation mechanism. The registers have the
following relationship to the data structures:
• Segment Registers—The six segment registers (CS, DS, ES, FS, GS, and SS) are used to point to

the user segments. A segment selector selects a descriptor when it is loaded into one of the segment
registers. This causes the processor to automatically load the selected descriptor into a software-
invisible portion of the segment register.

• Descriptor-Table Registers—The three descriptor-table registers (GDTR, LDTR, and IDTR) are
used to point to the system segments. The descriptor-table registers identify the virtual-memory
location and size of the descriptor tables.

• Task Register (TR)—Describes the location and limit of the current task state segment (TSS).

513-263.eps

Segment Descriptors

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Global-Descriptor Table (GDT)

Descriptor

Descriptor

. . .

Descriptor

Local-Descriptor Table (LDT)

Descriptor

Descriptor

. . .

Descriptor

Segment Selectors

Selector 1

Selector 2

. . .

Selector n
Interrupt-Descriptor Table (IDT)

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Segmented Virtual Memory 69

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, points to the TSS. The data structures and registers
associated with task-state segments are described in “Task-Management Resources” on page 330.

4.5 Segment Selectors and Registers
4.5.1 Segment Selectors

Segment selectors are pointers to specific entries in the global and local descriptor tables. Figure 4-3
shows the segment selector format.

Figure 4-3. Segment Selector

The selector format consists of the following fields:

15 3 2 1 0

SI TI RPL

Bits Mnemonic Description R/W
15:3 SI Selector Index R/W
2 TI Table Indicator R/W
1:0 RPL Requestor Privilege Level R/W

513-264.eps

DS

ES

FS

GS

Data Segment Registers

CS

Code Segment Register

SS

Stack Segment Register

IDTR

Interrupt-Descriptor-Table Register

GDTR

Global-Descriptor-Table Register

LDTR

Local-Descriptor-Table Register

TR

Task Register

70 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Selector Index Field. Bits 15:3. The selector-index field specifies an entry in the descriptor table.
Descriptor-table entries are eight bytes long, so the selector index is scaled by 8 to form a byte offset
into the descriptor table. The offset is then added to either the global or local descriptor-table base
address (as indicated by the table-index bit) to form the descriptor-entry address in virtual-address
space.

Some descriptor entries in long mode are 16 bytes long rather than 8 bytes (see “Legacy Segment
Descriptors” on page 80 for more information on long-mode descriptor-table entries). These expanded
descriptors consume two entries in the descriptor table. Long mode, however, continues to scale the
selector index by eight to form the descriptor-table offset. It is the responsibility of system software to
assign selectors such that they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit 2. The TI bit indicates which table holds the descriptor referenced by the
selector index. When TI=0 the GDT is used and when TI=1 the LDT is used. The descriptor-table base
address is read from the appropriate descriptor-table register and added to the scaled selector index as
described above.

Requestor Privilege-Level (RPL) Field. Bits 1:0. The RPL represents the privilege level (CPL) the
processor is operating under at the time the selector is created.

RPL is used in segment privilege-checks to prevent software running at lesser privilege levels from
accessing privileged data. See “Data-Access Privilege Checks” on page 97 and “Control-Transfer
Privilege Checks” on page 100 for more information on segment privilege-checks.

Null Selector. Null selectors have a selector index of 0 and TI=0, corresponding to the first entry in
the GDT. However, null selectors do not reference the first GDT entry but are instead used to
invalidate unused segment registers. A general-protection exception (#GP) occurs if a reference is
made to use a segment register containing a null selector in non-64-bit mode. By initializing unused
segment registers with null selectors software can trap references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS data-segment registers, and into the
LDTR descriptor-table register. A #GP occurs if software attempts to load the CS register with a null
selector or if software attempts to load the SS register with a null selector in non 64-bit mode or at CPL
3.

4.5.2 Segment Registers

Six 16-bit segment registers are provided for referencing up to six segments at one time. All software
tasks require segment selectors to be loaded in the CS and SS registers. Use of the DS, ES, FS, and GS
segments is optional, but nearly all software accesses data and therefore requires a selector in the DS
register. Table 4-1 on page 71 lists the supported segment registers and their functions.

Segmented Virtual Memory 71

24593—Rev. 3.30—September 2018 AMD64 Technology

The processor maintains a hidden portion of the segment register in addition to the selector value
loaded by software. This hidden portion contains the values found in the descriptor-table entry
referenced by the segment selector. The processor loads the descriptor-table entry into the hidden
portion when the segment register is loaded. By keeping the corresponding descriptor-table entry in
hardware, performance is optimized for the majority of memory references.

Figure 4-4 shows the format of the visible and hidden portions of the segment register. Except for the
FS and GS segment base, software cannot directly read or write the hidden portion (shown as gray-
shaded boxes in Figure 4-4).

Figure 4-4. Segment-Register Format

CS Register. The CS register contains the segment selector referencing the current code-segment
descriptor entry. All instruction fetches reference the CS descriptor. When a new selector is loaded into
the CS register, the current-privilege level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register contains the segment selector referencing the default
data-segment descriptor entry. The SS register contains the stack-segment selector. The ES, FS, and
GS registers are optionally loaded with segment selectors referencing other data segments. Data
accesses default to referencing the DS descriptor except in the following two cases:

Table 4-1. Segment Registers
Segment
Register Encoding Segment Register Function

ES /0 References optional data-segment descriptor entry
CS /1 References code-segment descriptor entry
SS /2 References stack segment descriptor entry
DS /3 References default data-segment descriptor entry
FS /4 References optional data-segment descriptor entry
GS /5 References optional data-segment descriptor entry

Hidden From Software 513-221.eps

32-Bit Segment Limit

32-Bit Segment Base Address

Segment Attributes

Selector

72 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

• The ES descriptor is referenced for string-instruction destinations.
• The SS descriptor is referenced for stack operations.

4.5.3 Segment Registers in 64-Bit Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden portion of the CS register is
ignored. Only the L (long), D (default operation size), and DPL (descriptor privilege-level) attributes
are recognized by 64-bit mode. Address calculations assume a CS.base value of 0. CS references do
not check the CS.limit value, but instead check that the effective address is in canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents of the ES, DS, and SS
segment registers are ignored. All fields (base, limit, and attribute) in the hidden portion of the
segment registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS, or SS segments are treated as if the
segment base is 0. Instead of performing limit checks, the processor checks that all virtual-address
references are in canonical form.

Neither enabling and activating long mode nor switching between 64-bit and compatibility modes
changes the contents of the visible or hidden portions of the segment registers. These registers remain
unchanged during 64-bit mode execution unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlike the CS, DS, ES, and SS segments, the FS and GS
segment overrides can be used in 64-bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-address (EA) calculation. The complete
EA calculation then becomes (FS or GS).base + base + (scale ∗ index) + displacement. The FS.base
and GS.base values are also expanded to the full 64-bit virtual-address size, as shown in Figure 4-5.
The resulting EA calculation is allowed to wrap across positive and negative addresses.

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

In 64-bit mode, FS-segment and GS-segment overrides are not checked for limit or attributes. Instead,
the processor checks that all virtual-address references are in canonical form.

Hidden from Software and Unused in 64-bit Mode 513-267.eps

64-Bit Segment Base Address

32-Bit Segment Limit

Segment Attributes

Selector

Segmented Virtual Memory 73

24593—Rev. 3.30—September 2018 AMD64 Technology

Segment register-load instructions (MOV to Sreg and POP Sreg) load only a 32-bit base-address value
into the hidden portion of the FS and GS segment registers. The base-address bits above the low 32 bits
are cleared to 0 as a result of a segment-register load. When a null selector is loaded into FS or GS, the
contents of the corresponding hidden descriptor register are not altered.

There are two methods to update the contents of the FS.base and GS.base hidden descriptor fields. The
first is available exclusively to privileged software (CPL = 0). The FS.base and GS.base hidden
descriptor-register fields are mapped to MSRs. Privileged software can load a 64-bit base address in
canonical form into FS.base or GS.base using a single WRMSR instruction. The FS.base MSR address
is C000_0100h while the GS.base MSR address is C000_0101h.

The second method of updating the FS and GS base fields is available to software running at any
privilege level (when supported by the implementation and enabled by setting CR4[FSGSBASE]).
The WRFSBASE and WRGSBASE instructions copy the contents of a GPR to the FS.base and
GS.base fields respectively. When the operand size is 32 bits, the upper doubleword of the base is
cleared. WRFSBASE and WRGSBASE are only supported in 64-bit mode.

The addresses written into the expanded FS.base and GS.base registers must be in canonical form. Any
instruction that attempts to write a non-canonical address to these registers causes a general-protection
exception (#GP) to occur.

When in compatibility mode, the FS and GS overrides operate as defined by the legacy x86
architecture regardless of the value loaded into the high 32 bits of the hidden descriptor-register base-
address field. Compatibility mode ignores the high 32 bits when calculating an effective address.

4.6 Descriptor Tables
Descriptor tables are used by the segmentation mechanism when protected mode is enabled
(CR0.PE=1). These tables hold descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory references in protected mode access a descriptor-table entry.

As previously mentioned, there are three types of descriptor tables supported by the x86 segmentation
mechanism:
• Global descriptor table (GDT)
• Local descriptor table (LDT)
• Interrupt descriptor table (IDT)

Software establishes the location of a descriptor table in memory by initializing its corresponding
descriptor-table register. The descriptor-table registers and the descriptor tables are described in the
following sections.

4.6.1 Global Descriptor Table

Protected-mode system software must create a global descriptor table (GDT). The GDT contains code-
segment and data-segment descriptor entries (user segments) for segments that can be shared by all

74 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

tasks. In addition to the user segments, the GDT can also hold gate descriptors and other system-
segment descriptors. System software can store the GDT anywhere in memory and should protect the
segment containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (TI) bit in the selector is cleared to 0. The
selector index portion of the segment selector references a specific entry in the GDT. Figure 4-6 on
page 74 shows how the segment selector indexes into the GDT. One special form of a segment selector
is the null selector. A null selector points to the first entry in the GDT (the selector index is 0 and
TI=0). However, null selectors do not reference memory, so the first GDT entry cannot be used to
describe a segment (see “Null Selector” on page 70 for information on using the null selector). The
first usable GDT entry is referenced with a selector index of 1.

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global Descriptor-Table Register

The global descriptor-table register (GDTR) points to the location of the GDT in memory and defines
its size. This register is loaded from memory using the LGDT instruction (see “LGDT and LIDT
Instructions” on page 158). Figure 4-7 shows the format of the GDTR in legacy mode and
compatibility mode.

513-209.eps

Descriptor Table Base Address Descriptor Table Limit

Global (TI=0)
Local (TI=1)

Descriptor Table

+

+

Global or Local Descriptor-Table Register

Selector Index 000

Selector Index TI Segment Selector

Unused in GDT

Segmented Virtual Memory 75

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 75 shows the format of the GDTR in 64-bit mode.

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains two fields:

Limit. 2 bytes. These bits define the 16-bit limit, or size, of the GDT in bytes. The limit value is added
to the base address to yield the ending byte address of the GDT. A general-protection exception (#GP)
occurs if software attempts to access a descriptor beyond the GDT limit.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the GDTR and IDTR limit-field sizes are unchanged from the legacy sizes. The
processor does check the limits in long mode during GDT and IDT accesses.

Base Address. 8 bytes. The base-address field holds the starting byte address of the GDT in virtual-
memory space. The GDT can be located at any byte address in virtual memory, but system software
should align the GDT on a quadword boundary to avoid the potential performance penalties associated
with accessing unaligned data.

The AMD64 architecture increases the base-address field of the GDTR to 64 bits so that system
software running in long mode can locate the GDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 4 bytes of base address when running in legacy mode.

4.6.3 Local Descriptor Table

Protected-mode system software can optionally create a local descriptor table (LDT) to hold segment
descriptors belonging to a single task or even multiple tasks. The LDT typically contains code-

513-220.eps

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

513-266.eps

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

76 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

segment and data-segment descriptors as well as gate descriptors referenced by the specified task. Like
the GDT, system software can store the LDT anywhere in memory and should protect the segment
containing the LDT from non-privileged software.

Segment selectors point to the LDT when the table-index bit (TI) in the selector is set to 1. The selector
index portion of the segment selector references a specific entry in the LDT (see Figure 4-6 on
page 74). Unlike the GDT, however, a selector index of 0 references the first entry in the LDT (when
TI=1, the selector is not a null selector).

LDTs are described by system-segment descriptor entries located in the GDT, and a GDT can contain
multiple LDT descriptors. The LDT system-segment descriptor defines the location, size, and
privilege rights for the LDT. Figure 4-9 on page 76 shows the relationship between the LDT and GDT
data structures.

Loading a null selector into the LDTR is useful if software does not use an LDT. This causes a #GP if
an erroneous reference is made to the LDT.

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local Descriptor-Table Register

The local descriptor-table register (LDTR) points to the location of the LDT in memory, defines its
size, and specifies its attributes. The LDTR has two portions. A visible portion holds the LDT selector,
and a hidden portion holds the LDT descriptor. When the LDT selector is loaded into the LDTR, the
processor automatically loads the LDT descriptor from the GDT into the hidden portion of the LDTR.
The LDTR is loaded in one of two ways:
• Using the LLDT instruction (see “LLDT and LTR Instructions” on page 158).

513-208.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

LDT Selector

LDT Attributes

LDT Limit

LDT Base Address

Local
Descriptor

Table

Global Descriptor Table Register Local Descriptor Table Register

Segmented Virtual Memory 77

24593—Rev. 3.30—September 2018 AMD64 Technology

• Performing a task switch (see “Switching Tasks” on page 343).

Figure 4-10 on page 77 shows the format of the LDTR in legacy mode.

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 shows the format of the LDTR in long mode (both compatibility mode and 64-bit mode).

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields:

LDT Selector. 2 bytes. These bits are loaded explicitly from the TSS during a task switch, or by using
the LLDT instruction. The LDT selector must point to an LDT system-segment descriptor entry in the
GDT. If it does not, a general-protection exception (#GP) occurs.

The following three fields are loaded automatically from the LDT descriptor in the GDT as a result of
loading the LDT selector. The register fields are shown as shaded boxes in Figure 4-10 and
Figure 4-11.

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

78 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Base Address. The base-address field holds the starting byte address of the LDT in virtual-memory
space. Like the GDT, the LDT can be located anywhere in system memory, but software should align
the LDT on a quadword boundary to avoid performance penalties associated with accessing unaligned
data.

The AMD64 architecture expands the base-address field of the LDTR to 64 bits so that system
software running in long mode can locate an LDT anywhere in the 64-bit virtual-address space. The
processor ignores the high-order 32 base-address bits when running in legacy mode. Because the
LDTR is loaded from the GDT, the system-segment descriptor format (LDTs are system segments) has
been expanded by the AMD64 architecture in support of 64-bit mode. See “Long Mode Descriptor
Summary” on page 94 for more information on this expanded format. The high-order base-address
bits are only loaded from 64-bit mode using the LLDT instruction (see “LLDT and LTR Instructions”
on page 158 for more information on this instruction).

Limit. This field defines the limit, or size, of the LDT in bytes. The LDT limit as stored in the LDTR
is 32 bits. When the LDT limit is loaded from the GDT descriptor entry, the 20-bit limit field in the
descriptor is expanded to 32 bits and scaled based on the value of the descriptor granularity (G) bit. For
details on the limit biasing and granularity, see “Granularity (G) Bit” on page 81.

If an attempt is made to access a descriptor beyond the LDT limit, a general-protection exception
(#GP) occurs.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the LDTR limit-field size is unchanged from the legacy size. The processor does
check the LDT limit in long mode during LDT accesses.

Attributes. This field holds the descriptor attributes, such as privilege rights, segment presence and
segment granularity.

4.6.5 Interrupt Descriptor Table

The final type of descriptor table is the interrupt descriptor table (IDT). Multiple IDTs can be
maintained by system software. System software selects a specific IDT by loading the interrupt
descriptor table register (IDTR) with a pointer to the IDT. As with the GDT and LDT, system software
can store the IDT anywhere in memory and should protect the segment containing the IDT from non-
privileged software.

The IDT can contain only the following types of gate descriptors:
• Interrupt gates
• Trap gates
• Task gates.

The use of gate descriptors by the interrupt mechanism is described in Chapter 8, “Exceptions and
Interrupts.” A general-protection exception (#GP) occurs if the IDT descriptor referenced by an
interrupt or exception is not one of the types listed above.

Segmented Virtual Memory 79

24593—Rev. 3.30—September 2018 AMD64 Technology

IDT entries are selected using the interrupt vector number rather than a selector value. The interrupt
vector number is scaled by the interrupt-descriptor entry size to form an offset into the IDT. The
interrupt-descriptor entry size depends on the processor operating mode as follows:
• In long mode, interrupt descriptor-table entries are 16 bytes.
• In legacy mode, interrupt descriptor-table entries are eight bytes.

Figure 4-12 shows how the interrupt vector number indexes the IDT.

Figure 4-12. Indexing an IDT

4.6.6 Interrupt Descriptor-Table Register

The interrupt descriptor-table register (IDTR) points to the IDT in memory and defines its size. This
register is loaded from memory using the LIDT instruction (see “LGDT and LIDT Instructions” on
page 158). The format of the IDTR is identical to that of the GDTR in all modes. Figure 4-7 on
page 75 shows the format of the IDTR in legacy mode. Figure 4-8 on page 75 shows the format of the
IDTR in long mode.

The offsets into the descriptor tables are not extended by the AMD64 architecture in support of long
mode. Therefore, the IDTR limit-field size is unchanged from the legacy size. The processor does
check the IDT limit in long mode during IDT accesses.

513-207.eps

IDT Base Address IDT Limit

Interrupt
Descriptor Table

*

Interrupt Vector

Descriptor Entry
Size

+

+

Interrupt Descriptor Table Register

80 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

4.7 Legacy Segment Descriptors
4.7.1 Descriptor Format

Segment descriptors define, protect, and isolate segments from each other. There are two basic types of
descriptors, each of which are used to describe different segment (or gate) types:
• User Segments—These include code segments and data segments. Stack segments are a type of

data segment.
• System Segments—System segments consist of LDT segments and task-state segments (TSS).

Gate descriptors are another type of system-segment descriptor. Rather than describing segments,
gate descriptors point to program entry points.

Figure 4-13 shows the generic format for user-segment and system-segment descriptors. User and
system segments are differentiated using the S bit. S=1 indicates a user segment, and S=0 indicates a
system segment. Gray shading indicates the field or bit is reserved. The format for a gate descriptor
differs from the generic segment descriptor, and is described separately in “Gate Descriptors” on
page 86.

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 shows the fields in a generic, legacy-mode, 8-byte (two doubleword) segment descriptor.
In this figure, the upper doubleword (located at byte offset +4) is shown on top and the lower
doubleword (located at byte offset +0) is shown on the bottom. The fields are defined as follows:

Segment Limit. The 20-bit segment limit is formed by concatenating bits 19:16 of the upper
doubleword with bits 15:0 of lower doubleword. The segment limit defines the segment size, in bytes.
The granularity (G) bit controls how the segment-limit field is scaled (see “Granularity (G) Bit” on
page 81). For data segments, the expand-down (E) bit determines whether the segment limit defines
the lower or upper segment-boundary (see “Expand-Down (E) Bit” on page 84).

If software references a segment descriptor with an address beyond the segment limit, a general-
protection exception (#GP) occurs. The #GP occurs if any part of the memory reference falls outside
the segment limit. For example, a doubleword (4-byte) address reference causes a #GP if one or more
bytes are located beyond the segment limit.

Base Address. The 32-bit base address is formed by concatenating bits 31:24 of the upper
doubleword with bits 7:0 of the same doubleword and bits 15:0 of the lower doubleword. The
segment-base address field locates the start of a segment in virtual-address space.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment Limit
[19:16] P DPL S Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Segmented Virtual Memory 81

24593—Rev. 3.30—September 2018 AMD64 Technology

S Bit and Type Field. Bit 12 and bits 11:8 of the upper doubleword. The S and Type fields, together,
specify the descriptor type and its access characteristics. Table 4-2 summarizes the descriptor types by
S-field encoding and gives a cross reference to descriptions of the Type-field encodings.

Descriptor Privilege-Level (DPL) Field. Bits 14:13 of the upper doubleword. The DPL field
indicates the descriptor-privilege level of the segment. DPL can be set to any value from 0 to 3, with 0
specifying the most privilege and 3 the least privilege. See “Data-Access Privilege Checks” on
page 97 and “Control-Transfer Privilege Checks” on page 100 for more information on how the DPL
is used during segment privilege-checks.

Present (P) Bit. Bit 15 of the upper doubleword. The segment-present bit indicates that the segment
referenced by the descriptor is loaded in memory. If a reference is made to a descriptor entry when
P = 0, a segment-not-present exception (#NP) occurs. This bit is set and cleared by system software
and is never altered by the processor.

Available To Software (AVL) Bit. Bit 20 of the upper doubleword. This field is available to software,
which can write any value to it. The processor does not set or clear this field.

Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. The default operand-size bit is
found in code-segment and data-segment descriptors but not in system-segment descriptors. Setting
this bit to 1 indicates a 32-bit default operand size, and clearing it to 0 indicates a 16-bit default size.
The effect this bit has on a segment depends on the segment-descriptor type. See “Code-Segment
Default-Operand Size (D) Bit” on page 83 for a description of the D bit in code-segment descriptors.
“Data-Segment Default Operand Size (D/B) Bit” on page 85 describes the D bit in data-segment
descriptors, including stack segments, where the bit is referred to as the “B” bit.

Granularity (G) Bit. Bit 23 of the upper doubleword. The granularity bit specifies how the segment-
limit field is scaled. Clearing the G bit to 0 indicates that the limit field is not scaled. In this case, the
limit equals the number of bytes available in the segment. Setting the G bit to 1 indicates that the limit
field is scaled by 4 Kbytes (4096 bytes). Here, the limit field equals the number of 4-Kbyte blocks
available in the segment.

Setting a limit of 0 indicates a 1-byte segment limit when G = 0. Setting the same limit of 0 when G =
1 indicates a segment limit of 4095.

Table 4-2. Descriptor Types

S Field Descriptor
Type Type-Field Encoding

0 (System)
LDT

See Table 4-5 on page 85TSS
Gate

1 (User)
Code See Table 4-3 on page 83
Data See Table 4-4 on page 84

82 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Reserved Bits. Generally, software should clear all reserved bits to 0, so they can be defined in future
revisions to the AMD64 architecture.

4.7.2 Code-Segment Descriptors

Figure 4-14 shows the code-segment descriptor format (gray shading indicates the bit is reserved). All
software tasks require that a segment selector, referencing a valid code-segment descriptor, is loaded
into the CS register. Code segments establish the processor operating mode and execution privilege-
level. The segments generally contain only instructions and are execute-only, or execute and read-
only. Software cannot write into a segment whose selector references a code-segment descriptor.

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the S bit set to 1, identifying the segments as user segments. Type-field
bit 11 differentiates code-segment descriptors (bit 11 set to 1) from data-segment descriptors (bit 11
cleared to 0). The remaining type-field bits (10:8) define the access characteristics for the code-
segment, as follows:

Conforming (C) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the code segment
as conforming. When control is transferred to a higher-privilege conforming code-segment (C=1) from
a lower-privilege code segment, the processor CPL does not change. Transfers to non-conforming
code-segments (C = 0) with a higher privilege-level than the CPL can occur only through gate
descriptors. See “Control-Transfer Privilege Checks” on page 100 for more information on
conforming and non-conforming code-segments.

Readable (R) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 indicates the code segment is
both executable and readable as data. When this bit is cleared to 0, the code segment is executable, but
attempts to read data from the code segment cause a general-protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into the CS register. This bit is only cleared by software.

Table 4-3 on page 83 summarizes the code-segment type-field encodings.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G D
A
V
L

Segment
Limit[19:16] P DPL 1 1 C R A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Segmented Virtual Memory 83

24593—Rev. 3.30—September 2018 AMD64 Technology

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-segment descriptors, the
D bit selects the default operand size and address sizes. In legacy mode, when D=0 the default operand
size and address size is 16 bits and when D=1 the default operand size and address size is 32 bits.
Instruction prefixes can be used to override the operand size or address size, or both.

4.7.3 Data-Segment Descriptors

Figure 4-15 shows the data-segment descriptor format. Data segments contain non-executable
information and can be accessed as read-only or read/write. They are referenced using the DS, ES, FS,
GS, or SS data-segment registers. The DS data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment registers hold segment selectors for additional
data segments usable by the current software task.

The stack segment is a special form of data-segment register. It is referenced using the SS segment
register and must be read/write. When loading the SS register, the processor requires that the selector
reference a valid, writable data-segment descriptor.

Figure 4-15. Data-Segment Descriptor—Legacy Mode

Table 4-3. Code-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8
Conforming

(C)
Readable

(R)
Accessed

(A)
8

1

0 0 0 Execute-Only
9 0 0 1 Execute-Only — Accessed
A 0 1 0 Execute/Readable
B 0 1 1 Execute/Readable — Accessed
C 1 0 0 Conforming, Execute-Only
D 1 0 1 Conforming, Execute-Only — Accessed
E 1 1 0 Conforming, Execute/Readable

F 1 1 1 Conforming, Execute/Readable —
Accessed

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment
Limit [19:16] P DPL 1 0 E W A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

84 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Data-segment descriptors have the S bit set to 1, identifying them as user segments. Type-field bit 11
differentiates data-segment descriptors (bit 11 cleared to 0) from code-segment descriptors (bit 11 set
to 1). The remaining type-field bits (10:8) define the data-segment access characteristics, as follows:

Expand-Down (E) Bit. Bit 10 of the upper doubleword. Setting this bit to 1 identifies the data
segment as expand-down. In expand-down segments, the segment limit defines the lower segment
boundary while the base is the upper boundary. Valid segment offsets in expand-down segments lie in
the byte range limit+1 to FFFFh or FFFF_FFFFh, depending on the value of the data segment default
operand size (D/B) bit.

Expand-down segments are useful for stacks, which grow in the downward direction as elements are
pushed onto the stack. The stack pointer, ESP, is decremented by an amount equal to the operand size
as a result of executing a PUSH instruction.

Clearing the E bit to 0 identifies the data segment as expand-up. Valid segment offsets in expand-up
segments lie in the byte range 0 to segment limit.

Writable (W) Bit. Bit 9 of the upper doubleword. Setting this bit to 1 identifies the data segment as
read/write. When this bit is cleared to 0, the segment is read-only. A general-protection exception
(#GP) occurs if software attempts to write into a data segment when W=0.

Accessed (A) Bit. Bit 8 of the upper doubleword. The accessed bit is set to 1 by the processor when
the descriptor is copied from the GDT or LDT into one of the data-segment registers or the stack-
segment register. This bit is only cleared by software.

Table 4-4 summarizes the data-segment type-field encodings.

Table 4-4. Data-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8
Expand-

Down
(E)

Writable
(W)

Accessed
(A)

0

0

0 0 0 Read-Only
1 0 0 1 Read-Only — Accessed
2 0 1 0 Read/Write
3 0 1 1 Read/Write — Accessed
4 1 0 0 Expand-down, Read-Only
5 1 0 1 Expand-down, Read-Only — Accessed
6 1 1 0 Expand-down, Read/Write
7 1 1 1 Expand-down, Read/Write — Accessed

Segmented Virtual Memory 85

24593—Rev. 3.30—September 2018 AMD64 Technology

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of the upper doubleword. For expand-down
data segments (E=1), setting D=1 sets the upper bound of the segment at 0_FFFF_FFFFh. Clearing
D=0 sets the upper bound of the segment at 0_FFFFh.

In the case where a data segment is referenced by the stack selector (SS), the D bit is referred to as the
B bit. For stack segments, the B bit sets the default stack size. Setting B=1 establishes a 32-bit stack
referenced by the 32-bit ESP register. Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SP register.

4.7.4 System Descriptors

There are two general types of system descriptors: system-segment descriptors and gate descriptors.
System-segment descriptors are used to describe the LDT and TSS segments. Gate descriptors do not
describe segments, but instead hold pointers to code-segment descriptors. Gate descriptors are used for
protected-mode control transfers between less-privileged and more-privileged software.

System-segment descriptors have the S bit cleared to 0. The type field is used to differentiate the
various LDT, TSS, and gate descriptors from one another. Table 4-5 summarizes the system-segment
type-field encodings.

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode
Hex

Value
Type Field
(Bits 11:8) Description

0 0000 Reserved (Illegal)
1 0001 Available 16-bit TSS
2 0010 LDT
3 0011 Busy 16-bit TSS
4 0100 16-bit Call Gate
5 0101 Task Gate
6 0110 16-bit Interrupt Gate
7 0111 16-bit Trap Gate
8 1000 Reserved (Illegal)
9 1001 Available 32-bit TSS
A 1010 Reserved (Illegal)
B 1011 Busy 32-bit TSS
C 1100 32-bit Call Gate
D 1101 Reserved (Illegal)
E 1110 32-bit Interrupt Gate
F 1111 32-bit Trap Gate

86 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 4-16 shows the legacy-mode system-segment descriptor format used for referencing LDT and
TSS segments (gray shading indicates the bit is reserved). This format is also used in compatibility
mode. The system-segments are used as follows:
• The LDT typically holds segment descriptors belonging to a single task (see “Local Descriptor

Table” on page 75).
• The TSS is a data structure for holding processor-state information. Processor state is saved in a

TSS when a task is suspended, and state is restored from the TSS when a task is restarted. System
software must create at least one TSS referenced by the task register, TR. See “Legacy Task-State
Segment” on page 335 for more information on the TSS.

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors

Gate descriptors hold pointers to code segments and are used to control access between code segments
with different privilege levels. There are four types of gate descriptors:
• Call Gates—These gates (Figure 4-17 on page 87) are located in the GDT or LDT and are used to

control access between code segments in the same task or in different tasks. See “Control Transfers
Through Call Gates” on page 104 for information on how call gates are used to control access
between code segments operating in the same task. The format of a call-gate descriptor is shown in
Figure 4-17 on page 87.

• Interrupt Gates and Trap Gates—These gates (Figure 4-18 on page 87) are located in the IDT and
are used to control access to interrupt-service routines. “Legacy Protected-Mode Interrupt Control
Transfers” on page 239 contains information on using these gates for interrupt-control transfers.
The format of interrupt-gate and trap-gate descriptors is shown in Figure 4-17 on page 87.

• Task Gates—These gates (Figure 4-19 on page 87) are used to control access between different
tasks. They are also used to transfer control to interrupt-service routines if those routines are
themselves a separate task. See “Task-Management Resources” on page 330 for more information
on task gates and their use.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address[31:24] G
I
G
N

A
V
L

Segment
Limit[19:16] P DPL 0 Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Segmented Virtual Memory 87

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-17. Call-Gate Descriptor—Legacy Mode

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor format and the system-segment descriptor
format. These differences are described as follows, from least-significant to most-significant bit
positions:

Target Code-Segment Offset. The 32-bit segment offset is formed by concatenating bits 31:16 of
byte +4 with bits 15:0 of byte +0. The segment-offset field specifies the target-procedure entry point
(offset) into the segment. This field is loaded into the EIP register as a result of a control transfer using
the gate descriptor.

Target Code-Segment Selector. Bits 31:16 of byte +0. The segment-selector field identifies the
target-procedure segment descriptor, located in either the GDT or LDT. The segment selector is loaded
into the CS segment register as a result of a control transfer using the gate descriptor.

TSS Selector. Bits 31:16 of byte +0 (task gates only). This field identifies the target-task TSS
descriptor, located in any of the three descriptor tables (GDT, LDT, and IDT).

31 16 15 14 13 12 11 8 7 6 5 4 0

Target Code-Segment Offset[31:16] P DPL 0 Type Reserved
IGN Parameter Count +4

Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

31 16 15 14 13 12 11 8 7 0

Target Code-Segment Offset[31:16] P DPL 0 Type Reserved, IGN +4

Target Code-Segment Selector Target Code-Segment Offset[15:0] +0

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL 0 Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

88 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Parameter Count (Call Gates Only). Bits 4:0 of byte +4. Legacy-mode call-gate descriptors contain
a 5-bit parameter-count field. This field specifies the number of parameters to be copied from the
currently-executing program stack to the target program stack during an automatic stack switch.
Automatic stack switches are performed by the processor during a control transfer through a call gate
to a greater privilege-level. The parameter size depends on the call-gate size as specified in the type
field. 32-bit call gates copy 4-byte parameters, and 16-bit call gates copy 2-byte parameters. See
“Stack Switching” on page 108 for more information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors
The interpretation of descriptor fields is changed in long mode, and in some cases the format is
expanded. The changes depend on the operating mode (compatibility mode or 64-bit mode) and on the
descriptor type. The following sections describe the changes.

4.8.1 Code-Segment Descriptors

Code segments continue to exist in long mode. Code segments and their associated descriptors and
selectors are needed to establish the processor operating mode as well as execution privilege-level.
The new L attribute specifies whether the processor is running in compatibility mode or 64-bit mode
(see “Long (L) Attribute Bit” on page 89). Figure 4-20 shows the long-mode code-segment descriptor
format. In compatibility mode, the code-segment descriptor is interpreted and behaves just as it does in
legacy mode as described in “Code-Segment Descriptors” on page 82.

In Figure 4-20, gray shading indicates the code-segment descriptor fields that are ignored in 64-bit
mode when the descriptor is used during a memory reference. However, the fields are loaded whenever
the segment register is loaded in 64-bit mode.

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode, and code segments span
all of virtual memory. In this mode, code-segment base addresses are ignored. For the purpose of
virtual-address calculations, the base address is treated as if it has a value of zero.

Segment-limit checking is not performed, and both the segment-limit field and granularity (G) bit are
ignored. Instead, the virtual address is checked to see if it is in canonical-address form.

The readable (R) and accessed (A) attributes in the type field are also ignored.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G D L
A
V
L

Segment
Limit[19:16] P DPL 1 1 C R A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Segmented Virtual Memory 89

24593—Rev. 3.30—September 2018 AMD64 Technology

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a new attribute, the long (L) bit, in
code-segment descriptors. This bit specifies that the processor is running in 64-bit mode (L=1) or
compatibility mode (L=0). When the processor is running in legacy mode, this bit is reserved.

Compatibility mode maintains binary compatibility with legacy 16-bit and 32-bit applications.
Compatibility mode is selected on a code-segment basis, and it allows legacy applications to coexist
under the same 64-bit system software along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and 32-bit applications by clearing the L bit
of the code-segment descriptor to 0.

When L=0, the legacy meaning of the code-segment D bit (see “Code-Segment Default-Operand Size
(D) Bit” on page 83)—and the address-size and operand-size prefixes—are observed. Segmentation is
enabled when L=0. From an application viewpoint, the processor is in a legacy 16-bit or 32-bit
operating environment (depending on the D bit), even though long mode is activated.

If the processor is running in 64-bit mode (L=1), the only valid setting of the D bit is 0. This setting
produces a default operand size of 32 bits and a default address size of 64 bits. The combination L=1
and D=1 is reserved for future use.

“Instruction Prefixes” in Volume 3 describes the effect of the code-segment L and D bits on default
operand and address sizes when long mode is activated. These default sizes can be overridden with
operand size, address size, and REX prefixes.

4.8.2 Data-Segment Descriptors

Data segments continue to exist in long mode. Figure 4-21 shows the long-mode data-segment
descriptor format. In compatibility mode, data-segment descriptors are interpreted and behave just as
they do in legacy mode.

In Figure 4-21, gray shading indicates the fields that are ignored in 64-bit mode when the descriptor is
used during a memory reference. However, the fields are loaded whenever the segment register is
loaded in 64-bit mode.

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit mode. The interpretation of the
segment-base address depends on the segment register used:

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address[31:24] G
D
/
B

A
V
L

Segment
Limit[19:16] P DPL 1 0 E W A Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

90 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

• In data-segment descriptors referenced by the DS, ES and SS segment registers, the base-address
field is ignored. For the purpose of virtual-address calculations, the base address is treated as if it
has a value of zero.

• Data segments referenced by the FS and GS segment registers receive special treatment in 64-bit
mode. For these segments, the base address field is not ignored, and a non-zero value can be used
in virtual-address calculations. A 64-bit segment-base address can be specified using model-
specific registers. See “FS and GS Registers in 64-Bit Mode” on page 72 for more information.

Segment-limit checking is not performed on any data segments in 64-bit mode, and both the segment-
limit field and granularity (G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field attributes are ignored.

A data-segment-descriptor DPL field is ignored in 64-bit mode, and segment-privilege checks are not
performed on data segments. System software can use the page-protection mechanisms to isolate and
protect data from unauthorized access.

4.8.3 System Descriptors

In long mode, the allowable system-descriptor types encoded by the type field are changed. Some
descriptor types are modified, and others are illegal. The changes are summarized in Table 4-6. An
attempt to use an illegal descriptor type causes a general-protection exception (#GP).

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8
0 0 0 0 0

Reserved (Illegal)
1 0 0 0 1

2 0 0 1 0 64-bit LDT1

3 0 0 1 1

Reserved (Illegal)

4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1 Available 64-bit TSS
A 1 0 1 0 Reserved (Illegal)
B 1 0 1 1 Busy 64-bit TSS
C 1 1 0 0 64-bit Call Gate

Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

Segmented Virtual Memory 91

24593—Rev. 3.30—September 2018 AMD64 Technology

In long mode, the modified system-segment descriptor types are:
• The 32-bit LDT (02h), which is redefined as the 64-bit LDT.
• The available 32-bit TSS (09h), which is redefined as the available 64-bit TSS.
• The busy 32-bit TSS (0Bh), which is redefined as the busy 64-bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors are expanded by 64 bits, as shown in
Figure 4-22. In this figure, gray shading indicates the fields that are ignored in 64-bit mode. Expanding
the descriptors allows them to hold 64-bit base addresses, so their segments can be located anywhere
in the virtual-address space. The expanded descriptor can be loaded into the corresponding descriptor-
table register (LDTR or TR) only from 64-bit mode. In compatibility mode, the legacy system-
segment descriptor format, shown in Figure 4-16 on page 86, is used. See “LLDT and LTR
Instructions” on page 158 for more information.

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-bit system-segment base address must be in canonical form. Otherwise, a general-protection
exception occurs with a selector error-code, #GP(selector), when the system segment is loaded.
System-segment limit values are checked by the processor in both 64-bit and compatibility modes,
under the control of the granularity (G) bit.

Figure 4-22 shows that bits 12:8 of doubleword +12 must be cleared to 0. These bits correspond to the
S and Type fields in a legacy descriptor. Clearing these bits to 0 corresponds to an illegal type in legacy

D 1 1 0 1 Reserved (Illegal)
E 1 1 1 0 64-bit Interrupt Gate
F 1 1 1 1 64-bit Trap Gate

31 23 20 19 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Base Address[63:32] +8

Base Address[31:24] G
A
V
L

Segment
Limit[19:16] P DPL 0 Type Base Address[23:16] +4

Base Address[15:0] Segment Limit[15:0] +0

Table 4-6. System-Segment Descriptor Types—Long Mode (continued)

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8

Note(s):
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

92 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

mode and causes a #GP if an attempt is made to access the upper half of a 64-bit mode system-segment
descriptor as a legacy descriptor or as the lower half of a 64-bit mode system-segment descriptor.

4.8.4 Gate Descriptors

As shown in Table 4-6 on page 90, the allowable gate-descriptor types are changed in long mode.
Some gate-descriptor types are modified and others are illegal. The modified gate-descriptor types in
long mode are:
• The 32-bit call gate (0Ch), which is redefined as the 64-bit call gate.
• The 32-bit interrupt gate (0Eh), which is redefined as the 64-bit interrupt gate.
• The 32-bit trap gate (0Fh), which is redefined as the 64-bit trap gate.

In long mode, several gate-descriptor types are illegal. An attempt to use these gates causes a general-
protection exception (#GP) to occur. The illegal gate types are:
• The 16-bit call gate (04h).
• The task gate (05h).
• The 16-bit interrupt gate (06h).
• The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits, allowing them to hold 64-bit offsets. The 64-
bit call-gate descriptor is shown in Figure 4-23 and the 64-bit interrupt gate and trap gate are shown in
Figure 4-24 on page 93. In these figures, gray shading indicates the fields that are ignored in long
mode. The interrupt and trap gates contain an additional field, the IST, that is not present in the call
gate—see “IST Field (Interrupt and Trap Gates)” on page 93.

Figure 4-23. Call-Gate Descriptor—Long Mode

31 16 15 14 13 12 11 10 9 8 7 0

Reserved, IGN 0 0 0 0 0 Reserved, IGN +12

Target Offset[63:32] +8

Target Offset[31:16] P DPL 0 Type Reserved, IGN +4

Target Selector Target Offset[15:0] +0

Segmented Virtual Memory 93

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate descriptor must be a 64-bit code segment
(CS.L=1, CS.D=0). If the target is not a 64-bit code segment, a general-protection exception,
#GP(error), occurs. The error code reported depends on the gate type:
• Call gates report the target code-segment selector as the error code.
• Interrupt and trap gates report the interrupt vector number as the error code.

A general-protection exception, #GP(0), occurs if software attempts to reference a long-mode gate
descriptor with a target-segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate descriptors in the same descriptor table.
Figure 4-23 on page 92 shows that bits 12:8 of byte +12 in a long-mode call gate must be cleared to 0.
These bits correspond to the S and Type fields in a legacy call gate. Clearing these bits to 0
corresponds to an illegal type in legacy mode and causes a #GP if an attempt is made to access the
upper half of a 64-bit mode call-gate descriptor as a legacy call-gate descriptor.

It is not necessary to clear these same bits in a long-mode interrupt gate or trap gate. In long mode, the
interrupt-descriptor table (IDT) must contain 64-bit interrupt gates or trap gates. The processor
automatically indexes the IDT by scaling the interrupt vector by 16. This makes it impossible to access
the upper half of a long-mode interrupt gate, or trap gate, as a legacy gate when the processor is
running in long mode.

IST Field (Interrupt and Trap Gates). Bits 2:0 of byte +4. Long-mode interrupt gate and trap gate
descriptors contain a new, 3-bit interrupt-stack-table (IST) field not present in legacy gate descriptors.
The IST field is used as an index into the IST portion of a long-mode TSS. If the IST field is not 0, the
index references an IST pointer in the TSS, which the processor loads into the RSP register when an
interrupt occurs. If the IST index is 0, the processor uses the legacy stack-switching mechanism (with
some modifications) when an interrupt occurs. See “Interrupt-Stack Table” on page 253 for more
information.

31 16 15 14 13 12 11 8 7 3 2 0

Reserved, IGN +12

Target Offset[63:32] +8

Target Offset[31:16] P DPL 0 Type Reserved, IGN IST +4

Target Selector Target Offset[15:0] +0

94 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Count Field (Call Gates). The count field found in legacy call-gate descriptors is not supported in
long-mode call gates. In long mode, the field is reserved and should be cleared to zero.

4.8.5 Long Mode Descriptor Summary

System descriptors and gate descriptors are expanded by 64 bits to handle 64-bit base addresses in
long mode or 64-bit mode. The mode in which the expansion occurs depends on the purpose served by
the descriptor, as follows:
• Expansion Only In 64-Bit Mode—The system descriptors and pseudo-descriptors that are loaded

into the GDTR, IDTR, LDTR, and TR registers are expanded only in 64-bit mode. They are not
expanded in compatibility mode.

• Expansion In Long Mode—Gate descriptors (call gates, interrupt gates, and trap gates) are
expanded in long mode (both 64-bit mode and compatibility mode). Task gates and 16-bit gate
descriptors are illegal in long mode.

The AMD64 architecture redefines several of the descriptor-entry fields in support of long mode. The
specific change depends on whether the processor is in 64-bit mode or compatibility mode. Table 4-7
summarizes the changes in the descriptor entry field when the descriptor entry is loaded into a segment
register (as opposed to when the segment register is subsequently used to access memory).

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor
Field

Descriptor
Type

Long Mode
Compatibility Mode 64-Bit Mode

Limit
Code

Same as legacy x86 Same as legacy x86Data
System

Offset Gate Expanded to 64 bits Expanded to 64 bits

Base
Code

Same as legacy x86
Same as legacy x86

Data
System

Selector Gate Same as legacy x86

IST1 Gate Interrupt and trap gates only. (New for long mode.)

S and Type

Code
Same as legacy x86 Same as legacy x86

Data

System
Types 02h, 09h, and 0Bh redefined
Types 01h and 03h are illegal

Gate
Types 0Ch, 0Eh, and 0Fh redefined
Types 04h–07h are illegal

Note(s):
1. Not available (reserved) in legacy mode.

Segmented Virtual Memory 95

24593—Rev. 3.30—September 2018 AMD64 Technology

4.9 Segment-Protection Overview
The AMD64 architecture is designed to fully support the legacy segment-protection mechanism. The
segment-protection mechanism provides system software with the ability to restrict program access
into other software routines and data.

Segment-level protection remains enabled in compatibility mode. 64-bit mode eliminates most type
checking, and limit checking is not performed, except on accesses to system-descriptor tables.

The preferred method of implementing memory protection in a long-mode operating system is to rely
on the page-protection mechanism as described in “Page-Protection Checks” on page 145. System
software still needs to create basic segment-protection data structures for 64-bit mode. These
structures are simplified, however, by the use of the flat-memory model in 64-bit mode, and the limited
segmentation checks performed when executing in 64-bit mode.

DPL

Code

Same as legacy x86 Same as legacy x86
Data
System
Gate

Present

Code

Same as legacy x86 Same as legacy x86
Data
System
Gate

Default Size
Code

Same as legacy x86
D=0 Indicates 64-bit address, 32-bit data
D=1 Reserved

Data Same as legacy x86

Long1 Code Specifies compatibility mode Specifies 64-bit mode

Granularity
Code

Same as legacy x86 Same as legacy x86Data
System

Available
Code

Same as legacy x86 Same as legacy x86Data
System

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor
Field

Descriptor
Type

Long Mode
Compatibility Mode 64-Bit Mode

Note(s):
1. Not available (reserved) in legacy mode.

96 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

4.9.1 Privilege-Level Concept

Segment protection is used to isolate and protect programs and data from each other. The segment-
protection mechanism supports four privilege levels in protected mode. The privilege levels are
designated with a numerical value from 0 to 3, with 0 being the most privileged and 3 being the least
privileged. System software typically assigns the privilege levels in the following manner:
• Privilege-level 0 (most privilege)—This level is used by critical system-software components that

require direct access to, and control over, all processor and system resources. This can include
platform firmware, memory-management functions, and interrupt handlers.

• Privilege-levels 1 and 2 (moderate privilege)—These levels are used by less-critical system-
software services that can access and control a limited scope of processor and system resources.
Software running at these privilege levels might include some device drivers and library routines.
These software routines can call more-privileged system-software services to perform functions
such as memory garbage-collection and file allocation.

• Privilege-level 3 (least privilege)—This level is used by application software. Software running at
privilege-level 3 is normally prevented from directly accessing most processor and system
resources. Instead, applications request access to the protected processor and system resources by
calling more-privileged service routines to perform the accesses.

Figure 4-25 shows the relationship of the four privilege levels to each other.

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level Types

There are three types of privilege levels the processor uses to control access to segments. These are
CPL, DPL, and RPL.

Current Privilege-Level. The current privilege-level (CPL) is the privilege level at which the
processor is currently executing. The CPL is stored in an internal processor register that is invisible to

513-236.eps Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

Segmented Virtual Memory 97

24593—Rev. 3.30—September 2018 AMD64 Technology

software. Software changes the CPL by performing a control transfer to a different code segment with
a new privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) is the privilege level that system
software assigns to individual segments. The DPL is used in privilege checks to determine whether
software can access the segment referenced by the descriptor. In the case of gate descriptors, the DPL
determines whether software can access the descriptor reference by the gate. The DPL is stored in the
segment (or gate) descriptor.

Requestor Privilege-Level. The requestor privilege-level (RPL) reflects the privilege level of the
program that created the selector. The RPL can be used to let a called program know the privilege level
of the program that initiated the call. The RPL is stored in the selector used to reference the segment
(or gate) descriptor.

The following sections describe how the CPL, DPL, and RPL are used by the processor in performing
privilege checks on data accesses and control transfers. Failure to pass a protection check generally
causes an exception to occur.

4.10 Data-Access Privilege Checks
4.10.1 Accessing Data Segments

Before loading a data-segment register (DS, ES, FS, or GS) with a segment selector, the processor
checks the privilege levels as follows to see if access is allowed:
1. The processor compares the CPL with the RPL in the data-segment selector and determines the

effective privilege level for the data access. The processor sets the effective privilege level to the
lowest privilege (numerically-higher value) indicated by the comparison.

2. The processor compares the effective privilege level with the DPL in the descriptor-table entry
referenced by the segment selector. If the effective privilege level is greater than or equal to
(numerically lower-than or equal-to) the DPL, then the processor loads the segment register with
the data-segment selector. The processor automatically loads the corresponding descriptor-table
entry into the hidden portion of the segment register.
If the effective privilege level is lower than (numerically greater-than) the DPL, a general-
protection exception (#GP) occurs and the segment register is not loaded.

Figure 4-26 on page 98 shows two examples of data-access privilege checks.

98 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 4-26. Data-Access Privilege-Check Examples

Example 1 in Figure 4-26 shows a failing data-access privilege check. The effective privilege level is 3
because CPL=3. This value is greater than the descriptor DPL, so access to the data segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege check. Here, the effective privilege
level is 0 because both the CPL and RPL have values of 0. This value is less than the descriptor DPL,
so access to the data segment is allowed, and the data-segment register is successfully loaded.

4.10.2 Accessing Stack Segments

Before loading the stack segment register (SS) with a segment selector, the processor checks the
privilege levels as follows to see if access is allowed:

513-229.eps

DPL=2

Effective
Privilege

3

≤

Max

CPL=3

RPL=0 Access Denied Data
Segment

Descriptor

CS

Data
Selector

Example 1: Privilege Check Fails

DPL=2

Effective
Privilege

0

≤

Max

CPL=0

RPL=0 Access Allowed Data
Segment

CS

Descriptor

Example 2: Privilege Check Passes

Data
Selector

Segmented Virtual Memory 99

24593—Rev. 3.30—September 2018 AMD64 Technology

1. The processor checks that the CPL and the stack-selector RPL are equal. If they are not equal, a
general-protection exception (#GP) occurs and the SS register is not loaded.

2. The processor compares the CPL with the DPL in the descriptor-table entry referenced by the
segment selector. The two values must be equal. If they are not equal, a #GP occurs and the SS
register is not loaded.

Figure 4-27 shows two examples of stack-access privilege checks. In Example 1 the CPL, stack-
selector RPL, and stack segment-descriptor DPL are all equal, so access to the stack segment using the
SS register is allowed. In Example 2, the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL is not equal to the stack segment-descriptor DPL, and access to the
stack segment through the SS register is denied.

Figure 4-27. Stack-Access Privilege-Check Examples

513-235.eps

DPL=3

=

CPL=3

RPL=3 Access Allowed Stack
Segment

Descriptor

CS

Stack
Selector

Example 1: Privilege Check Passes

DPL=3

=

CPL=2

RPL=3 Access Denied Stack
Segment

CS

Descriptor

Example 2: Privilege Check Fails

Stack
Selector

100 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

4.11 Control-Transfer Privilege Checks
Control transfers between code segments (also called far control transfers) cause the processor to
perform privilege checks to determine whether the source program is allowed to transfer control to the
target program. If the privilege checks pass, access to the target code-segment is granted. When access
is granted, the target code-segment selector is loaded into the CS register. The rIP register is updated
with the target CS offset taken from either the far-pointer operand or the gate descriptor. Privilege
checks are not performed during near control transfers because such transfers do not change
segments.

The following mechanisms can be used by software to perform far control transfers:
• System-software control transfers using the system-call and system-return instructions. See

“SYSCALL and SYSRET” on page 152 and “SYSENTER and SYSEXIT (Legacy Mode Only)”
on page 154 for more information on these instructions. SYSCALL and SYSRET are the preferred
method of performing control transfers in long mode. SYSENTER and SYSEXIT are not supported
in long mode.

• Direct control transfers using CALL and JMP instructions. These are discussed in the next section,
“Direct Control Transfers.”

• Call-gate control transfers using CALL and JMP instructions. These are discussed in “Control
Transfers Through Call Gates” on page 104.

• Return control transfers using the RET instruction. These are discussed in “Return Control
Transfers” on page 111.

• Interrupts and exceptions, including the INTn and IRET instructions. These are discussed in
Chapter 8, “Exceptions and Interrupts.”

• Task switches initiated by CALL and JMP instructions. Task switches are discussed in Chapter 12,
“Task Management.” The hardware task-switch mechanism is not supported in long mode.

4.11.1 Direct Control Transfers

A direct control transfer occurs when software executes a far-CALL or a far-JMP instruction without
using a call gate. The privilege checks and type of access allowed as a result of a direct control transfer
depends on whether the target code segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the target code-segment is conforming (see
“Conforming (C) Bit” on page 82 for more information on the conforming bit).

Privilege levels are not changed as a result of a direct control transfer. Program stacks are not
automatically switched by the processor as they are with privilege-changing control transfers through
call gates (see “Stack Switching” on page 108 for more information on automatic stack switching
during privilege-changing control transfers).

Nonconforming Code Segments. Software can perform a direct control transfer to a
nonconforming code segment only if the target code-segment descriptor DPL and the CPL are equal
and the RPL is less than or equal to the CPL. Software must use a call gate to transfer control to a

Segmented Virtual Memory 101

24593—Rev. 3.30—September 2018 AMD64 Technology

more-privileged, nonconforming code segment (see “Control Transfers Through Call Gates” on
page 104 for more information).

In far calls and jumps, the far pointer (CS:rIP) references the target code-segment descriptor. Before
loading the CS register with a nonconforming code-segment selector, the processor checks as follows
to see if access is allowed:
1. DPL = CPL Check—The processor compares the target code-segment descriptor DPL with the

currently executing program CPL. If they are equal, the processor performs the next check. If they
are not equal, a general-protection exception (#GP) occurs.

2. RPL ≤ CPL Check—The processor compares the target code-segment selector RPL with the
currently executing program CPL. If the RPL is less than or equal to the CPL, access is allowed. If
the RPL is greater than the CPL, a #GP exception occurs.

If access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target-CS selector RPL value is
disregarded when the selector is loaded into the CS register.

Figure 4-28 on page 102 shows three examples of privilege checks performed as a result of a far
control transfer to a nonconforming code-segment. In Example 1, access is allowed because CPL =
DPL and RPL ≤ CPL. In Example 2, access is denied because CPL ≠ DPL. In Example 3, access is
denied because RPL > CPL.

102 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

Conforming Code Segments. On a direct control transfer to a conforming code segment, the target
code-segment descriptor DPL can be lower than (at a greater privilege) the CPL. Before loading the

513-230.eps

Access Allowed

Code
Segment

Example 1: Privilege Check Passes

CS CPL=2

=

DPL=2

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Allowed

Access Denied

Code
Segment

Example 2: Privilege Check Fails

CS CPL=2

=

DPL=3

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Denied

Access Denied

Code
Segment

Example 3: Privilege Check Fails

CS CPL=2

=

DPL=2

Descriptor

RPL=3
Code

Selector
≤

?

Access
Denied

Access
Allowed

Segmented Virtual Memory 103

24593—Rev. 3.30—September 2018 AMD64 Technology

CS register with a conforming code-segment selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If the DPL is less than or equal to the CPL,
access is allowed. If the DPL is greater than the CPL, a #GP exception occurs.

On an access to a conforming code segment, the RPL is ignored and not involved in the privilege
check.

When access is allowed, the processor loads the CS and rIP registers with their new values and begins
executing from the target location. The CPL is not changed—the target CS-descriptor DPL value is
disregarded when the selector is loaded into the CS register. The target program runs at the same
privilege as the program that called it.

Figure 4-29 shows two examples of privilege checks performed as a result of a direct control transfer
to a conforming code segment. In Example 1, access is allowed because the CPL of 3 is greater than
the DPL of 0. As the target code selector is loaded into the CS register, the old CPL value of 3 replaces
the target-code selector RPL value, and the target program executes with CPL=3. In Example 2, access
is denied because CPL < DPL.

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

513-231.eps

Access Allowed
Code

Segment

Example 1: Privilege Check Passes

CS CPL=3

≥

DPL=0

Descriptor

Code
Selector

Access Denied
Code

Segment

Example 2: Privilege Check Fails

CS CPL=0

≥

DPL=3

Descriptor

Code
Selector

104 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

4.11.2 Control Transfers Through Call Gates

Control transfers to more-privileged code segments are accomplished through the use of call gates.
Call gates are a type of descriptor that contain pointers to code-segment descriptors and control access
to those descriptors. System software uses call gates to establish protected entry points into system-
service routines.

Transfer Mechanism. The pointer operand of a far-CALL or far-JMP instruction consists of two
pieces: a code-segment selector (CS) and a code-segment offset (rIP). In a call-gate transfer, the CS
selector points to a call-gate descriptor rather than a code-segment descriptor, and the rIP is ignored
(but required by the instruction).

Figure 4-30 shows a call-gate control transfer in legacy mode. The call-gate descriptor contains
segment-selector and segment-offset fields (see “Gate Descriptors” on page 86 for a detailed
description of the call-gate format and fields). These two fields perform the same function as the
pointer operand in a direct control-transfer instruction. The segment-selector field points to the target
code-segment descriptor, and the segment-offset field is the instruction-pointer offset into the target
code-segment. The code-segment base taken from the code-segment descriptor is added to the offset
field in the call-gate descriptor to create the target virtual address (linear address).

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

513-233.eps

Virtual-Address
Space

Virtual Address

Code Segment

Far Pointer

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset

Segment Selector Instruction Offset

Descriptor Table

+

Call-Gate
Descriptor

Code-Segment
Descriptor

Segmented Virtual Memory 105

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-31 shows a call-gate control transfer in long mode. The long-mode call-gate descriptor
format is expanded by 64 bits to hold a full 64-bit offset into the virtual-address space. Only long-
mode call gates can be referenced in long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit types, and 16-bit call-gate types are
illegal.

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment descriptor. In 64-bit mode, the code-
segment descriptor base-address and limit fields are ignored. The target virtual-address is the 64-bit
offset field in the expanded call-gate descriptor.

Privilege Checks. Before loading the CS register with the code-segment selector located in the call
gate, the processor performs three privilege checks. The following checks are performed when either
conforming or nonconforming code segments are referenced:
1. The processor compares the CPL with the call-gate DPL from the call-gate descriptor (DPLG).

The CPL must be numerically less than or equal to DPLG for this check to pass. In other words,
the following expression must be true: CPL ≤ DPLG.

513-234.eps

Virtual-Address
Space

Virtual Address

Flat Code-Segment

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset (31:0)

Far Pointer

Segment Selector

Unused

Instruction Offset

Descriptor Table

Code-Segment Offset (63:32)

Call-Gate
Descriptor

Code-Segment
Descriptor

106 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

2. The processor compares the RPL in the call-gate selector with DPLG. The RPL must be
numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

3. The processor compares the CPL with the target code-segment DPL from the code-segment
descriptor (DPLS). The type of comparison varies depending on the type of control transfer.
- When a call—or a jump to a conforming code segment—is used to transfer control through a

call gate, the CPL must be numerically greater than or equal to DPLS for this check to pass.
(This check prevents control transfers to less-privileged programs.) In other words, the
following expression must be true: CPL DPLS.

- When a JMP instruction is used to transfer control through a call gate to a nonconforming code
segment, the CPL must be numerically equal to DPLS for this check to pass. (JMP instructions
cannot change CPL.) In other words, the following expression must be true: CPL = DPLS.

Figure 4-32 on page 107 shows two examples of call-gate privilege checks. In Example 1, all privilege
checks pass as follows:
• The call-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any

privilege level (CPL) can access the gate.
• The selector referencing the call gate passes its privilege check because the RPL is numerically

less than or equal to DPLG.
• The target code segment is at the highest privilege level (DPLS = 0). This means software running

at any privilege level can access the target code segment through the call gate.

Segmented Virtual Memory 107

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, all privilege checks fail as follows:
• The call-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate. The

current program does not have enough privilege to access the call gate because its CPL is 2.
• The selector referencing the call-gate descriptor does not have enough privilege to complete the

reference. Its RPL is numerically greater than DPLG.

513-232.eps

Example 1: Privilege Check Passes

DPLG=3

Call-Gate Descriptor

Code
Segment

CS CPL=2

DPLS=0

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Call-Gate Descriptor
Code

Segment

CS CPL=2

DPLS=3

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Access Allowed

Access Denied

108 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

• The target code segment is at a lower privilege (DPLS = 3) than the currently running software
(CPL = 2). Transitions from more-privileged software to less-privileged software are not allowed,
so this privilege check fails as well.

Although all three privilege checks failed in Example 2, failing only one check is sufficient to deny
access into the target code segment.

Stack Switching. The processor performs an automatic stack switch when a control transfer causes a
change in privilege levels to occur. Switching stacks isolates more-privileged software stacks from
less-privileged software stacks and provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, as is done when transferring control using a call gate, the
processor uses the corresponding stack pointer (privilege-level 0, 1, or 2) stored in the task-state
segment (TSS). The format of the stack pointer stored in the TSS depends on the system-software
operating mode:
• Legacy-mode system software stores a 32-bit ESP value (stack offset) and 16-bit SS selector

register value in the TSS for each of three privilege levels 0, 1, and 2.
• Long-mode system software stores a 64-bit RSP value in the TSS for privilege levels 0, 1, and 2.

No SS register value is stored in the TSS because in long mode a call gate must reference a 64-bit
code-segment descriptor. 64-bit mode does not use segmentation, and the stack pointer consists
solely of the 64-bit RSP. Any value loaded in the SS register is ignored.

See “Task-Management Resources” on page 330 for more information on the legacy-mode and long-
mode TSS formats.

Figure 4-33 on page 109 shows a 32-bit stack in legacy mode before and after the automatic stack
switch. This particular example assumes that parameters are passed from the current program to the
target program. The process followed by legacy mode in switching stacks and copying parameters is:
1. The target code-segment DPL is read by the processor and used as an index into the TSS for

selecting the new stack pointer (SS:ESP). For example, if DPL=1 the processor selects the
SS:ESP for privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP values read from the TSS.
3. The old values of the SS and ESP registers are pushed onto the stack pointed to by the new

SS:ESP.
4. The 5-bit count field is read from the call-gate descriptor.
5. The number of parameters specified in the count field (up to 31) are copied from the old stack to

the new stack. The size of the parameters copied by the processor depends on the call-gate size:
32-bit call gates copy 4-byte parameters and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the EIP of the instruction following the calling instruction.

Segmented Virtual Memory 109

24593—Rev. 3.30—September 2018 AMD64 Technology

7. The CS register is loaded from the segment-selector field in the call-gate descriptor, and the EIP is
loaded from the offset field in the call-gate descriptor.

8. The target program begins executing with the instruction referenced by new CS:EIP.

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters

Figure 4-34 shows a 32-bit stack in legacy mode before and after the automatic stack switch when no
parameters are passed (count=0). Most software does not use the call-gate descriptor count-field to
pass parameters. System software typically defines linkage mechanisms that do not rely on automatic
parameter copying.

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 110 shows a long-mode stack switch. In long mode, all call gates must reference
64-bit code-segment descriptors, so a long-mode stack switch uses a 64-bit stack. The process of

513-224.eps

Parameter n
. . .

Parameter 1
Parameter 2 +(n-2)*4

+(n-1)*4

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old SS
Old ESP

Old EIP

Parameter n
. . .

Parameter 1
Parameter 2

Old CS +4

+8

+(n*4)+8

+(n*4)+12

+(n*4)

+(n*4)+4

New SS:ESP

Stack Switch

513-225.eps

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old EIP

Old ESP
Old SS

Old CS +4

+8

+12

New SS:ESP

Stack Switch

110 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

switching stacks in long mode is similar to switching in legacy mode when no parameters are passed.
The process is as follows:
1. The target code-segment DPL is read by the processor and used as an index into the 64-bit TSS

for selecting the new stack pointer (RSP).
2. The RSP register is loaded with the new RSP value read from the TSS. The SS register is loaded

with a null selector (SS=0). Setting the new SS selector to null allows proper handling of nested
control transfers in 64-bit mode. See “Nested Returns to 64-Bit Mode Procedures” on page 112
for additional information.
As in legacy mode, it is desirable to keep the stack-segment requestor privilege-level (SS.RPL)
equal to the current privilege-level (CPL). When using a call gate to change privilege levels, the
SS.RPL is updated to reflect the new CPL. The SS.RPL is restored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

3. The old values of the SS and RSP registers are pushed onto the stack pointed to by the new RSP.
The old SS value is popped on a subsequent far return. This allows system software to set up the
SS selector for a compatibility-mode process by executing a RET (or IRET) that changes the
privilege level.

4. The return pointer is pushed onto the stack. The return pointer consists of the current CS-register
value and the RIP of the instruction following the calling instruction.

5. The CS register is loaded from the segment-selector field in the long-mode call-gate descriptor,
and the RIP is loaded from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction referenced by the new RIP.

Figure 4-35. Stack Switch—Long Mode

All long-mode stack pushes resulting from a privilege-level-changing far call are eight-bytes wide and
increment the RSP by eight. Long mode ignores the call-gate count field and does not support the
automatic parameter-copy feature found in legacy mode. Software can access parameters on the old
stack, if necessary, by referencing the old stack segment selector and stack pointer saved on the new
process stack.

Old SS:RSP

Old
64-Bit Stack
Before CALL

New
64-Bit Stack
After CALL

Old RIP

Old RSP
Old SS

Old CS +8

+16

+24

New RSP

Stack Switch

(SS=0 + new_CPL)

Segmented Virtual Memory 111

24593—Rev. 3.30—September 2018 AMD64 Technology

4.11.3 Return Control Transfers

Returns to calling programs can be performed by using the RET instruction. The following types of
returns are possible:
• Near Return—Near returns perform control transfers within the same code segment, so the CS

register is unchanged. The new offset is popped off the stack and into the rIP register. No privilege
checks are performed.

• Far Return, Same Privilege—A far return transfers control from one code segment to another.
When the original code segment is at the same privilege level as the target code segment, a far
pointer (CS:rIP) is popped off the stack and the RPL of the new code segment (CS) is checked. If
the requested privilege level (RPL) matches the current privilege level (CPL), then a return is made
to the same privilege level. This prevents software from changing the CS value on the stack in an
attempt to return to higher-privilege software.

• Far Return, Less Privilege—Far returns can change privilege levels, but only to a lower-privilege
level. In this case a stack switch is performed between the current, higher-privilege program and
the lower-privilege return program. The CS-register and rIP-register values are popped off the
stack. The lower-privilege stack pointer is also popped off the stack and into the SS register and
rSP register. The processor checks both the CS and SS privilege levels to ensure they are equal and
at a lesser privilege than the current CS.
In the case of nested returns to 64-bit mode, a null selector can be popped into the SS register. See
“Nested Returns to 64-Bit Mode Procedures” on page 112.
Far returns also check the privilege levels of the DS, ES, FS and GS selector registers. If any of
these segment registers have a selector with a higher privilege than the return program, the
segment register is loaded with the null selector.

Stack Switching. The stack switch performed by a far return to a lower-privilege level reverses the
stack switch of a call gate to a higher-privilege level, except that parameters are never automatically
copied as part of a return. The process followed by a far-return stack switch in long mode and legacy
mode is:
1. The return code-segment RPL is read by the processor from the CS value stored on the stack to

determine that a lower-privilege control transfer is occurring.
2. The return-program instruction pointer is popped off the current-program (higher privilege) stack

and loaded into the CS and rIP registers.
3. The return instruction can include an immediate operand that specifies the number of additional

bytes to be popped off of the stack. These bytes may correspond to the parameters pushed onto the
stack previously by a call through a call gate containing a non-zero parameter-count field. If the
return includes the immediate operand, then the stack pointer is adjusted upward by adding the
specified number of bytes to the rSP.

4. The return-program stack pointer is popped off the current-program (higher privilege) stack and
loaded into the SS and rSP registers. In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register.

112 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

The operand size of a far return determines the size of stack pops when switching stacks. If a far return
is used in 64-bit mode to return from a prior call through a long-mode call gate, the far return must use
a 64-bit operand size. The 64-bit operand size allows the far return to properly read the stack
established previously by the far call.

Nested Returns to 64-Bit Mode Procedures. In long mode, a far call that changes privilege levels
causes the SS register to be loaded with a null selector (this is the same action taken by an interrupt in
long mode). If the called procedure performs another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame, and another null selector is loaded into
the SS register. Using a null selector in this way allows the processor to properly handle returns nested
within 64-bit-mode procedures and interrupt handlers.

Normally, a RET that pops a null selector into the SS register causes a general-protection exception
(#GP) to occur. However, in long mode, the null selector acts as a flag indicating the existence of
nested interrupt handlers or other privileged software in 64-bit mode. Long mode allows RET to pop a
null selector into SS from the stack under the following conditions:
• The target mode is 64-bit mode.
• The target CPL is less than 3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

4.12 Limit Checks
Except in 64-bit mode, limit checks are performed by all instructions that reference memory. Limit
checks detect attempts to access memory outside the current segment boundary, attempts at executing
instructions outside the current code segment, and indexing outside the current descriptor table. If an
instruction fails a limit check, either (1) a general-protection exception occurs for all other segment-
limit violations or (2) a stack-fault exception occurs for stack-segment limit violations.

In 64-bit mode, segment limits are not checked during accesses to any segment referenced by the CS,
DS, ES, FS, GS, and SS selector registers. Instead, the processor checks that the virtual addresses used
to reference memory are in canonical-address form. In 64-bit mode, as with legacy mode and
compatibility mode, descriptor-table limits are checked.

4.12.1 Determining Limit Violations

To determine segment-limit violations, the processor checks a virtual (linear) address to see if it falls
outside the valid range of segment offsets determined by the segment-limit field in the descriptor. If
any part of an operand or instruction falls outside the segment-offset range, a limit violation occurs.
For example, a doubleword access, two bytes from an upper segment boundary, causes a segment
violation because half of the doubleword is outside the segment.

Segmented Virtual Memory 113

24593—Rev. 3.30—September 2018 AMD64 Technology

Three bits from the descriptor entry are used to control how the segment-limit field is interpreted: the
granularity (G) bit, the default operand-size (D) bit, and for data segments, the expand-down (E) bit.
See “Legacy Segment Descriptors” on page 80 for a detailed description of each bit.

For all segments other than expand-down segments, the minimum segment-offset is 0. The maximum
segment-offset depends on the value of the G bit:
• If G=0 (byte granularity), the maximum allowable segment-offset is equal to the value of the

segment-limit field.
• If G=1 (4096-byte granularity), the segment-limit field is first scaled by 4096 (1000h). Then 4095

(0FFFh) is added to the scaled value to arrive at the maximum allowable segment-offset, as shown
in the following equation:
maximum segment-offset = (limit × 1000h) + 0FFFh
For example, if the segment-limit field is 0100h, then the maximum allowable segment-offset is
(0100h × 1000h) + 0FFFh = 10_1FFFh.

In both cases, the maximum segment-size is specified when the descriptor segment-limit field is
0F_FFFFh.

Expand-Down Segments. Expand-down data segments are supported in legacy mode and
compatibility mode but not in 64-bit mode. With expand-down data segments, the maximum segment
offset depends on the value of the D bit in the data-segment descriptor:
• If D=0 the maximum segment-offset is 0_FFFFh.
• If D=1 the maximum segment-offset is 0_FFFF_FFFFh.

The minimum allowable segment offset in expand-down segments depends on the value of the G bit:
• If G=0 (byte granularity), the minimum allowable segment offset is the segment-limit value plus 1.

For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
0101h.

• If G=1 (4096-byte granularity), the segment-limit value in the descriptor is first scaled by 4096
(1000h), and then 4095 (0FFFh) is added to the scaled value to arrive at a scaled segment-limit
value. The minimum allowable segment-offset is this scaled segment-limit value plus 1, as shown
in the following equation:
minimum segment-offset = (limit × 1000) + 0FFFh + 1
For example, if the segment-limit field is 0100h, then the minimum allowable segment-offset is
(0100h × 1000h) + 0FFFh + 1 = 10_1000h.

For expand-down segments, the maximum segment size is specified when the segment-limit value is
0.

114 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

4.12.2 Data Limit Checks in 64-bit Mode

In 64-bit mode, data reads and writes are not normally checked for segment-limit violations. When
EFER.LMSLE = 1, reads and writes in 64-bit mode at CPL > 0, using the DS, ES, FS, or SS segments,
have a segment-limit check applied.

This limit-check uses the 32-bit segment-limit to find the maximum allowable address in the top 4GB
of the 64-bit virtual (linear) address space.

This segment-limit check does not apply to accesses through the GS segment, or to code reads. If the
DS, ES, FS, or SS segment is null or expand-down, the effect of the limit check is undefined.

4.13 Type Checks
Type checks prevent software from using descriptors in invalid ways. Failing a type check results in an
exception. Type checks are performed using five bits from the descriptor entry: the S bit and the 4-bit
Type field. Together, these five bits are used to specify the descriptor type (code, data, segment, or
gate) and its access characteristics. See “Legacy Segment Descriptors” on page 80 for a detailed
description of the S bit and Type-field encodings. Type checks are performed by the processor in
compatibility mode as well as legacy mode. Limited type checks are performed in 64-bit mode.

4.13.1 Type Checks in Legacy and Compatibility Modes

The type checks performed in legacy mode and compatibility mode are listed in the following sections.

Descriptor-Table Register Loads. Loads into the LDTR and TR descriptor-table registers are
checked for the appropriate system-segment type. The LDTR can only be loaded with an LDT
descriptor, and the TR only with a TSS descriptor. The checks are performed during any action that
causes these registers to be loaded. This includes execution of the LLDT and LTR instructions and
during task switches.

Segment Register Loads. The following restrictions are placed on the segment-descriptor types that
can be loaded into the six user segment registers:
• Only code segments can be loaded into the CS register.
• Only writable data segments can be loaded into the SS register.
• Only the following segment types can be loaded into the DS, ES, FS, or GS registers:

- Read-only or read/write data segments.
- Readable code segments.

Table 4-8. Segment Limit Checks in 64-Bit Mode
Memory Address Effect of Limit Check

Linear Address ≤ (0FFFFFFFF_00000000h + 32-bit Limit) Access OK.
Linear Address > (0FFFFFFFF_00000000h + 32-bit Limit) Exception (#GP or #SS)

Segmented Virtual Memory 115

24593—Rev. 3.30—September 2018 AMD64 Technology

These checks are performed during any action that causes the segment registers to be loaded. This
includes execution of the MOV segment-register instructions, control transfers, and task switches.

Control Transfers. Control transfers (branches and interrupts) place additional restrictions on the
segment types that can be referenced during the transfer:
• The segment-descriptor type referenced by far CALLs and far JMPs must be one of the following:

- A code segment
- A call gate or a task gate
- An available TSS (only allowed in legacy mode)
- A task gate (only allowed in legacy mode)

• Only code-segment descriptors can be referenced by call-gate, interrupt-gate, and trap-gate
descriptors.

• Only TSS descriptors can be referenced by task-gate descriptors.
• The link field (selector) in the TSS can only point to a TSS descriptor. This is checked during an

IRET control transfer to a task.
• The far RET and far IRET instructions can only reference code-segment descriptors.
• The interrupt-descriptor table (IDT), which is referenced during interrupt control transfers, can

only contain interrupt gates, trap gates, and task gates.

Segment Access. After a segment descriptor is successfully loaded into one of the segment
registers, reads and writes into the segments are restricted in the following ways:
• Writes are not allowed into read-only data-segment types.
• Writes are not allowed into code-segment types (executable segments).
• Reads from code-segment types are not allowed if the readable (R) type bit is cleared to 0.

These checks are generally performed during execution of instructions that access memory.

4.13.2 Long Mode Type Check Differences

Compatibility Mode and 64-Bit Mode. The following type checks differ in long mode (64-bit mode
and compatibility mode) as compared to legacy mode:
• System Segments—System-segment types are checked, but the following types that are valid in

legacy mode are illegal in long mode:
- 16-bit available TSS.
- 16-bit busy TSS.
- Type-field encoding of 00h in the upper half of a system-segment descriptor to indicate an

illegal type and prevent access as a legacy descriptor.
• Gates—Gate-descriptor types are checked, but the following types that are valid in legacy mode

are illegal in long mode:

116 Segmented Virtual Memory

AMD64 Technology 24593—Rev. 3.30—September 2018

- 16-bit call gate.
- 16-bit interrupt gate.
- 16-bit trap gate.
- Task gate.

64-Bit Mode. 64-bit mode disables segmentation, and most of the segment-descriptor fields are
ignored. The following list identifies situations where type checks in 64-bit mode differ from those in
compatibility mode and legacy mode:
• Code Segments—The readable (R) type bit is ignored in 64-bit mode. None of the legacy type-

checks that prevent reads from or writes into code segments are performed in 64-bit mode.
• Data Segments—Data-segment type attributes are ignored in 64-bit mode. The writable (W) and

expand-down (E) type bits are ignored. All data segments are treated as writable.

Page Translation and Protection 117

24593—Rev. 3.30—September 2018 AMD64 Technology

5 Page Translation and Protection

The x86 page-translation mechanism (or simply paging mechanism) enables system software to create
separate address spaces for each process or application. These address spaces are known as virtual-
address spaces. System software uses the paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of hierarchical address-translation tables
known collectively as page tables.

The paging mechanism and the page tables are used to provide each process with its own private
region of physical memory for storing its code and data. Processes can be protected from each other by
isolating them within the virtual-address space. A process cannot access physical memory that is not
mapped into its virtual-address space by system software.

System software can use the paging mechanism to selectively map physical-memory pages into
multiple virtual-address spaces. Mapping physical pages in this manner allows them to be shared by
multiple processes and applications. The physical pages can be configured by the page tables to allow
read-only access. This prevents applications from altering the pages and ensures their integrity for use
by all applications.

Shared mapping is typically used to allow access of shared-library routines by multiple applications. A
read-only copy of the library routine is mapped to each application virtual-address space, but only a
single copy of the library routine is present in physical memory. This capability also allows a copy of
the operating-system kernel and various device drivers to reside within the application address space.
Applications are provided with efficient access to system services without requiring costly address-
space switches.

The system-software portion of the address space necessarily includes system-only data areas that
must be protected from accesses by applications. System software uses the page tables to protect this
memory by designating the pages as supervisor pages. Such pages are only accessible by system
software.

When the supervisor mode execution prevention (SMEP) feature is supported and enabled, attempted
instruction fetches from user-mode accessible pages while in supervisor-mode triggers a page fault
(#PF). This protects the integrity of system software by preventing the execution of instructions at a
supervisor privilege level (CPL < 3) when these instructions could have been written or modified by
user-mode code.

Finally, system software can use the paging mechanism to map multiple, large virtual-address spaces
into a much smaller amount of physical memory. Each application can use the entire 32-bit or 64-bit
virtual-address space. System software actively maps the most-frequently-used virtual-memory pages
into the available pool of physical-memory pages. The least-frequently-used virtual-memory pages are
swapped out to the hard drive. This process is known as demand-paged virtual memory.

118 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.1 Page Translation Overview
The legacy x86 architecture provides support for translating 32-bit virtual addresses into 32-bit
physical addresses (larger physical addresses, such as 36-bit or 40-bit addresses, are supported as a
special mode). The AMD64 architecture enhances this support to allow translation of 64-bit virtual
addresses into 52-bit physical addresses, although processor implementations can support smaller
virtual-address and physical-address spaces.

Virtual addresses are translated to physical addresses through hierarchical translation tables created
and managed by system software. Each table contains a set of entries that point to the next-lower table
in the translation hierarchy. A single table at one level of the hierarchy can have hundreds of entries,
each of which points to a unique table at the next-lower hierarchical level. Each lower-level table can
in turn have hundreds of entries pointing to tables further down the hierarchy. The lowest-level table in
the hierarchy points to the translated physical page.

Figure 5-1 on page 119 shows an overview of the page-translation hierarchy used in long mode.
Legacy mode paging uses a subset of this translation hierarchy (the page-map level-4 table does not
exist in legacy mode and the PDP table may or may not be used, depending on which paging mode is
enabled). As this figure shows, a virtual address is divided into fields, each of which is used as an
offset into a translation table. The complete translation chain is made up of all table entries referenced
by the virtual-address fields. The lowest-order virtual-address bits are used as the byte offset into the
physical page.

Page Translation and Protection 119

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-1. Virtual to Physical Address Translation—Long Mode

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

120 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

The following physical-page sizes are supported: 4 Kbytes, 2 Mbytes, 4 Mbytes, and 1 Gbytes. In long
mode 4-Kbyte, 2-MByte, and 1-GByte sizes are available. In legacy mode 4-Kbyte, 2-MByte, and 4-
MByte sizes are available.

Virtual addresses are 32 bits long, and physical addresses up to the supported physical-address size can
be used. The AMD64 architecture enhances the legacy translation support by allowing virtual
addresses of up to 64 bits long to be translated into physical addresses of up to 52 bits long.

Currently, the AMD64 architecture defines a mechanism for translating 48-bit virtual addresses to 52-
bit physical addresses. The mechanism used to translate a full 64-bit virtual address is reserved and
will be described in a future AMD64 architectural specification.

5.1.1 Page-Translation Options

The form of page-translation support available to software depends on which paging features are
enabled. Four controls are available for selecting the various paging alternatives:
• Page-Translation Enable (CR0.PG)
• Physical-Address Extensions (CR4.PAE)
• Page-Size Extensions (CR4.PSE)
• Long-Mode Active (EFER.LMA)

Not all paging alternatives are available in all modes. Table 5-1 summarizes the paging support
available in each mode.

5.1.2 Page-Translation Enable (PG) Bit

Page translation is controlled by the PG bit in CR0 (bit 31). When CR0.PG is set to 1, page translation
is enabled. When CR0.PG is cleared to 0, page translation is disabled.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

Mode

Physical-
Address

Extensions
(CR4.PAE)

Page-Size
Extensions
(CR4.PSE)

Page-
Directory
Pointer
Offset

Page-
Directory
Page Size

Resulting
Physical-
Page Size

Maximum
Virtual

Address

Maximum
Physical
Address

Long Mode
(64-bit and
compatability
modes)

Enabled –
PDPE.PS=0

PDE.PS=0 4 Kbyte

64-bit 52-bitPDE.PS=1 2 Mbyte

PDPE.PS=1 – 1 Gbyte

Legacy Mode

Enabled –

PDPE.PS=0

PDE.PS=0 4 Kbyte

32-bit

52-bit
PDE.PS=1 2 Mbyte 52-bit

Disabled
Disabled – 4 Kbyte 32-bit

Enabled
PDE.PS=0 4 Kbyte 32-bit
PDE.PS=1 4 Mbyte 40-bit

Page Translation and Protection 121

24593—Rev. 3.30—September 2018 AMD64 Technology

The AMD64 architecture uses CR0.PG to activate and deactivate long mode when long mode is
enabled. See “Enabling and Activating Long Mode” on page 438 for more information.

5.1.3 Physical-Address Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in CR4 (bit 5). When CR4.PAE is set to 1,
physical-address extensions are enabled. When CR4.PAE is cleared to 0, physical-address extensions
are disabled.

Setting CR4.PAE = 1 enables virtual addresses to be translated into physical addresses up to 52 bits
long. This is accomplished by doubling the size of paging data-structure entries from 32 bits to 64 bits
to accommodate the larger physical base-addresses for physical-pages.

PAE must be enabled before activating long mode. See “Enabling and Activating Long Mode” on
page 438.

5.1.4 Page-Size Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit 4). Setting CR4.PSE to 1 allows
operating-system software to use 4-Mbyte physical pages in the translation process. The 4-Mbyte
physical pages can be mixed with standard 4-Kbyte physical pages or replace them entirely. The
selection of physical-page size is made on a page-directory-entry basis. See “Page Size (PS) Bit” on
page 139 for more information on physical-page size selection. When CR4.PSE is cleared to 0, page-
size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical-page size depends on the value of CR4.PSE
and CR4.PAE, as follows:
• If physical-address extensions are enabled (CR4.PAE=1), the large physical-page size is 2 Mbytes,

regardless of the value of CR4.PSE.
• If physical-address extensions are disabled (CR4.PAE=0) and CR4.PSE=1, the large physical-

page size is 4 Mbytes.
• If both CR4.PAE=0 and CR4.PSE=0, the only available page size is 4 Kbytes.

The value of CR4.PSE is ignored when long mode is active. This is because physical-address
extensions must be enabled in long mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be translated from 32-bit virtual addresses
using 32-bit paging data-structure entries when 4-Mbyte physical-page sizes are selected. In this
special case, CR4.PSE=1 and CR4.PAE=0. See “4-Mbyte Page Translation” on page 125 for a
description of the 4-Mbyte PDE that supports 40-bit physical-address translation. The 40-bit physical-
address capability is an AMD64 architecture enhancement over the similar capability available in the
legacy x86 architecture.

122 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.1.5 Page-Directory Page Size (PS) Bit

The page directory offset entry (PDE) and page directory pointer offset entry (PDPE) are data
structures used in page translation (see Figure 5-1 on page 119). The page-size (PS) bit in the PDE (bit
7, referred to as PDE.PS) selects between standard 4-Kbyte physical-page sizes and larger (2-Mbyte or
4-Mbyte) physical-page sizes. The page-size (also PS) bit in the PDPE (bit 7, referred to as PDPE.PS)
selects between 2-Mbyte and 1-Gbyte physical-page sizes in long mode.

When PDE.PS is set to 1, large physical pages are used, and the PDE becomes the lowest level of the
translation hierarchy. The size of the large page is determined by the values of CR4.PAE and
CR4.PSE, as shown in Figure 5-1 on page 120. When PDE.PS is cleared to 0, standard 4-Kbyte
physical pages are used, and the PTE is the lowest level of the translation hierarchy.

When PDPE.PS is set to 1, 1-Gbyte physical pages are used, and the PDPE becomes the lowest level of
the translation hierarchy. Neither the PDE nor PTE are used for 1-Gbyte paging.

5.2 Legacy-Mode Page Translation
Legacy mode supports two forms of translation:
• Normal (non-PAE) Paging—This is used when physical-address extensions are disabled

(CR4.PAE=0). Entries in the page translation table are 32 bits and are used to translate 32-bit
virtual addresses into physical addresses as large as 40 bits.

• PAE Paging—This is used when physical-address extensions are enabled (CR4.PAE=1). Entries in
the page translation table are 64 bits and are used to translate 32-bit virtual addresses into physical
addresses as large as 52 bits.

Legacy paging uses up to three levels of page-translation tables, depending on the paging form used
and the physical-page size. Entries within each table are selected using virtual-address bit fields. The
legacy page-translation tables are:
• Page Table—Each page-table entry (PTE) points to a physical page. If 4-Kbyte pages are used, the

page table is the lowest level of the page-translation hierarchy. PTEs are not used when translating
2-Mbyte or 4-Mbyte pages.

• Page Directory—If 4-Kbyte pages are used, each page-directory entry (PDE) points to a page
table. If 2-Mbyte or 4-Mbyte pages are used, a PDE is the lowest level of the page-translation
hierarchy and points to a physical page. In non-PAE paging, the page directory is the highest level
of the translation hierarchy.

• Page-Directory Pointer—Each page-directory pointer entry (PDPE) points to a page directory.
Page-directory pointers are only used in PAE paging (CR4.PAE=1), and are the highest level in the
legacy page-translation hierarchy.

The translation-table-entry formats and how they are used in the various forms of legacy page
translation are described beginning on page 124.

Page Translation and Protection 123

24593—Rev. 3.30—September 2018 AMD64 Technology

5.2.1 CR3 Register

The CR3 register is used to point to the base address of the highest-level page-translation table. The
base address is either the page-directory pointer table or the page directory table. The CR3 register
format depends on the form of paging being used. Figure 5-2 on page 123 shows the CR3 format when
normal (non-PAE) paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format when PAE paging
is used (CR4.PAE=1).

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

Table Base Address Field. This field points to the starting physical address of the highest-level
page-translation table. The size of this field depends on the form of paging used:
• Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field occupies bits 31:12, and points to the

base address of the page-directory table. The page-directory table is aligned on a 4-Kbyte
boundary, with the low-order 12 address bits 11:0 assumed to be 0. This yields a total base-address
size of 32 bits.

• PAE Paging (CR4.PAE=1)—This field is 27 bits and occupies bits 31:5. The CR3 register points to
the base address of the page-directory-pointer table. The page-directory-pointer table is aligned on
a 32-byte boundary, with the low 5 address bits 4:0 assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address Reserved
P
C
D

P
W
T

Reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

Reserved

124 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.2.2 Normal (Non-PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte physical pages, as described in the
following sections.

4-Kbyte Page Translation. 4-Kbyte physical-page translation is performed by dividing the 32-bit
virtual address into three fields. Each of the upper two fields is used as an index into a two-level page-
translation hierarchy. The virtual-address fields are used as follows, and are shown in Figure 5-4:
• Bits 31:22 index into the 1024-entry page-directory table.
• Bits 21:12 index into the 1024-entry page table.
• Bits 11:0 provide the byte offset into the physical page.

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 on page 125 shows the format of the PDE (page-directory entry), and Figure 5-6 on
page 125 shows the format of the PTE (page-table entry). Each table occupies 4 Kbytes and can hold
1024 of the 32-bit table entries. The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 137.

Figure 5-5 shows bit 7 cleared to 0. This bit is the page-size bit (PS), and specifies a 4-Kbyte physical-
page translation.

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

01112212231

Physical
Address

PTE

PDE

1010

32

32

Page-Directory Base

1231

CR3

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

12

Page Translation and Protection 125

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page translation is only supported when page-size extensions
are enabled (CR4.PSE=1) and physical-address extensions are disabled (CR4.PAE=0).

PSE defines a page-size bit in the 32-bit PDE format (PDE.PS). This bit is used by the processor
during page translation to support both 4-Mbyte and 4-Kbyte pages. 4-Mbyte pages are selected when
PDE.PS is set to 1, and the PDE points directly to a 4-Mbyte physical page. PTEs are not used in a 4-
Mbyte page translation. If PDE.PS is cleared to 0, or if 4-Mbyte page translation is disabled, the PDE
points to a PTE.

4-Mbyte page translation is performed by dividing the 32-bit virtual address into two fields. Each field
is used as an index into a single-level page-translation hierarchy. The virtual-address fields are used as
follows, and are shown in Figure 5-7 on page 126:
• Bits 31:22 index into the 1024-entry page-directory table.
• Bits 21:0 provide the byte offset into the physical page.

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

126 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The AMD64 architecture modifies the legacy 32-bit PDE format in PSE mode to increase physical-
address size support to 40 bits. This increase in address size is accomplished by using bits 20:13 to
hold eight additional high-order physical-address bits. Bit 21 is reserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is enabled. The physical-page base-address
bits are contained in a split field. The high-order, physical-page base-address bits 39:32 are located in
PDE[20:13], and physical-page base-address bits 31:22 are located in PDE[31:22].

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode

5.2.3 PAE Paging

PAE paging is used when physical-address extensions are enabled (CR4.PAE=1). PAE paging doubles
the size of page-translation table entries to 64 bits so that the table entries can hold larger physical

31 22 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address [31:22] 0 Physical-Page Base Address
[39:32]

P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Virtual Address

Page Offset
Page-Directory

Offset

0212231

Physical
Address

PDE

10

40

Page-Directory Base

1231

CR3

Page-
Directory

Table

4 Mbyte
Physical

Page

22

Page Translation and Protection 127

24593—Rev. 3.30—September 2018 AMD64 Technology

addresses (up to 52 bits). The size of each table remains 4 Kbytes, which means each table can hold
512 of the 64-bit entries. PAE paging also introduces a third-level page-translation table, known as the
page-directory-pointer table (PDP).

The size of large pages in PAE-paging mode is 2 Mbytes rather than 4 Mbytes. PAE uses the page-
directory page-size bit (PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page sizes. PAE
automatically uses the page-size bit, so the value of CR4.PSE is ignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page translation is performed by
dividing the 32-bit virtual address into four fields, each of the upper three fields is used as an index into
a 3-level page-translation hierarchy. The virtual-address fields are described as follows and are shown
in Figure 5-9:
• Bits 31:30 index into a 4-entry page-directory-pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:12 index into the 512-entry page table.
• Bits 11:0 provide the byte offset into the physical page.

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Figures 5-10 through 5-12 show the legacy-mode 4-Kbyte translation-table formats:

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

011122021293031

Physical
Address

PTE

PDE

PDPE

992

52*

52*

52*

Page-Directory-Pointer Base

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Page-Directory-
Pointer Offset

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

128 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

• Figure 5-10 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-11 shows the PDE (page-directory entry) format.
• Figure 5-12 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137.

Figure 5-11 shows the PDE.PS bit cleared to 0 (bit 7), specifying a 4-Kbyte physical-page translation.

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page translation is performed by dividing the 32-bit virtual
address into three fields. Each field is used as an index into a 2-level page-translation hierarchy. The
virtual-address fields are described as follows and are shown in Figure 5-13 on page 129:
• Bits 31:30 index into the 4-entry page-directory-pointer table.

63 52 51 32

Reserved, MBZ Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL Reserved,
MBZ

P
C
D

P
W
T

MBZ P

63 62 52 51 32

N
X

Reserved, MBZ Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Page Translation and Protection 129

24593—Rev. 3.30—September 2018 AMD64 Technology

• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:0 provide the byte offset into the physical page.

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode

Figure 5-14 shows the format of the PDPE (page-directory-pointer entry) and Figure 5-15 on page 130
shows the format of the PDE (page-directory entry). PTEs are not used in 2-Mbyte page translations.

Figure 5-15 on page 130 shows the PDE.PS bit set to 1 (bit 7), specifying a 2-Mbyte physical-page
translation.

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

63 52 51 32

Reserved, MBZ Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL Reserved,
MBZ

P
C
D

P
W
T

MBZ P

Virtual Address

Page Offset
Page-Directory

Offset

02021293031

Physical
Address

PDE

PDPE

92

52*

52*

Page-Directory-Pointer Base Register

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

Page-Directory-
Pointer Offset

21

*This is an architectural limit. A given processor
implementation may support fewer bits.

130 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation
Long-mode page translation requires the use of physical-address extensions (PAE). Before activating
long mode, PAE must be enabled by setting CR4.PAE to 1. Activating long mode before enabling PAE
causes a general-protection exception (#GP) to occur.

The PAE-paging data structures support mapping of 64-bit virtual addresses into 52-bit physical
addresses. PAE expands the size of legacy page-directory entries (PDEs) and page-table entries
(PTEs) from 32 bits to 64 bits, allowing physical-address sizes of greater than 32 bits.

The AMD64 architecture enhances the page-directory-pointer entry (PDPE) by defining previously
reserved bits for access and protection control. A new translation table is added to PAE paging, called
the page-map level-4 (PML4). The PML4 table precedes the PDP table in the page-translation
hierarchy.

Because PAE is always enabled in long mode, the PS bit in the page directory entry (PDE.PS) selects
between 4-Kbyte and 2-Mbyte page sizes, and the CR4.PSE bit is ignored. When 1-Gbyte pages are
supported, the PDPE. PS bit selects the 1-Gbyte page size.

5.3.1 Canonical Address Form

The AMD64 architecture requires implementations supporting fewer than the full 64-bit virtual
address to ensure that those addresses are in canonical form. An address is in canonical form if the
address bits from the most-significant implemented bit up to bit 63 are all ones or all zeros. If the
addresses of all bytes in a virtual-memory reference are not in canonical form, the processor generates
a general-protection exception (#GP) or a stack fault (#SS) as appropriate.

5.3.2 CR3

In long mode, the CR3 register is used to point to the PML4 base address. CR3 is expanded to 64 bits
in long mode, allowing the PML4 table to be located anywhere in the 52-bit physical-address space.
Figure 5-16 on page 131 shows the long-mode CR3 format.

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Page Translation and Protection 131

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits 51:12. This 40-bit field points to the PML4 base address. The
PML4 table is aligned on a 4-Kbyte boundary with the low-order 12 address bits (11:0) assumed to be
0. This yields a total base-address size of 52 bits. System software running on processor
implementations supporting less than the full 52-bit physical-address space must clear the
unimplemented upper base-address bits to 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough indicates whether the highest-
level page-translation table has a writeback or writethrough caching policy. When PWT=0, the table
has a writeback caching policy. When PWT=1, the table has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable indicates whether the highest-
level page-translation table is cacheable. When PCD=0, the table is cacheable. When PCD=1, the table
is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software when writing CR3.

5.3.3 4-Kbyte Page Translation

In long mode, 4-Kbyte physical-page translation is performed by dividing the virtual address into six
fields. Four of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-17 on page 132:
• Bits 63:48 are a sign extension of bit 47, as required for canonical-address forms.
• Bits 47:39 index into the 512-entry page-map level-4 table.
• Bits 38:30 index into the 512-entry page-directory pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:12 index into the 512-entry page table.
• Bits 11:0 provide the byte offset into the physical page.
Note: The sizes of the sign extension and the PML4 fields depend on the number of virtual address

bits supported by the implementation.

63 52 51 32

Reserved, MBZ Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address Reserved
P
C
D

P
W
T

Reserved

132 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 133 and Figure 5-21 on page 133 show the long-mode 4-Kbyte
translation-table formats:
• Figure 5-18 on page 133 shows the PML4E (page-map level-4 entry) format.
• Figure 5-19 on page 133 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-20 on page 133 shows the PDE (page-directory entry) format.
• Figure 5-21 on page 133 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137.

Figure 5-20 on page 133 shows the PDE.PS bit (bit 7) cleared to 0, indicating a 4-Kbyte physical-page
translation.

Virtual Address

Sign Extend
Page-Map

Level-4 Offset
(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

Page-Table
Offset

01112202129303839474863

Physical
Address

PTE

PDE

PDPE

PML4E

9999

52*
52*

52*

52*

1251

CR3

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Physical-
Page Offset

Page-Map Level-4

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

Base Address

Page Translation and Protection 133

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-18. 4-Kbyte PML4E—Long Mode

Figure 5-19. 4-Kbyte PDPE—Long Mode

Figure 5-20. 4-Kbyte PDE—Long Mode

Figure 5-21. 4-Kbyte PTE—Long Mode

63 62 52 51 32

N
X

Available Page-Directory-Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

134 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.3.4 2-Mbyte Page Translation

In long mode, 2-Mbyte physical-page translation is performed by dividing the virtual address into five
fields. Three of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-22:
• Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
• Bits 47:39 index into the 512-entry page-map level-4 table.
• Bits 38:30 index into the 512-entry page-directory-pointer table.
• Bits 29:21 index into the 512-entry page-directory table.
• Bits 20:0 provide the byte offset into the physical page.

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 135 show the long-mode 2-Mbyte translation-table formats (the
PML4 and PDPT formats are identical to those used for 4-Kbyte page translations and are repeated
here for clarity):
• Figure 5-23 on page 135 shows the PML4E (page-map level-4 entry) format.
• Figure 5-24 on page 135 shows the PDPE (page-directory-pointer entry) format.
• Figure 5-25 on page 135 shows the PDE (page-directory entry) format.

Virtual Address

Page OffsetSign Extend
Page-Map

Level-4 Table Offset

(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

0202129303839474863

Physical
Address

PDE

PDPE

PML4E

999

52*
52*

52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

CR3Page-Map Level-4
1251

*This is an architectural limit. A given processor
implementation may support fewer bits.

21

Base Address

Page Translation and Protection 135

24593—Rev. 3.30—September 2018 AMD64 Technology

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137. PTEs are not used in 2-Mbyte page translations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a 2-Mbyte physical-page translation.

Figure 5-23. 2-Mbyte PML4E—Long Mode

Figure 5-24. 2-Mbyte PDPE—Long Mode

Figure 5-25. 2-Mbyte PDE—Long Mode

5.3.5 1-Gbyte Page Translation

In long mode, 1-Gbyte physical-page translation is performed by dividing the virtual address into four
fields. Two of the fields are used as indices into the level page-translation hierarchy. The virtual-
address fields are described as follows, and are shown in Figure 5-26 on page 136:
• Bits 63:48 are a sign extension of bit 47 as required for canonical address forms.
• Bits 47:39 index into the 512-entry page-map level-4 table.
• Bits 38:30 index into the 512-entry page-directory-pointer table.
• Bits 29:0 provide the byte offset into the physical page.

63 62 52 51 32

N
X

Available Page-Directory-Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 32

N
X Available Physical Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical Page Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

136 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 5-26. 1-Gbyte Page Translation—Long Mode

Figure 5-27 and Figure 5-28 on page 137 show the long mode 1-Gbyte translation-table formats (the
PML4 format is identical to the one used for 4-Kbyte page translations and is repeated here for clarity):
• Figure 5-27 shows the PML4E (page-map level-4 entry) format.
• Figure 5-28 shows the PDPE (page-directory-pointer entry) format.

The fields within these table entries are described in “Page-Translation-Table Entry Fields” on
page 137 in the current volume. PTEs and PDEs are not used in 1-Gbyte page translations.

Figure 5-28 on page 137 shows the PDPE.PS bit (bit 7) set to 1, indicating a 1-Gbyte physical-page
translation.

Virtual Address

Page OffsetSign Extend
Page-Map

Level-4 Table Offset
(PML4)

Page-Directory-
Pointer Offset

029303839474863

Physical
Address

PDPE
PML4E

99

52*
52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

1 Gbyte
Physical

Page

CR3Page-Map Level-4 Base Address

 1251
*This is an architectural limit. A given processor

implementation may support fewer bits.

30

Page Translation and Protection 137

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 5-27. 1-Gbyte PML4E—Long Mode

Figure 5-28. 1-Gbyte PDPE—Long Mode

1-Gbyte Paging Feature Identification. EDX bit 26 as returned by CPUID function 8000_0001h
indicates 1-Gbyte page support. The EAX register as returned by CPUID function 8000_0019h reports
the number of 1-Gbyte L1 TLB entries supported and EBX reports the number of 1-Gbyte L2 TLB
entries. For more information using the CPUID instruction see Section 3.3 “Processor Feature
Identification” on page 63.

5.4 Page-Translation-Table Entry Fields
The page-translation-table entries contain control and informational fields used in the management of
the virtual-memory environment. Most fields are common across all translation table entries and
modes and occupy the same bit locations. However, some fields are located in different bit positions
depending on the page translation hierarchical level, and other fields have different sizes depending on
which physical-page size, physical-address size, and operating mode are selected. Although these
fields can differ in bit position or size, their meaning is consistent across all levels of the page
translation hierarchy and in all operating modes.

63 62 52 51 32

N
X

Available Page Directory Pointer Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL
M
B
Z

M
B
Z

I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Physical Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 30 12 11 9 8 7 6 5 4 3 2 1 0

Phy
Page
Base
Addr

Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

138 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.4.1 Field Definitions

The following sections describe each field within the page-translation table entries.

Translation-Table Base Address Field. The translation-table base-address field points to the
physical base address of the next-lower-level table in the page-translation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so only the address bits above bit 11 are
stored in the translation-table base-address field. Bits 11:0 are assumed to be 0. The size of the field
depends on the mode:
• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit physical address.
• In PAE paging (CR4.PAE=1), this field specifies a 52-bit physical address.

52 bits correspond to the maximum physical-address size allowed by the AMD64 architecture. If a
processor implementation supports fewer than the full 52-bit physical address, software must clear the
unimplemented high-order translation-table base-address bits to 0. For example, if a processor
implementation supports a 40-bit physical-address size, software must clear bits 51:40 when writing a
translation-table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-address field points to the base
address of the translated physical page. This field is found only in the lowest level of the page-
translation hierarchy. The size of the field depends on the mode:
• In normal (non-PAE) paging (CR4.PAE=0), this field specifies a 32-bit base address for a physical

page.
• In PAE paging (CR4.PAE=1), this field specifies a 52-bit base address for a physical page.

Physical pages can be 4 Kbytes, 2 Mbytes, 4 Mbytes, or 1-Gbyte and they are always aligned on an
address boundary corresponding to the physical-page length. For example, a 2-Mbyte physical page is
always aligned on a 2-Mbyte address boundary. Because of this alignment, the low-order address bits
are assumed to be 0, as follows:
• 4-Kbyte pages, bits 11:0 are assumed 0.
• 2-Mbyte pages, bits 20:0 are assumed 0.
• 4-Mbyte pages, bits 21:0 are assumed 0.
• 1-Gbyte pages, bits 29:0 are assumed 0.

Present (P) Bit. Bit 0. This bit indicates whether the page-translation table or physical page is loaded
in physical memory. When the P bit is cleared to 0, the table or physical page is not loaded in physical
memory. When the P bit is set to 1, the table or physical page is loaded in physical memory.

Software clears this bit to 0 to indicate a page table or physical page is not loaded in physical memory.
A page-fault exception (#PF) occurs if an attempt is made to access a table or page when the P bit is 0.
System software is responsible for loading the missing table or page into memory and setting the P bit
to 1.

Page Translation and Protection 139

24593—Rev. 3.30—September 2018 AMD64 Technology

When the P bit is 0, indicating a not-present page, all remaining bits in the page data-structure entry are
available to software.

Entries with P cleared to 0 are never cached in TLB nor will the processor set the Accessed or Dirty bit
for the table entry.

Read/Write (R/W) Bit. Bit 1. This bit controls read/write access to all physical pages mapped by the
table entry. For example, a page-map level-4 R/W bit controls read/write access to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the R/W bit
is cleared to 0, access is restricted to read-only. When the R/W bit is set to 1, both read and write access
is allowed. See “Page-Protection Checks” on page 145 for a description of the paging read/write
protection mechanism.

User/Supervisor (U/S) Bit. Bit 2. This bit controls user (CPL 3) access to all physical pages mapped
by the table entry. For example, a page-map level-4 U/S bit controls the access allowed to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the U/S bit
is cleared to 0, access is restricted to supervisor level (CPL 0, 1, 2). When the U/S bit is set to 1, both
user and supervisor access is allowed. See “Page-Protection Checks” on page 145 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. This bit indicates whether the page-translation table or
physical page to which this entry points has a writeback or writethrough caching policy. When the
PWT bit is cleared to 0, the table or physical page has a writeback caching policy. When the PWT bit is
set to 1, the table or physical page has a writethrough caching policy. See “Memory Caches” on
page 179 for additional information on caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. This bit indicates whether the page-translation table or
physical page to which this entry points is cacheable. When the PCD bit is cleared to 0, the table or
physical page is cacheable. When the PCD bit is set to 1, the table or physical page is not cacheable.
See “Memory Caches” on page 179 for additional information on caching.

Accessed (A) Bit. Bit 5. This bit indicates whether the page-translation table or physical page to
which this entry points has been accessed. The A bit is set to 1 by the processor the first time the table
or physical page is either read from or written to. The A bit is never cleared by the processor. Instead,
software must clear this bit to 0 when it needs to track the frequency of table or physical-page accesses.

Dirty (D) Bit. Bit 6. This bit is only present in the lowest level of the page-translation hierarchy. It
indicates whether the physical page to which this entry points has been written. The D bit is set to 1 by
the processor the first time there is a write to the physical page. The D bit is never cleared by the
processor. Instead, software must clear this bit to 0 when it needs to track the frequency of physical-
page writes.

Page Size (PS) Bit. Bit 7. This bit is present in page-directory entries and long-mode page-directory-
pointer entries. When the PS bit is set in the page-directory-pointer entry (PDPE) or page-directory
entry (PDE), that entry is the lowest level of the page-translation hierarchy. When the PS bit is cleared

140 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

to 0 in all levels above PTE, the lowest level of the page-translation hierarchy is the page-table entry
(PTE), and the physical-page size is 4 Kbytes. The physical-page size is determined as follows:
• If EFER.LMA=1 and PDPE.PS=1, the physical-page size is 1 Gbyte.
• If CR4.PAE=0 and PDE.PS=1, the physical-page size is 4 Mbytes.
• If CR4.PAE=1 and PDE.PS=1, the physical-page size is 2 Mbytes.

See Table 5-1 on page 120 for a description of the relationship between the PS bit, PAE, physical-page
sizes, and page-translation hierarchy.

Global Page (G) Bit. Bit 8. This bit is only present in the lowest level of the page-translation
hierarchy. It indicates the physical page is a global page. The TLB entry for a global page (G=1) is not
invalidated when CR3 is loaded either explicitly by a MOV CRn instruction or implicitly during a task
switch. Use of the G bit requires the page-global enable bit in CR4 to be set to 1 (CR4.PGE=1). See
“Global Pages” on page 142 for more information on the global-page mechanism.

Available to Software (AVL) Bit. These bits are not interpreted by the processor and are available for
use by system software.

Page-Attribute Table (PAT) Bit. This bit is only present in the lowest level of the page-translation
hierarchy, as follows:
• If the lowest level is a PTE (PDE.PS=0), PAT occupies bit 7.
• If the lowest level is a PDE (PDE.PS=1) or PDPE (PDPE.PS=1), PAT occupies bit 12.

The PAT bit is the high-order bit of a 3-bit index into the PAT register (Figure 7-10 on page 198). The
other two bits involved in forming the index are the PCD and PWT bits. Not all processors support the
PAT bit by implementing the PAT registers. See “Page-Attribute Table Mechanism” on page 198 for a
description of the PAT mechanism and how it is used.

No Execute (NX) Bit. Bit 63. This bit is present in the translation-table entries defined for PAE
paging, with the exception that the legacy-mode PDPE does not contain this bit. This bit is not
supported by non-PAE paging.

The NX bit can only be set when the no-execute page-protection feature is enabled by setting
EFER.NXE to 1 (see “Extended Feature Enable Register (EFER)” on page 55). If EFER.NXE=0, the
NX bit is treated as reserved. In this case, a page-fault exception (#PF) occurs if the NX bit is not
cleared to 0.

This bit controls the ability to execute code from all physical pages mapped by the table entry. For
example, a page-map level-4 NX bit controls the ability to execute code from all 128M
(512 × 512 × 512) physical pages it maps through the lower-level translation tables. When the NX bit
is cleared to 0, code can be executed from the mapped physical pages. When the NX bit is set to 1,
code cannot be executed from the mapped physical pages. See “No Execute (NX) Bit” on page 140 for
a description of the no-execute page-protection mechanism.

Page Translation and Protection 141

24593—Rev. 3.30—September 2018 AMD64 Technology

Reserved Bits. Software should clear all reserved bits to 0. If the processor is in long mode, or if
page-size and physical-address extensions are enabled in legacy mode, a page-fault exception (#PF)
occurs if reserved bits are not cleared to 0.

5.4.2 Notes on Accessed and Dirty Bits

The processor never sets the Accessed bit or the Dirty bit for a not present page (P = 0). The ordering
of Accessed and Dirty bit updates with respect to surrounding loads and stores is discussed below.

Accessed (A) Bit. The Accessed bit can be set for instructions that are speculatively executed by the
processor.

For example, the Accessed bit may be set by instructions in a mispredicted branch path even though
those instructions are never retired. Thus, software must not assume that the TLB entry has not been
cached in the TLB, just because no instruction that accessed the page was successfully retired.
Nevertheless, a table entry is never cached in the TLB without its Accessed bit being set at the same
time.

The processor does not order Accessed bit updates with respect to loads done by other instructions.

Dirty (D) Bit. The Dirty bit is not updated speculatively. For instructions with multiple writes, the D
bit may be set for any writes completed up to the point of a fault. In rare cases, the Dirty bit may be set
even if a write was not actually performed, including MASKMOVQ with a mask of zero and certain
x87 floating point instructions that cause an exception. Thus software can not assume that the page has
actually been written even where PTE[D] is set to 1.

If PTE[D] is cleared to 0, software can rely on the fact that the page has not been written.

In general, Dirty bit updates are ordered with respect to other loads and stores, although not
necessarily with respect to accesses to WC memory; in particular, they may not cause WC buffers to
be flushed. However, to ensure compatibility with future processors, a serializing operation should be
inserted before reading the D bit.

5.5 Translation-Lookaside Buffer (TLB)
When paging is enabled, every memory access has its virtual address automatically translated into a
physical address using the page-translation hierarchy. Translation-lookaside buffers (TLBs), also
known as page-translation caches, nearly eliminate the performance penalty associated with page
translation. TLBs are special on-chip caches that hold the most-recently used virtual-to-physical
address translations. Each memory reference (instruction and data) is checked by the TLB. If the
translation is present in the TLB, it is immediately provided to the processor, thus avoiding external
memory references for accessing page tables.

TLBs take advantage of the principle of locality. That is, if a memory address is referenced, it is likely
that nearby memory addresses will be referenced in the near future. In the context of paging, the
proximity of memory addresses required for locality can be broad—it is equal to the page size. Thus, it

142 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

is possible for a large number of addresses to be translated by a small number of page translations. This
high degree of locality means that almost all translations are performed using the on-chip TLBs.

System software is responsible for managing the TLBs when updates are made to the linear-to-
physical mapping of addresses. A change to any paging data-structure entry is not automatically
reflected in the TLB, and hardware snooping of TLBs during memory-reference cycles is not
performed. Software must invalidate the TLB entry of a modified translation-table entry so that the
change is reflected in subsequent address translations. TLB invalidation is described in “TLB
Management” on page 142. Only privileged software running at CPL=0 can manage the TLBs.

5.5.1 Global Pages

The processor invalidates the TLB whenever CR3 is loaded either explicitly or implicitly. After the
TLB is invalidated, subsequent address references can consume many clock cycles until their
translations are cached as new entries in the TLB. Invalidation of TLB entries for frequently-used or
critical pages can be avoided by specifying the translations for those pages as global. TLB entries for
global pages are not invalidated as a result of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing the PGE bit in CR4 (bit 7). When
CR4.PGE is set to 1, global-page extensions are enabled. When CR4.PGE is cleared to 0, global-page
extensions are disabled. When CR4.PGE=1, setting the global (G) bit in the translation-table entry
marks the page as global.

The INVLPG instruction ignores the G bit and can be used to invalidate individual global-page entries
in the TLB. To invalidate all entries, including global-page entries, disable global-page extensions
(CR4.PGE=0).

5.5.2 TLB Management

Generally, unless system software modifies the linear-to-physical address mapping, the processor
manages the TLB transparently to software. This includes allocating entries and replacing old entries
with new entries. In general, software changes made to paging-data structures are not automatically
reflected in the TLB. In these situations, it is necessary for software to invalidate TLB entries so that
these changes are immediately propagated to the page-translation mechanism.

TLB entries can be explicitly invalidated using operations intended for that purpose or implicitly
invalidated as a result of another operation. TLB invalidation has no effect on the associated page-
translation tables in memory.

Explicit Invalidations. Three mechanisms are provided to explicitly invalidate the TLB:
• The invalidate TLB entry instruction (INVLPG) can be used to invalidate specific entries within

the TLB. This instruction invalidates a page, regardless of whether it is marked as global or not.
The Invalidate TLB entry in a Specified ASID (INVLPGA) operates similarly, but operates on the
specified ASID. See “Invalidate Page, Alternate ASID” on page 476.

Page Translation and Protection 143

24593—Rev. 3.30—September 2018 AMD64 Technology

• Updates to the CR3 register cause the entire TLB to be invalidated except for global pages. The
CR3 register can be updated with the MOV CR3 instruction. CR3 is also updated during a task
switch, with the updated CR3 value read from the TSS of the new task.

• The TLB_CONTROL field of a VMCB can request specific flushes of the TLB to occur when the
VMRUN instruction is executed on that VMCB. See “TLB Flush” on page 475.

Implicit Invalidations. The following operations cause the entire TLB to be invalidated, including
global pages:
• Modifying the CR0.PG bit (paging enable).
• Modifying the CR4.PAE bit (physical-address extensions), the CR4.PSE bit (page-size

extensions), or the CR4.PGE bit (page-global enable).
• Entering SMM as a result of an SMI interrupt.
• Executing the RSM instruction to return from SMM.
• Updating a memory-type range register (MTRR) with the WRMSR instruction.
• External initialization of the processor.
• External masking of the A20 address bit (asserting the A20M# input signal).
• Writes to certain model-specific registers with the WRMSR instruction; see the BIOS and Kernel

Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product for more information

Invalidation of Table Entry Upgrades. If a table entry is updated to remove a permission violation,
such as removing supervisor, read-only, and/or no-execute restrictions, an invalidation is not required,
because the hardware will automatically detect the changes. If a table entry is updated and does not
remove a permission violation, it is unpredictable whether the old or updated entry will be used until
an invalidation is performed.

Speculative Caching of Address Translations. For performance reasons, AMD64 processors may
speculatively load valid address translations into the TLB on false execution paths. Such translations
are not based on references that a program makes from an “architectural state” perspective, but which
the processor may make in speculatively following an instruction path which turns out to be
mispredicted. In general, the processor may create a TLB entry for any linear address for which valid
entries exist in the page table structure currently pointed to by CR3. This may occur for both
instruction fetches and data references. Such entries remain cached in the TLBs and may be used in
subsequent translations. Loading a translation speculatively will set the Accessed bit, if not already
set. A translation will not be loaded speculatively if the Dirty bit needs to be set.

Caching of Upper Level Translation Table Entries. Similarly, to improve the performance of table
walks on TLB misses, AMD64 processors may save upper level translation table entries in special
table walk caching structures which are kept coherent with the tables in memory via the same
mechanisms as the TLBs—by means of the INVLPG instruction, moves to CR3, and modification of
paging control bits in CR0 and CR4. Like address translations in the TLB, these upper level entries

144 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

may also be cached speculatively and by false-path execution. These entries are never cached if their P
(present) bits are set to 0.

Under certain circumstances, an upper-level table entry that cannot ultimately lead to a valid
translation (because there are no valid entries in the lower level table to which it points) may also be
cached. This can happen while executing down a false path, when an in-progress table walk gets
cancelled by the branch mispredict before the low level table entry that would cause a fault is
encountered. Said another way, the fact that a page table has no valid entries does not guarantee that
upper level table entries won't be accessed and cached in the processor, as long as those upper level
entries are marked as present. For this reason, it is not safe to modify an upper level entry, even if no
valid lower-level entries exist, without first clearing its present bit, followed by an INVLPG
instruction.

Use of Cached Entries When Reporting a Page Fault Exception. On current AMD64
processors, when any type of page fault exception is encountered by the MMU, any cached upper-
level entries that lead to the faulting entry are flushed (along with the TLB entry, if already cached) and
the table walk is repeated to confirm the page fault using the table entries in memory. This is done
because a table entry is allowed to be upgraded (by marking it as present, or by removing its write,
execute or supervisor restrictions) without explicitly maintaining TLB coherency. Such an upgrade
will be found when the table is re-walked, which resolves the fault. If the fault is confirmed on the re-
walk however, a page fault exception is reported, and upper level entries that may have been cached on
the re-walk are flushed.

Handling of D-Bit Updates. When the processor needs to set the D bit in the PTE for a TLB entry
that is already marked as writable at all cached TLB levels, the table walk that is performed to access
the PTE in memory may use cached upper level table entries. This differs from the fault situation
previously described, in which cached entries aren’t used to confirm the fault during the table walk.

Invalidation of Cached Upper-level Entries by INVLPG. The effect of INVLPG on TLB caching
of upper-level page table entries is controlled by EFER[TCE] on processors that support the
translation cache extension feature. If EFER[TCE] is 0, or if the processor does not support the
translation cache extension feature, an INVLPG will flush all upper-level page table entries in the TLB
as well as the target PTE. If EFER[TCE] is 1, INVLPG will flush only those upper-level entries that
lead to the target PTE, along with the target PTE itself. INVLPGA may flush all upper-level entries
regardless of the state of TCE. For further details, see Section 3.1.7 “Extended Feature Enable
Register (EFER)” on page 55.

Handling of PDPT Entries in PAE Mode. When 32-bit PAE mode is enabled on AMD64 processors
(CR4.PAE is set to 1) a third level of the address translation table hierarchy, the page directory pointer
table (PDPT), is enabled. This table contains four entries. On current AMD64 processors, in native
mode, these four entries are unconditionally loaded into the table walk cache whenever CR3 is written
with the PDPT base address, and remain locked in. At this point they are also checked for reserved bit
violations, and if such violations are present a general protection fault occurs.

Under SVM, however, when the processor is in guest mode with PAE enabled, the guest PDPT entries
are not cached or validated at this point, but instead are loaded and checked on demand in the normal

Page Translation and Protection 145

24593—Rev. 3.30—September 2018 AMD64 Technology

course of address translation, just like page directory and page table entries. Any reserved bit
violations are detected at the point of use, and result in a page fault (#PF) exception rather than a
general protection (#GP) fault. The cached PDPT entries are subject to displacement from the table
walk cache and reloading from the PDPT, hence software must assume that the PDPT entries may be
read by the processor at any point while those tables are active. Future AMD processors may
implement this same behavior in native mode as well, rather than pre-loading the PDPT entries.

5.6 Page-Protection Checks
The AMD64 architecture provides four forms of page-level memory protection. The first form of
protection prevents non-privileged (user) code from accessing privileged (supervisor) code and data.
The second form of protection prevents writes into read-only address spaces. The remaining two forms
of page-level memory protection prevent the processor from fetching instructions from pages that are
either known to contain non-executable data or that are accessible by user-mode code.

Access protection checks are performed when a virtual address is translated into a physical address.
For those checks, the processor examines the page-level memory-protection bits in the translation
tables to determine if the access is allowed. The page table bits involved in these checks are:
• User/Supervisor (U/S)—See “User/Supervisor (U/S) Bit” on page 139.
• Read/Write (R/W)—See “Read/Write (R/W) Bit” on page 139.
• No-Execute (NX)—See “No Execute (NX) Bit” on page 140.

Access protection actions taken by the processor are controlled by the following bits:
• Write-Protect enable (CR0.WP)—See “Write Protect (WP) Bit” on page 44.
• No-Execute Enable (EFER.NXE)—See “No-Execute Enable (NXE) Bit” on page 57
• Supervisor-mode Execution Prevention enable (CR4.SMEP)—See “Supervisor Mode Execution

Prevention (SMEP)” on page 50

These protection checks are available at all levels of the page-translation hierarchy.

5.6.1 User/Supervisor (U/S) Bit
The U/S bit in the page-translation tables determines the privilege level required to access the page.
Conceptually, user (non-privileged) pages correspond to a current privilege-level (CPL) of 3, or least-
privileged. Supervisor (privileged) pages correspond to a CPL of 0, 1, or 2, all of which are jointly
regarded as most-privileged.

When the processor is running at a CPL of 0, 1, or 2, it can access both user and supervisor pages.
However, when the processor is running at a CPL of 3, it can only access user pages. If an attempt is
made to access a supervisor page while the processor is running at CPL = 3, a page-fault exception
(#PF) occurs.

See “Privilege-Level Concept” on page 96 for more information on processor privilege levels.

146 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.6.2 Read/Write (R/W) Bit
The R/W bit in the page-translation tables specifies the access type allowed for the page. If R/W=1, the
page is read/write. If R/W = 0, the page is read-only. A page-fault exception (#PF) occurs if an attempt
is made by user software to write to a read-only page. If supervisor software attempts to write a read-
only page, the outcome depends on the value of the CR0.WP bit (described below).

5.6.3 No Execute (NX) Bit
The NX bit provides the ability to mark a page as non-executable. If the NX bit is set at any level of the
page-table hierarchy in the table entries traversed during a table walk, the page mapped by those
entries is a no-execute page. When no-execute protection is enabled, any attempt to fetch an
instruction from a no-execute page results in a page-fault exception (#PF).

The no-execute protection check applies to all privilege levels. It does not distinguish between
supervisor and user-level accesses.

The no-execute protection feature is supported only in PAE-paging mode. In 32-bit PAE mode, the NX
bit is not supported at the Page Directory Pointer table level. In this mode, the value of the NX bit at
the PDP level defaults to 0.

No-execute protection is enabled by setting the NXE bit in the EFER register to 1. Before setting this
bit, system software must verify the processor supports the no-execute feature by checking the CPUID
NX feature flag (CPUID Fn8000_0001_EDX[NX]).

5.6.4 Write Protect (CR0.WP) Bit

The ability to write to read-only pages is governed by the processor mode and whether write protection
is enabled. If write protection is not enabled, a processor running at CPL 0, 1, or 2 can write to any
physical page, even if it is marked as read-only. Enabling write protection by setting the WP bit in CR0
prevents supervisor code from writing into read-only pages, including read-only user-level pages.

A page-fault exception (#PF) occurs if software attempts to write (at any privilege level) into a read-
only page while write protection is enabled.

5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit

When supported and enabled, a page-fault exception (#PF) is asserted if the processor attempts to fetch
an instruction from a user page while running at CPL 0, 1, or 2. A user page is any page with the U/S
bit set to 1, and thus accessible when the processor is running at CPL = 3.

Supervisor-mode execution prevention is enabled by setting the SMEP bit (bit 20) in the CR4 register
to 1. Before setting this bit, system software must verify the processor supports the SMEP feature by
checking the SMEP feature flag (CPUID Fn0000_0007_EBX[SMEP]_x0 = 1).

For more information using the CPUID instruction see Section 3.3 “Processor Feature Identification”
on page 63.

Page Translation and Protection 147

24593—Rev. 3.30—September 2018 AMD64 Technology

5.7 Protection Across Paging Hierarchy
The privilege level and access type specified at each level of the page-translation hierarchy have a
combined effect on the protection of the translated physical page. Enabling and disabling write
protection via CR0.WP further qualifies the protection effect on the physical page.

Table 5-2 shows the overall effect that privilege level and access type have on physical-page
protection when write protection is disabled (CR0.WP=0). In this case, when any translation-table
entry is specified as supervisor level, the physical page is a supervisor page and can only be accessed
by software running at CPL 0, 1, or 2. Such a page allows read/write access even if all levels of the
page-translation hierarchy specify read-only access.

If all table entries in the translation hierarchy are specified as user level the physical page is a user
page, and both supervisor and user software can access it. In this case the physical page is read-only if
any table entry in the translation hierarchy specifies read-only access. All table entries in the
translation hierarchy must specify read/write access for the physical page to be read/write.

Table 5-3 shows the overall effect that privilege level and access type have on physical-page access
when write protection is enabled (CR0.WP=1). When any translation-table entry is specified as
supervisor level, the physical page is a supervisor page and can only be accessed by supervisor
software. In this case, the physical page is read-only if any table entry in the translation hierarchy
specifies read-only access. All table entries in the translation hierarchy must specify read/write access
for the supervisor page to be read/write.

Table 5-2. Physical-Page Protection, CR0.WP=0
Page-Map Level-4

Entry
Page-Directory-

Pointer Entry
Page-Directory

Entry Page-Table Entry Effective Result on
Physical Page

U/S R/W U/S R/W U/S R/W U/S R/W U/S R/W
S — — — — — — —

S R/W
— — S — — — — —
— — — — S — — —
— — — — — — S —
U R U — U — U —

U R1U — U R U — U —
U — U — U R U —
U — U — U — U R
U R/W U R/W U R/W U R/W U R/W

Note:
S = Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R = Read-Only Access, R/W = Read/Write Access,

— = Don’t Care.
Note:

1. Supervisor-level programs can access these pages as R/W.

148 Page Translation and Protection

AMD64 Technology 24593—Rev. 3.30—September 2018

5.7.1 Access to User Pages when CR0.WP=1

As shown in Table 5-2 on page 147, read/write access to user-level pages behaves the same as when
write protection is disabled (CR0.WP=0), with one critical difference. When write protection is
enabled, supervisor programs cannot write into read-only user pages.

5.8 Effects of Segment Protection
Segment-protection and page-protection checks are performed serially by the processor, with
segment-privilege checks performed first, followed by page-protection checks. Page-protection
checks are not performed if a segment-protection violation is found. If a violation is found during
either segment-protection or page-protection checking, an exception occurs and no memory access is
performed. Segment-protection violations cause either a general-protection exception (#GP) or a stack
exception (#SS) to occur. Page-protection violations cause a page-fault exception (#PF) to occur.

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access

Page-Map
Level-4
Entry

Page
Directory-

Pointer
Entry

Page
Directory

Entry

Page Table
Entry

Physical
Page

R/W R/W R/W R/W R/W
R — — —

R
— R — —
— — R —
— — — R
W W W W W

Note:
R = Read-Only Access Type, W = Read/Write Access Type, — = Don’t Care.
Physical page is in supervisor mode, as determined by U/S settings in Table 5-2.

System-Management Instructions 149

24593—Rev. 3.30—September 2018 AMD64 Technology

6 System-Management Instructions

System-management instructions provide control over the resources used to manage the processor
operating environment. This includes memory management, memory protection, task management,
interrupt and exception handling, system-management mode, software debug and performance
analysis, and model-specific features. Most instructions used to access these resources are privileged
and can only be executed while the processor is running at CPL=0, although some instructions can be
executed at any privilege level.

Table 6-1 summarizes the instructions used for system management. These include all privileged
instructions, instructions whose privilege requirement is under the control of system software, non-
privileged instructions that are used primarily by system software, and instructions used to transfer
control to system software. Most of the instructions listed in Table 6-1 are summarized in this chapter,
although a few are introduced elsewhere in this manual, as indicated in the Reference column of
Table 6-1.

For details on individual system instructions, see “System Instruction Reference” in Volume 3.

Table 6-1. System Management Instructions

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

ARPL Adjust Requestor Privilege Level X “Adjusting Access Rights” on
page 159

CLGI Clear Global Interrupt Flag X “Global Interrupt Flag, STGI and
CLGI Instructions” on page 477

CLI Clear Interrupt Flag X “CLI and STI Instructions” on
page 156

CLTS Clear Task-Switched Flag in CR0 X “CLTS Instruction” on page 156
HLT Halt X “Processor Halt” on page 159

INT3 Interrupt to Debug Vector X “Breakpoint Instruction (INT3)” on
page 362

INVD Invalidate Caches X “Cache Management” on
page 159

INVLPG Invalidate TLB Entry X “TLB Invalidation” on page 160

INVLPGA Invalidate TLB Entry in a
Specified ASID X “Invalidate Page, Alternate ASID”

on page 476

IRETx Interrupt Return (all forms) X “Returning From Interrupt
Procedures” on page 246

LAR Load Access-Rights Byte X “Checking Access Rights” on
page 158

Note:
1. The operating system controls the privilege required to use the instruction.

150 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

LGDT Load Global-Descriptor-Table
Register X

“LGDT and LIDT Instructions” on
page 158

LIDT Load Interrupt-Descriptor-Table
Register X

LLDT Load Local-Descriptor-Table
Register X “LLDT and LTR Instructions” on

page 158

LMSW Load Machine-Status Word X “LMSW and SMSW Instructions”
on page 156

LSL Load Segment Limit X “Checking Segment Limits” on
page 158

LTR Load Task Register X “LLDT and LTR Instructions” on
page 158

MONITOR Setup Monitor Address X --

MOV CRn Move to/from Control Registers X “MOV CRn Instructions” on
page 155

MOV DRn Move to/from Debug Registers X “Accessing Debug Registers” on
page 156

MWAIT Monitor Wait X --
RDFSBASE Read FS Base Address X “RDFSBASE, RDGSBASE,

WRFSBASE, and WRGSBASE
Instructions” on page 157RDGSBASE Read GS Base Address X

RDMSR Read Model-Specific Register X “RDMSR and WRMSR
Instructions” on page 156

RDPMC Read Performance-Monitor
Counter X “RDPMC Instruction” on page 156

RDTSC Read Time-Stamp Counter X “RDTSC Instruction” on page 157

RDTSCP Read Time-Stamp Counter and
Processor ID X “RDTSCP Instruction” on

page 157

RSM Return from System-Management
Mode X “Leaving SMM” on page 300

SGDT Store Global-Descriptor-Table
Register X

“SGDT and SIDT Instructions” on
page 158

SIDT Store Interrupt-Descriptor-Table
Register X

SKINIT Secure Init and Jump with
Attestation X “Security” on page 500

SLDT Store Local-Descriptor-Table
Register X “SLDT and STR Instructions” on

page 158

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

System-Management Instructions 151

24593—Rev. 3.30—September 2018 AMD64 Technology

The following instructions are summarized in this chapter but are not categorized as system
instructions, because of their importance to application programming:
• The CPUID instruction returns information critical to system software in initializing the operating

environment. It is fully described in Section 3.3, “Processor Feature Identification,” on page 63.

SMSW Store Machine-Status Word X “LMSW and SMSW Instructions”
on page 156

STI Set Interrupt Flag X “CLI and STI Instructions” on
page 156

STGI Set Global Interrupt Flag X “Global Interrupt Flag, STGI and
CLGI Instructions” on page 477

STR Store Task Register X “SLDT and STR Instructions” on
page 158

SWAPGS Swap GS and KernelGSbase
Registers X “SWAPGS Instruction” on

page 155

SYSCALL Fast System Call X “SYSCALL and SYSRET” on
page 152

SYSENTER System Call X “SYSENTER and SYSEXIT
(Legacy Mode Only)” on page 154SYSEXIT System Return X

SYSRET Fast System Return X “SYSCALL and SYSRET” on
page 152

VERR Verify Segment for Reads X “Checking Read/Write Rights” on
page 158VERW Verify Segment for Writes X

VMLOAD Load State from VMCB X “VMSAVE and VMLOAD
Instructions” on page 472

VMMCALL Call VMM X “VMMCALL Instruction” on
page 478

VMRUN Run Virtual Machine X “VMRUN Instruction” on page 449

VMSAVE Save State to VMCB X “VMSAVE and VMLOAD
Instructions” on page 472

WBINVD Writeback and Invalidate Caches X “Cache Management” on
page 159

WRFSBASE Write FS Base Address X “RDFSBASE, RDGSBASE,
WRFSBASE, and WRGSBASE
Instructions” on page 157WRGSBASE Write GS Base Address X

WRMSR Write Model-Specific Register X “RDMSR and WRMSR
Instructions” on page 156

Table 6-1. System Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

152 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

• The PUSHF and POPF instructions set and clear certain rFLAGS bits depending on the processor
operating mode and privilege level. These dependencies are described in “POPF and PUSHF
Instructions” on page 156.

• The MOV, PUSH, and POP instructions can be used to load and store segment registers, as
described in “MOV, POP, and PUSH Instructions” on page 157.

6.1 Fast System Call and Return
Operating systems can use both paging and segmentation to implement protected memory models.
Segment descriptors provide the necessary memory protection and privilege checking for segment
accesses. By setting segment-descriptor fields appropriately, operating systems can enforce access
restrictions as needed.

A disadvantage of segment-based protection and privilege checking is the overhead associated with
loading a new segment selector (and its corresponding descriptor) into a segment register. Even when
using the flat-memory model, this overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are reloaded with different segment descriptors.

To initiate a call to the operating system, an application transfers control to the operating system
through a gate descriptor (call, interrupt, trap, or task gate). In the past, control was transferred using
either a far CALL instruction or a software interrupt. Transferring control through one of these gates is
slowed by the segmentation-related overhead, as is the later return using a far RET or IRET
instruction. The following checks are performed when control is transferred in this manner:
• Selectors, gate descriptors, and segment descriptors are in the proper form.
• Descriptors lie within the bounds of the descriptor tables.
• Gate descriptors reference the appropriate segment descriptors.
• The caller, gate, and target privileges all allow the control transfer to take place.
• The stack created by the call has sufficient properties to allow the transfer to take place.

In addition to these call-gate checks, other checks are made involving the task-state segment when a
task switch occurs.

6.1.1 SYSCALL and SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SYSRET are low-latency system call and
return instructions. These instructions assume the operating system implements a flat-memory model,
which greatly simplifies calls to and returns from the operating system. This simplification comes
from eliminating unneeded checks, and by loading pre-determined values into the CS and SS segment
registers (both visible and hidden portions). As a result, SYSCALL and SYSRET can take fewer than
one-fourth the number of internal clock cycles to complete than the legacy CALL and RET
instructions. SYSCALL and SYSRET are particularly well-suited for use in 64-bit mode, which
requires implementation of a paged, flat-memory model.

System-Management Instructions 153

24593—Rev. 3.30—September 2018 AMD64 Technology

SYSCALL and SYSRET require that the code-segment base, limit, and attributes (except for DPL) are
consistent for all application and system processes. Only the DPL is allowed to vary. The processor
assumes (but does not check) that the SYSCALL target CS segment descriptor entry has DPL=0 and
the SYSRET target CS segment descriptor entry has DPL=3.

For details on the SYSCALL and SYSRET instructions, see “System Instruction Reference” in
Volume 3.

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR registers are model-specific
registers (MSRs) used to specify the target address of a SYSCALL instruction as well as the CS and
SS selectors of the called and returned procedures. The SFMASK register is used in long mode to
specify how rFLAGS is handled by these instructions. Figure 6-1 shows the STAR, LSTAR, CSTAR,
and SFMASK register formats.

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

• STAR—The STAR register has the following fields (unless otherwise noted, all bits are
read/write):
- SYSRET CS and SS Selectors—Bits 63:48. This field is used to specify both the CS and SS

selectors loaded into CS and SS during SYSRET. If SYSRET is returning to 32-bit mode
(either legacy or compatibility), this field is copied directly into the CS selector field. If
SYSRET is returning to 64-bit mode, the CS selector is set to this field + 16. SS.Sel is set to
this field + 8, regardless of the target mode. Because SYSRET always returns to CPL 3, the
RPL bits 49:48 should be initialized to 11b.

- SYSCALL CS and SS Selectors—Bits 47:32. This field is used to specify both the CS and SS
selectors loaded into CS and SS during SYSCALL. This field is copied directly into CS.Sel.
SS.Sel is set to this field + 8. Because SYSCALL always switches to CPL 0, the RPL bits
33:32 should be initialized to 00b.

- 32-bit SYSCALL Target EIP—Bits 31:0. This is the target EIP of the called procedure.
The legacy STAR register is not expanded in long mode to provide a 64-bit target RIP address.
Instead, long mode provides two new STAR registers—long STAR (LSTAR) and compatibility
STAR (CSTAR)—that hold a 64-bit target RIP.

63 48 47 32 31 0

STAR C000_0081h SYSRET CS and SS SYSCALL CS and SS 32-bit SYSCALL Target EIP

LSTAR C000_0082h Target RIP for 64-Bit-Mode Calling Software

CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software

SFMASK C000_0084h Reserved, RAZ SYSCALL Flag Mask

154 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

• LSTAR and CSTAR—The LSTAR register holds the target RIP of the called procedure in long
mode when the calling software is in 64-bit mode. The CSTAR register holds the target RIP of the
called procedure in long mode when the calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR and CSTAR registers. If the RIP written
to either of the MSRs is not in canonical form, a #GP fault is generated on the WRMSR
instruction.

• SFMASK—The SFMASK register is used to specify which RFLAGS bits are cleared during a
SYSCALL. In long mode, SFMASK is used to specify which RFLAGS bits are cleared when
SYSCALL is executed. If a bit in SFMASK is set to 1, the corresponding bit in RFLAGS is cleared
to 0. If a bit in SFMASK is cleared to 0, the corresponding RFLAGS bit is not modified.

6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET, SYSENTER and
SYSEXIT are low-latency system call and return instructions designed for use by system and
application software implementing a flat-memory model. However, these instructions are illegal in
long mode and result in an undefined opcode exception (#UD) if software attempts to use them.
Software should use the SYSCALL and SYSRET instructions when running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specific registers (MSRs) are used to specify the
target address and stack pointers for the SYSENTER instruction as well as the CS and SS selectors of
the called and returned procedures. The register fields are:
• SYSENTER Target CS—Holds the CS selector of the called procedure.
• SYSENTER Target ESP—Holds the called-procedure stack pointer. The SS selector is updated

automatically to point to the next descriptor entry after the SYSENTER Target CS, and ESP is the
offset into that stack segment.

• SYSENTER Target EIP—Holds the offset into the CS of the called procedure.

Figure 6-2 shows the register formats and their corresponding MSR IDs.

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

63 32 31 16 15 0

SYSENTER_CS 174h SYSENTER Target CS

SYSENTER_ESP 175h SYSENTER Target ESP

SYSENTER_EIP 176h SYSENTER Target EIP

System-Management Instructions 155

24593—Rev. 3.30—September 2018 AMD64 Technology

6.1.3 SWAPGS Instruction

The SWAPGS instruction provides a fast method for system software to load a pointer to system data
structures. SWAPGS can be used upon entering system-software routines as a result of a SYSCALL
instruction or as a result of an interrupt or exception. Before returning to application software,
SWAPGS can restore an application data-structure pointer that was replaced by the system data-
structure pointer.

SWAPGS exchanges the base-address value located in the KernelGSbase model-specific register
(MSR address C000_0102h) with the base-address value located in the hidden portion of the GS
selector register (GS.base). This exchange allows the system-kernel software to quickly access kernel
data structures by using the GS segment-override prefix during memory references.

The need for SwapGS arises from the requirement that, upon entry to the OS kernel, the kernel needs
to obtain a 64-bit pointer to its essential data structures. When using SYSCALL to implement system
calls, no kernel stack exists at the OS entry point. Neither is there a straightforward method to obtain a
pointer to kernel structures, from which the kernel stack pointer could be read. Thus, the kernel cannot
save GPRs or reference memory. SwapGS does not require any GPR or memory operands, so no
registers need to be saved before using it. Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SwapGS can be used to quickly get a pointer to the
kernel data structures.

See “FS and GS Registers in 64-Bit Mode” on page 72 for more information on using the GS.base
register in 64-bit mode.

6.2 System Status and Control
System-status and system-control instructions are used to determine the features supported by a
processor, gather information about the current execution state, and control the processor operating
modes.

6.2.1 Processor Feature Identification (CPUID)

CPUID Instruction. The CPUID instruction provides complete information about the processor
implementation and its capabilities. Software operating at any privilege level can execute the CPUID
instruction to collect this information. System software normally uses the CPUID instruction to
determine which optional features are available so the system can be configured appropriately. See
Section 3.3, “Processor Feature Identification,” on page 63.

6.2.2 Accessing Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to copy data between the control
registers and the general-purpose registers. These instructions are privileged and cause a general-
protection exception (#GP) if non-privileged software attempts to execute them.

156 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

LMSW and SMSW Instructions. The machine status word is located in CR0 register bits 15:0. The
load machine status word (LMSW) instruction writes only the least-significant four status-word bits
(CR0[3:0]). All remaining status-word bits (CR0[15:4]) are left unmodified by the instruction. The
instruction is privileged and causes a #GP to occur if non-privileged software attempts to execute it.

The store machine status word (SMSW) instruction stores all 16 status-word bits (CR0[15:0]) into the
target GPR or memory location. The instruction is not privileged and can be executed by all software.

CLTS Instruction. The clear task-switched bit instruction (CLTS) clears CR0.TS to 0. The CR0.TS
bit is set to 1 by the processor every time a task switch takes place. The bit is useful to system software
in determining when the x87 and multimedia register state should be saved or restored. See “Task
Switched (TS) Bit” on page 44 for more information on using CR0.TS to manage x87-instruction
state. The CLTS instruction is privileged and causes a #GP to occur if non-privileged software
attempts to execute it.

6.2.3 Accessing the RFLAGS Register

The RFLAGS register contains both application and system bits. This section describes the
instructions used to read and write system bits. Descriptions of instruction effects on application flags
can be found in “Flags Register” in Volume 1 and “Instruction Effects on rFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push rFLAGS instructions are used for moving data
between the rFLAGS register and the stack. They are not system-management instructions, but their
behavior is mode-dependent.

CLI and STI Instructions. The clear interrupt (CLI) and set interrupt (STI) instructions modify only
the RFLAGS.IF bit or RFLAGS.VIF bit. Clearing RFLAGS.IF to 0 causes the processor to ignore
maskable interrupts. Setting RFLAGS.IF to 1 causes the processor to allow maskable interrupts.

See “Virtual Interrupts” on page 255 for more information on the operation of these instructions when
virtual-8086 mode extensions are enabled (CR4.VME=1).

6.2.4 Accessing Debug Registers

The MOV DRn instructions are used to copy data between the debug registers and the general-purpose
registers. These instructions are privileged and cause a general-protection exception (#GP) if non-
privileged software attempts to execute them. See “Debug Registers” on page 350 for a detailed
description of the debug registers.

6.2.5 Accessing Model-Specific Registers

RDMSR and WRMSR Instructions. The read/write model-specific register instructions (RDMSR
and WRMSR) can be used by privileged software to access the 64-bit MSRs. See “Model-Specific
Registers (MSRs)” on page 58 for details about the MSRs.

RDPMC Instruction. The read performance-monitoring counter instruction, RDPMC, is used to read
the model-specific performance-monitoring counter registers.

System-Management Instructions 157

24593—Rev. 3.30—September 2018 AMD64 Technology

RDTSC Instruction. The read time-stamp counter instruction, RDTSC, is used to read the model-
specific time-stamp counter (TSC) register.

RDTSCP Instruction. The read time-stamp counter and processor ID instruction, RDTSCP, is used
to read the model-specific time-stamp counter (TSC) register. as well as the low 32 bits of the
TSC_AUX register (MSR C000_0103h).

6.3 Segment Register and Descriptor Register Access
The AMD64 architecture supports the legacy instructions that load and store segment registers and
descriptor registers. In some cases the instruction capabilities are expanded to support long mode.

6.3.1 Accessing Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions can be used to load a selector
into a segment register from a general-purpose register or memory (MOV) or from the stack (POP).
Any segment register, except the CS register, can be loaded with the MOV and POP instructions. The
CS register must be loaded with a far-transfer instruction.

All segment register selectors can be stored in a general-purpose register or memory using the MOV
instruction or pushed onto the stack using the PUSH instruction.

When a selector is loaded into a segment register, the processor automatically loads the corresponding
descriptor-table entry into the hidden portion of the selector register. The hidden portion contains the
base address, limit, and segment attributes.

Segment-load and segment-store instructions work normally in 64-bit mode. The appropriate entry is
read from the system descriptor table (GDT or LDT) and is loaded into the hidden portion of the
segment descriptor register. However, the contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS segment-register base fields—see “FS and
GS Registers in 64-Bit Mode” on page 72 for more information.

The ability to use segment-load instructions allows a 64-bit operating system to set up segment
registers for a compatibility-mode application before switching to compatibility mode.

6.3.2 Accessing Segment Register Hidden State

WRMSR and RDMSR Instructions. The base address field of the hidden state of the FS and GS
registers are mapped to MSRs and may be read and written by privileged software when running in 64-
bit mode.

RDFSBASE, RDGSBASE, WRFSBASE, and WRGSBASE Instructions. When supported and
enabled, these instructions allow software running at any privilege level to read and write the base
address field of the hidden state of the FS and GS segment registers. These instructions are only
defined in 64-bit mode.

158 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

6.3.3 Accessing Descriptor-Table Registers

LGDT and LIDT Instructions. The load GDTR (LGDT) and load IDTR (LIDT) instructions load a
pseudo-descriptor from memory into the GDTR or IDTR registers, respectively.

LLDT and LTR Instructions. The load LDTR (LLDT) and load TR (LTR) instructions load a system-
segment descriptor from the GDT into the LDTR and TR segment-descriptor registers (hidden
portion), respectively.

SGDT and SIDT Instructions. The store GDTR (SGDT) and store IDTR (SIDT) instructions reverse
the operation of the LGDT and LIDT instructions. SGDT and SIDT store a pseudo-descriptor from the
GDTR or IDTR register into memory.

SLDT and STR Instructions. In all modes, the store LDTR (SLDT) and store TR (STR) instructions
store the LDT or task selector from the visible portion of the LDTR or TR register into a general-
purpose register or memory, respectively. The hidden portion of the LDTR or TR register is not stored.

6.4 Protection Checking
Several instructions are provided to allow software to determine the outcome of a protection check
before performing a memory access that could result in a protection violation. By performing the
checks before a memory access, software can avoid violations that result in a general-protection
exception (#GP).

6.4.1 Checking Access Rights

LAR Instruction. The load access-rights (LAR) instruction can be used to determine if access to a
segment is allowed, based on privilege checks and type checks. The LAR instruction uses a segment-
selector in the source operand to reference a descriptor in the GDT or LDT. LAR performs a set of
access-rights checks and, if successful, loads the segment-descriptor access rights into the destination
register. Software can further examine the access-rights bits to determine if access into the segment is
allowed.

6.4.2 Checking Segment Limits

LSL Instruction. The load segment-limit (LSL) instruction uses a segment-selector in the source
operand to reference a descriptor in the GDT or LDT. LSL performs a set of preliminary access-rights
checks and, if successful, loads the segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer offsets to prevent segment limit
violations.

6.4.3 Checking Read/Write Rights

VERR and VERW Instructions. The verify read-rights (VERR) and verify write-rights (VERW) can
be used to determine if a target code or data segment (not a system segment) can be read or written
from the current privilege level (CPL). The source operand for these instructions is a pointer to the

System-Management Instructions 159

24593—Rev. 3.30—September 2018 AMD64 Technology

segment selector to be tested. If the tested segment (code or data) is readable from the current CPL, the
VERR instruction sets RFLAGS.ZF to 1; otherwise, it is cleared to zero. Likewise, if the tested data
segment is writable, the VERW instruction sets the RFLAGS.ZF to 1. A code segment cannot be tested
for writability.

6.4.4 Adjusting Access Rights

ARPL Instruction. The adjust RPL-field (ARPL) instruction can be used by system software to
prevent access into privileged-data segments by lower-privileged software. This can happen if an
application passes a selector to system software and the selector RPL is less than (has greater privilege
than) the calling-application CPL. To prevent this surrogate access, system software executes ARPL
with the following operands:
• The destination operand is the data-segment selector passed to system software by the application.
• The source operand is the application code-segment selector (available on the system-software

stack as a result of the CALL into system software by the application).

ARPL is not supported in 64-bit mode.

6.5 Processor Halt
The processor halt instruction (HLT) halts instruction execution, leaving the processor in the halt state.
No registers or machine state are modified as a result of executing the HLT instruction. The processor
remains in the halt state until one of the following occurs:
• A non-maskable interrupt (NMI).
• An enabled, maskable interrupt (INTR).
• Processor reset (RESET).
• Processor initialization (INIT).
• System-management interrupt (SMI).

6.6 Cache and TLB Management
Cache-management instructions are used by system software to maintain coherency within the
memory hierarchy. Memory coherency and caches are discussed in Chapter 7, “Memory System.”
Similarly, TLB-management instructions are used to maintain coherency between page translations
cached in the TLB and the translation tables maintained by system software in memory. See
“Translation-Lookaside Buffer (TLB)” on page 141 for more information.

6.6.1 Cache Management

WBINVD Instruction. The writeback and invalidate (WBINVD) instruction is used to write all
modified cache lines to memory so that memory contains the most recent copy of data. After the writes

160 System-Management Instructions

AMD64 Technology 24593—Rev. 3.30—September 2018

are complete, the instruction invalidates all cache lines. This instruction operates on all caches in the
memory hierarchy, including caches that are external to the processor.

INVD Instruction. The invalidate (INVD) instruction is used to invalidate all cache lines in all caches
in the memory hierarchy. Unlike the WBINVD instruction, no modified cache lines are written to
memory. The INVD instruction should only be used in situations where memory coherency is not
required.

6.6.2 TLB Invalidation

INVLPG Instruction. The invalidate TLB entry (INVLPG) instruction can be used to invalidate
specific entries within the TLB. The source operand is a virtual-memory address that specifies the
TLB entry to be invalidated. Invalidating a TLB entry does not remove the associated page-table entry
from the data cache. See “Translation-Lookaside Buffer (TLB)” on page 141 for more information.

Memory System 161

24593—Rev. 3.30—September 2018 AMD64 Technology

7 Memory System

This chapter describes:
• Cache coherency mechanisms
• Cache control mechanisms
• Memory typing
• Memory mapped I/O
• Memory ordering rules
• Serializing instructions

Figure 7-1 on page 162 shows a conceptual picture of a processor and memory system, and how data
and instructions flow between the various components. This diagram is not intended to represent a
specific microarchitectural implementation but instead is used to illustrate the major memory-system
components covered by this chapter.

162 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-1. Processor and Memory System

The memory-system components described in this chapter are shown as unshaded boxes in Figure 7-1.
Those items are summarized in the following paragraphs.

Main memory is external to the processor chip and is the memory-hierarchy level farthest from the
processor execution units.

Caches are the memory-hierarchy levels closest to the processor execution units. They are much
smaller and much faster than main memory, and can be either internal or external to the processor chip.
Caches contain copies of the most frequently used instructions and data. By allowing fast access to
frequently used data, software can run much faster than if it had to access that data from main memory.
Figure 7-1 shows three caches, all internal to the processor:

513-211.eps

Write-Combining
BuffersL1

Instruction Cache

Write Buffers

L2 Cache

L1
Data Cache

Main Memory

System Bus Interface

Load/Store Unit

Execution Units
Processor Chip

Memory System 163

24593—Rev. 3.30—September 2018 AMD64 Technology

• L1 Data Cache—The L1 (level-1) data cache holds the data most recently read or written by the
software running on the processor.

• L1 Instruction Cache—The L1 instruction cache is similar to the L1 data cache except that it holds
only the instructions executed most frequently. In some processor implementations, the L1
instruction cache can be combined with the L1 data cache to form a unified L1 cache.

• L2 Cache—The L2 (level-2) cache is usually several times larger than the L1 caches, but it is also
slower. It is common for L2 caches to be implemented as a unified cache containing both
instructions and data. Recently used instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive, meaning it does not cache information
contained in the L1 cache. Conversely, inclusive L2 caches contain a copy of the L1-cached
information.

Memory-read operations from cacheable memory first check the cache to see if the requested
information is available. A read hit occurs if the information is available in the cache, and a read miss
occurs if the information is not available. Likewise, a write hit occurs if the memory write can be
stored in the cache, and a write miss occurs if it cannot be stored in the cache.

Caches are divided into fixed-size blocks called cache lines. The cache allocates lines to correspond to
regions in memory of the same size as the cache line, aligned on an address boundary equal to the
cache-line size. For example, in a cache with 32-byte lines, the cache lines are aligned on 32-byte
boundaries and byte addresses 0007h and 001Eh are both located in the same cache line. The size of a
cache line is implementation dependent. Most implementations have either 32-byte or 64-byte cache
lines. The implemented cache line size is reported by CPUID Fn8000_0005 and Fn8000_0006 for the
various caches, as described in Appendix E of Volume 3.

The process of loading data into a cache is a cache-line fill. Even if only a single byte is requested, all
bytes in a cache line are loaded from memory. Typically, a cache-line fill must remove (evict) an
existing cache line to make room for the new line loaded from memory. This process is called cache-
line replacement. If the existing cache line was modified before the replacement, the processor
performs a cache-line writeback to main memory when it performs the cache-line fill.

Cache-line writebacks help maintain coherency between the caches and main memory. Internally, the
processor can also maintain cache coherency by internally probing (checking) the other caches and
write buffers for a more recent version of the requested data. External devices can also check processor
caches for more recent versions of data by externally probing the processor. Throughout this
document, the term probe is used to refer to external probes, while internal probes are always qualified
with the word internal.

Write buffers temporarily hold data writes when main memory or the caches are busy with other
memory accesses. The existence of write buffers is implementation dependent.

Implementations of the architecture can use write-combining buffers if the order and size of non-
cacheable writes to main memory is not important to the operation of software. These buffers can
combine multiple, individual writes to main memory and transfer the data in fewer bus transactions.

164 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

7.1 Single-Processor Memory Access Ordering
The flexibility with which memory accesses can be ordered is closely related to the flexibility in which
a processor implementation can execute and retire instructions. Instruction execution creates results
and status and determines whether or not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order, to software-visible resources such as
memory, caches, write-combining buffers, and registers, or it causes an exception to occur if
instruction execution created one.

Implementations of the AMD64 architecture retire instructions in program order, but implementations
can execute instructions in any order, subject only to data dependencies. Implementations can also
speculatively execute instructions—executing instructions before knowing they are needed. Internally,
implementations manage data reads and writes so that instructions complete in order. However,
because implementations can execute instructions out of order and speculatively, the sequence of
memory accesses performed by the hardware can appear to be out of program order. The following
sections describe the rules governing memory accesses to which processor implementations adhere.
These rules may be further restricted, depending on the memory type being accessed. Further, these
rules govern single processor operation; see “Multiprocessor Memory Access Ordering” on page 166
for multiprocessor ordering rules.

7.1.1 Read Ordering

Generally, reads do not affect program order because they do not affect the state of software-visible
resources other than register contents. However, some system devices might be sensitive to reads. In
such a situation software can map a read-sensitive device to a memory type that enforces strong read-
ordering, or use read/write barrier instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read ordering:
• Out-of-order reads are allowed to the extent that they can be performed transparently to software,

such that the appearance of in-order execution is maintained. Out-of-order reads can occur as a
result of out-of-order instruction execution or speculative execution. The processor can read
memory and perform cache refills out-of-order to allow out-of-order execution to proceed.

• Speculative reads are allowed. A speculative read occurs when the processor begins executing a
memory-read instruction before it knows the instruction will actually complete. For example, the
processor can predict a branch will occur and begin executing instructions following the predicted
branch before it knows whether the prediction is valid. When one of the speculative instructions
reads data from memory, the read itself is speculative. Cache refills may also be performed
speculatively.

• Reads can be reordered ahead of writes. Reads are generally given a higher priority by the
processor than writes because instruction execution stalls if the read data required by an instruction
is not immediately available. Allowing reads ahead of writes usually maximizes software
performance.

• A read cannot be reordered ahead of a prior write if the read is from the same location as the prior
write. In this case, the read instruction stalls until the write instruction completes execution. The

Memory System 165

24593—Rev. 3.30—September 2018 AMD64 Technology

read instruction requires the result of the write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to the read instruction before it is
actually written to memory.

• Instruction fetching constitutes a parallel, asynchronous stream of reads that is independent from
and unordered with respect to the read accesses performed by loads in that instruction stream.

7.1.2 Write Ordering

Writes affect program order because they affect the state of software-visible resources. The following
rules govern write ordering:
• Generally, out-of-order writes are not allowed. Write instructions executed out of order cannot

commit (write) their result to memory until all previous instructions have completed in program
order. The processor can, however, hold the result of an out-of-order write instruction in a private
buffer (not visible to software) until that result can be committed to memory.

• It is possible for writes to write-combining memory types to appear to complete out of order,
relative to writes into other memory types. See “Memory Types” on page 172 and “Write
Combining” on page 178 for additional information.

• Speculative writes are not allowed. As with out-of-order writes, speculative write instructions
cannot commit their result to memory until all previous instructions have completed in program
order. Processors can hold the result in a private buffer (not visible to software) until the result can
be committed.

• Write buffering is allowed. When a write instruction completes and commits its result, that result
can be buffered until it is actually written to system memory in program order. Although the write
buffer itself is not directly accessible by software, the results in the buffer are accessible by
subsequent memory accesses to the locations that are buffered, including reads for which only a
subset of bytes being accessed are in the buffer. For example, a doubleword read that overlaps a
single modified byte in the write buffer can return the buffered value for that byte before that write
has been committed to memory.
In general, any read from cacheable memory returns the net result of all prior globally and locally
visible writes to those bytes, as performed in program order. A given implementation may provide
bytes from the write buffer to satisfy this, or may stall the read until any overlapping buffered
writes have been committed to memory. For cacheable memory types, the write buffer can be read
out-of-order and speculatively, just like memory.

• Write combining is allowed. In some situations software can relax the write-ordering rules through
the use of a Write Combining memory type or non-temporal store instructions, and allow several
writes to be combined into fewer writes to memory. When write-combining is used, it is possible
for writes to other memory types to proceed ahead of (out-of-order) memory-combining writes,
unless the writes are to the same address. Write-combining should be used only when the order of
writes does not affect program order (for example, writes to a graphics frame buffer).

166 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

7.1.3 Read/Write Barriers

When the order of memory accesses must be strictly enforced, software can use read/write barrier
instructions to force reads and writes to proceed in program order. Read/write barrier instructions force
all prior reads or writes to complete before subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated read, write, and read/write barrier
instructions (respectively). Serializing instructions, I/O instructions, and locked instructions
(including the implicitly locked XCHG instruction) can also be used as read/write barriers. Barrier
instructions are useful for controlling ordering between differing memory types as well as within one
memory type; see Section 7.3.1, “Special Coherency Considerations,” on page 171 for details.

Table 7-1 on page 174 summarizes the memory-access ordering possible for each memory type
supported by the AMD64 architecture.

7.2 Multiprocessor Memory Access Ordering
The term memory ordering refers to the sequence in which memory accesses are performed by the
memory system, as observed by all processors or programs.

To improve performance of applications, AMD64 processors can speculatively execute instructions
out of program order and temporarily hold out-of-order results. However, certain rules are followed
with regard to normal cacheable accesses on naturally aligned boundaries to WB memory.

In the examples below, all memory values are initialized to zero.

From the point of view of a program, in ascending order of priority:
• All loads, stores and I/O operations from a single processor appear to occur in program order to the

code running on that processor and all instructions appear to execute in program order.
• Successive stores from a single processor are committed to system memory and visible to other

processors in program order. A store by a processor cannot be committed to memory before a read
appearing earlier in the program has captured its targeted data from memory. In other words, stores
from a processor cannot be reordered to occur prior to a load preceding it in program order.
In this context:
- Loads do not pass previous loads (loads are not reordered). Stores do not pass previous stores

(stores are not reordered)

Load A cannot read 0 when Load B reads 1. (This rule may be violated in the case of loads as
part of a string operation, in which one iteration of the string reads 0 for Load A while another
iteration reads 1 for Load B.)

- Stores do not pass loads

Processor 0 Processor 1
Store A ← 1 Load B
Store B ← 1 Load A

Memory System 167

24593—Rev. 3.30—September 2018 AMD64 Technology

Load A and Load B cannot both read 1.
• Stores from a processor appear to be committed to the memory system in program order; however,

stores can be delayed arbitrarily by store buffering while the processor continues operation.
Therefore, stores from a processor may not appear to be sequentially consistent.

Both Load A and Load B may read 1. Also, due to possible write combining one or both
processors may not actually store a 1 at the designated location.

• Non-overlapping Loads may pass stores.

All combinations of values (00, 01, 10, and 11) may be observed by Processors 0 and 1.
- Where sequential consistency is needed (for example in Dekker’s algorithm for mutual

exclusion), an MFENCE instruction should be used between the store and the subsequent load,
or a locked access, such as XCHG, should be used for the store.

Load A and Load B cannot both read 0.
- Loads that partially overlap prior stores may return the modified part of the load operand from

the store buffer, combining globally visible bytes with bytes that are only locally visible. To
ensure that such loads return only a globally visible value, an MFENCE or locked access must
be used between the store and the dependent load, or the store or load must be performed with
a locked operation such as XCHG.

- Stores to different locations in memory observed from two (or more) other processors will
appear in the same order to all observers. Behavior such as that shown in this code example,

Processor 0 Processor 1
Load A Load B

Store B ← 1 Store A ← 1

Processor 0 Processor 1
Store A ← 1 Store B ← 1

… …
Store A ← 2 Store B ← 2

… …
Load B Load A

Processor 0 Processor 1
Store A ← 1 Store B ← 1

Load B Load A

Processor 0 Processor 1
Store A ← 1 Store B ← 1
MFENCE MFENCE

Load B Load A

168 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

in which processor X sees store A from processor 0 before store B from processor 1, while
processor Y sees store B from processor 1 before store A from processor 0, is not allowed.

• Dependent stores between different processors appear to occur in program order, as shown in the
code example below.

If processor 1 reads a value from A (written by processor 0) before carrying out a store to B, and if
processor 2 reads the updated value from B, a subsequent read of A must also be the updated value.

• The local visibility (within a processor) for a memory operation may differ from the global
visibility (from another processor). Using a data bypass, a local load can read the result of a local
store in a store buffer, before the store becomes globally visible. Program order is still maintained
when using such bypasses.

Load A in processor 0 can read 1 using the data bypass, while Load A in processor 1 can read 0.
Similarly, Load B in processor 1 can read 1 while Load B in processor 0 can read 0. Therefore, the
result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 may occur. There are no constraints on the relative order of
when the Store A of processor 0 is visible to processor 1 relative to when the Store B of processor
1 is visible to processor 0.
If a very strong memory ordering model is required that does not allow local store-load bypasses,
an MFENCE instruction or a synchronizing instruction such as XCHG or a locked Read-modify-
write should be used between the store and the subsequent load. This enforces a memory ordering
stronger than total store ordering.

Processor 0 Processor 1 Processor X Processor Y
Store A ← 1 Store B ← 1

Load A (1) Load B (1)
Load B (0) Load A (0)

Processor 0 Processor 1 Processor 2
Store A ← 1

Load A (1)
Store B ← 1

Load B (1)
Load A (1)

Processor 0 Processor 1
Store A ← 1 Store B ← 1
Load r1 A Load r3 B
Load r2 B Load r4 A

Processor 0 Processor 1
Store A ← 1 Store B ← 1
MFENCE MFENCE

Memory System 169

24593—Rev. 3.30—September 2018 AMD64 Technology

In this example, the MFENCE instruction ensures that any buffered stores are globally visible
before the loads are allowed to execute, so the result r1 = 1, r2 = 0, r3 = 1 and r4 = 0 will not occur.

7.3 Memory Coherency and Protocol
Implementations that support caching support a cache-coherency protocol for maintaining coherency
between main memory and the caches. The cache-coherency protocol is also used to maintain
coherency between all processors in a multiprocessor system. The cache-coherency protocol
supported by the AMD64 architecture is the MOESI (modified, owned, exclusive, shared, invalid)
protocol. The states of the MOESI protocol are:
• Invalid—A cache line in the invalid state does not hold a valid copy of the data. Valid copies of the

data can be either in main memory or another processor cache.
• Exclusive—A cache line in the exclusive state holds the most recent, correct copy of the data. The

copy in main memory is also the most recent, correct copy of the data. No other processor holds a
copy of the data.

• Shared—A cache line in the shared state holds the most recent, correct copy of the data. Other
processors in the system may hold copies of the data in the shared state, as well. If no other
processor holds it in the owned state, then the copy in main memory is also the most recent.

• Modified—A cache line in the modified state holds the most recent, correct copy of the data. The
copy in main memory is stale (incorrect), and no other processor holds a copy.

• Owned—A cache line in the owned state holds the most recent, correct copy of the data. The
owned state is similar to the shared state in that other processors can hold a copy of the most recent,
correct data. Unlike the shared state, however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state—all other processors must hold the data in
the shared state.

Figure 7-2 on page 170 shows the general MOESI state transitions possible with various types of
memory accesses. This is a logical software view, not a hardware view, of how cache-line state
transitions. Instruction-execution activity and external-bus transactions can both be used to modify the
cache MOESI state in multiprocessing or multi-mastering systems.

Load r1 A Load r3 B
Load r2 B Load r4 A

Processor 0 Processor 1

170 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically other processors with their own
internal caches) need to acquire the most recent copy of data before caching it internally. That copy can
be in main memory or in the internal caches of other bus-mastering devices. When an external master
has a cache read-miss or write-miss, it probes the other mastering devices to determine whether the
most recent copy of data is held in any of their caches. If one of the other mastering devices holds the
most recent copy, it provides it to the requesting device. Otherwise, the most recent copy is provided
by main memory.

513-212.eps

Reset
INVD, WBINVD

Read Hit

Write Miss (WB memory)

Probe Write Hit

Probe R
ead

 Hit

Probe Write Hit

Read Miss, Exclusive

Probe Read Hit

W
rite Hit

Re
ad

 M
iss

, S
ha

re
d

Pr
ob

e
W

rit
e

Hi
t

Invalid Exclusive

Read Hit
Write Hit

Modified

Write Hit
Owned

Read Hit
Probe Read Hit

Shared

Read Hit
Probe Read Hit

Probe W
rite Hit

Write Hit

Memory System 171

24593—Rev. 3.30—September 2018 AMD64 Technology

There are two general types of bus-master probes:
• Read probes indicate the external master is requesting the data for read purposes.
• Write probes indicate the external master is requesting the data for the purpose of modifying it.

Referring back to Figure 7-2 on page 170, the state transitions involving probes are initiated by other
processors and external bus masters into the processor. Some read probes are initiated by devices that
intend to cache the data. Others, such as those initiated by I/O devices, do not intend to cache the data.
Some processor implementations do not change the data MOESI state if the read probe is initiated by a
device that does not intend to cache the data.

State transitions involving read misses and write misses can cause the processor to generate probes
into external bus masters and to read main memory.

Read hits do not cause a MOESI-state change. Write hits generally cause a MOESI-state change into
the modified state. If the cache line is already in the modified state, a write hit does not change its state.

The specific operation of external-bus signals and transactions and how they influence a cache MOESI
state are implementation dependent. For example, an implementation could convert a write miss to a
WB memory type into two separate MOESI-state changes. The first would be a read-miss placing the
cache line in the exclusive state. This would be followed by a write hit into the exclusive cache line,
changing the cache-line state to modified.

7.3.1 Special Coherency Considerations

In some cases, data can be modified in a manner that is impossible for the memory-coherency protocol
to handle due to the effects of instruction prefetching. In such situations software must use serializing
instructions and/or cache-invalidation instructions to guarantee subsequent data accesses are coherent.

An example of this type of a situation is a page-table update followed by accesses to the physical pages
referenced by the updated page tables. The following sequence of events shows what can happen when
software changes the translation of virtual-page A from physical-page M to physical-page N:
1. Software invalidates the TLB entry. The tables that translate virtual-page A to physical-page M

are now held only in main memory. They are not cached by the TLB.
2. Software changes the page-table entry for virtual-page A in main memory to point to physical-

page N rather than physical-page M.
3. Software accesses data in virtual-page A.

During Step 3, software expects the processor to access the data from physical-page N. However, it is
possible for the processor to prefetch the data from physical-page M before the page table for virtual-
page A is updated in Step 2. This is because the physical-memory references for the page tables are
different than the physical-memory references for the data. Because the physical-memory references
are different, the processor does not recognize them as requiring coherency checking and believes it is
safe to prefetch the data from virtual-page A, which is translated into a read from physical page M.
Similar behavior can occur when instructions are prefetched from beyond the page table update
instruction.

172 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

To prevent this problem, software must use an INVLPG or MOV CR3 instruction immediately after
the page-table update to ensure that subsequent instruction fetches and data accesses use the correct
virtual-page-to-physical-page translation. It is not necessary to perform a TLB invalidation operation
preceding the table update.

7.3.2 Access Atomicity

Cacheable, naturally-aligned single loads or stores of up to a quadword are atomic on any processor
model, as are misaligned loads or stores of less than a quadword that are contained entirely within a
naturally-aligned quadword. Misaligned load or store accesses typically incur a small latency penalty.
Model-specific relaxations of this quadword atomicity boundary, with respect to this latency penalty,
may be found in a given processor's Software Optimization Guide.

Misaligned accesses can be subject to interleaved accesses from other processors or cache-coherent
devices which can result in unintended behavior. Atomicity for misaligned accesses can be achieved
where necessary by using the XCHG instruction or any suitable LOCK-prefixed instruction. Note that
misaligned locked accesses may incur a significant performance penalty on various processor models.

7.4 Memory Types
Memory type is an attribute that can be associated with a specific region of virtual or physical memory.
Memory type designates certain caching and ordering behaviors for loads and stores to addresses in
that region. Most memory types are explicitly assigned, although some are inferred by the hardware
from current processor state and instruction context.

The AMD64 architecture defines the following memory types:
• Uncacheable (UC)—Reads from, and writes to, UC memory are not cacheable. Reads from UC

memory cannot be speculative. Write-combining to UC memory is not allowed. Reads from or
writes to UC memory cause the write buffers to be written to memory and be invalidated prior to
the access to UC memory.
The UC memory type is useful for memory-mapped I/O devices where strict ordering of reads and
writes is important. Note that this strong ordering is with respect to UC accesses only; reads to
memory types which support speculative operation may bypass non-conflicting UC accesses.

• Cache Disable (CD)—The CD memory type is a form of uncacheable memory type that is inferred
when the L1 caches are disabled but not invalidated, or for certain conflicting memory type
assignments from the Page Attribute Table (PAT) and Memory Type Range Register (MTRR)
mechanisms. The former case occurs when caches are disabled by setting CR0.CD to 1 without
invalidating the caches with either the INVD or WBINVD instruction for any reference to a region
designated as cacheable. The latter case occurs when a specific type has been assigned to a virtual
page via PAT, and a conflicting type has been assigned to the mapped physical page via an MTRR
(see “Combined Effect of MTRRs and PAT” on page 201 and “Combining Memory Types,
MTRRs” on page 498 for details).
For the L1 data cache and the L2 cache, reads from, and writes to, CD memory that hit the cache,
or any other caches in the system, cause the cache line(s) to be invalidated before accessing main

Memory System 173

24593—Rev. 3.30—September 2018 AMD64 Technology

memory. If a cache line is in the modified state, the line is written to main memory prior to being
invalidated. The access is allowed to proceed after any invalidations are complete.
For the L1 instruction cache, instruction fetches from CD memory that hit the cache read the
cached instructions rather than access main memory. Instruction fetches that miss the cache access
main memory and do not cause cache-line replacement. Writes to CD memory that hit in the
instruction cache cause the line to be invalidated.

• Write-Combining (WC)—Reads from, and writes to, WC memory are not cacheable. Reads from
WC memory can be speculative.
Writes to this memory type can be combined internally by the processor and written to memory as
a single write operation to reduce memory accesses. For example, four word writes to consecutive
addresses can be combined by the processor into a single quadword write, resulting in one memory
access instead of four.
The WC memory type is useful for graphics-display memory buffers where the order of writes is
not important.

• Write-Combining Plus (WC+)—WC+ is an uncacheable memory type, and combines writes in
write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to WC+
memory probe the caches on all processors (including the caches of the processor issuing the
request) to maintain coherency. This ensures that cacheable writes are observed by WC+ accesses.

• Write-Protect (WP)—Reads from WP memory are cacheable and allocate cache lines on a read
miss. Reads from WP memory can be speculative.
Writes to WP memory that hit in the cache do not update the cache. Instead, all writes update
memory (write to memory), and writes that hit in the cache invalidate the cache line. Write
buffering of WP memory is allowed.
The WP memory type is useful for shadowed-ROM memory where updates must be immediately
visible to all devices that read the shadow locations.

• Writethrough (WT)—Reads from WT memory are cacheable and allocate cache lines on a read
miss. Reads from WT memory can be speculative.
All writes to WT memory update main memory, and writes that hit in the cache update the cache
line (cache lines remain in the same state after a write that hits a cache line). Writes that miss the
cache do not allocate a cache line. Write buffering of WT memory is allowed.

• Writeback (WB)—Reads from WB memory are cacheable and allocate cache lines on a read miss.
Cache lines can be allocated in the shared, exclusive, or modified states. Reads from WB memory
can be speculative.
All writes that hit in the cache update the cache line and place the cache line in the modified state.
Writes that miss the cache allocate a new cache line and place the cache line in the modified state.
Writes to main memory only take place during writeback operations. Write buffering of WB
memory is allowed.
The WB memory type provides the highest-possible performance and is useful for most software
and data stored in system memory (DRAM).

174 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 7-1 shows the memory access ordering possible for each memory type supported by the AMD64
architecture. Table 7-3 on page 176 shows the ordering behavior of various operations on various
memory types in greater detail. Table 7-2 on page 174 shows the caching policy for the same memory
types.

7.4.1 Instruction Fetching from Uncacheable Memory

Instruction fetches from an uncacheable memory type (including those for the CD type which don't hit
in the instruction cache) may read a naturally-aligned block of memory no larger than an instruction
cache line that contains multiple instructions, and may or may not repeat reads of a given block in the
course of extracting instructions from it. In general, the exact sequence of read accesses is not
deterministic, regardless of instruction stream contents, aside from the following constraints:
• instruction fetching of branch targets from uncacheable memory will only be done non-

speculatively

Table 7-1. Memory Access by Memory Type

Memory Access
Allowed

Memory Type
UC/CD WC WP WT WB

Read
Out-of-Order no yes yes yes yes
Speculative no yes yes yes yes

Reorder Before Write no yes yes yes yes

Write

Out-of-Order no yes no no no
Speculative no no no no no

Buffering no yes yes yes yes
Combining1 no yes no yes yes

Note:
1. Write-combining buffers are separate from write (store) buffers.

Table 7-2. Caching Policy by Memory Type

Caching Policy
Memory Type

UC CD WC WP WT WB
Read Cacheable no no no yes yes yes
Write Cacheable no no no no yes yes

Read Allocate no no no yes yes yes
Write Allocate no no no no no yes

Write Hits Update Memory yes2 yes1 yes2 yes3 yes no
Note:

1. For the L1 data cache and the L2 cache, if an access hits the cache, the cache line is invalidated. If the cache line
is in the modified state, the line is written to main memory and then invalidated. For the L1 instruction cache, read
(instruction fetch) hits access the cache rather than main memory.

2. The data is not cached, so a cache write hit cannot occur. However, memory is updated.
3. Write hits update memory and invalidate the cache line.

Memory System 175

24593—Rev. 3.30—September 2018 AMD64 Technology

• sequential instruction fetching will not transition speculatively from a cacheable memory type to
an uncacheable memory type

• sequential instruction fetching will not speculatively cross more than one 4K page boundary

It is recommended that MMIO devices that have read side-effects be separated from memory that's
subject to uncacheable instruction fetches by at least one 4K page.

7.4.2 Memory Barrier Interaction with Memory Types

Memory types other than WB may allow weaker ordering in certain respects. When the ordering of
memory accesses to differing memory types must be strictly enforced, software can use the LFENCE,
MFENCE or SFENCE barrier instructions to force loads and stores to proceed in program order.
Table 7-3 on page 176 summarizes the cases where a memory barrier must be inserted between two
memory operations.

The table is read as follows: the ROW is the first memory operation in program order, followed by the
COLUMN, which is the second memory operation in program order. Each cell represents the ordered
combination of the two memory operations and the letters a, b, c, d, e, f, g, h, i, j, k, and l within the cell
represent the applicable memory ordering rule for that combination. These symbols are described in
the footnotes below the table. In the table and footnotes, the abbreviation nt stands for non-temporal
(load or store), io stands for input / output, lf for LFENCE, sf for SFENCE, and mf for MFENCE.

176 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 7-3. Memory Access Ordering Rules

a — A load (wp, wt, wb) may not pass a previous load (wp, wt, wb, wc, wc+, uc).
b — A load (wc, wc+) may pass a previous load (wp, wt, wb, wc, wc+). To ensure memory order, an

LFENCE instruction must be inserted between the two loads.
c — A store (wp, wt, wb, uc, wc, wc+, nt) may not pass a previous load (wp, wt, wb, uc, wc, wc+, nt).
d — All previous loads and stores complete to memory or I/O space before a memory access for an I/O,

locked or serializing instruction is issued.
e — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (wp, wt, wb, wc, wc+, nt).

To ensure memory order, an MFENCE instruction must be inserted between the store and the load.
f — A load or store (uc) does not pass a previous load or store (wp, wt, wb, uc, wc, wc+, nt).
g — A store (wp, wt, wb, uc) does not pass a previous store (wp, wt, wb, uc).
h — A store (wc, wc+, nt) may pass a previous store (wp, wt, wb) or non-conflicting store (wc, wc+, nt).

To ensure memory order, an SFENCE instruction must be inserted between these two stores. A store
(wc, wc+, nt) does not pass a previous conflicting store (wc, wc+, nt).

i — A load (wp, wt, wb, wc, wc+) may pass a previous non-conflicting store (uc). To ensure memory
order, an MFENCE instruction must be inserted between the store and the load.

j — A store (wp, wt, wb) may pass a previous store (wc, wc+, nt). To ensure memory order, an SFENCE
instruction must be inserted between these two stores.

k — All loads and stores associated with the I/O and locked instructions complete to memory (no buffered
stores) before a load or store from a subsequent instruction is issued.

Second Memory Operation

First Memory Operation

Lo
ad

 (w
p,

 w
t,

w
b)

Lo
ad

 (u
c)

Lo
ad

 (w
c,

 w
c+

)

St
or

e
(w

p,
 w

t,
w

b)

St
or

e
(u

c)

 S
to

re

(w
c,

 w
c+

, n
on

-te
m

po
ra

l)

Lo
ad

/S
to

re
 (i

o)

Lo
ck

 (a
to

m
ic

)

Se
ria

liz
e

in
st

ru
ct

io
ns

/
In

te
rru

pt
s/

Ex
ce

pt
io

ns

Load (wp, wt, wb) a f b (lf) c c c d d d
Load (uc) a f b (lf) c c c d d d
Load (wc, wc+) a f b (lf) c c c d d d
Store (wp, wt, wb) e (mf) f e (mf) g g h (sf) d d d
Store (uc) i f i g g h (sf) d d d
Store (wc, wc+, non-temporal) e (mf) f e (mf) j (sf) g, m h (sf) d d d
Load/Store (io) k k k k k l d, k d, k d, k
Lock (atomic) k k k k k k d, k d, k d, k
Serialize instruction/
Interrupts/Exceptions l l l l l l d, l d, l d, l

Memory System 177

24593—Rev. 3.30—September 2018 AMD64 Technology

l — All loads and stores complete to memory for the serializing instruction before the subsequent
instruction fetch is issued.

m — A store (uc) does not pass a previous store (wc, wc+).

7.5 Buffering and Combining Memory Writes
7.5.1 Write Buffering

Writes to memory (main memory and caches) can be stored internally by the processor in write buffers
(also known as store buffers) before actually writing the data into a memory location. System
performance can be improved by buffering writes, as shown in the following examples:
• When higher-priority memory transactions, such as reads, compete for memory access with writes,

writes can be delayed in favor of reads, which minimizes or eliminates an instruction-execution
stall due to a memory-operand read.

• When the memory is busy, buffering writes while the memory is busy removes the writes from the
instruction-execution pipeline, which frees instruction-execution resources.

The processor manages the write buffer so that it is transparent to software. Memory accesses check
the write buffer, and the processor completes writes into memory from the buffer in program order.
Also, the processor completely empties the write buffer by writing the contents to memory as a result
of performing any of the following operations:
• SFENCE Instruction—Executing a store-fence (SFENCE) instruction forces all memory writes

before the SFENCE (in program order) to be written into memory (or, for WB type, the cache)
before memory writes that follow the SFENCE instruction. The memory-fence (MFENCE)
instruction has a similar effect, but it forces the ordering of loads in addition to stores.

• Serializing Instructions—Executing a serializing instruction forces the processor to retire the
serializing instruction (complete both instruction execution and result writeback) before the next
instruction is fetched from memory.

• I/O instructions—Before completing an I/O instruction, all previous reads and writes must be
written to memory, and the I/O instruction must complete before completing subsequent reads or
writes. Writes to I/O-address space (OUT instruction) are never buffered.

• Locked Instructions—A locked instruction (an instruction executed using the LOCK prefix) or an
XCHG instruction (which is implicitly locked) must complete after all previous reads and writes
and before subsequent reads and writes. Locked writes are never buffered, although locked reads
and writes are cacheable.

• Interrupts and Exceptions—Interrupts and exceptions are serializing events that force the
processor to write all results from the write buffer to memory before fetching the first instruction
from the interrupt or exception service routine.

• UC Memory Reads—UC memory reads are not reordered ahead of writes.

178 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Write buffers can behave similarly to write-combining buffers because multiple writes may be
collected internally before transferring the data to caches or main memory. See the following section
for a description of write combining.

7.5.2 Write Combining

Write-combining memory uses a different buffering scheme than write buffering described above.
Writes to write-combining (WC) memory can be combined internally by the processor in a buffer for
more efficient transfer to main memory at a later time. For example, 16 doubleword writes to
consecutive memory addresses can be combined in the WC buffers and transferred to main memory as
a single burst operation rather than as individual memory writes.

The following instructions perform writes to WC memory:
• (V)MASKMOVDQU
• MASKMOVQ
• (V)MOVNTDQ
• MOVNTI
• (V)MOVNTPD
• (V)MOVNTPS
• MOVNTQ
• MOVNTSD
• MOVNTSS

WC memory is not cacheable. A WC buffer writes its contents only to main memory.

The size and number of WC buffers available is implementation dependent. The processor assigns an
address range to an empty WC buffer when a WC-memory write occurs. The size and alignment of this
address range is equal to the buffer size. All subsequent writes to WC memory that fall within this
address range can be stored by the processor in the WC-buffer entry until an event occurs that causes
the processor to write the WC buffer to main memory. After the WC buffer is written to main memory,
the processor can assign a new address range on a subsequent WC-memory write.

Writes to consecutive addresses in WC memory are not required for the processor to combine them.
The processor combines any WC memory write that falls within the active-address range for a buffer.
Multiple writes to the same address overwrite each other (in program order) until the WC buffer is
written to main memory.

It is possible for writes to proceed out of program order when WC memory is used. For example, a
write to cacheable memory that follows a write to WC memory can be written into the cache before the
WC buffer is written to main memory. For this reason, and the reasons listed in the previous paragraph,
software that is sensitive to the order of memory writes should avoid using WC memory.

WC buffers are written to main memory under the same conditions as the write buffers, namely when:
• Executing a store-fence (SFENCE) instruction.

Memory System 179

24593—Rev. 3.30—September 2018 AMD64 Technology

• Executing a serializing instruction.
• Executing an I/O instruction.

- Executing an MMIO access (load or store to UC memory type)
• Executing a locked instruction (an instruction executed using the LOCK prefix).
• Executing an XCHG instruction
• An interrupt or exception occurs.

WC buffers are also written to main memory when:
• A subsequent non-write-combining operation has a write address that matches the WC-buffer

active-address range.
• A write to WC memory falls outside the WC-buffer active-address range. The existing buffer

contents are written to main memory, and a new address range is established for the latest WC
write.

7.6 Memory Caches
The AMD64 architecture supports the use of internal and external caches. The size, organization,
coherency mechanism, and replacement algorithm for each cache is implementation dependent.
Generally, the existence of the caches is transparent to both application and system software. In some
cases, however, software can use cache-structure information to optimize memory accesses or manage
memory coherency. Such software can use the extended-feature functions of the CPUID instruction to
gather information on the caching subsystem supported by the processor. For more information, see
Section 3.3, “Processor Feature Identification,” on page 63.

7.6.1 Cache Organization and Operation

Although the detailed organization of a processor cache depends on the implementation, the general
constructs are similar. L1 caches—data and instruction, or unified—and L2 caches usually are
implemented as n-way set-associative caches. Figure 7-3 on page 180 shows a typical logical
organization of an n-way set-associative cache. The physical implementation of the cache can be quite
different.

180 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-3. Cache Organization Example

As shown in Figure 7-3, the cache is organized as an array of cache lines. Each cache line consists of
three parts: a cache-data line (a fixed-size copy of a memory block), a tag, and other information.
Rows of cache lines in the cache array are sets, and columns of cache lines are ways. In an n-way set-
associative cache, each set is a collection of n lines. For example, in a four-way set-associative cache,
each set is a collection of four cache lines, one from each way.

513-213.eps

Physical Address

Tag Field Index Field Offset Field

= = =

Tag Data Other

. . .

Set 1

Set 2

Set 3

Set 0

Set m-1

Tag Data Other Tag Data Other

. . .Way 1Way 0 Way n-1

Line Data 0,2 Line Data 1,2 Line Data n-1,2

MUX n:1

Hit

Miss MissMiss

Hit
Hit

. . .

Data

Hit Data

Cache

Memory System 181

24593—Rev. 3.30—September 2018 AMD64 Technology

The cache is accessed using the physical address of the data or instruction being referenced. To access
data within a cache line, the physical address is used to select the set, way, and byte from the cache.
This is accomplished by dividing the physical address into the following three fields:
• Index—The index field selects the cache set (row) to be examined for a hit. All cache lines within

the set (one from each way) are selected by the index field.
• Tag—The tag field is used to select a specific cache line from the cache set. The physical-address

tag field is compared with each cache-line tag in the set. If a match is found, a cache hit is
signalled, and the appropriate cache line is selected from the set. If a match is not found, a cache
miss is signalled.

• Offset—The offset field points to the first byte in the cache line corresponding to the memory
reference. The referenced data or instruction value is read from (or written to, in the case of
memory writes) the selected cache line starting at the location selected by the offset field.

In Figure 7-3 on page 180, the physical-address index field is shown selecting Set 2 from the cache.
The tag entry for each cache line in the set is compared with the physical-address tag field. The tag
entry for Way 1 matches the physical-address tag field, so the cache-line data for Set 2, Way 1 is
selected using the n:1 multiplexor. Finally, the physical-address offset field is used to point to the first
byte of the referenced data (or instruction) in the selected cache line.

Cache lines can contain other information in addition to the data and tags, as shown in Figure 7-3 on
page 180. MOESI state and the state bits associated with the cache-replacement algorithm are typical
pieces of information kept with the cache line. Instruction caches can also contain pre-decode or
branch-prediction information. The type of information stored with the cache line is implementation
dependent.

Self-Modifying Code. Software that stores into its own pending instruction stream with the intent of
then executing the modified instructions is classified as self-modifying code. To support self-
modifying code, AMD64 processors will flush any lines from the instruction cache that such stores hit,
and will additionally check whether an instruction being modified is already in decode or execution
behind the store instruction. If so, it will flush the pipeline and restart instruction fetch to acquire and
re-decode the updated instruction bytes. No special action is needed by software for such updates to
be immediately recognized. As with cache coherency, the check for instructions that are in flight is
performed using physical addresses to avoid aliasing issues that could arise with virtual (linear)
addresses.

When the modified bytes are in cacheable memory, the data cache may retain a copy of the modified
cache line in a shared state, and the instruction cache refill may be satisfied from any suitable place in
the memory hierarchy in a model-dependent manner that maintains cache coherency.

Cross-Modifying Code. Software that stores into the active instruction stream of another executing
thread with the intent that the other thread subsequently execute the modified instruction stream is
classified as cross-modifying code. There are two approaches to consider: asynchronous modification
and synchronous modification.

182 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Asynchronous modification. This is done with a write to the target instruction stream with no
particular coordination being done between the writing and receiving threads. The nature of the code
being executed by the target thread is such that it is insensitive to the exact timing of the update, for
example executing in a known loop until an update to a branch instruction's offset takes it down a new
path (or an update to an immediate operand, or opcode, or other instruction field). Such modifications
must be done via a single store to the target thread's instruction stream that is contained entirely within
a naturally-aligned quadword, and is subject to the constraints given here. A key aspect is that,
although the store is performed atomically, the affected quadword may be read more than once in the
process of extracting instruction bytes from it. This can result in the following scenarios resulting
from a single store:
1. An update to two successive instructions, A and B, to A' and B' may result in execution of an A-B'

sequence rather than A'-B'. However it will not result in an A'-B sequence since stores become
visible to instruction fetchers in program order, and instruction fetchers read memory sequentially
between taken branches.

2. A modification to one instruction A that changes it to two instructions A'-B will only result in
execution of A'-B.

3. A modification to two instructions A-B that combines them into one instruction A' may result in a
sequence of A-X, where X starts at the point in A' where B previously started.

Note that since stores to the instruction stream are observed by the instruction fetcher in program
order, one can do multiple modifications to an area of the target thread's code that is beyond reach of
the thread's current control flow, followed by a final asynchronous update that alters the control flow to
expose the modified code to fetching and execution.

If the desired action cannot be achieved within these constraints, a synchronous modification approach
must be used for reliable operation.

Synchronous modification. This entails a producer-consumer approach to the modification, where
the target thread waits on a signal from the modifying thread, such as changing the state of a shared
variable, before executing the modified code. The modifying thread writes to the target instruction
bytes in any desired manner, then writes the synchronizing variable to release the target thread. Upon
release, the target thread must then execute a serializing instruction such as CPUID or MFENCE (a
locked operation is not sufficient) before proceeding to the modified code to avoid executing a stale
view of the instructions which may have been speculatively fetched. Note that such speculative
fetching is a function of branch predictor operation which is completely beyond the control of
software.

See Volume 1, Chapter 3, “Semaphores,” for a discussion of instructions that are useful for
interprocessor synchronization.

7.6.2 Cache Control Mechanisms

The AMD64 architecture provides a number of mechanisms for controlling the cacheability of
memory. These are described in the following sections.

Memory System 183

24593—Rev. 3.30—September 2018 AMD64 Technology

Cache Disable. Bit 30 of the CR0 register is the cache-disable bit, CR0.CD. Caching is enabled
when CR0.CD is cleared to 0, and caching is disabled when CR0.CD is set to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid data (or instructions). If a read or write
hits the L1 data cache or the L2 cache when CR0.CD=1, the processor does the following:
1. Writes the cache line back if it is in the modified or owned state.
2. Invalidates the cache line.
3. Performs a non-cacheable main-memory access to read or write the data.

If an instruction fetch hits the L1 instruction cache when CR0.CD=1, some processor models may read
the cached instructions rather than access main memory. When CR0.CD=1, the exact behavior of L2
and L3 caches is model-dependent, and may vary for different types of memory accesses.

The processor also responds to cache probes when CR0.CD=1. Probes that hit the cache cause the
processor to perform Step 1. Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.

Writethrough Disable. Bit 29 of the CR0 register is the not writethrough disable bit, CR0.NW. In
early x86 processors, CR0.NW is used to control cache writethrough behavior, and the combination of
CR0.NW and CR0.CD determines the cache operating mode.

In early x86 processors, clearing CR0.NW to 0 enables writeback caching for main memory,
effectively disabling writethrough caching for main memory. When CR0.NW=0, software can disable
writeback caching for specific memory pages or regions by using other cache control mechanisms.
When software sets CR0.NW to 1, writeback caching is disabled for main memory, while
writethrough caching is enabled.

In implementations of the AMD64 architecture, CR0.NW is not used to qualify the cache operating
mode established by CR0.CD. Table 7-4 shows the effects of CR0.NW and CR0.CD on the AMD64
architecture cache-operating modes.

Page-Level Cache Disable. Bit 4 of all paging data-structure entries controls page-level cache
disable (PCD). When a data-structure-entry PCD bit is cleared to 0, the page table or physical page
pointed to by that entry is cacheable, as determined by the CR0.CD bit. When the PCD bit is set to 1,
the page table or physical page is not cacheable. The PCD bit in the paging data-structure base-register

Table 7-4. AMD64 Architecture Cache-Operating Modes
CR0.CD CR0.NW Cache Operating Mode

0 0 Cache enabled with a writeback-caching policy.
0 1 Invalid setting—causes a general-protection exception (#GP).
1 0

Cache disabled. See “Cache Disable” on page 183.
1 1

184 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

(bit 4 in CR3) controls the cacheability of the highest-level page table in the page-translation
hierarchy.

Page-Level Writethrough Enable. Bit 3 of all paging data-structure entries is the page-level
writethrough enable control (PWT). When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has a writeback caching policy. When the PWT bit is set
to 1, the page table or physical page has a writethrough caching policy. The PWT bit in the paging
data-structure base-register (bit 3 in CR3) controls the caching policy of the highest-level page table in
the page-translation hierarchy.

The corresponding PCD bit must be cleared to 0 (page caching enabled) for the PWT bit to have an
effect.

Memory Typing. Two mechanisms are provided for software to control access to and cacheability of
specific memory regions:
• The memory-type range registers (MTRRs) control cacheability based on physical addresses. See

“MTRRs” on page 189 for more information on the use of MTRRs.
• The page-attribute table (PAT) mechanism controls cacheability based on virtual addresses. PAT

extends the capabilities provided by the PCD and PWT page-level cache controls. See “Page-
Attribute Table Mechanism” on page 198 for more information on the use of the PAT mechanism.

System software can combine the use of both the MTRRs and PAT mechanisms to maximize control
over memory cacheability.

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs in
order for memory accesses to be cached.

Cache Control Precedence. The cache-control mechanisms are used to define the memory type and
cacheability of main memory and regions of main memory. Taken together, the most restrictive
memory type takes precedence in defining the caching policy of memory. The order of precedence is:
1. Uncacheable (UC)
2. Write-combining (WC)
3. Write-protected (WP)
4. Writethrough (WT)
5. Writeback (WB)

For example, assume a large memory region is designated a writethrough type using the MTRRs.
Individual pages within that region can have caching disabled by setting the appropriate page-table
PCD bits. However, no pages within that region can have a writeback caching policy, regardless of the
page-table PWT values.

Memory System 185

24593—Rev. 3.30—September 2018 AMD64 Technology

7.6.3 Cache and Memory Management Instructions

Data Prefetch. The prefetch instructions are used by software as a hint to the processor that the
referenced data is likely to be used in the near future. The processor can preload the cache line
containing the data in anticipation of its use. PREFETCH provides a hint that the data is to be read.
PREFETCHW provides a hint that the data is to be written. The processor can mark the line as
modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructions are provided for software to enforce memory ordering (serialization)
in weakly-ordered memory types. These instructions are:
• SFENCE (store fence)—forces all memory writes (stores) preceding the SFENCE (in program

order) to be written into memory before memory writes following the SFENCE.
• LFENCE (load fence)—forces all memory reads (loads) preceding the LFENCE (in program

order) to be read from memory before memory reads following the LFENCE.
• MFENCE (memory fence)—forces all memory accesses (reads and writes) preceding the

MFENCE (in program order) to be written into or read from memory before memory accesses
following the MFENCE.

Cache Line Flush. The CLFLUSH instruction (writeback, if modified, and invalidate) takes the byte
memory-address operand (a linear address), and checks to see if the address is cached. If the address is
cached, the entire cache line containing the address is invalidated. If any portion of the cache line is
dirty (in the modified or owned state), the entire line is written to main memory before it is invalidated.
CLFLUSH affects all caches in the memory hierarchy—internal and external to the processor. The
checking and invalidation process continues until the address has been invalidated in all caches.

In most cases, the underlying memory type assigned to the address has no effect on the behavior of this
instruction. However, when the underlying memory type for the address is UC or WC (as defined by
the MTRRs), the processor does not proceed with checking all caches to see if the address is cached. In
both cases, the address is uncacheable, and invalidation is unnecessary. Write-combining buffers are
written back to memory if the corresponding physical address falls within the buffer active-address
range.

Cache Writeback and Invalidate. Unlike the CLFLUSH instruction, the WBINVD instruction
operates on the entire cache, rather than a single cache line. The WBINVD instruction first writes back
all cache lines that are dirty (in the modified or owned state) to main memory. After writeback is
complete, the instruction invalidates all cache lines. The checking and invalidation process continues
until all internal caches are invalidated. A special bus cycle is transmitted to higher-level external
caches directing them to perform a writeback-and-invalidate operation.

Cache Invalidate. The INVD instruction is used to invalidate all cache lines. Unlike the WBINVD
instruction, dirty cache lines are not written to main memory. The process continues until all internal
caches have been invalidated. A special bus cycle is transmitted to higher-level external caches
directing them to perform an invalidation.

The INVD instruction should only be used in situations where memory coherency is not required.

186 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

7.6.4 Serializing Instructions

Serializing instructions force the processor to retire the serializing instruction and all previous
instructions before the next instruction is fetched. A serializing instruction is retired when the
following operations are complete:
• The instruction has executed.
• All registers modified by the instruction are updated.
• All memory updates performed by the instruction are complete.
• All data held in the write buffers have been written to memory.

Serializing instructions can be used as a barrier between memory accesses to force strong ordering of
memory operations. Care should be exercised in using serializing instructions because they modify
processor state and may affect program flow. The instructions also force execution serialization, which
can significantly degrade performance. When strongly-ordered memory accesses are required, but
execution serialization is not, it is recommended that software use the memory-ordering instructions
described on page 185.

The following are serializing instructions:
• Non-Privileged Instructions

- CPUID
- IRET
- RSM
- MFENCE

• Privileged Instructions
- MOV CRn
- MOV DRn
- LGDT, LIDT, LLDT, LTR
- SWAPGS
- WRMSR
- WBINVD, INVD
- INVLPG

7.6.5 Cache and Processor Topology

Cache and processor topology information is useful in the optimal management of system and
application resources. Exposing processor and cache topology information to the programmer allows
software to make more efficient use of hardware multithreading resources delivering optimal
performance. Shared resources in a specific cache and processor topology may require special
consideration in the optimization of multiprocessing software performance.

Memory System 187

24593—Rev. 3.30—September 2018 AMD64 Technology

The processor topology allows software to determine which cores are siblings in a compute unit, node,
and processor package. For example, a scheduler can then choose to either compact or scatter threads
(or processes) to cores in compute units, nodes, or across the cores in the entire physical package in
order to optimize for a power and performance profile.

Topology extensions define processor topology at both the node, compute unit and cache level.
Topology extensions include cache properties with sharing and the processor topology identified. The
result is a simplified extension to the CPUID instruction that describes the processors cache topology
and leverages existing industry cache properties folded into AMD’s topology extension description.

Topology extensions definition supports existing and future processors with varying degrees of cache
level sharing. Topology extensions also support the description of a simple compute unit with one core
or packages where the number of cores in a node and/or compute unit are not an even power of two.

CPUID Function 8000_001D: Cache Topology Definition. CPUID Function 8000_001D describes
the hierarchical relationships of cache levels relative to the cores which share these resources.
Function 8000_001D is defined to be called iteratively with the value 8000001Dh in EAX and an
additional parameter in ECX. To gather information for all cache levels, software must call CPUID
with 8000001Dh in EAX and ECX set to increasing values beginning with 0 until a value of 0 is
returned from EAX[4:0], which indicates no more cache descriptions.

If software dynamically manages cache configuration, it will need to update any stored cache
properties for the processor.

CPUID Function 8000_001E: Processor Topology Definition. CPUID Function 8000_001E
describes processor topology with component identifiers. To read the processor topology, definition
software calls the CPUID instruction with the value 8000001Eh in EAX. After execution the APIC ID
is represented in EAX. EBX contains the compute unit description in the processor, while ECX
contains system unique node identification. Software may read this information once for each core.

The following CPUID functions provide information about processor topology:
• CPUID Fn8000_0001_ECX
• CPUID Fn8000_0008_ECX
• CPUID Fn8000_001D_EAX, EBX, ECX, EDX
• CPUID Fn8000_001E_EAX, EBX, ECX

For more information using the CPUID instruction, see Section 3.3, “Processor Feature
Identification,” on page 63.

7.7 Memory-Type Range Registers
The AMD64 architecture supports three mechanisms for software access-control and cacheability-
control over memory regions. These mechanisms can be used in place of similar capabilities provided
by external chipsets used with early x86 processors.

188 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

This section describes a control mechanism that uses a set of programmable model-specific registers
(MSRs) called the memory-type-range registers (MTRRs). The MTRR mechanism provides system
software with the ability to manage hardware-device memory mapping. System software can
characterize physical-memory regions by type (e.g., ROM, flash, memory-mapped I/O) and assign
hardware devices to the appropriate physical-memory type.

Another control mechanism is implemented as an extension to the page-translation capability and is
called the page attribute table (PAT). It is described in “Page-Attribute Table Mechanism” on
page 198. Like the MTRRs, PAT provides system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can characterize physical pages and assign
virtually-mapped devices to those physical pages using the page-translation mechanism. PAT may be
used in conjunction with the MTTR mechanism to maximize flexibility in memory control.

Finally, control mechanisms are provided for managing memory-mapped I/O. These mechanisms
employ extensions to the MTRRs and a separate feature called the top-of-memory registers. The
MTRR extensions include additional MTRR type-field encodings for fixed-range MTRRs and
variable-range I/O range registers (IORRs). These mechanisms are described in “Memory-Mapped
I/O” on page 202.

7.7.1 MTRR Type Fields

The MTRR mechanism provides a means for associating a physical-address range with a memory type
(see “Memory Types” on page 172). The MTRRs contain a type field used to specify the memory type
in effect for a given physical-address range.

There are two variants of the memory type-field encodings: standard and extended. Both the standard
and extended encodings use type-field bits 2:0 to specify the memory type. For the standard
encodings, bits 7:3 are reserved and must be zero. For the extended encodings, bits 7:5 are reserved,
but bits 4:3 are defined as the RdMem and WrMem bits. “Extended Fixed-Range MTRR Type-Field
Encodings” on page 203 describes the function of these extended bits and how software enables them.
Only the fixed-range MTRRs support the extended type-field encodings. Variable-range MTRRs use
the standard encodings.

Table 7-5 on page 188 shows the memory types supported by the MTRR mechanism and their
encoding in the MTRR type fields referenced throughout this section. Unless the extended type-field
encodings are explicitly enabled, the processor uses the type values shown in Table 7-5.

Table 7-5. MTRR Type Field Encodings
Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not
allowed. Speculative accesses are not allowed

01h WC—Write-Combining All accesses are uncacheable. Write combining is
allowed. Speculative reads are allowed

04h WT—Writethrough
Reads allocate cache lines on a cache miss. Cache
lines are not allocated on a write miss. Write hits update
the cache and main memory.

Memory System 189

24593—Rev. 3.30—September 2018 AMD64 Technology

If the MTRRs are disabled in implementations that support the MTRR mechanism, the default
memory type is set to uncacheable (UC). Memory accesses are not cached even if the caches are
enabled by clearing CR0.CD to 0. Cacheable memory types must be established using the MTRRs to
enable memory accesses to be cached.

7.7.2 MTRRs

Both fixed-size and variable-size address ranges are supported by the MTRR mechanism. The fixed-
size ranges are restricted to the lower 1 Mbyte of physical-address space, while the variable-size
ranges can be located anywhere in the physical-address space.

Figure 7-4 on page 190 shows an example mapping of physical memory using the fixed-size and
variable-size MTRRs. The areas shaded gray are not mapped by the MTRRs. Unmapped areas are set
to the software-selected default memory type.

05h WP—Write-Protect

Reads allocate cache lines on a cache miss. All writes
update main memory. Cache lines are not allocated on a
write miss. Write hits invalidate the cache line and
update main memory.

06h WB—Writeback

Reads allocate cache lines on a cache miss, and can
allocate to either the shared, exclusive, or modified
state. Writes allocate to the modified state on a cache
miss.

Table 7-5. MTRR Type Field Encodings (continued)

190 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are read using the RDMSR instruction and
written using the WRMSR instruction. See “Memory-Typing MSRs” on page 586 for a listing of the
MTRR MSR numbers. The following sections describe the types of MTRRs and their function.

Fixed-Range MTRRs. The fixed-range MTRRs are used to characterize the first 1 Mbyte of physical
memory. Each fixed-range MTRR contains eight type fields for characterizing a total of eight memory
ranges. Fixed-range MTRRs support extended type-field encodings as described in “Extended Fixed-
Range MTRR Type-Field Encodings” on page 203. The extended type field allows a fixed-range
MTRR to be used as a fixed-range IORR. Figure 7-5 on page 191 shows the format of a fixed-range
MTRR.

513-214.eps

0F_FFFFh
10_0000h

0_FFFF_FFFF_FFFFh

256 Kbytes

256 Kbytes

512 Kbytes

Physical Memory

Up to 8 Variable Ranges

64 4-Kbyte Ranges

16 16-Kbyte Ranges

8 64-Kbyte Ranges

Default (Unmapped) Ranges

00_0000h

Memory System 191

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte of physical memory is segmented into
a total of 88 non-overlapping memory ranges, as follows:
• The 512 Kbytes of memory spanning addresses 00_0000h to 07_FFFFh are segmented into eight

64-Kbyte ranges. A single MTRR is used to characterize this address space.
• The 256 Kbytes of memory spanning addresses 08_0000h to 0B_FFFFh are segmented into 16 16-

Kbyte ranges. Two MTRRs are used to characterize this address space.
• The 256 Kbytes of memory spanning addresses 0C_0000h to 0F_FFFFh are segmented into 64 4-

Kbyte ranges. Eight MTRRs are used to characterize this address space.

Table 7-6 shows the address ranges corresponding to the type fields within each fixed-range MTRR.
The gray-shaded heading boxes represent the bit ranges for each type field in a fixed-range MTTR.
See Table 7-5 on page 188 for the type-field encodings.

63 56 55 48 47 40 39 32

Type Type Type Type

31 24 23 16 15 8 7 0

Type Type Type Type

Table 7-6. Fixed-Range MTRR Address Ranges
Physical Address Range (in hexadecimal)

Register Name
63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

70000–
7FFFF

60000–
6FFFF

50000–
5FFFF

40000–
4FFFF

30000–
3FFFF

20000–
2FFFF

10000–
1FFFF

00000–
0FFFF MTRRfix64K_00000

9C000–
9FFFF

98000–
9BFFF

94000–
97FFF

90000–
93FFF

8C000–
8FFFF

88000–
8BFFF

84000–
87FFF

80000–
83FFF MTRRfix16K_80000

BC000–
BFFFF

B8000–
BBFFF

B4000–
B7FFF

B0000–
B3FFF

AC000–
AFFFF

A8000–
ABFFF

A4000–
A7FFF

A0000–
A3FFF MTRRfix16K_A0000

C7000–
C7FFF

C6000–
C6FFF

C5000–
C5FFF

C4000–
C4FFF

C3000–
C3FFF

C2000–
C2FFF

C1000–
C1FFF

C0000–
C0FFF MTRRfix4K_C0000

CF000–
CFFFF

CE000–
CEFFF

CD000–
CDFFF

CC000–
CCFFF

CB000–
CBFFF

CA000–
CAFFF

C9000–
C9FFF

C8000–
C8FFF MTRRfix4K_C8000

D7000–
D7FFF

D6000–
D6FFF

D5000–
D5FFF

D4000–
D4FFF

D3000–
D3FFF

D2000–
D2FFF

D1000–
D1FFF

D0000–
D0FFF MTRRfix4K_D0000

DF000–
DFFFF

DE000–
DEFFF

DD000–
DDFFF

DC000–
DCFFF

DB000–
DBFFF

DA000–
DAFFF

D9000–
D9FFF

D8000–
D8FFF MTRRfix4K_D8000

E7000–
E7FFF

E6000–
E6FFF

E5000–
E5FFF

E4000–
E4FFF

E3000–
E3FFF

E2000–
E2FFF

E1000–
E1FFF

E0000–
E0FFF MTRRfix4K_E0000

192 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Variable-Range MTRRs. The variable-range MTRRs can be used to characterize any address range
within the physical-memory space, including all of physical memory. Up to eight address ranges of
varying sizes can be characterized using the MTRR. Two variable-range MTRRs are used to
characterize each address range: MTRRphysBasen and MTRRphysMaskn (n is the address-range
number from 0 to 7). For example, address-range 3 is characterized using the MTRRphysBase3 and
MTRRphysMask3 register pair.

Figure 7-6 shows the format of the MTRRphysBasen register and Figure 7-7 on page 193 shows the
format of the MTRRphysMaskn register. The fields within the register pair are read/write.

MTRRphysBasen Registers. The fields in these variable-range MTRRs, shown in Figure 7-6, are:
• Type—Bits 7:0. The memory type used to characterize the memory range. See Table 7-5 on

page 188 for the type-field encodings. Variable-range MTRRs do not support the extended type-
field encodings.

• Range Physical Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in
physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

EF000–
EFFFF

EE000–
EEFFF

ED000–
EDFFF

EC000–
ECFFF

EB000–
EBFFF

EA000–
EAFFF

E9000–
E9FFF

E8000–
E8FFF MTRRfix4K_E8000

F7000–
F7FFF

F6000–
F6FFF

F5000–
F5FFF

F4000–
F4FFF

F3000–
F3FFF

F2000–
F2FFF

F1000–
F1FFF

F0000–
F0FFF MTRRfix4K_F0000

FF000–
FFFFF

FE000–
FEFFF

FD000–
FDFFF

FC000–
FCFFF

FB000–
FBFFF

FA000–
FAFFF

F9000–
F9FFF

F8000–
F8FFF MTRRfix4K_F8000

Table 7-6. Fixed-Range MTRR Address Ranges (continued)
Physical Address Range (in hexadecimal)

Register Name
63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

Memory System 193

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 7-6. MTRRphysBasen Register

MTRRphysMaskn Registers. The fields in these variable-range MTRRs, shown in Figure 7-7, are:
• Valid (V)—Bit 11. Indicates that the MTRR pair is valid (enabled) when set to 1. When the valid bit

is cleared to 0 the register pair is not used.
• Range Physical Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory

range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

Figure 7-7. MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine whether a target physical-address falls within
the specified address range. PhysMask is logically ANDed with PhysBase and separately ANDed with
the upper 40 bits of the target physical-address. If the results of the two operations are identical, the
target physical-address falls within the specified memory range. The pseudo-code for the operation is:

63 52 51 32

Reserved, MBZ PhysBase[51:32]

31 12 11 8 7 0

PhysBase[31:12] Reserved,
MBZ Type

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysBase Range Physical Base Address R/W
11:8 Reserved Reserved, Must be Zero
7:0 Type Default Memory Type R/W

63 52 51 32

Reserved, MBZ PhysMask[51:32]

31 12 11 10 0

PhysMask[31:12] V Reserved, MBZ

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysMask Range Physical Mask R/W
11 V MTRR Pair Enable (Valid) R/W
10:0 Reserved Reserved, Must be Zero

194 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

MaskBase = PhysMask AND PhysBase
MaskTarget = PhysMask AND Target_Address[51:12]
IF MaskBase == MaskTarget

target address is in range
ELSE

target address is not in range

Variable Range Size and Alignment. The size and alignment of variable memory-ranges (MTRRs)
and I/O ranges (IORRs) are restricted as follows:
• The boundary on which a variable range is aligned must be equal to the range size. For example, a

memory range of 16 Mbytes must be aligned on a 16-Mbyte boundary.
• The range size must be a power of 2 (2n, 52 > n > 11), with a minimum allowable size of 4 Kbytes.

For example, 4 Mbytes and 8 Mbytes are allowable memory range sizes, but 6 Mbytes is not
allowable.

PhysMask and PhysBase Values. Software can calculate the PhysMask value using the following
procedure:
1. Subtract the memory-range physical base-address from the upper physical-address of the memory

range.
2. Subtract the value calculated in Step 1 from the physical memory size.
3. Truncate the lower 12 bits of the result in Step 2 to create the PhysMask value to be loaded into

the MTRRphysMaskn register. Truncation is performed by right-shifting the value 12 bits.

For example, assume a 32-Mbyte memory range is specified within the 52-bit physical address space,
starting at address 200_0000h. The upper address of the range is 3FF_FFFFh. Following the process
outlined above yields:
1. 3FF_FFFFh–200_0000h = 1FF_FFFFh
2. F_FFFF_FFFF_FFFF–1FF_FFFFh = F_FFFF_FE00_0000h
3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_E000h

In this example, the 40-bit value loaded into the PhysMask field is FF_FFFF_E000h.

Software must also truncate the lower 12 bits of the physical base-address before loading it into the
PhysBase field. In the example above, the 40-bit PhysBase field is 00_0000_2000h.

Default-Range MTRRs. Physical addresses that are not within ranges established by fixed-range and
variable-range MTRRs are set to a default memory-type using the MTRRdefType register. The format
of this register is shown in Figure 7-8.

Memory System 195

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 7-8. MTRRdefType Register Format

The fields within the MTRRdefType register are read/write. These fields are:
• Type—Bits 7:0. The default memory-type used to characterize physical-memory space. See

Table 7-5 on page 188 for the type-field encodings. The extended type-field encodings are not
supported by this register.

• Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are enabled when FE is set to 1.
Clearing FE to 0 disables all fixed-range MTRRs. Setting and clearing FE has no effect on the
variable-range MTRRs. The FE bit has no effect unless the E bit is set to 1 (see below).

• MTRR Enable (E)—Bit 11. This is the MTRR memory typing enable bit. The memory typing
capabilities of all fixed-range and variable-range MTRRs are enabled when E is set to 1. Clearing
E to 0 disables the memory typing capabilities of all fixed-range and variable-range MTRRs and
sets the default memory-type to uncacheable (UC) regardless of the value of the Type field. This
bit does not affect the operation of the RdMem and WrMem fields.

7.7.3 Using MTRRs

Identifying MTRR Features. Software determines whether a processor supports the MTRR
mechanism by executing the CPUID instruction with either function 0000_0001h or function
8000_0001h. If MTRRs are supported, bit 12 in the EDX register is set to 1 by CPUID. See “Processor
Feature Identification” on page 63 for more information on the CPUID instruction.

The MTRR capability register (MTRRcap) is a read-only register containing information describing
the level of MTRR support provided by the processor. Figure 7-9 shows the format of this register. If
MTRRs are supported, software can read MTRRcap using the RDMSR instruction. Attempting to
write to the MTRRcap register causes a general-protection exception (#GP).

63 32

Reserved, MBZ

31 12 11 10 9 8 7 0

Reserved, MBZ E F
E

Res,
MBZ Type

Bits Mnemonic Description R/W
63:12 Reserved Reserved, Must be Zero
11 E MTRR Enable R/W
10 FE Fixed Range Enable R/W
9:8 Reserved Reserved, Must be Zero
7:0 Type Default Memory Type R/W

196 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-9. MTRR Capability Register Format

The MTRRcap register field are:
• Variable-Range Register Count (VCNT)—Bits 7:0. The VCNT field contains the number of

variable-range register pairs supported by the processor. For example, a processor supporting eight
register pairs returns a 08h in this field.

• Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicates whether or not the fixed-range registers
are supported. If the processor returns a 1 in this bit, all fixed-range registers are supported. If the
processor returns a 0 in this bit, no fixed-range registers are supported.

• Write-Combining (WC)—Bit 10. The WC bit indicates whether or not the write-combining
memory type is supported. If the processor returns a 1 in this bit, WC memory is supported,
otherwise it is not supported.

7.7.4 MTRRs and Page Cache Controls

When paging and the MTRRs are both enabled, the address ranges defined by the MTRR registers can
span multiple pages, each of which can characterize memory with different types (using the PCD and
PWT page bits). When caching is enabled (CR0.CD=0 and CR0.NW=0), the effective memory type is
determined as follows:
1. If the page is defined as cacheable and writeback (PCD=0 and PWT=0), then the MTRR defines

the effective memory-type.
2. If the page is defined as not cacheable (PCD=1), then UC is the effective memory-type.
3. If the page is defined as cacheable and writethrough (PCD=0 and PWT=1), then the MTRR

defines the effective memory-type unless the MTRR specifies WB memory, in which case WT is
the effective memory-type.

63 32

Reserved

31 11 10 9 8 7 0

Reserved W
C

R
e
s

F
I
X

VCNT

Bits Mnemonic Description R/W
63:11 Reserved Reserved
10 WC Write Combining R
9 Reserved Reserved
8 FIX Fixed-Range Registers R
7:0 VCNT Variable-Range Register Count R

Memory System 197

24593—Rev. 3.30—September 2018 AMD64 Technology

Table 7-7 lists the MTRR and page-level cache-control combinations and their combined effect on the
final memory-type, if the PAT register holds the default settings.

Large Page Sizes. When paging is enabled, software can use large page sizes (2 Mbytes and
4 Mbytes) in addition to the more typical 4-Kbyte page size. When large page sizes are used, it is
possible for multiple MTRRs to span the memory range within a single large page. Each MTRR can
characterize the regions within the page with different memory types. If this occurs, the effective
memory-type used by the processor within the large page is undefined.

Software can avoid the undefined behavior in one of the following ways:
• Avoid using multiple MTRRs to characterize a single large page.
• Use multiple 4-Kbyte pages rather than a single large page.
• If multiple MTRRs must be used within a single large page, software can set the MTRR type fields

to the same value.
• If the multiple MTRRs must have different type-field values, software can set the large page PCD

and PWT bits to the most restrictive memory type defined by the multiple MTRRs.

Overlapping MTRR Registers. If the address ranges of two or more MTRRs overlap, the following
rules are applied to determine the memory type used to characterize the overlapping address range:
1. Fixed-range MTRRs, which characterize only the first 1 Mbyte of physical memory, have

precedence over variable-range MTRRs.
2. If two or more variable-range MTRRs overlap, the following rules apply:

Table 7-7. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR

MTRR
Memory Type

Page
PCD Bit

Page
PWT Bit

Effective
Memory-Type

UC — — UC

WC
0 — WC
1 0 WC1

1 1 UC

WP
0 — WP
1 — UC

WT
0 — WT
1 — UC

WB
0 0 WB
0 1 WT
1 — UC

Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0, and

an MTRR WC memory type is implementation dependent.

198 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

a. If the memory types are identical, then that memory type is used.
b. If at least one of the memory types is UC, the UC memory type is used.
c. If at least one of the memory types is WT, and the only other memory type is WB, then the

WT memory type is used.
d. If the combination of memory types is not listed Steps A through C immediately above, then

the memory type used is undefined.

7.7.5 MTRRs in Multi-Processing Environments

In multi-processing environments, the MTRRs located in all processors must characterize memory in
the same way. Generally, this means that identical values are written to the MTRRs used by the
processors. This also means that values CR0.CD and the PAT must be consistent across processors.
Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR settings in other processors to ensure consistency. It is the responsibility of
system software to initialize and maintain MTRR consistency across all processors.

7.8 Page-Attribute Table Mechanism
The page-attribute table (PAT) mechanism extends the page-table entry format and enhances the
capabilities provided by the PCD and PWT page-level cache controls. PAT (and PCD, PWT) allow
memory-type characterization based on the virtual (linear) address. The PAT mechanism provides the
same memory-typing capabilities as the MTRRs but with the added flexibility of the paging
mechanism. Software can use both the PAT and MTRR mechanisms to maximize flexibility in
memory-type control.

7.8.1 PAT Register

Like the MTRRs, the PAT register is a 64-bit model-specific register (MSR). The format of the PAT
registers is shown in Figure 7-10. See “Memory-Typing MSRs” on page 586 for more information on
the PAT MSR number and reset value.

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields, numbered from PA0 to PA7. The PA fields
hold the encoding of a memory type, as found in Table 7-8 on page 199. The PAT type-encodings

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

Memory System 199

24593—Rev. 3.30—September 2018 AMD64 Technology

match the MTRR type-encodings, with the exception that PAT adds the 07h encoding. The 07h
encoding corresponds to a UC− type. The UC− type (07h) is identical to the UC type (00h) except it
can be overridden by an MTRR type of WC.

Software can write any supported memory-type encoding into any of the eight PA fields. An attempt to
write anything but zeros into the reserved fields causes a general-protection exception (#GP). An
attempt to write an unsupported type encoding into a PA field also causes a #GP exception.

The PAT register fields are initiated at processor reset to the default values shown in Table 7-9 on
page 200.

7.8.2 PAT Indexing

PA fields in the PAT register are selected using three bits from the page-table entries. These bits are:
• PAT (page attribute table)—The PAT bit is bit 7 in 4-Kbyte PTEs; it is bit 12 in 2-Mbyte and 4-

Mbyte PDEs. Page-table entries that don’t have a PAT bit (PML4 entries, for example) assume PAT
= 0.

• PCD (page cache disable)—The PCD bit is bit 4 in all page-table entries. The PCD from the PTE
or PDE is selected depending on the paging mode.

• PWT (page writethrough)—The PWT bit is bit 3 in all page-table entries. The PWT from the PTE
or PDE is selected depending on the paging mode.

Table 7-9 on page 200 shows the various combinations of the PAT, PCD, and PWT bits used to select a
PA field within the PAT register. Table 7-9 also shows the default memory-type values established in
the PAT register by the processor after a reset. The default values correspond to the memory types

Table 7-8. PAT Type Encodings
Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed.

01h WC—Write-Combining All accesses are uncacheable. Write combining is allowed.
Speculative reads are allowed.

04h WT—Writethrough
Reads allocate cache lines on a cache miss, but only to the shared
state. Cache lines are not allocated on a write miss. Write hits
update the cache and main memory.

05h WP—Write-Protect

Reads allocate cache lines on a cache miss, but only to the shared
state. All writes update main memory. Cache lines are not allocated
on a write miss. Write hits invalidate the cache line and update main
memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to
either the shared or exclusive state. Writes allocate to the modified
state on a cache miss.

07h UC–
(UC minus)

All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed. Can be overridden by an
MTRR with the WC type.

200 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

established by the PCD and PWT bits alone in processor implementations that do not support the PAT
mechanism. In such implementations, the PAT field in page-table entries is reserved and cleared to 0.
See “Page-Translation-Table Entry Fields” on page 137 for more information on the page-table
entries.

7.8.3 Identifying PAT Support

Software determines whether a processor supports the PAT mechanism by executing the CPUID
instruction with either function 0000_0001h or function 8000_0001h. If PAT is supported, bit 16 in the
EDX register is set to 1 by CPUID. See Section 3.3, “Processor Feature Identification,” on page 63 for
more information on the CPUID instruction.

If PAT is supported by a processor implementation, it is always enabled. The PAT mechanism cannot
be disabled by software. Software can effectively avoid using PAT by:
• Not setting PAT bits in page-table entries to 1.
• Not modifying the reset values of the PA fields in the PAT register.

In this case, memory is characterized using the same types that are used by implementations that do
not support PAT.

7.8.4 PAT Accesses

In implementations that support the PAT mechanism, all memory accesses that are translated through
the paging mechanism use the PAT index bits to specify a PA field in the PAT register. The memory
type stored in the specified PA field is applied to the memory access. The process is summarized as:
1. A virtual address is calculated as a result of a memory access.
2. The virtual address is translated to a physical address using the page-translation mechanism.
3. The PAT, PCD and PWT bits are read from the corresponding page-table entry during the virtual-

address to physical-address translation.

Table 7-9. PAT-Register PA-Field Indexing
Page Table Entry Bits

PAT Register Field Default Memory Type
PAT PCD PWT

0 0 0 PA0 WB
0 0 1 PA1 WT
0 1 0 PA2 UC–1

0 1 1 PA3 UC
1 0 0 PA4 WB
1 0 1 PA5 WT
1 1 0 PA6 UC–1

1 1 1 PA7 UC
Note:

1. Can be overridden by WC memory type set by an MTRR.

Memory System 201

24593—Rev. 3.30—September 2018 AMD64 Technology

4. The PAT, PCD and PWT bits are used to select a PA field from the PAT register.
5. The memory type is read from the appropriate PA field.
6. The memory type is applied to the physical-memory access using the translated physical address.

Page-Translation Table Access. The PAT bit exists only in the PTE (4-K paging) or PDEs (2/4
Mbyte paging). In the remaining upper levels (PML4, PDP, and 4K PDEs), only the PWT and PCD
bits are used to index into the first 4 entries in the PAT register. The resulting memory type is used for
the next lower paging level.

7.8.5 Combined Effect of MTRRs and PAT

The memory types established by the PAT mechanism can be combined with MTRR-established
memory types to form an effective memory-type. The combined effect of MTRR and PAT memory
types are shown in Figure 7-10. In the AMD64 architecture, reserved and undefined combinations of
MTRR and PAT memory types result in undefined behavior. If the MTRRs are disabled in
implementations that support the MTRR mechanism, the default memory type is set to uncacheable
(UC).

Table 7-10. Combined Effect of MTRR and PAT Memory Types
PAT Memory Type MTRR Memory Type Effective Memory Type

UC UC UC
UC WC, WP, WT, WB CD

UC−
UC UC
WC WC

WP, WT, WB CD
WC — WC

WP

UC UC
WC CD
WP WP
WT CD
WB WP

WT
UC UC

WC, WP CD
WT, WB WT

WB

UC UC
WC WC
WP WP
WT WT
WB WB

202 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

7.8.6 PATs in Multi-Processing Environments

In multi-processing environments, values of CR0.CD and the PAT must be consistent across all
processors and the MTRRs in all processors must characterize memory in the same way. In other
words, matching address ranges and cachability types are written to the MTRRs for each processor.

Failure to do so may result in coherency violations or loss of atomicity. Processor implementations do
not check the MTRR, CR0.CD and PAT values in other processors to ensure consistency. It is the
responsibility of system software to initialize and maintain consistency across all processors.

7.8.7 Changing Memory Type

A physical page should not have differing cacheability types assigned to it through different virtual
mappings; they should be either all of a cacheable type (WB, WT, WP) or all of a non-cacheable type
(UC, WC). Otherwise, this may result in a loss of cache coherency, leading to stale data and
unpredictable behavior. For this reason, certain precautions must be taken when changing the memory
type of a page. In particular, when changing from a cachable memory type to an uncachable type the
caches must be flushed, because speculative execution by the processor may have resulted in memory
being cached even though it was not programatically referenced. The following table summarizes the
serialization requirements for safely changing memory types.
Table 7-11. Serialization Requirements for Changing Memory Types

7.9 Memory-Mapped I/O
Processor implementations can independently direct reads and writes to either system memory or
memory-mapped I/O. The method used for directing those memory accesses is implementation
dependent. In some implementations, separate system-memory and memory-mapped I/O buses can be
provided at the processor interface. In other implementations, system memory and memory-mapped
I/O share common data and address buses, and system logic uses sideband signals from the processor
to route accesses appropriately. Refer to AMD data sheets and application notes for more information
about particular hardware implementations of the AMD64 architecture.

New Type
WB WT WP UC WC

O
ld

 T
yp

e

WB – a a b b
WT a – a b b
WP a a – b b
UC a a a – a
WC a a a a –

Note:
a. Remove the previous mapping (make it not present in the page tables); Flush the TLBs including

the TLBs of other processors that may have used the mapping, even speculatively; Create a
new mapping in the page tables using the new type.

b. In addition to the steps described in note a, software should flush the page from the caches of
any processor that may have used the previous mapping. This must be done after the TLB
flushing in note a has been completed.

Memory System 203

24593—Rev. 3.30—September 2018 AMD64 Technology

The I/O range registers (IORRs), and the top-of-memory registers allow system software to specify
where memory accesses are directed for a given address range. The MTRR extensions are described in
the following section. “IORRs” on page 204 describes the IORRs and “Top of Memory” on page 206
describes the top-of-memory registers. In implementations that support these features, the default
action taken when the features are disabled is to direct memory accesses to memory-mapped I/O.

7.9.1 Extended Fixed-Range MTRR Type-Field Encodings

The fixed-range MTRRs support extensions to the type-field encodings that allow system software to
direct memory accesses to system memory or memory-mapped I/O. The extended MTRR type-field
encodings use previously reserved bits 4:3 to specify whether reads and writes to a physical-address
range are to system memory or to memory-mapped I/O. The format for this encoding is shown in
Figure 7-11 on page 203. The new bits are:
• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range

to system memory. When cleared to 0, writes are directed to memory-mapped I/O.
• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to

system memory. When cleared to 0, reads are directed to memory-mapped I/O.

The type subfield (bits 2:0) allows the encodings specified in Table 7-5 on page 188 to be used for
memory characterization.

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs)

These extensions are enabled using the following bits in the SYSCFG MSR:
• MtrrFixDramEn—Bit 18. When set to 1, RdMem and WrMem attributes are enabled. When

cleared to 0, these attributes are disabled. When disabled, accesses are directed to memory-mapped
I/O space.

• MtrrFixDramModEn—Bit 19. When set to 1, software can read and write the RdMem and
WrMem bits. When cleared to 0, writes do not modify the RdMem and WrMem bits, and reads
return 0.

To use the MTRR extensions, system software must first set MtrrFixDramModEn=1 to allow
modification to the RdMem and WrMem bits. After the attribute bits are properly initialized in the
fixed-range registers, the extensions can be enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently direct reads and writes to either system
memory or memory-mapped I/O. The RdMem and WrMem controls are particularly useful when
shadowing ROM devices located in memory-mapped I/O space. It is often useful to shadow such
devices in RAM system memory to improve access performance, but writes into the RAM location can

7 5 4 3 2 0

Reserved RdMem WrMem Type

204 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

corrupt the shadowed ROM information. The MTRR extensions solve this problem. System software
can create the shadow location by setting WrMem = 1 and RdMem = 0 for the specified memory range
and then copy the ROM location into itself. Reads are directed to the memory-mapped ROM, but
writes go to the same physical addresses in system memory. After the copy is complete, system
software can change the bit values to WrMem = 0 and RdMem = 1. Now reads are directed to the faster
copy located in system memory, and writes are directed to memory-mapped ROM. The ROM
responds as it would normally to a write, which is to ignore it.

Not all combinations of RdMem and WrMem are supported for each memory type encoded by bits 2:0.
Table 7-12 on page 204 shows the allowable combinations. The behavior of reserved encoding
combinations (shown as gray-shaded cells) is undefined and results in unpredictable behavior.

7.9.2 IORRs

The IORRs operate similarly to the variable-range MTRRs. The IORRs specify whether reads and
writes in any physical-address range map to system memory or memory-mapped I/O. Up to two

Table 7-12. Extended Fixed-Range MTRR Type Encodings
RdMem WrMem Type Implication or Potential Use

0 0

0 (UC) UC I/O
1 (WC) WC I/O
4 (WT) WT I/O
5 (WP) WP I/O
6 (WB) Reserved

0 1

0 (UC)
Used while creating a shadowed ROM

1 (WC)
4 (WT)

Reserved5 (WP)
6 (WB)

1 0

0 (UC) Used to access a shadowed ROM
1 (WC)

Reserved
4 (WT)

5 (WP)
WP Memory

(Can be used to access shadowed ROM)
6 (WB) Reserved

1 1

0 (UC) UC Memory
1 (WC) WC Memory
4 (WT) WT Memory
5 (WP) Reserved
6 (WB) WB Memory

Memory System 205

24593—Rev. 3.30—September 2018 AMD64 Technology

address ranges of varying sizes can be controlled using the IORRs. A pair of IORRs are used to control
each address range: IORRBasen and IORRMaskn (n is the address-range number from 0 to 1).

Figure 7-12 on page 205 shows the format of the IORRBasen registers and Figure 7-13 on page 206
shows the format of the IORRMaskn registers. The fields within the register pair are read/write.

The intersection of the IORR range with the equivalent effective MTRR range follows the same type
encoding table (Table 7-12) as the fixed-range MTRR, where the RdMem/WrMem and memory type
are directly tied together.

IORRBasen Registers. The fields in these IORRs are:
• WrMem—Bit 3. When set to 1, the processor directs write requests for this physical address range

to system memory. When cleared to 0, writes are directed to memory-mapped I/O.
• RdMem—Bit 4. When set to 1, the processor directs read requests for this physical address range to

system memory. When cleared to 0, reads are directed to memory-mapped I/O.
• Range Physical-Base-Address (PhysBase)—Bits 51:12. The memory-range base-address in

physical-address space. PhysBase is aligned on a 4-Kbyte (or greater) address in the 52-bit
physical-address space supported by the AMD64 architecture. PhysBase represents the most-
significant 40-address bits of the physical address. Physical-address bits 11:0 are assumed to be 0.

Note that a given processor may implement less than the architecturally-defined physical address size
of 52 bits.

The format of these registers is shown in Figure 7-12.

Figure 7-12. IORRBasen Register

IORRMaskn Registers. The fields in these IORRs are:

63 52 51 32

Reserved, MBZ PhysBase[51:32]

31 12 11 5 4 3 0

PhysBase[31:12] Reserved, MBZ R
d

W
r

Reserved,
MBZ

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysBase Range Physical Base Address R/W
11:5 Reserved Reserved, Must be Zero
4 Rd RdMem Enable R/W
3 Wr WrMem Enable R/W
2:0 Reserved Reserved, Must be Zero

206 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

• Valid (V)—Bit 11. Indicates that the IORR pair is valid (enabled) when set to 1. When the valid bit
is cleared to 0 the register pair is not used for memory-mapped I/O control (disabled).

• Range Physical-Mask (PhysMask)—Bits 51:12. The mask value used to specify the memory
range. Like PhysBase, PhysMask is aligned on a 4-Kbyte physical-address boundary. Bits 11:0 of
PhysMask are assumed to be 0.

The format of these registers is shown in Figure 7-13 on page 206.

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fields is identical to that of the variable-range MTRRs.
See page 193 for a description of this operation.

7.9.3 IORR Overlapping

The use of overlapping IORRs is not recommended. If overlapping IORRs are specified, the resulting
behavior is implementation-dependent.

7.9.4 Top of Memory

The top-of-memory registers, TOP_MEM and TOP_MEM2, allow system software to specify physical
addresses ranges as memory-mapped I/O locations. Processor implementations can direct accesses to
memory-mapped I/O differently than system I/O, and the precise method depends on the
implementation. System software specifies memory-mapped I/O regions by writing an address into
each of the top-of-memory registers. The memory regions specified by the TOP_MEM registers are
aligned on 8-Mbyte boundaries as follows:
• Memory accesses from physical address 0 to one less than the value in TOP_MEM are directed to

system memory.
• Memory accesses from the physical address specified in TOP_MEM to FFFF_FFFFh are directed

to memory-mapped I/O.

63 52 51 32

Reserved, MBZ PhysMask[51:32]

31 12 11 10 0

PhysMask[31:12] V Reserved, MBZ

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:12 PhysMask Range Physical Mask R/W
11 V I/O Register Pair Enable (Valid) R/W
10:0 Reserved Reserved, Must be Zero

Memory System 207

24593—Rev. 3.30—September 2018 AMD64 Technology

• Memory accesses from physical address 1_0000_0000h to one less than the value in TOP_MEM2
are directed to system memory.

• Memory accesses from the physical address specified in TOP_MEM2 to the maximum physical
address supported by the system are directed to memory-mapped I/O.

Figure 7-14 on page 207 shows how the top-of-memory registers organize memory into separate
system-memory and memory-mapped I/O regions.

The intersection of the top-of-memory range with the equivalent effective MTRR range follows the
same type encoding table (Table 7-12 on page 204) as the fixed-range MTRR, where the
RdMem/WrMem and memory type are directly tied together.

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 shows the format of the TOP_MEM and TOP_MEM2 registers. Bits 51:23 specify an 8-
Mbyte aligned physical address. All remaining bits are reserved and ignored by the processor. System
software should clear those bits to zero to maintain compatibility with possible future extensions to the
registers. The TOP_MEM registers are model-specific registers. See “Memory-Typing MSRs” on
page 586 for information on the MSR address and reset values for these registers.

208 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2)

The TOP_MEM register is enabled by setting the MtrrVarDramEn bit in the SYSCFG MSR (bit 20) to
1 (one). The TOP_MEM2 register is enabled by setting the MtrrTom2En bit in the SYSCFG MSR (bit
21) to 1 (one). The registers are disabled when their respective enable bits are cleared to 0. When the
top-of-memory registers are disabled, memory accesses default to memory-mapped I/O space.

Note that a given processor may implement fewer than the architecturally-defined number of physical
address bits.

7.10 Secure Memory Encryption
Software running in non-virtualized (native) mode can utilize the Secure Memory Encryption (SME)
feature to mark individual pages of memory as encrypted through the page tables. A page of memory
marked encrypted will be automatically decrypted when read by software and automatically encrypted
when written to DRAM. SME may therefore be used to protect the contents of DRAM from physical
attacks on the system.

All memory encrypted using SME is encrypted with the same AES key which is created randomly
each time a system is booted. The memory encryption key cannot be read or modified by software.

For details on using memory encryption in virtualized environments, please see Section 15.34,
“Secure Encrypted Virtualization,” on page 532.

7.10.1 Determining Support for Secure Memory Encryption

Support for memory encryption features is reported in CPUID Fn8000_001F[EAX]. Bit 0 indicates
support for Secure Memory Encryption. When this feature is present, CPUID Fn8000_001F[EBX]
supplies additional information regarding the use of memory encryption such as which page table bit is
used to mark pages as encrypted.

Additionally, in some implementations, the physical address size of the processor may be reduced
when memory encryption features are enabled, for example from 48 to 43 bits. In this case the upper
physical address bits are treated as reserved when the feature is enabled except where otherwise
indicated. When memory encryption is supported in an implementation, CPUID Fn8000_001F[EBX]
reports any physical address size reduction present. Bits reserved in this mode are treated the same as

63 52 51 32

Reserved, IGN Top-of-Memory Physical Address[51:32]

31 23 22 0

Top-of-Memory Physical
Address[31:23] Reserved, IGN

Memory System 209

24593—Rev. 3.30—September 2018 AMD64 Technology

other page table reserved bits, and will generate a page fault if found to be non-zero when used for
address translation.

Complete CPUID details for encrypted memory features can be found in Volume 3, section E.4.17.

7.10.2 Enabling Memory Encryption Extensions

Prior to using SME, memory encryption features must be enabled by setting SYSCFG MSR bit 23
(MemEncryptionModEn) to 1. In implementations where the physical address size of the processor is
reduced when memory encryption features are enabled, software must ensure it is executing from
addresses where these upper physical address bits are 0 prior to setting
SYSCFG[MemEncryptionModEn]. Memory encryption is then further controlled via the page tables.

Note that software should keep the value of SYSCFG[MemEncryptionModEn] consistent across all
CPU cores in the system. Failure to do so may lead to unexpected results.

7.10.3 Supported Operating Modes

SME is supported in all CPU modes when CR4.PAE=1 and paging is enabled. This includes long
mode as well as legacy PAE-enabled protected mode.

7.10.4 Page Table Support

Software utilizes the page tables to indicate if a memory page is encrypted or unencrypted. The
location of the specific attribute bit (C-bit, or enCrypted bit) used is implementation-specific but may
be determined by referencing CPUID Fn8000_001F[EBX] (see Volume 3, section E.4.17 for details) .
In some implementations, the bit used may be a physical address bit (e.g., address bit 47), especially in
cases where the physical address size is reduced by hardware when memory encryption features are
enabled.

To mark a memory page for encryption when stored in DRAM, software sets the C-bit to 1 for the
page. If the C-bit is 0, the page is not encrypted when stored in DRAM. The C bit can be applied to
translation table entries for any size of page - 4KB, 2MB, or 1GB.

Note that it is possible for the page tables themselves to be located in encrypted memory. For instance,
if the C-bit is set in a PML4 entry, the PDP table it points to (and thus all PDPEs in that table) will be
loaded from encrypted memory.

210 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 7-16. Encrypted Memory Accesses

7.10.5 I/O Accesses

In implementations where the physical address size is reduced when memory encryption features are
enabled, memory range checks (e.g. MTRR/TOM/IORR/etc.) to determine memory types or
DRAM/MMIO are performed using the reduced physical address size. In particular, the C-bit is not
considered a physical address bit and is masked by hardware for purposes of these checks.

Additionally, any pages corresponding to MMIO addresses must be configured with the C-bit clear.
Encrypted I/O pages are not allowed and accesses with the C-bit set will result in a machine check
error.

7.10.6 Restrictions

Hardware does not enforce coherency between the encrypted and unencrypted mappings of the same
physical page. Consequently, prior to changing the value of the C-bit for that page, software should
flush the page from all CPU caches in the system.

Simply changing the value of a C-bit on a page will not automatically encrypt the existing contents of
a page, and any data in the page prior to the C-bit modification will become unintelligible. To set the
C-bit on a page and cause its contents to become encrypted so the data remains accessible, see
Section 7.10.8, “Encrypt-in-Place,” on page 211.

In legacy PAE mode, if the C-bit location is in the upper 32 bits of the page table entry, the first level
page table (the PDP table) cannot be located in encrypted memory. This is because when the CPU is in
32-bit PAE mode, the CR3 value is only 32-bits in length.

CPU
AES Decrypt

AES Encrypt

Data

PTE C-Bit

Memory Read

CPU
Data

PTE C-Bit

DRAM

DRAM

Memory Write

0

0

1

1

Memory System 211

24593—Rev. 3.30—September 2018 AMD64 Technology

7.10.7 SMM Interaction

SME is available when the processor is executing in SMM, once it has enabled paging. Any physical
address bit restrictions that exist due to memory encryption features being enabled remain in place
while in SMM.

7.10.8 Encrypt-in-Place

It is possible to perform an in-place encryption of data in physical memory. This technique is useful
for setting the C-bit on a page while maintaining visibility to the page's contents such as during SME
initialization. This is accomplished by creating two linear mappings of the same page where one
mapping has the C-bit set to 0 and the other has the C-bit set to 1. To avoid possible data corruption,
software should use the following algorithm for performing in-place encryption of memory:
1. Create two linear mappings X and Y that map to the same physical page. Mapping X has C-bit=0

and uses the WP (Write Protect) memory type. Mapping Y has C-bit=1 and uses the WB (Write-
Back) memory type.

2. Perform a WBINVD on all cores in the system.
3. Copy N bytes from mapping X to a temporary buffer in conventionally-mapped memory (for

which the C bit may or may not be set, as desired). N must be equal to the L1 cache line size as
specified by CPUID Fn8000_0005[ECX].

4. Write N bytes from the temporary buffer to Y. Note that the initial cache refill of the line for this
step will cause it to be decrypted, which corrupts the contents since it is not yet encrypted. This
step restores the original contents. (If the line were evicted before this step was completed, the
unwritten portion would get corrupted by the outgoing encryption, which is why the line can't be
copied in-place, but rather must be copied from the temporary buffer.)

5. Repeat steps 3-4 until the entire page has been copied

212 Memory System

AMD64 Technology 24593—Rev. 3.30—September 2018

Exceptions and Interrupts 213

24593—Rev. 3.30—September 2018 AMD64 Technology

8 Exceptions and Interrupts

Exceptions and interrupts force control transfers from the currently-executing program to a system-
software service routine that handles the interrupting event. These routines are referred to as exception
handlers and interrupt handlers, or collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted program. During the control transfer to
the service routine, the processor stops executing the interrupted program and saves its return pointer.
The system-software service routine that handles the exception or interrupt is responsible for saving
the state of the interrupted program. This allows the processor to restart the interrupted program after
system software has handled the event.

When an exception or interrupt occurs, the processor uses the interrupt vector number as an index into
the interrupt-descriptor table (IDT). An IDT is used in all processor operating modes, including real
mode (also called real-address mode), protected mode, and long mode.

Exceptions and interrupts come from three general sources:
• Exceptions occur as a result of software execution errors or other internal-processor errors.

Exceptions also occur during non-error situations, such as program single stepping or address-
breakpoint detection. Exceptions are considered synchronous events because they are a direct
result of executing the interrupted instruction.

• Software interrupts occur as a result of executing interrupt instructions. Unlike exceptions and
external interrupts, software interrupts allow intentional triggering of the interrupt-handling
mechanism. Like exceptions, software interrupts are synchronous events.

• External interrupts are generated by system logic in response to an error or some other event
outside the processor. They are reported over the processor bus using external signaling. External
interrupts are asynchronous events that occur independently of the interrupted instruction.

Throughout this section, the term masking can refer to either disabling or delaying an interrupt. For
example, masking external interrupts delays the interrupt, with the processor holding the interrupt as
pending until it is unmasked. With floating-point exceptions (SSE and x87), masking prevents an
interrupt from occurring and causes the processor to perform a default operation on the exception
condition.

8.1 General Characteristics
Exceptions and interrupts have several different characteristics that depend on how events are reported
and the implications for program restart.

8.1.1 Precision

Precision describes how the exception is related to the interrupted program:
• Precise exceptions are reported on a predictable instruction boundary. This boundary is generally

the first instruction that has not completed when the event occurs. All previous instructions (in

214 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

program order) are allowed to complete before transferring control to the event handler. The
pointer to the instruction boundary is saved automatically by the processor. When the event
handler completes execution, it returns to the interrupted program and restarts execution at the
interrupted-instruction boundary.

• Imprecise exceptions are not guaranteed to be reported on a predictable instruction boundary. The
boundary can be any instruction that has not completed when the interrupt event occurs. Imprecise
events can be considered asynchronous, because the source of the interrupt is not necessarily
related to the interrupted instruction. Imprecise exception and interrupt handlers typically collect
machine-state information related to the interrupting event for reporting through system-
diagnostic software. The interrupted program is not restartable.

8.1.2 Instruction Restart

As mentioned above, precise exceptions are reported on an instruction boundary. The instruction
boundary can be reported in one of two locations:
• Most exceptions report the boundary before the instruction causing the exception. In this case, all

previous instructions (in program order) are allowed to complete, but the interrupted instruction is
not. No program state is updated as a result of partially executing an interrupted instruction.

• Some exceptions report the boundary after the instruction causing the exception. In this case, all
previous instructions—including the one executing when the exception occurred—are allowed to
complete.
Program state can be updated when the reported boundary is after the instruction causing the
exception. This is particularly true when the event occurs as a result of a task switch. In this case,
the general registers, segment-selector registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event handler cannot rely on the state of
those registers when it begins execution and must be careful in validating the state of the segment-
selector registers before restarting the interrupted task. This is not an issue in long mode, however,
because the hardware task-switch mechanism is disabled in long mode.

8.1.3 Types of Exceptions

There are three types of exceptions, depending on whether they are precise and how they affect
program restart:
• Faults are precise exceptions reported on the boundary before the instruction causing the

exception. Generally, faults are caused by an error condition involving the faulted instruction. Any
machine-state changes caused by the faulting instruction are discarded so that the instruction can
be restarted. The saved rIP points to the faulting instruction.

• Traps are precise exceptions reported on the boundary following the instruction causing the
exception. The trapped instruction is completed by the processor and all state changes are saved.
The saved rIP points to the instruction following the faulting instruction.

• Aborts are imprecise exceptions. Because they are imprecise, aborts typically do not allow reliable
program restart.

Exceptions and Interrupts 215

24593—Rev. 3.30—September 2018 AMD64 Technology

8.1.4 Masking External Interrupts

General Masking Capabilities. Software can mask the occurrence of certain exceptions and
interrupts. Masking can delay or even prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External interrupts are classified as maskable or
nonmaskable:
• Maskable interrupts trigger the interrupt-handling mechanism only when RFLAGS.IF=1.

Otherwise they are held pending for as long as the RFLAGS.IF bit is cleared to 0.
• Nonmaskable interrupts (NMI) are unaffected by the value of the RFLAGS.IF bit. However, the

occurrence of an NMI masks further NMIs until an IRET instruction is executed.

Masking During Stack Switches. The processor delays recognition of maskable external interrupts
and debug exceptions during certain instruction sequences that are often used by software to switch
stacks. The typical programming sequence used to switch stacks is:
1. Load a stack selector into the SS register.
2. Load a stack offset into the ESP register.

If an interrupting event occurs after the selector is loaded but before the stack offset is loaded, the
interrupted-program stack pointer is invalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the processor does not allow external
interrupts or debug exceptions to occur until the instruction immediately following the MOV SS or
POP SS instruction completes execution.

The recommended method of performing this sequence is to use the LSS instruction. LSS loads both
SS and ESP, and the instruction inhibits interrupts until both registers are updated successfully.

8.1.5 Masking Floating-Point and Media Instructions

Any x87 floating-point exceptions can be masked and reported later using bits in the x87 floating-
point status register (FSW) and the x87 floating-point control register (FCW). The floating-point
exception-pending exception is used for unmasked x87 floating-point exceptions (see section “1” on
page 228).

The SIMD floating-point exception is used for unmasked SSE floating-point exceptions (see section
“1” on page 230). SSE floating-point exceptions are masked using the MXCSR register. The exception
mechanism is not triggered when these exceptions are masked. Instead, the processor handles the
exceptions in a default manner.

8.1.6 Disabling Exceptions

Disabling an exception prevents the exception condition from being recognized, unlike masking an
exception which prevents triggering the exception mechanism after the exception is recognized. Some
exceptions can be disabled by system software running at CPL=0, using bits in the CR0 register or
CR4 register:

216 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

• Alignment-check exception (see section “1” on page 229).
• Device-not-available exception (see section “1” on page 222).
• Machine-check exception (see section “1” on page 230).

The debug-exception mechanism provides control over when specific breakpoints are enabled and
disabled. See section “1” on page 357 for more information on how breakpoint controls are used for
triggering the debug-exception mechanism.

8.2 Vectors
Specific exception and interrupt sources are assigned a fixed vector-identification number (also called
an “interrupt vector” or simply “vector”). The interrupt vector is used by the interrupt-handling
mechanism to locate the system-software service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. The first 32 vectors are reserved for predefined exception
and interrupt conditions. Software-interrupt sources can trigger an interrupt using any available
interrupt vector.

Table 8-1 on page 217 lists the supported interrupt vector numbers, the corresponding exception or
interrupt name, the mnemonic, the source of the interrupt event, and a summary of the possible causes.

Exceptions and Interrupts 217

24593—Rev. 3.30—September 2018 AMD64 Technology

Table 8-2 on page 218 shows how each interrupt vector is classified. Reserved interrupt vectors are
indicated by the gray-shaded rows.

Table 8-1. Interrupt Vector Source and Cause
Vector Exception/Interrupt Mnemonic Cause

0 Divide-by-Zero-Error #DE DIV, IDIV, AAM instructions
1 Debug #DB Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External NMI signal
3 Breakpoint #BP INT3 instruction
4 Overflow #OF INTO instruction
5 Bound-Range #BR BOUND instruction
6 Invalid-Opcode #UD Invalid instructions
7 Device-Not-Available #NM x87 instructions

8 Double-Fault #DF Exception during the handling of another
exception or interrupt

9 Coprocessor-Segment-Overrun — Unsupported (Reserved)
10 Invalid-TSS #TS Task-state segment access and task switch
11 Segment-Not-Present #NP Segment register loads
12 Stack #SS SS register loads and stack references
13 General-Protection #GP Memory accesses and protection checks
14 Page-Fault #PF Memory accesses when paging enabled
15 Reserved —

16 x87 Floating-Point Exception-
Pending #MF x87 floating-point instructions

17 Alignment-Check #AC Misaligned memory accesses
18 Machine-Check #MC Model specific
19 SIMD Floating-Point #XF SSE floating-point instructions

20–28 Reserved —
29 VMM Communication Exception #VC Virtualization event
30 Security Exception #SX Security-sensitive event in host
31 Reserved —

0–255 External Interrupts (Maskable) #INTR External interrupts
0–255 Software Interrupts — INTn instruction

218 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

The following sections describe each interrupt in detail. The format of the error code reported by each
interrupt is described in section “1” on page 232.

Table 8-2. Interrupt Vector Classification
Vector Interrupt (Exception) Type Precise Class2

0 Divide-by-Zero-Error Fault
yes

Contributory
1 Debug Fault or Trap

Benign

2 Non-Maskable-Interrupt — —
3 Breakpoint

Trap

yes
4 Overflow
5 Bound-Range

Fault6 Invalid-Opcode
7 Device-Not-Available
8 Double-Fault Abort no
9 Coprocessor-Segment-Overrun

10 Invalid-TSS

Fault yes
Contributory

11 Segment-Not-Present
12 Stack
13 General-Protection

14 Page-Fault Benign or
Contributory

15 Reserved

16 x87 Floating-Point Exception-
Pending Fault

no

Benign17 Alignment-Check yes
18 Machine-Check Abort no
19 SIMD Floating-Point Fault yes

20–28 Reserved
29 VMM Communication Exception Fault yes Contributory
30 Security Exception – yes Contributory
31 Reserved

0–255 External Interrupts (Maskable)
—1 —1 Benign

0–255 Software Interrupts
Note:

1. External interrupts are not classified by type or whether or not they are precise.
2. See section “1” on page 222 for a definition of benign and contributory classes.

Exceptions and Interrupts 219

24593—Rev. 3.30—September 2018 AMD64 Technology

8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)

A #DE exception occurs when the denominator of a DIV instruction or an IDIV instruction is 0. A
#DE also occurs if the result is too large to be represented in the destination.

#DE cannot be disabled.

Error Code Returned. None.

Program Restart. #DE is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #DE.

8.2.2 #DB—Debug Exception (Vector 1)

When the debug-exception mechanism is enabled, a #DB exception can occur under any of the
following circumstances:
• Instruction execution.
• Instruction single stepping.
• Data read.
• Data write.
• I/O read.
• I/O write.
• Task switch.
• Debug-register access, or general detect fault (debug register access when DR7.GD=1).
• Executing the INT1 instruction (opcode 0F1h).

#DB conditions are enabled and disabled using the debug-control register, DR7 and RFLAGS.TF.
Each #DB condition is described in more detail in section “1” on page 357.

Error Code Returned. None. #DB information is returned in the debug-status register, DR6.

Program Restart. #DB can be either a fault-type or trap-type exception. In the following cases, the
saved instruction pointer points to the instruction that caused the #DB:
• Instruction execution.
• Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is completed, and the saved instruction pointer
points to the instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction following an instruction breakpoint resulting
in a #DB. In most cases, the processor clears RFLAGS.RF to 0 after every instruction is successfully
executed. However, in the case of the IRET, JMP, CALL, and INTn (through a task gate) instructions,
RFLAGS.RF is not cleared to 0 until the next instruction successfully executes.

220 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

When a non-debug exception occurs (or when a string instruction is interrupted), the processor
normally sets RFLAGS.RF to 1 in the rFLAGS image that is pushed on the interrupt stack. A
subsequent IRET back to the interrupted program pops the rFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted instruction executes without causing an
instruction breakpoint, after which the processor clears RFLAGS.RF to 0.

However, when a #DB exception occurs, the processor clears RFLAGS.RF to 0 in the rFLAGS image
that is pushed on the interrupt stack. The #DB handler has two options:
• Disable the instruction breakpoint completely.
• Set RFLAGS.RF to 1 in the interrupt-stack rFLAGS image. The instruction breakpoint condition

is ignored immediately after the IRET, but reoccurs if the instruction address is accessed later, as
can occur in a program loop.

8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)

An NMI exception occurs as a result of system logic signaling a non-maskable interrupt to the
processor.

Error Code Returned. None.

Program Restart. NMI is an interrupt. The processor recognizes an NMI at an instruction boundary.
The saved instruction pointer points to the instruction immediately following the boundary where the
NMI was recognized.

Masking. NMI cannot be masked. However, when an NMI is recognized by the processor,
recognition of subsequent NMIs are disabled until an IRET instruction is executed.

8.2.4 #BP—Breakpoint Exception (Vector 3)

A #BP exception occurs when an INT3 instruction is executed. The INT3 is normally used by debug
software to set instruction breakpoints by replacing instruction-opcode bytes with the INT3 opcode.

#BP cannot be disabled.

Error Code Returned. None.

Program Restart. #BP is a trap-type exception. The saved instruction pointer points to the byte after
the INT3 instruction. This location can be the start of the next instruction. However, if the INT3 is used
to replace the first opcode bytes of an instruction, the restart location is likely to be in the middle of an
instruction. In the latter case, the debug software must replace the INT3 byte with the correct
instruction byte. The saved RIP instruction pointer must then be decremented by one before returning
to the interrupted program. This allows the program to be restarted correctly on the interrupted-
instruction boundary.

Exceptions and Interrupts 221

24593—Rev. 3.30—September 2018 AMD64 Technology

8.2.5 #OF—Overflow Exception (Vector 4)

An #OF exception occurs as a result of executing an INTO instruction while the overflow bit in
RFLAGS is set to 1 (RFLAGS.OF=1).

#OF cannot be disabled.

Error Code Returned. None.

Program Restart. #OF is a trap-type exception. The saved instruction pointer points to the
instruction following the INTO instruction that caused the #OF.

8.2.6 #BR—Bound-Range Exception (Vector 5)

A #BR exception can occur as a result of executing the BOUND instruction. The BOUND instruction
compares an array index (first operand) with the lower bounds and upper bounds of an array (second
operand). If the array index is not within the array boundary, the #BR occurs.

#BR cannot be disabled.

Error Code Returned. None.

Program Restart. #BR is a fault-type exception. The saved instruction pointer points to the BOUND
instruction that caused the #BR.

8.2.7 #UD—Invalid-Opcode Exception (Vector 6)

A #UD exception occurs when an attempt is made to execute an invalid or undefined opcode. The
validity of an opcode often depends on the processor operating mode. A #UD occurs under the
following conditions:
• Execution of any reserved or undefined opcode in any mode.
• Execution of the UD0, UD1 or UD2 instructions.
• Use of the LOCK prefix on an instruction that cannot be locked.
• Use of the LOCK prefix on a lockable instruction with a non-memory target location.
• Execution of an instruction with an invalid-operand type.
• Execution of the SYSENTER or SYSEXIT instructions in long mode.
• Execution of any of the following instructions in 64-bit mode: AAA, AAD, AAM, AAS, BOUND,

CALL (opcode 9A), DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LDS, LES, POP (DS, ES,
SS), POPA, PUSH (CS, DS, ES, SS), PUSHA, SALC.

• Execution of the ARPL, LAR, LLDT, LSL, LTR, SLDT, STR, VERR, or VERW instructions when
protected mode is not enabled, or when virtual-8086 mode is enabled.

• Execution of any legacy SSE instruction when CR4.OSFXSR is cleared to 0. (For further
information, see section “1” on page 50.

222 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

• Execution of any SSE instruction (uses YMM/XMM registers), or 64-bit media instruction (uses
MMX™ registers) when CR0.EM = 1.

• Execution of any SSE floating-point instruction (uses YMM/XMM registers) that causes a
numeric exception when CR4.OSXMMEXCPT = 0.

• Use of the DR4 or DR5 debug registers when CR4.DE = 1.
• Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes) for additional information on invalid
conditions.

#UD cannot be disabled.

Error Code Returned. None.

Program Restart. #UD is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #UD.

8.2.8 #NM—Device-Not-Available Exception (Vector 7)

A #NM exception occurs under any of the following conditions:
• An FWAIT/WAIT instruction is executed when CR0.MP=1 and CR0.TS=1.
• Any x87 instruction other than FWAIT is executed when CR0.EM=1.
• Any x87 instruction is executed when CR0.TS=1. The CR0.MP bit controls whether the

FWAIT/WAIT instruction causes an #NM exception when TS=1.
• Any 128-bit or 64-bit media instruction when CR0.TS=1.

#NM can be enabled or disabled under the control of the CR0.MP, CR0.EM, and CR0.TS bits as
described above. See section “1” on page 42 for more information on the CR0 bits used to control the
#NM exception.

Error Code Returned. None.

Program Restart. #NM is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #NM.

8.2.9 #DF—Double-Fault Exception (Vector 8)

A #DF exception can occur when a second exception occurs during the handling of a prior (first)
exception or interrupt handler.

Usually, the first and second exceptions can be handled sequentially without resulting in a #DF. In this
case, the first exception is considered benign, as it does not harm the ability of the processor to handle
the second exception.

In some cases, however, the first exception adversely affects the ability of the processor to handle the
second exception. These exceptions contribute to the occurrence of a #DF, and are called contributory

Exceptions and Interrupts 223

24593—Rev. 3.30—September 2018 AMD64 Technology

exceptions. If a contributory exception is followed by another contributory exception, a double-fault
exception occurs. Likewise, if a page fault is followed by another page fault or a contributory
exception, a double-fault exception occurs.

Table 8-3 shows the conditions under which a #DF occurs. Page faults are either benign or
contributory, and are listed separately. See the “Class” column in Table 8-2 on page 218 for
information on whether an exception is benign or contributory.

If a third interrupting event occurs while transferring control to the #DF handler, the processor shuts
down. Only an NMI, RESET, or INIT can restart the processor in this case. However, if the processor
shuts down as it is executing an NMI handler, the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.

Error Code Returned. Zero.

Program Restart. #DF is an abort-type exception. The saved instruction pointer is undefined, and the
program cannot be restarted.

8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)

This interrupt vector is reserved. It is for a discontinued exception originally used by processors that
supported external x87-instruction coprocessors. On those processors, the exception condition is
caused by an invalid-segment or invalid-page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general-protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

Table 8-3. Double-Fault Exception Conditions
First Interrupting Event Second Interrupting Event

Contributory Exceptions
• Divide-by-Zero-Error Exception
• Invalid-TSS Exception
• Segment-Not-Present Exception
• Stack Exception
• General-Protection Exception

Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

Page Fault Exception

Page Fault Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

224 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

8.2.11 #TS—Invalid-TSS Exception (Vector 10)

A #TS exception occurs when an invalid reference is made to a segment selector as part of a task
switch. A #TS also occurs during a privilege-changing control transfer (through a call gate or an
interrupt gate), if a reference is made to an invalid stack-segment selector located in the TSS. Table 8-4
lists the conditions under which a #TS occurs and the error code returned by the exception mechanism.

#TS cannot be disabled.

Error Code Returned. See Table 8-4 for a list of error codes returned by the #TS exception.

Program Restart. #TS is a fault-type exception. If the exception occurs before loading the segment
selectors from the TSS, the saved instruction pointer points to the instruction that caused the #TS.
However, most #TS conditions occur due to errors with the loaded segment selectors. When an error is
found with a segment selector, the hardware task-switch mechanism completes loading the new task
state from the TSS, and then triggers the #TS exception mechanism. In this case, the saved instruction
pointer points to the first instruction in the new task.

In long mode, a #TS cannot be caused by a task switch, because the hardware task-switch mechanism
is disabled. A #TS occurs only as a result of a control transfer through a gate descriptor that results in
an invalid stack-segment reference using an SS selector in the TSS. In this case, the saved instruction
pointer always points to the control-transfer instruction that caused the #TS.

Table 8-4. Invalid-TSS Exception Conditions
Selector

Reference Error Condition Error Code

Task-State
Segment

TSS limit check on a task switch
TSS Selector Index

TSS limit check on an inner-level stack pointer

LDT Segment

LDT does not point to GDT

LDT Selector Index
LDT reference outside GDT
GDT entry is not an LDT descriptor
LDT descriptor is not present

Code Segment

CS reference outside GDT or LDT

CS Selector Index
Privilege check (conforming DPL > CPL)

Privilege check (non-conforming DPL ≠ CPL)
Type check (CS not executable)

Data Segment
Data segment reference outside GDT or LDT

DS, ES, FS or GS Selector Index
Type check (data segment not readable)

Stack Segment

SS reference outside GDT or LDT

SS Selector Index
Privilege check (stack segment descriptor DPL ≠ CPL)

Privilege check (stack segment selector RPL ≠ CPL)
Type check (stack segment not writable)

Exceptions and Interrupts 225

24593—Rev. 3.30—September 2018 AMD64 Technology

8.2.12 #NP—Segment-Not-Present Exception (Vector 11)

An #NP occurs when an attempt is made to load a segment or gate with a clear present bit, as described
in the following situations:
• Using the MOV, POP, LDS, LES, LFS, or LGS instructions to load a segment selector (DS, ES, FS,

and GS) that references a segment descriptor containing a clear present bit (descriptor.P=0).
• Far transfer to a CS that is not present.
• Referencing a gate descriptor containing a clear present bit.
• Referencing a TSS descriptor containing a clear present bit. This includes attempts to load the TSS

descriptor using the LTR instruction.
• Attempting to load a descriptor containing a clear present bit into the LDTR using the LLDT

instruction.
• Loading a segment selector (CS, DS, ES, FS, or GS) as part of a task switch, with the segment

descriptor referenced by the segment selector having a clear present bit. In long mode, an #NP
cannot be caused by a task switch, because the hardware task-switch mechanism is disabled.

When loading a stack-segment selector (SS) that references a descriptor with a clear present bit, a
stack exception (#SS) occurs. For information on the #SS exception, see the next section, “#SS—
Stack Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment descriptor causing the #NP
exception.

Program Restart. #NP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that loaded the segment selector resulting in the #NP. See section “1” on page 232 for a
description of the consequences when this exception occurs during a task switch.

8.2.13 #SS—Stack Exception (Vector 12)

An #SS exception can occur in the following situations:
• Implied stack references in which the stack address is not in canonical form. Implied stack

references include all push and pop instructions, and any instruction using RSP or RBP as a base
register.

• Attempting to load a stack-segment selector that references a segment descriptor containing a clear
present bit (descriptor.P=0).

• Any stack access that fails the stack-limit check.

#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the #SS, as shown in Table 8-5 on
page 226:

226 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Program Restart. #SS is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #SS. See section “1” on page 232 for a description of the consequences
when this exception occurs during a task switch.

8.2.14 #GP—General-Protection Exception (Vector 13)

Table 8-6 describes the general situations that can cause a #GP exception. The table is not an
exhaustive, detailed list of #GP conditions, but rather a guide to the situations that can cause a #GP. If
an invalid use of an AMD64 architectural feature results in a #GP, the specific cause of the exception is
described in detail in the section describing the architectural feature.

#GP cannot be disabled.

Error Code Returned. As shown in Table 8-6, a selector index is reported as the error code if the
#GP is due to a segment-descriptor access. In all other cases, an error code of 0 is returned.

Program Restart. #GP is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #GP. See section “1” on page 232 for a description of the consequences
when this exception occurs during a task switch.

Table 8-5. Stack Exception Error Codes
Stack Exception Cause Error Code

Stack-segment descriptor present bit is clear SS Selector Index
Stack-limit violation 0
Stack reference using a non-canonical address 0

Table 8-6. General-Protection Exception Conditions
Error Condition Error Code

Any segment privilege-check violation, while loading a segment register.

Selector Index

Any segment type-check violation, while loading a segment register.
Loading a null selector into the CS, SS, or TR register.
Accessing a gate-descriptor containing a null segment selector.
Referencing an LDT descriptor or TSS descriptor located in the LDT.
Attempting a control transfer to a busy TSS (except IRET).
In 64-bit mode, loading a non-canonical base address into the GDTR or IDTR.
In long mode, accessing a system or call-gate descriptor whose extended type field is not 0.
In long mode, accessing a system descriptor containing a non-canonical base address.
In long mode, accessing a gate descriptor containing a non-canonical offset.
In long mode, accessing a gate descriptor that does not point to a 64-bit code segment.
In long mode, accessing a 16-bit gate descriptor.
In long mode, attempting a control transfer to a TSS or task gate.

Exceptions and Interrupts 227

24593—Rev. 3.30—September 2018 AMD64 Technology

8.2.15 #PF—Page-Fault Exception (Vector 14)

A #PF exception can occur during a memory access in any of the following situations:
• A page-translation-table entry or physical page involved in translating the memory access is not

present in physical memory. This is indicated by a cleared present bit (P=0) in the translation-table
entry.

• An attempt is made by the processor to load the instruction TLB with a translation for a non-
executable page.

• The memory access fails the paging-protection checks (user/supervisor, read/write, or both).
• A reserved bit in one of the page-translation-table entries is set to 1. A #PF occurs for this reason

only when CR4.PSE=1 or CR4.PAE=1.

#PF cannot be disabled.

CR2 Register. The virtual (linear) address that caused the #PF is stored in the CR2 register. The
legacy CR2 register is 32 bits long. The CR2 register in the AMD64 architecture is 64 bits long, as
shown in Figure 8-1 on page 228. In AMD64 implementations, when either software or a page fault
causes a write to the CR2 register, only the low-order 32 bits of CR2 are used in legacy mode; the
processor clears the high-order 32 bits.

Any segment limit-check or non-canonical address violation (except when using the SS
register).

0

Accessing memory using a null segment register.
Writing memory using a read-only segment register.
Attempting to execute an SSE instruction specifying an unaligned memory operand.
Attempting to execute code that is past the CS segment limit or at a non-canonical RIP.
Executing a privileged instruction while CPL > 0.
Executing an instruction that is more than 15 bytes long.
Writing a 1 into any register field that is reserved, must be zero (MBZ).
Using WRMSR to write a read-only MSR.
Using WRMSR to write a non-canonical value into an MSR that must be canonical.
Using WRMSR to set an invalid type encoding in an MTRR or the PAT MSR.

0
Enabling paging while protected mode is disabled.
Setting CR0.NW=1 while CR0.CD=0.
Any long-mode consistency-check violation.

Table 8-6. General-Protection Exception Conditions (continued)
Error Condition Error Code

228 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error code is pushed onto the page-fault exception-handler
stack. See section “1” on page 233 for a description of this error code.

Program Restart. #PF is a fault-type exception. In most cases, the saved instruction pointer points to
the instruction that caused the #PF. See section “1” on page 232 for a description of what can happen if
this exception occurs during a task switch.

8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)

The #MF exception is used to handle unmasked x87 floating-point exceptions. An #MF occurs when
all of the following conditions are true:
• CR0.NE=1.
• An unmasked x87 floating-point exception is pending. This is indicated by an exception bit in the

x87 floating-point status-word register being set to 1
• The corresponding mask bit in the x87 floating-point control-word register is cleared to 0.
• The FWAIT/WAIT instruction or any waiting floating-point instruction is executed.

If there is an exception mask bit (in the FPU control word) set, the exception is not reported. Instead,
the x87-instruction unit responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF exception are (including mnemonics):
• IE—Invalid-operation exception (also called #I), which is either:

- IE alone—Invalid arithmetic-operand exception (also called #IA), or
- SF and IE together—x87 Stack-fault exception (also called #IS).

• DE—Denormalized-operand exception (also called #D).
• ZE—Zero-divide exception (also called #Z).
• OE—Overflow exception (also called #O).
• UE—Underflow exception (also called #U).
• PE—Precision exception (also called #P or inexact-result exception).

Error Code Returned. None. Exception information is provided by the x87 status-word register. See
“x87 Floating-Point Programming” in Volume 1 for more information on using this register.

Program Restart. #MF is a fault-type exception. The #MF exception is not precise, because multiple
instructions and exceptions can occur before the #MF handler is invoked. Also, the saved instruction

63 0

Page-Fault Virtual Address

Exceptions and Interrupts 229

24593—Rev. 3.30—September 2018 AMD64 Technology

pointer does not point to the instruction that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point instruction or FWAIT/WAIT instruction that
is about to be executed when the #MF occurs. The address of the last instruction that caused an x87
floating-point exception is in the x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this register.

Masking. Each type of x87 floating-point exception can be masked by setting the appropriate bits in
the x87 control-word register. See “x87 Floating-Point Programming” in Volume 1 for more
information on using this register.

#MF can also be disabled by clearing the CR0.NE bit to 0. See section “1” on page 44 for more
information on using this bit.

8.2.17 #AC—Alignment-Check Exception (Vector 17)

An #AC exception occurs when an unaligned-memory data reference is performed while alignment
checking is enabled.

After a processor reset, #AC exceptions are disabled. Software enables the #AC exception by setting
the following register bits:
• CR0.AM=1.
• RFLAGS.AC=1.

When the above register bits are set, an #AC can occur only when CPL=3. #AC never occurs when
CPL < 3.

Table 8-7 lists the data types and the alignment boundary required to avoid an #AC exception when the
mechanism is enabled.

Table 8-7. Data-Type Alignment

Supported Data Type Required Alignment
(Byte Boundary)

Word 2
Doubleword 4
Quadword 8
Bit string 2, 4 or 8 (depends on operand size)

256-bit media 16
128-bit media 16
64-bit media 8

Segment selector 2
32-bit near pointer 4
32-bit far pointer 2
48-bit far pointer 4

230 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Error Code Returned. Zero.

Program Restart. #AC is a fault-type exception. The saved instruction pointer points to the
instruction that caused the #AC.

8.2.18 #MC—Machine-Check Exception (Vector 18)

The #MC exception is model specific. Processor implementations are not required to support the #MC
exception, and those implementations that do support #MC can vary in how the #MC exception
mechanism works.

The exception is enabled by setting CR4.MCE to 1. The machine-check architecture can include
model-specific masking for controlling the reporting of some errors. Refer to Chapter 9, “Machine
Check Architecture,” for more information.

Error Code Returned. None. Error information is provided by model-specific registers (MSRs)
defined by the machine-check architecture.

Program Restart. #MC is an abort-type exception. There is no reliable way to restart the program. If
the EIPV flag (EIP valid) is set in the MCG_Status MSR, the saved CS and rIP point to the instruction
that caused the error. If EIP is clear, the CS:rIP of the instruction causing the failure is not known or the
machine check is not related to a specific instruction.

8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)

The #XF exception is used to handle unmasked SSE floating-point exceptions. A #XF exception
occurs when all of the following conditions are true:
• A SSE floating-point exception occurs. The exception causes the processor to set the appropriate

exception-status bit in the MXCSR register to 1.
• The exception-mask bit in the MXCSR that corresponds to the SSE floating-point exception is

clear (=0).
• CR4.OSXMMEXCPT=1, indicating that the operating system supports handling of SSE floating-

point exceptions.

The exception-mask bits are used by software to specify the handling of SSE floating-point
exceptions. When the corresponding mask bit is cleared to 0, an exception occurs under the control of

x87 Floating-point single-precision 4
x87 Floating-point double-precision 8

x87 Floating-point extended-precision 8
x87 Floating-point save areas 2 or 4 (depends on operand size)

Table 8-7. Data-Type Alignment (continued)

Supported Data Type Required Alignment
(Byte Boundary)

Exceptions and Interrupts 231

24593—Rev. 3.30—September 2018 AMD64 Technology

the CR4.OSXMMEXCPT bit. However, if the mask bit is set to 1, the SSE floating-point unit responds
in a default manner and execution proceeds normally.

The CR4.OSXMMEXCPT bit specifies the interrupt vector to be taken when an unmasked SSE
floating-point exception occurs. When CR4.OSXMMEXCPT=1, the #XF interrupt vector is taken
when an exception occurs. When CR4.OSXMMEXCPT=0, the #UD (undefined opcode) interrupt
vector is taken when an exception occurs.

The SSE floating-point exceptions reported by the #XF exception are (including mnemonics):
• IE—Invalid-operation exception (also called #I).
• DE—Denormalized-operand exception (also called #D).
• ZE—Zero-divide exception (also called #Z).
• OE—Overflow exception (also called #O).
• UE—Underflow exception (also called #U).
• PE—Precision exception (also called #P or inexact-result exception).

Each type of SSE floating-point exception can be masked by setting the appropriate bits in the
MXCSR register. #XF can also be disabled by clearing the CR4.OSXMMEXCPT bit to 0.

Error Code Returned. None. Exception information is provided by the SSE floating-point MXCSR
register. See “Instruction Reference” in Volume 4 for more information on using this register.

Program Restart. #XF is a fault-type exception. Unlike the #MF exception, the #XF exception is
precise. The saved instruction pointer points to the instruction that caused the #XF.

8.2.20 #VC -- VMM Communication Exception (Vector 29)

The #VC exception is generated when certain events occur inside a secure guest VM. See "#VC
Exception" in section 15.35.5 for more details

8.2.21 #SX—Security Exception (Vector 30)

The #SX exception is generated by security-sensitive events under SVM. See section “1” on page 506
for details.

8.2.22 User-Defined Interrupts (Vectors 32–255)

User-defined interrupts can be initiated either by system logic or software. They occur when:
• System logic signals an external interrupt request to the processor. The signaling mechanism and

the method of communicating the interrupt vector to the processor are implementation dependent.
• Software executes an INTn instruction. The INTn instruction operand provides the interrupt vector

number.

232 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Both methods can be used to initiate an interrupt into vectors 0 through 255. However, because vectors
0 through 31 are defined or reserved by the AMD64 architecture, software should not use vectors in
this range for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the interrupt source:
• External interrupts are recognized on instruction boundaries. The saved instruction pointer points

to the instruction immediately following the boundary where the external interrupt was
recognized.

• If the interrupt occurs as a result of executing the INTn instruction, the saved instruction pointer
points to the instruction after the INTn.

Masking. The ability to mask user-defined interrupts depends on the interrupt source:
• External interrupts can be masked using the RFLAGS.IF bit. Setting RFLAGS.IF to 1 enables

external interrupts, while clearing RFLAGS.IF to 0 inhibits them.
• Software interrupts (initiated by the INTn instruction) cannot be disabled.

8.3 Exceptions During a Task Switch
An exception can occur during a task switch while loading a segment selector. Page faults can also
occur when accessing a TSS. In these cases, the hardware task-switch mechanism completes loading
the new task state from the TSS, and then triggers the appropriate exception mechanism. No other
checks are performed. When this happens, the saved instruction pointer points to the first instruction in
the new task.

In long mode, an exception cannot occur during a task switch, because the hardware task-switch
mechanism is disabled.

8.4 Error Codes
The processor exception-handling mechanism reports error and status information for some
exceptions using an error code. The error code is pushed onto the stack by the exception-mechanism
during the control transfer into the exception handler. The error code has two formats: a selector
format for most error-reporting exceptions, and a page-fault format for page faults. These formats are
described in the following sections.

8.4.1 Selector-Error Code

Figure 8-2 shows the format of the selector-error code.

Exceptions and Interrupts 233

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:
• EXT—Bit 0. If this bit is set to 1, the exception source is external to the processor. If cleared to 0,

the exception source is internal to the processor.
• IDT—Bit 1. If this bit is set to 1, the error-code selector-index field references a gate descriptor

located in the interrupt-descriptor table (IDT). If cleared to 0, the selector-index field references a
descriptor in either the global-descriptor table (GDT) or local-descriptor table (LDT), as indicated
by the TI bit.

• TI—Bit 2. If this bit is set to 1, the error-code selector-index field references a descriptor in the
LDT. If cleared to 0, the selector-index field references a descriptor in the GDT. The TI bit is
relevant only when the IDT bit is cleared to 0.

• Selector Index—Bits 15:3. The selector-index field specifies the index into either the GDT, LDT,
or IDT, as specified by the IDT and TI bits.

Some exceptions return a zero in the selector-error code.

8.4.2 Page-Fault Error Code

Figure 8-3 shows the format of the page-fault error code.

Figure 8-3. Page-Fault Error Code

The information reported by the page-fault error code includes:
• P—Bit 0. If this bit is cleared to 0, the page fault was caused by a not-present page. If this bit is set

to 1, the page fault was caused by a page-protection violation.
• R/W—Bit 1. If this bit is cleared to 0, the access that caused the page fault is a memory read. If this

bit is set to 1, the memory access that caused the page fault was a write. This bit does not
necessarily indicate the cause of the page fault was a read or write violation.

• U/S—Bit 2. If this bit is cleared to 0, an access in supervisor mode (CPL=0, 1, or 2) caused the
page fault. If this bit is set to 1, an access in user mode (CPL=3) caused the page fault. This bit does
not necessarily indicate the cause of the page fault was a privilege violation.

31 16 15 3 2 1 0

Reserved Selector Index T
I

I
D
T

E
X
T

31 4 3 2 1 0

Reserved I/D
R
S
V

U
/
S

R
/

W
P

234 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

• RSV—Bit 3. If this bit is set to 1, the page fault is a result of the processor reading a 1 from a
reserved field within a page-translation-table entry. This type of page fault occurs only when
CR4.PSE=1 or CR4.PAE=1. If this bit is cleared to 0, the page fault was not caused by the
processor reading a 1 from a reserved field.

• I/D—Bit 4. If this bit is set to 1, it indicates that the access that caused the page fault was an
instruction fetch. Otherwise, this bit is cleared to 0. This bit is only defined if no-execute feature is
enabled (EFER.NXE=1 && CR4.PAE=1).

8.5 Priorities
To allow for consistent handling of multiple-interrupt conditions, simultaneous interrupts are
prioritized by the processor. The AMD64 architecture defines priorities between groups of interrupts,
and interrupt prioritization within a group is implementation dependent. Table 8-8 shows the interrupt
priorities defined by the AMD64 architecture.

When simultaneous interrupts occur, the processor transfers control to the highest-priority interrupt
handler. Lower-priority interrupts from external sources are held pending by the processor, and they
are handled after the higher-priority interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when the high-priority interrupt handler
completes and transfers control back to the interrupted instruction. Software interrupts are discarded as
well, and reoccur when the software-interrupt instruction is restarted.

Table 8-8. Simultaneous Interrupt Priorities
Interrupt
Priority Interrupt Condition Interrupt

Vector
(High)

0
Processor Reset —
Machine-Check Exception 18

1
External Processor Initialization (INIT)

—SMI Interrupt
External Clock Stop (Stpclk)

2
Data, and I/O Breakpoint (Debug Register)

1
Single-Step Execution Instruction Trap (RFLAGS.TF=1)

3 Non-Maskable Interrupt 2
4 Maskable External Interrupt (INTR) 32–255

5

Instruction Breakpoint (Debug Register) 1

Code-Segment-Limit Violation1 13

Instruction-Fetch Page Fault1 14

6
Invalid Opcode Exception1 6

Device-Not-Available Exception 7
Instruction-Length Violation (> 15 Bytes) 13

Exceptions and Interrupts 235

24593—Rev. 3.30—September 2018 AMD64 Technology

8.5.1 Floating-Point Exception Priorities

Floating-point exceptions (SSE and x87 floating-point) can be handled in one of two ways:
• Unmasked exceptions are reported in the appropriate floating-point status register, and a software-

interrupt handler is invoked. See section “1” on page 228 and section “1” on page 230 for more
information on the floating-point interrupts.

• Masked exceptions are also reported in the appropriate floating-point status register. Instead of
transferring control to an interrupt handler, however, the processor handles the exception in a
default manner and execution proceeds.

If the processor detects more than one exception while executing a single floating-point instruction, it
prioritizes the exceptions in a predictable manner. When responding in a default manner to masked
exceptions, it is possible that the processor acts only on the high-priority exception and ignores lower-
priority exceptions. In the case of vector (SIMD) floating-point instructions, priorities are set on sub-
operations, not across all operations. For example, if the processor detects and acts on a QNaN
operand in one sub-operation, the processor can still detect and act on a denormal operand in another
sub-operation.

When reporting SSE floating-point exceptions before taking an interrupt or handling them in a default
manner, the processor first classifies the exceptions as follows:
• Input exceptions include SNaN operand (#I), invalid operation (#I), denormal operand (#D), or

zero-divide (#Z). Using a NaN operand with a maximum, minimum, compare, or convert
instruction is also considered an input exception.

• Output exceptions include numeric overflow (#O), numeric underflow (#U), and precision (#P).

7

Divide-by-zero Exception 0
Invalid-TSS Exception 10
Segment-Not-Present Exception 11
Stack Exception 12
General-Protection Exception 13
Data-Access Page Fault 14
Floating-Point Exception-Pending Exception 16
Alignment-Check Exception 17
SIMD Floating-Point Exception 19

Note:
1. This reflects the relative priority for faults encountered when fetching the first byte of an instruction. In the fetching

and decoding of subsequent bytes of an instruction, an Invalid Opcode exception may be detected and raised
before a fetch-related fault would be seen on a later byte. This behavior is model-dependent.

Table 8-8. Simultaneous Interrupt Priorities (continued)
Interrupt
Priority Interrupt Condition Interrupt

Vector

236 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Using the above classification, the processor applies the following procedure to report the exceptions:
1. The exceptions for all sub-operations are prioritized.
2. The exception conditions for all sub-operations are logically ORed together to form a single set of

exceptions covering all operations. For example, if two sub-operations produce a denormal result,
only one denormal exception is reported.

3. If the set of exceptions includes any unmasked input exceptions, all input exceptions are reported
in MCXSR, and no output exceptions are reported. Otherwise, all input and output exceptions are
reported in MCXSR.

4. If any exceptions are unmasked, control is transferred to the appropriate interrupt handler.

Table 8-9 on page 236 lists the priorities for simultaneous floating-point exceptions.

8.5.2 External Interrupt Priorities

The AMD64 architecture allows software to define up to 15 external interrupt-priority classes. Priority
classes are numbered from 1 to 15, with priority-class 1 being the lowest and priority-class 15 the
highest. The organization of these priority classes is implementation dependent. A typical method is to
use the upper four bits of the interrupt vector number to define the priority. Thus, interrupt vector 53h
has a priority of 5 and interrupt vector 37h has a priority of 3.

A new control register (CR8) is introduced by the AMD64 architecture for managing priority classes.
This register, called the task-priority register (TPR), uses its four low-order bits to specify a task
priority. The remaining 60 bits are reserved and must be written with zeros. Figure 8-4 shows the
format of the TPR.

Table 8-9. Simultaneous Floating-Point Exception Priorities
Exception

Priority Exception Condition

(High)
0

SNaN Operand

#I
NaN Operand of Maximum, Minimum, Compare, and
Convert Instructions (Vector Floating-Point)
Stack Overflow (x87 Floating-Point)
Stack Underflow (x87 Floating-Point)

1 QNaN Operand —

2
Invalid Operation (Remaining Conditions) #I
Zero Divide #Z

3 Denormal Operand #D

4
Numeric Overflow #O
Numeric Underflow #U

5
(Low)

Precision #P

Exceptions and Interrupts 237

24593—Rev. 3.30—September 2018 AMD64 Technology

The TPR is available only in 64-bit mode.

Figure 8-4. Task Priority Register (CR8)

System software can use the TPR register to temporarily block low-priority interrupts from
interrupting a high-priority task. This is accomplished by loading TPR with a value corresponding to
the highest-priority interrupt that is to be blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority class of 9 or less, while allowing all interrupts with a priority class
of 10 or more to be recognized. Loading TPR with 0 enables all external interrupts. Loading TPR with
15 (1111b) disables all external interrupts. The TPR is cleared to 0 on reset.

System software reads and writes the TPR using a MOV CR8 instruction. The MOV CR8 instruction
requires a privilege level of 0. Programs running at any other privilege level cannot read or write the
TPR, and an attempt to do so results in a general-protection exception (#GP).

A serializing instruction is not required after loading the TPR, because a new priority level is
established when the MOV instruction completes execution. For example, assume two sequential TPR
loads are performed, in which a low value is first loaded into TPR and immediately followed by a load
of a higher value. Any pending, lower-priority interrupt enabled by the first MOV CR8 is recognized
between the two MOVs.

The TPR is an architectural abstraction of the interrupt controller (IC), which prioritizes and manages
external interrupt delivery to the processor. The IC can be an external system device, or it can be
integrated on the chip like the local advanced programmable interrupt controller (APIC). Typically, the
IC contains a priority mechanism similar, if not identical to, the TPR. The IC, however, is
implementation dependent, and the underlying priority mechanisms are subject to change. The TPR,
by contrast, is part of the AMD64 architecture.

Effect of IC on TPR. The features of the implementation-specific IC can impact the operation of the
TPR. For example, the TPR might affect interrupt delivery only if the IC is enabled. Also, the mapping
of an external interrupt to a specific interrupt priority is an implementation-specific behavior of the IC.

While the CR8 register provides the same functionality as the TPR at offset 80h of the local APIC,
software should only use one mechanism to access the TPR. For example, updating the TPR with a
write to the local APIC offset 0x80 but then reading it with a MOV CR8 is not guaranteed to return the
same value that was written by the local APIC write.

8.6 Real-Mode Interrupt Control Transfers
In real mode, the IDT is a table of 4-byte entries, one entry for each of the 256 possible interrupts
implemented by the system. The real mode IDT is often referred to as an interrupt vector table, or IVT.

63 4 3 0

Reserved, MBZ Task Priority
(TPR)

238 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Table entries contain a far pointer (CS:IP pair) to an exception or interrupt handler. The base of the
IDT is stored in the IDTR register, which is loaded with a value of 00h during a processor reset.
Figure 8-5 on page 238 shows how the real-mode interrupt handler is located by the interrupt
mechanism.

Figure 8-5. Real-Mode Interrupt Control Transfer

When an exception or interrupt occurs in real mode, the processor performs the following:
1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.
2. Clears EFLAGS.IF to 0 and EFLAGS.TF to 0.
3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.
4. Locates the interrupt-handler pointer (CS:IP) in the IDT by scaling the interrupt vector by four

and adding the result to the value in the IDTR.
5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

Figure 8-6 on page 239 shows the stack after control is transferred to the interrupt handler in real
mode.

513-239.eps

Interrupt-Descriptor
Table

4
* +

IDT Base Address

Interrupt-Descriptor-Table Register

Interrupt Vector CS

Offset

Memory

Interrupt Handler

Exceptions and Interrupts 239

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 8-6. Stack After Interrupt in Real Mode

An IRET instruction is used to return to the interrupted program. When an IRET is executed, the
processor performs the following:
1. Pops the saved CS value off the stack and into the CS register. The saved IP value is popped into

RIP[15:0].
2. Pops the FLAGS value off of the stack and into EFLAGS[15:0].
3. Execution begins at the saved CS.IP location.

8.7 Legacy Protected-Mode Interrupt Control Transfers
In protected mode, the interrupt mechanism transfers control to an exception or interrupt handler
through gate descriptors. In protected mode, the IDT is a table of 8-byte gate entries, one for each of
the 256 possible interrupt vectors implemented by the system. Three gate types are allowed in the IDT:
• Interrupt gates.
• Trap gates.
• Task gates.

If a reference is made to any other descriptor type in the IDT, a general-protection exception (#GP)
occurs.

Interrupt-gate control transfers are similar to CALLs and JMPs through call gates. The interrupt
mechanism uses gates (interrupt, trap, and task) to establish protected entry-points into the exception
and interrupt handlers.

The remainder of this chapter discusses control transfers through interrupt gates and trap gates. If the
gate descriptor in the IDT is a task gate, a TSS-segment selector is referenced, and a task switch

513-243.eps

Interrupt-Handler and
Interrupted-Program

Stack

SS:SP

+2

+4

Return IP

Return CS

Return FLAGS

240 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

occurs. See Chapter 12, “Task Management,” for more information on the hardware task-switch
mechanism.

8.7.1 Locating the Interrupt Handler

When an exception or interrupt occurs, the processor scales the interrupt vector number by eight and
uses the result as an offset into the IDT. If the gate descriptor referenced by the IDT offset is an
interrupt gate or a trap gate, it contains a segment-selector and segment-offset field (see section “1” on
page 80 for a detailed description of the gate-descriptor format and fields). These two fields perform
the same function as the pointer operand in a far control-transfer instruction. The gate-descriptor
segment-selector field points to the target code-segment descriptor located in either the GDT or LDT.
The gate-descriptor segment-offset field is the instruction-pointer offset into the interrupt-handler
code segment. The code-segment base taken from the code-segment descriptor is added to the gate-
descriptor segment-offset field to create the interrupt-handler virtual address (linear address).

Figure 8-7 on page 241 shows how the protected-mode interrupt handler is located by the interrupt
mechanism.

Exceptions and Interrupts 241

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 8-7. Protected-Mode Interrupt Control Transfer

8.7.2 Interrupt To Same Privilege

When a control transfer to an exception or interrupt handler at the same privilege level occurs (through
an interrupt gate or a trap gate), the processor performs the following:
1. Pushes the EFLAGS register onto the stack.
2. Clears the TF, NT, RF, and VM bits in EFLAGS to 0.

*

Interrupt Vector

+

513-240.eps

Virtual-Address
Space

Interrupt Handler

Code Segment

+

Interrupt
Descriptor Table

Code-Segment Offset

CS Selector DPL

Global or Local
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

8

242 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

3. The processor handles EFLAGS.IF based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

4. Saves the return CS register and EIP register (RIP[31:0]) by pushing them onto the stack. The CS
value is padded with two bytes to form a doubleword.

5. If the interrupt has an associated error code, the error code is pushed onto the stack.
6. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is

loaded from the offset field in the gate descriptor.
7. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-8 shows the stack after control is transferred to the interrupt handler.

Figure 8-8. Stack After Interrupt to Same Privilege Level

8.7.3 Interrupt To Higher Privilege

When a control transfer to an exception or interrupt handler running at a higher privilege occurs
(numerically lower CPL value), the processor performs a stack switch using the following steps:
1. The target CPL is read by the processor from the target code-segment DPL and used as an index

into the TSS for selecting the new stack pointer (SS:ESP). For example, if the target CPL is 1, the
processor selects the SS:ESP for privilege-level 1 from the TSS.

2. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two
bytes to form a doubleword.

3. Pushes the EFLAGS register onto the new stack.
4. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

Interrupt-Handler and
Interrupted Program

Stack

Return EIP

Return CS

Return EFLAGS

Error Code SS:ESP

+4

+8

+12

513-242.eps

Return CS

Return EFLAGS

Return EIP SS:ESP

+4

+8

With Error Code With No Error Code

Exceptions and Interrupts 243

24593—Rev. 3.30—September 2018 AMD64 Technology

5. The processor handles the EFLAGS.IF bit based on the gate-descriptor type:
- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

6. Saves the return-address pointer (CS:EIP) by pushing it onto the stack. The CS value is padded
with two bytes to form a doubleword.

7. If the interrupt vector number has an error code associated with it, the error code is pushed onto
the stack.

8. The CS register is loaded from the segment-selector field in the gate descriptor, and the EIP is
loaded from the offset field in the gate descriptor.

9. The interrupt handler begins executing with the instruction referenced by new CS:EIP.

Figure 8-9 shows the new stack after control is transferred to the interrupt handler.

Figure 8-9. Stack After Interrupt to Higher Privilege

8.7.4 Privilege Checks

Before loading the CS register with the interrupt-handler code-segment selector (located in the gate
descriptor), the processor performs privilege checks similar to those performed on call gates. The
checks are performed when either conforming or nonconforming interrupt handlers are referenced:
1. The processor reads the gate DPL from the interrupt-gate or trap-gate descriptor. The gate DPL is

the minimum privilege-level (numerically-highest value) needed by a program to access the gate.
The processor compares the CPL with the gate DPL. The CPL must be numerically less-than or
equal-to the gate DPL for this check to pass.

Interrupt-Handler Stack

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP

+4

+8

+12

+16

+20

513-241.eps

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

With Error Code With No Error Code

244 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

2. The processor compares the CPL with the interrupt-handler code-segment DPL. For this check to
pass, the CPL must be numerically greater-than or equal-to the code-segment DPL. This check
prevents control transfers to less-privileged interrupt handlers.

Unlike call gates, no RPL comparison takes place. This is because the gate descriptor is referenced in
the IDT using the interrupt vector number rather than a selector, and no RPL field exists in the
interrupt vector number.

Exception and interrupt handlers should be made reachable from software running at any privilege
level that requires them. If the gate DPL value is too low (requiring more privilege), or the interrupt-
handler code-segment DPL is too high (runs at lower privilege), the interrupt control transfer can fail
the privilege checks. Setting the gate DPL=3 and interrupt-handler code-segment DPL=0 makes the
exception handler or interrupt handler reachable from any privilege level.

Figure 8-10 on page 245 shows two examples of interrupt privilege checks. In Example 1, both
privilege checks pass:
• The interrupt-gate DPL is at the lowest privilege (3), which means that software running at any

privilege level (CPL) can access the interrupt gate.
• The interrupt-handler code segment is at the highest-privilege level, as indicated by DPL=0. This

means software running at any privilege can enter the interrupt handler through the interrupt gate.

Exceptions and Interrupts 245

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 8-10. Privilege-Check Examples for Interrupts

In Example 2, both privilege checks fail:
• The interrupt-gate DPL specifies that only software running at privilege-level 0 can access the

gate. The current program does not have a high enough privilege level to access the interrupt gate,
since its CPL is set at 2.

513-244.epsExample 2: Privilege Check Fails

DPL=0

Gate Descriptor

Access Denied

Interrupt
Handler

CS CPL=2

≤

DPL=3

Code Descriptor

Interrupt Vector

≥

?

Access
Denied

Access
Denied

Example 1: Privilege Check Passes

DPL=3

Gate Descriptor

Access Allowed

Interrupt
Handler

CS CPL=2

≤

DPL=0

Code Descriptor

Interrupt Vector

≥

?

Access
Allowed

Access
Allowed

246 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

• The interrupt handler has a lower privilege (DPL=3) than the currently-running software (CPL=2).
Transitions from more-privileged software to less-privileged software are not allowed, so this
privilege check fails as well.

Although both privilege checks fail, only one such failure is required to deny access to the interrupt
handler.

8.7.5 Returning From Interrupt Procedures

A return to an interrupted program should be performed using the IRET instruction. An IRET is a far
return to a different code segment, with or without a change in privilege level. The actions of an IRET
in both cases are described in the following sections.

IRET, Same Privilege. Before performing the IRET, the stack pointer must point to the return EIP. If
there was an error code pushed onto the stack as a result of the exception or interrupt, that error code
should have been popped off the stack earlier by the handler. The IRET reverses the actions of the
interrupt mechanism:
1. Pops the return pointer off of the stack, loading both the CS register and EIP register (RIP[31:0])

with the saved values. The return code-segment RPL is read by the processor from the CS value
stored on the stack to determine that an equal-privilege control transfer is occurring.

2. Pops the saved EFLAGS image off of the stack and into the EFLAGS register.
3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the return program must be at a lower
privilege than the interrupt handler. The IRET in this case causes a stack switch to occur:
1. The return pointer is popped off of the stack, loading both the CS register and EIP register

(RIP[31:0]) with the saved values. The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that a lower-privilege control transfer is occurring.

2. The saved EFLAGS image is popped off of the stack and loaded into the EFLAGS register.
3. The return-program stack pointer is popped off of the stack, loading both the SS register and ESP

register (RSP[31:0]) with the saved values.
4. Control is transferred to the return program at the target CS:EIP.

8.8 Virtual-8086 Mode Interrupt Control Transfers
This section describes interrupt control transfers as they relate to virtual-8086 mode. Virtual-8086
mode is not supported by long mode. Therefore, the control-transfer mechanism described here is not
applicable to long mode.

When a software interrupt occurs (not external interrupts, INT1, or INT3) while the processor is
running in virtual-8086 mode (EFLAGS.VM=1), the control transfer that occurs depends on three
system controls:

Exceptions and Interrupts 247

24593—Rev. 3.30—September 2018 AMD64 Technology

• EFLAGS.IOPL—This field controls interrupt handling based on the CPL. See section “1” on
page 53 for more information on this field.
Setting IOPL<3 redirects the interrupt to the general-protection exception (#GP) handler.

• CR4.VME—This bit enables virtual-mode extensions. See section “1” on page 48 for more
information on this bit.

• TSS Interrupt-Redirection Bitmap—The TSS interrupt-redirection bitmap contains 256 bits, one
for each possible INTn vector (software interrupt). When CR4.VME=1, the bitmap is used by the
processor to direct interrupts to the handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-system interrupt handler (bitmap entry is
1). See section “1” on page 335 for information on the location of this field within the TSS.

If IOPL<3, CR4.VME=1, and the corresponding interrupt redirection bitmap entry is 0, the processor
uses the virtual-interrupt mechanism. See section “1” on page 255 for more information on this
mechanism.

Table 8-10 summarizes the actions of the above system controls on interrupts taken when the
processor is running in virtual-8086 mode.

8.8.1 Protected-Mode Handler Control Transfer

Control transfers to protected-mode handlers from virtual-8086 mode differ from standard protected-
mode transfers in several ways. The processor follows these steps in making the control transfer:
1. Reads the CPL=0 stack pointer (SS:ESP) from the TSS.
2. Pushes the GS, FS, DS, and ES selector registers onto the stack. Each push is padded with two

bytes to form a doubleword.
3. Clears the GS, FS, DS, and ES selector registers to 0. This places a null selector in each of the

four registers
4. Pushes the return stack pointer (old SS:ESP) onto the new stack. The SS value is padded with two

bytes to form a doubleword.
5. Pushes the EFLAGS register onto the new stack.

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms

EFLAGS.IOPL CR4.VME
TSS Interrupt
Redirection

Bitmap Entry
Interrupt Mechanism

0, 1, or 2
0 —

General-Protection Exception
1 1
1 0 Virtual Interrupt

3
0 —

Protected-Mode Handler
1 1
1 0 Virtual 8086 Handler

248 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

6. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.
7. Handles EFLAGS.IF based on the gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, EFLAGS.IF is not modified.

8. Pushes the return-address pointer (CS:EIP) onto the stack. The CS value is padded with two bytes
to form a doubleword.

9. If the interrupt has an associated error code, pushes the error code onto the stack.
10. Loads the segment-selector field from the gate descriptor into the CS register, and loads the offset

field from the gate descriptor into the EIP register.
11. Begins execution of the interrupt handler with the instruction referenced by the new CS:EIP.

Figure 8-11 shows the new stack after control is transferred to the interrupt handler with an error code.

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to virtual-8086 mode reverses the stack-
build process. After the return pointer, EFLAGS, and return stack-pointer are restored, the processor
restores the ES, DS, FS, and GS registers by popping their values off the stack.

With Error Code

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP
(From TSS, CPL=0)

+4

+8

+12

+16

+20

Return ES

Return DS

Return FS

Return GS

+24

+28

+32

+36

513-249.eps

With No Error Code

Return SS

Return CS

Return EFLAGS

Return ESP

Return EIP New SS:ESP

+4

+8

+12

+16

+20Return ES

Return DS

Return FS

Return GS

+24

+28

+32

Interrupt-Handler Stack

Exceptions and Interrupts 249

24593—Rev. 3.30—September 2018 AMD64 Technology

8.8.2 Virtual-8086 Handler Control Transfer

When a control transfer to an 8086 handler occurs from virtual-8086 mode, the processor creates an
interrupt-handler stack identical to that created when an interrupt occurs in real mode (see Figure 8-6
on page 239). The processor performs the following actions during a control transfer:
1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.
2. Clears the EFLAGS.IF and EFLAGS.RF bits to 0.
3. Saves the CS register and IP register (RIP[15:0]) by pushing them onto the stack.
4. Locates the interrupt-handler pointer (CS:IP) in the 8086 IDT by scaling the interrupt vector by

four and adding the result to the virtual (linear) address 0. The value in the IDTR is not used.
5. Transfers control to the interrupt handler referenced by the CS:IP in the IDT.

An IRET from the 8086 handler back to virtual-8086 mode reverses the stack-build process.

8.9 Long-Mode Interrupt Control Transfers
The long-mode architecture expands the legacy interrupt-mechanism to support 64-bit operating
systems and applications. These changes include:
• All interrupt handlers are 64-bit code and operate in 64-bit mode.
• The size of an interrupt-stack push is fixed at 64 bits (8 bytes).
• The interrupt-stack frame is aligned on a 16-byte boundary.
• The stack pointer, SS:RSP, is pushed unconditionally on interrupts, rather than conditionally based

on a change in CPL.
• The SS selector register is loaded with a null selector as a result of an interrupt, if the CPL changes.
• The IRET instruction behavior changes, to unconditionally pop SS:RSP, allowing a null SS to be

popped.
• A new interrupt stack-switch mechanism, called the interrupt-stack table or IST, is introduced.

8.9.1 Interrupt Gates and Trap Gates

Only long-mode interrupt and trap gates can be referenced in long mode (64-bit mode and
compatibility mode). The legacy 32-bit interrupt-gate and 32-bit trap-gate types (0Eh and 0Fh, as
described in section “1” on page 90) are redefined in long mode as 64-bit interrupt-gate and 64-bit
trap-gate types. 32-bit and 16-bit interrupt-gate and trap-gate types do not exist in long mode, and
software is prohibited from using task gates. If a reference is made to any gate other than a 64-bit
interrupt gate or a 64-bit trap gate, a general-protection exception (#GP) occurs.

The long-mode gate types are 16 bytes (128 bits) long. They are an extension of the legacy-mode gate
types, allowing a full 64-bit segment offset to be stored in the descriptor. See section “1” on page 80
for a detailed description of the gate-descriptor format and fields.

250 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

8.9.2 Locating the Interrupt Handler

When an interrupt occurs in long mode, the processor multiplies the interrupt vector number by 16 and
uses the result as an offset into the IDT. The gate descriptor referenced by the IDT offset contains a
segment-selector and a 64-bit segment-offset field. The gate-descriptor segment-offset field contains
the complete virtual address for the interrupt handler. The gate-descriptor segment-selector field
points to the target code-segment descriptor located in either the GDT or LDT. The code-segment
descriptor is only used for privilege-checking purposes and for placing the processor in 64-bit mode.
The code segment-descriptor base field, limit field, and most attributes are ignored.

Figure 8-12 shows how the long-mode interrupt handler is located by the interrupt mechanism.

Figure 8-12. Long-Mode Interrupt Control Transfer

*

Interrupt Vector

+

513-245.eps

Virtual-Address
Space

Interrupt Handler

Interrupt-Descriptor
Table

Code-Segment Offset

CS Selector DPL

Global- or Local-
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

16

Exceptions and Interrupts 251

24593—Rev. 3.30—September 2018 AMD64 Technology

8.9.3 Interrupt Stack Frame

In long mode, the return-program stack pointer (SS:RSP) is always pushed onto the interrupt-handler
stack, regardless of whether or not a privilege change occurs. Although the SS register is not used in
64-bit mode, SS is pushed to allow returns into compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-frame size for all interrupts, except for
error codes. Interrupt service-routine entry points that handle interrupts generated by non-error-code
interrupts can push an error code on the stack for consistency.

In long mode, when a control transfer to an interrupt handler occurs, the processor performs the
following:
1. Aligns the new interrupt-stack frame by masking RSP with FFFF_FFFF_FFFF_FFF0h.
2. If IST field in interrupt gate is not 0, reads IST pointer into RSP.
3. If a privilege change occurs, the target DPL is used as an index into the long-mode TSS to select a

new stack pointer (RSP).
4. If a privilege change occurs, SS is cleared to zero indicating a null selector.
5. Pushes the return stack pointer (old SS:RSP) onto the new stack. The SS value is padded with six

bytes to form a quadword.
6. Pushes the 64-bit RFLAGS register onto the stack. The upper 32 bits of the RFLAGS image on

the stack are written as zeros.
7. Clears the TF, NT, and RF bits in RFLAGS bits to 0.
8. Handles the RFLAGS.IF bit according to the gate-descriptor type:

- If the gate descriptor is an interrupt gate, RFLAGS.IF is cleared to 0.
- If the gate descriptor is a trap gate, RFLAGS.IF is not modified.

9. Pushes the return CS register and RIP register onto the stack. The CS value is padded with six
bytes to form a quadword.

10. If the interrupt vector number has an error code associated with it, pushes the error code onto the
stack. The error code is padded with four bytes to form a quadword.

11. Loads the segment-selector field from the gate descriptor into the CS register. The processor
checks that the target code-segment is a 64-bit mode code segment.

12. Loads the offset field from the gate descriptor into the target RIP. The interrupt handler begins
execution when control is transferred to the instruction referenced by the new RIP.

Figure 8-13 on page 252 shows the stack after control is transferred to the interrupt handler.

252 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. In legacy mode, the interrupt-stack pointer can be aligned at any address
boundary. Long mode, however, aligns the stack on a 16-byte boundary. This alignment is performed
by the processor in hardware before pushing items onto the stack frame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism. A subsequent IRET instruction
automatically restores the previous RSP.

Aligning the stack on a 16-byte boundary allows optimal performance for saving and restoring the 16-
byte XMM registers. The interrupt handler can save and restore the XMM registers using the faster 16-
byte aligned loads and stores (MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode, it is only of consequence when the
interrupted program is already running at CPL=0, and it is generally used only within the operating-
system kernel. The operating system should put 16-byte aligned RSP values in the TSS for interrupts
that change privilege levels.

Stack Switch. In long mode, the stack-switch mechanism differs slightly from the legacy stack-
switch mechanism (see section “1” on page 242). When stacks are switched during a long-mode
privilege-level change resulting from an interrupt, a new SS descriptor is not loaded from the TSS.
Long mode only loads an inner-level RSP from the TSS. However, the SS selector is loaded with a null
selector, allowing nested control transfers, including interrupts, to be handled properly in 64-bit mode.
The SS.RPL is set to the new CPL value. See section “1” on page 255 for additional information.

The interrupt-handler stack that results from a privilege change in long mode looks identical to a long-
mode stack when no privilege change occurs. Figure 8-14 shows the stack after the switch is
performed and control is transferred to the interrupt handler.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

+40

Return SS

Return CS

With No Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

Interrupt-Handler Stack

Exceptions and Interrupts 253

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege

8.9.4 Interrupt-Stack Table

In long mode, a new interrupt-stack table (IST) mechanism is introduced as an alternative to the
modified legacy stack-switch mechanism described above. The IST mechanism provides a method for
specific interrupts, such as NMI, double-fault, and machine-check, to always execute on a known-
good stack. In legacy mode, interrupts can use the hardware task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However,
the hardware task-switch mechanism is not supported in long mode.

When enabled, the IST mechanism unconditionally switches stacks. It can be enabled on an individual
interrupt vector basis using a new field in the IDT gate-descriptor entry. This allows some interrupts to
use the modified legacy mechanism, and others to use the IST mechanism. The IST mechanism is only
available in long mode.

The IST mechanism uses new fields in the 64-bit TSS format and the long-mode interrupt-gate and
trap-gate descriptors:
• Figure 12-8 on page 341 shows the format of the 64-bit TSS and the location of the seven IST

pointers. The 64-bit TSS offsets from 24h to 5Bh provide space for seven IST pointers, each of
which are 64 bits (8 bytes) long.

• The long-mode interrupt-gate and trap-gate descriptors define a 3-bit IST-index field in bits 2:0 of
byte +4. Figure 4-24 on page 93 shows the format of long-mode interrupt-gate and trap-gate
descriptors and the location of the IST-index field.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

+40

Return SS

Return CS

Without Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

Interrupt-Handler Stack

254 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

To enable the IST mechanism for a specific interrupt, system software stores a non-zero value in the
interrupt gate-descriptor IST-index field. If the IST index is zero, the modified legacy stack-switching
mechanism (described in the previous section) is used.

Figure 8-15 shows how the IST mechanism is used to create the interrupt-handler stack. When an
interrupt occurs and the IST index is non-zero, the processor uses the index to select the corresponding
IST pointer from the TSS. The IST pointer is loaded into the RSP to establish a new stack for the
interrupt handler. The SS register is loaded with a null selector if the CPL changes and the SS.RPL is
set to the new CPL value. After the stack is loaded, the processor pushes the old stack pointer,
RFLAGS, the return pointer, and the error code (if applicable) onto the stack. Control is then
transferred to the interrupt handler.

Figure 8-15. Long-Mode IST Mechanism

Software must make sure that an interrupt or exception handler using an IST pointer doesn't take
another exception using the same IST pointer, as this will result in the first stack exception frame being
overwritten.

8.9.5 Returning From Interrupt Procedures

As with legacy mode, a return to an interrupted program in long mode should be performed using the
IRET instruction. However, in long mode, the IRET semantics are different from legacy mode:
• In 64-bit mode, IRET pops the return-stack pointer unconditionally off the interrupt-stack frame

and into the SS:RSP registers. This reverses the action of the long-mode interrupt mechanism,

513-248.eps

Return SS

Return CS

Error Code

64-Bit
Interrupt-Handler Stack

Return RIP

Return RFLAGS

Return RSP

+8

+16

+24

+32

+40

IST

Long-Mode
Interrupt- or Trap-
Gate Descriptor

64-Bit TSS

RSP0 : RSP2

IST1 : IST7
RSP

SS=0

Exceptions and Interrupts 255

24593—Rev. 3.30—September 2018 AMD64 Technology

which saves the stack pointer whether or not a privilege change occurs. IRET also allows a null
selector to be popped off the stack and into the SS register. See section “1” on page 255 for
additional information.

• In compatibility mode, IRET behaves as it does in legacy mode. The SS:ESP is popped off the
stack only if a control transfer to less privilege (numerically greater CPL) is performed. Otherwise,
it is assumed that a stack pointer is not present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack when saving values for the interrupt
handler, and the interrupt handler is always entered in 64-bit mode. To work properly, an IRET used to
exit the 64-bit mode interrupt-handler requires a series of eight-byte pops off the stack. This is
accomplished by using a 64-bit operand-size prefix with the IRET instruction. The default stack size
assumed by an IRET in 64-bit mode is 32 bits, so a 64-bit REX prefix is needed by 64-bit mode
interrupt handlers.

Nested IRETs to 64-Bit Mode Procedures. In long mode, an interrupt causes a null selector to be
loaded into the SS register if the CPL changes (this is the same action taken by a far CALL in long
mode). If the interrupt handler performs a far call, or is itself interrupted, the null SS selector is pushed
onto the stack frame, and another null selector is loaded into the SS register. Using a null selector in
this way allows the processor to properly handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle nested returns to 64-bit mode (which do not
use the SS register), and returns to compatibility mode (which do use the SS register). Normally, an
IRET that pops a null selector into the SS register causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the existence of nested interrupt handlers
and/or privileged software in 64-bit mode. Long mode allows an IRET to pop a null selector into SS
from the stack under the following conditions:
• The target mode is 64-bit mode.
• The target CPL<3.

In this case, the processor does not load an SS descriptor, and the null selector is loaded into SS
without causing a #GP exception.

8.10 Virtual Interrupts
The term virtual interrupts includes two classes of extensions to the interrupt-handling mechanism:
• Virtual-8086 Mode Extensions (VME)—These allow virtual interrupts and interrupt redirection in

virtual-8086 mode. VME has no effect on protected-mode programs.
• Protected-Mode Virtual Interrupts (PVI)—These allow virtual interrupts in protected mode when

CPL=3. Interrupt redirection is not available in protected mode. PVI has no effect on virtual-8086-
mode programs.

256 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Because virtual-8086 mode is not supported in long mode, VME extensions are not supported in long
mode. PVI extensions are, however, supported in long mode.

8.10.1 Virtual-8086 Mode Extensions

The virtual-8086-mode extensions (VME) enable performance enhancements for 8086 programs
running as protected tasks in virtual-8086 mode. These extensions are enabled by setting CR4.VME
(bit 0) to 1. The extensions enabled by CR4.VME are:
• Virtualizing control and notification of maskable external interrupts with the EFLAGS VIF (bit

19) and VIP (bit 20) bits.
• Selective interception of software interrupts (INTn instructions) using the TSS interrupt

redirection bitmap (IRB).

Background. Legacy-8086 programs expect to have full access to the EFLAGS interrupt flag (IF)
bit, allowing programs to enable and disable maskable external interrupts. When those programs run in
virtual-8086 mode under a multitasking protected-mode environment, it can disrupt the operating
system if programs enable or disable interrupts for their own purposes. This is particularly true if
interrupts associated with one program can occur during execution of another program. For example, a
program could request that an area of memory be copied to disk. System software could suspend the
program before external hardware uses an interrupt to acknowledge that the block has been copied.
System software could subsequently start a second program which enables interrupts. This second
program could receive the external interrupt indicating that the memory block of the first program has
been copied. If that were to happen, the second program would probably be unprepared to handle the
interrupt properly.

Access to the IF bit must be managed by system software on a task-by-task basis to prevent corruption
of system resources. In order to completely manage the IF bit, system software must be able to
interrupt all instructions that can read or write the bit. These instructions include STI, CLI, PUSHF,
POPF, INTn, and IRET. These instructions are part of an instruction class that is IOPL-sensitive. The
processor takes a general-protection exception (#GP) whenever an IOPL-sensitive instruction is
executed and the EFLAGS.IOPL field is less than the CPL. Because all virtual-8086 programs run at
CPL=3, system software can interrupt all instructions that modify the IF bit by setting IOPL<3.

System software maintains a virtual image of the IF bit for each virtual-8086 program by emulating
the actions of IOPL-sensitive instructions that modify the IF bit. When an external maskable-interrupt
occurs, system software checks the state of the IF image for the current virtual-8086 program to
determine whether the program is masking interrupts. If the program is masking interrupts, system
software saves the interrupt information until the virtual-8086 program attempts to re-enable
interrupts. When the virtual-8086 program unmasks interrupts with an IOPL-sensitive instruction,
system software traps the action with the #GP handler.

The performance of a processor can be significantly degraded by the overhead of trapping and
emulating IOPL-sensitive instructions, and the overhead of maintaining images of the IF bit for each
virtual-8086 program. This performance loss can be eliminated by running virtual-8086 programs

Exceptions and Interrupts 257

24593—Rev. 3.30—September 2018 AMD64 Technology

with IOPL set to 3, thus allowing changes to the real IF flag from any privilege level. Unfortunately,
this can leave critical system resources unprotected.

In addition to the performance problems caused by virtualizing the IF bit, software interrupts (INTn
instructions) cannot be masked by the IF bit or virtual copies of the IF bit. The IF bit only affects
maskable external interrupts. Software interrupts in virtual-8086 mode are normally directed to the
real mode interrupt vector table (IVT), but it can be desirable to redirect certain interrupts to the
protected-mode interrupt-descriptor table (IDT).

The virtual-8086-mode extensions are designed to support both external interrupts and software
interrupts, with mechanisms that preserve high performance without compromising protection.
Virtualization of external interrupts is supported using two bits in the EFLAGS register: the virtual-
interrupt flag (VIF) bit and the virtual-interrupt pending (VIP) bit. Redirection of software interrupts is
supported using the interrupt-redirection bitmap (IRB) in the TSS. A separate TSS can be created for
each virtual-8086 program, allowing system software to control interrupt redirection independently
for each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions are enabled, the IF-
modifying instructions normally trapped by system software are allowed to execute. However, instead
of modifying the IF bit, they modify the EFLAGS VIF bit. This leaves control over maskable
interrupts to the system software. It can also be used as an indicator to system software that the virtual-
8086 program is able to, or is expecting to, receive external interrupts.

When an unmasked external interrupt occurs, the processor transfers control from the virtual-8086
program to a protected-mode interrupt handler. If the interrupt handler determines that the interrupt is
for the virtual-8086 program, it can check the state of the VIF bit in the EFLAGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set (indicating the virtual-8086 program attempted
to unmask interrupts), system software can allow the interrupt to be handled by the appropriate virtual-
8086 interrupt handler.

If the VIF bit is clear (indicating the virtual-8086 program attempted to mask interrupts) and the
interrupt is for the virtual-8086 program, system software can hold the interrupt pending. System
software holds an interrupt pending by saving appropriate information about the interrupt, such as the
interrupt vector, and setting the virtual-8086 program's VIP bit in the EFLAGS image on the stack.
When the virtual-8086 program later attempts to set IF, the previously set VIP bit causes a general-
protection exception (#GP) to occur. System software can then pass the saved interrupt information to
the virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled (CR4.VME=1), the VIF and VIP bits are set and
cleared as follows:
• VIF Bit—This bit is set and cleared by the processor in virtual-8086 mode in response to an

attempt by a virtual-8086 program to set and clear the EFLAGS.IF bit. VIF is used by system
software to determine whether a maskable external interrupt should be passed on to the virtual-
8086 program, emulated by system software, or held pending. VIF is also cleared during software
interrupts through interrupt gates, with the original VIF value preserved in the EFLAGS image on
the stack.

258 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

• VIP Bit—System software sets and clears this bit in the EFLAGS image saved on the stack after an
interrupt. It can be set when an interrupt occurs for a virtual-8086 program that has a clear VIF bit.
The processor examines the VIP bit when an attempt is made by the virtual-8086 program to set
the IF bit. If VIP is set when the program attempts to set IF, a general-protection exception (#GP)
occurs before execution of the IF-setting instruction. System software must clear VIP to avoid
repeated #GP exceptions when returning to the interrupted instruction.

The VIF and VIP bits can be used by system software to minimize the overhead associated with
managing maskable external interrupts because virtual copies of the IF flag do not have to be
maintained by system software. Instead, VIF and VIP are maintained during context switches along
with the remaining EFLAGS bits.

Table 8-11 on page 260 shows how the behavior of instructions that modify the IF bit are affected by
the VME extensions.

Interrupt Redirection of Software Interrupts. In virtual-8086 mode, software interrupts (INTn
instructions) are trapped using a #GP exception handler if the IOPL is less than 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and emulate 8086-interrupt handlers. System
software can set the IOPL to 3, in which case the INTn instruction is vectored through a gate descriptor
in the protected-mode IDT. System software can use the gate to control access to the virtual-8086
mode interrupt vector table (IVT), or to redirect the interrupt to a protected-mode interrupt handler.

When VME extensions are enabled, for INTn instructions to execute normally, vectoring directly to a
virtual-8086 interrupt handler through the virtual-8086 IVT (located at address 0 in the virtual-address
space of the task). For security or performance reasons, however, it can be necessary to intercept INTn
instructions on a vector-specific basis to allow servicing by protected-mode interrupt handlers. This is
performed by using the interrupt-redirection bitmap (IRB), located in the TSS and enabled when
CR4.VME=1. The IRB is available only in virtual-8086 mode.

Figure 12-6 on page 336 shows the format of the TSS, with the interrupt redirection bitmap located
near the top. The IRB contains 256 bits, one for each possible software-interrupt vector. The most-
significant bit of the IRB controls interrupt vector 255, and is located immediately before the IOPB
base. The least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB function as follows:
• When set to 1, the INTn instruction behaves as if the VME extensions are not enabled. The

interrupt is directed through the IDT to a protected-mode interrupt handler if IOPL=3. If IOPL<3,
the INTn causes a #GP exception.

• When cleared to 0, the INTn instruction is directed through the IVT for the virtual-8086 program
to the corresponding virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB mechanism. External interrupts are
asynchronous events that occur outside the context of a virtual-8086 program. Therefore, external
interrupts require system-software intervention to determine the appropriate context for the interrupt.
The VME extensions described in section “1” on page 257 are provided to assist system software with
external-interrupt intervention.

Exceptions and Interrupts 259

24593—Rev. 3.30—September 2018 AMD64 Technology

8.10.2 Protected Mode Virtual Interrupts

The protected-mode virtual-interrupt (PVI) bit in CR4 enables support for interrupt virtualization in
protected mode. When enabled, the processor maintains program-specific VIF and VIP bits similar to
the manner defined by the virtual-8086 mode extensions (VME). However, unlike VME, only the STI
and CLI instructions are affected by the PVI extension. When a program is running at CPL=3, it can
use STI and CLI to set and clear its copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-11 on page 260 describes the behavior of instructions that
modify the IF bit when PVI extensions are enabled.

The interrupt redirection bitmap (IRB) defined by the VME extensions is not supported by the PVI
extensions.

8.10.3 Effect of Instructions that Modify EFLAGS.IF

Table 8-11 on page 260 shows how the behavior of instructions that modify the IF bit are affected by
the VME and PVI extensions. The table columns specify the following:
• Operating Mode—the processor mode in effect when the instruction is executed.
• Instruction—the IF-modifying instruction.
• IOPL—the value of the EFLAGS.IOPL field.
• VIP—the value of the EFLAGS.VIP bit.
• #GP—indicates whether the conditions in the first four columns cause a general-protection

exception (#GP) to occur.
• Effect on IF Bit—indicates the effect the conditions in the first four columns have on the

EFLAGS.IF bit and the image of EFLAGS.IF on the stack.
• Effect on VIF Bit—indicates the effect the conditions in the first four columns have on the

EFLAGS.VIF bit and the image of EFLAGS.VIF on the stack.

260 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 8-11. Effect of Instructions that Modify the IF Bit
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Real Mode
CR0.PE=0
EFLAGS.VM=0
CR4.VME=0
CR4.PVI=0

CLI

no

IF = 0
STI IF = 1
PUSHF EFLAGS.IF Stack Image = IF
POPF IF = EFLAGS.IF stack image

INTn
EFLAGS.IF Stack Image = IF
IF = 0

IRET IF = EFLAGS.IF Stack Image

Protected Mode
CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=0

CLI
≥CPL no IF = 0
<CPL yes —

STI
≥CPL no IF = 1
<CPL yes —

PUSHF x

no

EFLAGS.IF Stack Image = IF

POPF
≥CPL IF = EFLAGS.IF Stack Image
<CPL No Change

INTn gate
x

EFLAGS.IF Stack Image = IF
IF = 0

IRET
IF = EFLAGS.IF Stack Image

IRETD

Virtual-8086 Mode
CR0.PE=1
EFLAGS.VM=1
CR4.VME=0
CR4.PVI=x

CLI
3 no IF = 0
< 3 yes —

STI
3 no IF = 1
< 3 yes —

PUSHF
3 no EFLAGS.IF Stack Image = IF
< 3 yes —

POPF
3 no IF = EFLAGS.IF Stack Image
< 3 yes —

INTn gate
3 no EFLAGS.IF Stack Image = IF

IF = 0
< 3 yes —

IRET
3 no IF = EFLAGS.IF Stack Image
< 3 yes —

IRETD
3 no IF = EFLAGS.IF Stack Image
< 3 yes —

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Exceptions and Interrupts 261

24593—Rev. 3.30—September 2018 AMD64 Technology

Virtual-8086 Mode
with VME
Extensions

CR0.PE=1
EFLAGS.VM=1
CR4.VME=1
CR4.PVI=x

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI
3 x no IF = 1 No Change

<3
0 no No Change VIF = 1
1 yes —

PUSHF
3

x no
EFLAGS.IF Stack Image = IF Not Pushed

<3 Not Pushed EFLAGS.IF Stack Image = VIF

PUSHFD
3

x
no EFLAGS.IF Stack Image = IF EFLAGS.VIF Stack Image = VIF

<3 yes —

POPF
3 x no IF = EFLAGS.IF Stack Image No Change

<3
0 no No Change VIF = EFLAGS.IF Stack Image
1 yes —

POPFD
3

x
no IF = EFLAGS.IF Stack Image No Change

<3 yes —

INTn gate
3

x no

EFLAGS.IF Stack Image = IF
IF = 0 No Change

<3 No Change EFLAGS.IF Stack Image = VIF
VIF = 0

IRET

3 x no IF = EFLAGS.IF Stack Image No Change

<3

0 no No Change VIF = EFLAGS.IF Stack Image

1
no1 No Change VIF = EFLAGS.IF Stack Image

yes2 —

IRETD
3

x
no IF = EFLAGS.IF Stack Image VIF = EFLAGS.IF Stack Image

<3 yes —

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

262 Exceptions and Interrupts

AMD64 Technology 24593—Rev. 3.30—September 2018

Protected Mode
with PVI
Extensions

CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=1
CPL=3

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI
3 x no IF = 1 No Change

<3
0 no No Change VIF = 1
1 yes —

PUSHF

x x no

EFLAGS.IF Stack Image = IF
Not Pushed

PUSHFD EFLAGS.VIF Stack Image = VIF
POPF

IF = EFLAGS.IF Stack Image
No Change

POPFD VIF = 0

INTn gate EFLAGS.IF Stack Image = IF
IF = 0 (if interrupt gate) No Change

IRET
IF = EFLAGS.IF Stack Image

No Change
IRETD VIF = EFLAGS.VIF Stack Image

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Machine Check Architecture 263

24593—Rev. 3.30—September 2018 AMD64 Technology

9 Machine Check Architecture

The AMD64 Machine Check Architecture (MCA) plays a vital role in the reliability, availability, and
serviceability (RAS) of AMD processors, as well as the RAS of the computer systems in which they
are embedded. MCA defines the facilities by which processor and system hardware errors are logged
and reported to system software. This allows system software to serve a strategic role in recovery from
and diagnosis of hardware errors.

Error checking hardware is configured and information about detected error conditions is conveyed
via an architecturally-defined set of registers. The system programming interface of MCA is described
below in Section 9.3 “Machine Check Architecture MSRs” on page 267.

9.1 Introduction
All computer systems are susceptible to errors—results that are contrary to the system design. Errors
can be categorized as soft or hard. Soft errors are caused by transient interference and are not
necessarily indicative of any damage to the computer circuitry. These external events include noise
from electromagnetic radiation and the incursion of sub-atomic particles that cause bit cell storage
capacitors to change state.

Hard errors are repeatable malfunctions that are generally attributable to physical damage to computer
circuitry. Damage may be caused by external forces (for example, voltage surges) or wear processes
inherent in the circuit technology. Damaged circuit elements can manifest symptoms similar to those
that are caused by soft error processes. An increase in the frequency of errors attributable to one circuit
element may indicate that the element has sustained damage or is wearing-out and may, in the future,
cause a hard error.

9.1.1 Reliability, Availability, and Serviceability

This section describes the concepts of reliability, availability, and serviceability (RAS) and shows how
they are interrelated.

The rate at which errors occur in a computer system is a measure of the system’s reliability.
Availability is the percentage of time that the system is available to do useful work. Errors that prevent
a computer system from continued operation result in down-time, that is, periods of unavailability.
Down-time includes the amount of time required to restore the system to operation. This may include
the time to diagnose a failure, determine the field replaceable unit (FRU) containing the faulty
circuitry, carry out the repair action required to replace the identified FRU, and restart the system. This
time directly impacts the system’s availability and is a measure of the system’s serviceability.

The availability of a computer system can be increased without decreasing performance or
significantly increasing cost through the judicious addition of data and control path redundancy in
concert with dedicated error-checking hardware. Together, redundancy and error checking detect and

264 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

often correct hardware errors. When errors are corrected by hardware, system operation continues
without any perceptible disruption or loss in performance.

Another important technique that can prevent down-time is error containment. Error containment
limits the propagation of an erroneous data. This enhances system availability by limiting the effects of
errors to a subset of software or hardware resources. System software may either correct the error and
resume the interrupted program or, if the error cannot be corrected, terminate software processes that
cannot continue due to the error.

Error logging enhances serviceability by providing information that is used to identify the FRU that
contains the failed circuitry. The mechanical design of the computer system can enhance serviceability
(and thus availability) by making the task of physically replacing a failed FRU quicker and easier.

9.1.2 Error Detection, Logging, and Reporting

Error detection requires specific error-checking hardware that compares the actual result of some data
transfer or transformation to the expected result. Any disparity indicates that an error has occurred.
Error detection is controlled through implementation-specific means. Disabling detection is normally
only appropriate when hardware is being debugged in the laboratory.

When an error is detected, hardware autonomously acts to either correct the error or contain the
propagation of the corrupting effects of an uncorrected error. For some error sources, hardware action
can be disabled by software through the MCA interface.

As hardware acts to correct or contain a detected error, it gathers information about the error to aid in
recovery, diagnosis, and repair. The architecture provides software control of error logging and
reporting. The following describes the characteristics of each:
• Logging

Logging involves saving information about the error in specific MCA registers. If the error
reporting bank associated with the error source is enabled, logging occurs; if disabled, error
information is generally discarded (there are implementation-specific exceptions).

• Reporting
An uncorrected error may be reported to system software via a machine-check exception, if error
reporting for the specific error source is enabled.

Reporting is the hardware-initiated action of interrupting the processor using a machine-check
exception (#MC). Reporting for each specific error type can be enabled or disabled by system software
though the MCA register interface. Even if reporting for an error type is disabled, logging may
continue.

Disabling reporting can negatively impact both error containment and error recovery (see the next
section) and should be avoided.

Hardware categorizes errors into three classes. These are:
• corrected

Machine Check Architecture 265

24593—Rev. 3.30—September 2018 AMD64 Technology

• uncorrected
• deferred

The following sections describe the characteristics of each of these error classes:

If an error can be corrected by hardware, no immediate action by software is required. In this case,
information is logged, if enabled, to aid in later diagnosis and possible repair.

If correction is not possible, the error is classified as uncorrected. The occurrence of an uncorrected
error requires immediate action by system software to either correct the error and resume the
interrupted program or, if software-based correction is not possible, to determine the extent of the
impact of the uncorrected error to any executing instruction stream or the architectural state of the
processor or system and take actions to contain the error condition by terminating corrupted software
processes.

For errors that are not corrected, but have no immediate impact on the architectural state of the system,
processor core, or any current thread of execution, the error may be classified by hardware as a
deferred error. Information about deferred errors is logged, if enabled, but not reported via a machine-
check exception. Instead hardware monitors the error and escalates the error classification to
uncorrected at the point in time where the error condition is about to impact the execution of an
instruction stream or cause the corruption of the processor core or system architectural state.

This escalation results in a #MC exception, assuming that reporting for that error source is enabled. If
software can correct the error, it may be possible to resume the affected program. If not, software can
terminate the affected program rather than bringing down the entire system. This is referred to as error
localization.

A common example of deferred error processing and localization is the conversion of globally
uncorrected DRAM errors to process-specific consumed memory errors. In this example, uncorrected
ECC-protected data that has not yet been consumed by any processor core is tagged as “poison.”
Hardware reports the uncorrected data as a localized error via a #MC exception when it is about to be
used (“consumed”) by an instruction execution stream.

In contrast, an error that cannot be contained and is of such severity that it has compromised the
continued operation of a processor core requires immediate action to terminate system processing and
may result in a hardware-enforced shutdown. In the shutdown state, the execution of instructions by
that processor core is halted. See Section 8.2.9 “#DF—Double-Fault Exception (Vector 8)” on
page 222 for a description of the shutdown processor state.

If supported, system software can chose to configure and enable hardware to generate an interrupt
when a deferred error is first detected. Corrected errors may be counted as they are logged. If
supported and enabled, exceeding a software-configured count threshold may be signalled via an
interrupt. These notification mechanisms are independent of machine-check reporting.

Specific details on hardware error detection, logging, and reporting are implementation-dependent and
are described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manualapplicable to your product.

266 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

9.1.3 Error Recovery

When errors cannot be corrected by hardware, error recovery comes into play. Error recovery, as
defined by MCA, always involves software intervention. Logged information about the uncorrected
error condition that caused the exception allows system software to take actions to either correct the
error and resume the interrupted execution stream or terminate software processes (or higher-level
software constructs) that are known to be affected by the uncorrected error.

From a system perspective, all errors are either recoverable or unrecoverable. The following outlines
the characteristics of each:
• Recoverable—Hardware has determined that the architectural state of the processor experiencing

the uncorrected error has not been compromised. Software execution can continue if system
software can determine the extent of the error and take actions to either:
- correct the error and resume the interrupted stream of execution or,
- if this is not possible, terminate software processes that have incurred a loss of architectural

state and continue other software processes that are unaffected by the error.
• Unrecoverable—Hardware has determined that the architectural state of the processor

experiencing the uncorrected error has been corrupted. Software execution cannot reliably
continue.
Software saves any diagnostic information that it may be able to gather and halts.

The fact that an error is recoverable does not mean that recovery software will be able to resume
program execution. If it is unable to determine the extent of the corruption or if it determines that
essential state information has been lost, it may only be able to save information about the error and
halt processing.

System software has many options to recover from an uncorrected error. The following is a partial list
of possible actions that system software might take:
• If it can be determined that the corruption caused by the uncorrected error is contained within a

software process, software can kill the process.
• If the uncorrected error has corrupted the architectural state of a virtual machine, the VMM can

rebuild the container (using only hardware resources that are known to be good) and reboot the
guest operating system.

• If the uncorrected error is a part of a block of data being transferred to or from an I/O device, the
data transfer can be flushed and retried or terminated with an error.

• If the uncorrected error is due to a hard link failure, software can reconfigure the network to route
information around the failed link.

• If the uncorrected error is in a cache and the cache line containing the uncorrected (known bad)
data is in the shared state, software can invalidate the line so that it will be reloaded from memory
or another cache that has the line in the owned state.

Machine Check Architecture 267

24593—Rev. 3.30—September 2018 AMD64 Technology

Many more error scenarios are recoverable depending on the effectiveness of hardware error
containment, the logging capabilities of the system, and the sophistication of the recovery software
that acts on the information conveyed through the MCA reporting structure.

If recovery software is unable to restore a valid system architectural state at some level of software
abstraction (process, guest operating system, virtual machine, or virtual machine monitor), the
uncorrected error is considered system fatal. In this situation, system software must halt the execution
of instructions. A system reset is required to restore the system to a known-good architectural state.

9.2 Determining Machine-Check Architecture Support
Support for the machine-check architecture is implementation-dependent. System software executes
the CPUID instruction to determine whether a processor implements the machine-check exception
(#MC) and the global MCA MSRs. The CPUID Fn0000_0001_EDX[MCE] feature bit indicates
support for the machine-check exception and the CPUID Fn0000_0001_EDX[MCA] feature bit
indicates support for the base set of global machine-check MSRs.

Once system software determines that the base set of MCA MSRs is available, it determines the
implemented number of machine-check reporting banks by reading the machine-check capabilities
register (MCG_CAP), which is the first of the global MCA MSRs.

For a processor implementation to provide an architecturally compliant MCA interface, it must
provide support for the machine-check exception, the global machine-check MSRs, the watchdog
timer (see “CPU Watchdog Timer Register” on page 270.), and at least one bank of the machine-check
reporting registers.

Support for the deferred reporting and software-based containment of uncorrected data errors is
indicated by the feature bit CPUID Fn8000_0007_EBX[SUCCOR]. See “Machine-Check Recovery”
on page 273.

Support for recoverable MCA overflow conditions is indicated by feature bit CPUID
Fn8000_0007_EBX[McaOverflowRecov]. See the discussion of recoverable status overflow in
Section “MCA Overflow” on page 272.

Implementation-specific information concerning the machine-check mechanism can be found in the
BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product. For more information on using the CPUID instruction, see Section 3.3,
“Processor Feature Identification,” on page 63.

9.3 Machine Check Architecture MSRs
The AMD64 Machine-Check Architecture defines the set of model-specific registers (MCA MSRs)
used to log and report hardware errors. These registers are:
• Global status and control registers:

- Machine-check global-capabilities register (MCG_CAP)

268 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

- Machine-check global-status register (MCG_STATUS)
- Machine-check global-control register (MCG_CTL)

• One or more error-reporting register banks, each containing:
- Machine-check control register (MCi_CTL)
- Machine-check status register (MCi_STATUS)
- Machine-check address register (MCi_ADDR)
- At least one machine-check miscellaneous error-information register (MCi_MISC0)
Each error-reporting register bank is associated with a specific processor unit (or group of
processor units).

• CPU Watchdog Timer register (CPU_WATCHDOG_TIMER)

The error-reporting registers retain their values through a warm reset. (A warm reset occurs while
power to the processor is stable. This in contrast to a cold reset, which occurs during the application of
power after a period of power loss.) This preservation of error information allows the platform
firmware or other system-boot software to recover and report information associated with the error
when the processor is forced into a shutdown state.

The RDMSR and WRMSR instructions are used to read and write the machine-check MSRs. See
“Machine-Check MSRs” on page 589 for a listing of the machine-check MSR numbers and their reset
values. The following sections describe each MCA MSR and its function.

9.3.1 Global Status and Control Registers

The global status and control MSRs are the MCG_CAP, MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9-1 shows the format of the machine-check
global-capabilities register (MCG_CAP). MCG_CAP is a read-only register that specifies the
machine-check mechanism capabilities supported by the processor implementation.

Figure 9-1. MCG_CAP Register

63 32

Reserved

31 9 8 7 0

Reserved

C
T
L
P

BANK_CNT

Bits Mnemonic Description R/W
63:9 Reserved
8 CTLP MCG_CTL register present R
7:0 BANK_CNT Number of reporting banks R

Machine Check Architecture 269

24593—Rev. 3.30—September 2018 AMD64 Technology

The fields within the MCG_CAP register are:
• BANK_CNT (MCi Bank Count)—Bits 7:0. This field specifies how many error-reporting register

banks are supported by the processor implementation.
• CTLP(MCG_CTL Register Present)—Bit 8. This bit specifies whether or not the Machine-Check

Global-Control (MCG_CTL) Register is supported by the processor. When the bit is set to 1, the
register is supported. When the bit is cleared to 0, the register is unsupported. The MCG_CTL
register is described on page 270.

All remaining bits in the MCG_CAP register are reserved. Writing values to the MCG_CAP register
produces undefined results.

Machine-Check Global-Status Register. Figure 9-2 shows the format of the machine-check global-
status register (MCG_STATUS). MCG_STATUS provides basic information about the processor state
after the occurrence of a machine-check error.

Figure 9-2. MCG_STATUS Register

The fields within the MCG_STATUS register are:
• Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the interrupted program can be reliably

restarted at the instruction addressed by the instruction pointer pushed onto the stack by the
machine-check error mechanism. If this bit is cleared to 0, the interrupted program cannot be
reliably restarted.

• Error-IP Valid (EIPV)—Bit 1. When this bit is set to 1, the instruction that is referenced by the
instruction pointer pushed onto the stack by the machine-check error mechanism is responsible for
the machine-check error. If this bit is cleared to 0, it is possible that the instruction referenced by
the instruction pointer is not responsible for the machine-check error.

• Machine Check In-Progress (MCIP)—Bit 2. When this bit is set to 1, it indicates that a machine-
check error is in progress. If another machine-check error occurs while this bit is set, the processor

63 32

Reserved

31 3 2 1 0

Reserved

M
C
I
P

E
I
P
V

R
I
P
V

Bits Mnemonic Description R/W
63:3 Reserved
2 MCIP Machine Check In-Progress R/W
1 EIPV Error IP Valid Flag R/W
0 RIPV Restart IP Valid Flag R/W

270 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

enters the shutdown state. The processor sets this bit whenever a machine check exception is
generated. Software is responsible for clearing it after the machine check exception is handled.

All remaining bits in the MCG_STATUS register are reserved.

Machine-Check Global-Control Register. Figure 9-3 shows the format of the machine-check
global-control register (MCG_CTL). MCG_CTL is used by software to enable or disable the logging
and reporting of machine-check errors from the implemented error-reporting banks. Depending on the
implementation, detected errors from some error sources associated with a reporting bank that is
disabled are still logged. Setting all bits to 1 in this register enables all implemented error-reporting
register banks to log errors.

Figure 9-3. MCG_CTL Register

CPU Watchdog Timer Register. The CPU watchdog timer is used to generate a machine check
condition when an instruction does not complete within a time period specified by the CPU Watchdog
Timer register. The timer restarts the count each time an instruction completes, when enabled by the
CPU Watchdog Timer Enable bit. The time period is determined by the Count Select and Time Base
fields. The timer does not count during halt or stop-grant.

The format of the CPU watchdog timer is shown in Figure 9-4.

Figure 9-4. CPU Watchdog Timer Register Format

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

63 32

Reserved, MBZ

31 7 6 3 2 1 0

Model dependent; see BKDG or PPR for desired processor. CS TB E
N

Bits Mnemonic Description R/W
63:7 Reserved Reserved, Must be Zero
6:3 CS CPU Watchdog Timer Count Select R/W
2:1 TB CPU Watchdog Timer Time Base R/W
0 EN CPU Watchdog Timer Enable R/W

Machine Check Architecture 271

24593—Rev. 3.30—September 2018 AMD64 Technology

CPU Watchdog Timer Enable (EN) - Bit 0. This bit specifies whether the CPU Watchdog Timer is
enabled. When the bit is set to 1, the timer increments and generates a machine check when the timer
expires. When cleared to 0, the timer does not increment and no machine check is generated.

CPU Watchdog Timer Time Base (TB) - Bits 2:1. Specifies the time base for the time-out period
indicated in the Count Select field. The allowable time base values are provided in Table 9-1.
.

CPU Watchdog Timer Count Select (CS) - Bits 6:3. Specifies the time period required for the CPU
Watchdog Timer to expire. The time period is this value times the time base specified in the Time Base
field. The allowable values are shown in Table 9-2.

9.3.2 Error-Reporting Register Banks

Each error-reporting register bank contains the following registers:
• Machine-check control register (MCi_CTL).
• Machine-check status register (MCi_STATUS).
• Machine-check address register (MCi_ADDR).
• Machine-check miscellaneous error-information register 0 (MCi_MISC0).

Table 9-1. CPU Watchdog Timer Time Base
TB[1:0] Time Base
00b 1 millisecond
01b 1 microsecond
10b Reserved
11b Reserved

Table 9-2. CPU Watchdog Timer Count Select
CS[3:0] Value
0000b 4095
0001b 2047
0010b 1023
0011b 511
0100b 255
0101b 127
0110b 63
0111b 31
1000b 8191
1001b 16383
1010b–
1111b Reserved

272 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

The i in each register name corresponds to the number of a supported register bank. Each error-
reporting register bank is normally associated with a specific execution unit. The number of error-
reporting register banks is implementation-specific. For more information, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manualapplicable to your product.

Software reads the MCG_CAP register to determine the number of supported register banks. The first
error-reporting register (MC0_CTL) always starts with MSR address 400h, followed by
MC0_STATUS (401h), MC0_ADDR (402h), and MC0_MISC0 (403h). The addresses of any
additional error-reporting MSRs are assigned sequentially starting at 404h through the remaining
supported register banks.

MCA Overflow. If an error occurs within an error reporting bank while the status register for that
bank contains valid data (MCi_STATUS[VAL] = 1), an MCA overflow condition results. In this
situation, information about the new error will either be discarded or will replace the information about
the prior error.

Hardware sets the MCi_STATUS[OVER] bit to indicate this condition has occurred and follows a set
of rules to determine whether to overwrite the previously logged error information or discard the new
error information. These rules are shown in Table 9-3 below.

If the VAL bit is not set, hardware writes the appropriate logging registers based on the type of error
(writing the MCi_STATUS register last) and then sets the VAL bit to indicate to software that the
information currently contained in the MCi_STATUS register is valid. Software clears the VAL bit
after reading the contents of this register (after reading and saving valid information stored in any of
the other logging registers) to indicate to hardware that it has saved the information, making the
registers available to log the next error.

If survivable MCA overflow is supported by the implementation (as indicated by CPUID
Fn8000_0007_EBX[McaOverflowRecov] = 1), the state of the MCi_STATUS[PCC] bit indicates
whether system execution can continue. If a particular processor does not support survivable MCA
overflow and overflow occurs, software must halt instruction execution on that processor core
regardless of the state of the PCC bit because critical information may have been lost as a result of the

Table 9-3. Error Logging Priorities
Previous Error Type

Corrected Deferred Uncorrected

Current
Error
Type

Corrected Discard Current Discard Current Discard Current
Deferred Overwrite Previous Discard Current Discard Current

Uncorrected Overwrite Previous Overwrite Previous Discard Current
Note(s):

1. Logging a deferred error has priority over the retention of information concerning a prior corrected
error.

2. Logging an uncorrected error has priority over the retention of information concerning either a prior
deferred or corrected error.

3. Valid Information concerning an uncorrected error is not overwritten by any subsequent errors.

Machine Check Architecture 273

24593—Rev. 3.30—September 2018 AMD64 Technology

overflow. See the description of the Machine-Check Status registers below for more information on
the PCC bit.

Machine-Check Recovery. Machine Check Recovery is a feature allowing recovery of the system
when the hardware cannot correct an error. Machine Check Recovery is supported when
Fn8000_0007_EBX[SUCCOR]=1.

When Machine Check Recovery is supported and an uncorrected error has been detected that the
hardware can contain to the task or process to which the machine check has been delivered, it logs a
context-synchronous uncorrectable error (MCi_STATUS[UC]=1, MCi_STATUS[PCC]=0). The rest
of the system is unaffected and may continue running if supervisory software can terminate only the
affected process context.

Machine-Check Control Registers. The machine-check control registers (MCi_CTL), as shown in
Figure 9-5, contain an enable bit for each error source within an error-reporting register bank. Setting
an enable bit to 1 enables error reporting for the specific feature controlled by the bit, and clearing the
bit to 0 disables error reporting for the feature. It is recommended that the value
FFFF_FFFF_FFFF_FFFFh be programmed into each MCi_CTL register.

Disabling the reporting of errors from error sources that are capable of detecting uncorrected errors
can compromise future error recovery and is not recommended. Other implementation-specific values
are documented in the product’s BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual.

Figure 9-5. MCi_CTL Register

Machine-Check Status Registers. Each error-reporting register bank includes a machine-check
status register (MCi_STATUS) that the processor uses to log error information. Hardware writes the
status register bits when an error is detected, and sets the VAL bit of the register to 1, indicating that the
status information is valid. Error reporting for the error source associated with the detected error does
not need to be enabled in the MCi_CTL Register for the processor to write the status register. Error
reporting must be enabled for the error to be reported via a #MC exception. Software is responsible for
clearing the status register after the exception has been handled. Attempting to write a value other than
0 to an MCi_STATUS register will raise a general protection (#GP) exception.

Figure 9-6 on page 274 shows the format of the MCi_STATUS register.

63 2 1 0
E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

274 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 9-6. MCi_STATUS Register

The fields within the MCi_STATUS register are:
• MCA Error Code—Bits 15:0. This field encodes information about the error, including:

- The type of transaction that caused the error.
- The memory-hierarchy level involved in the error.
- The type of request that caused the error.
- Other information concerning the transaction type.
See the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference
Manual applicable to your product for information on the format and encoding of the MCA error
code.

• Model-Specific Extended Error Code—Bits 31:16. This field encodes model-specific information
about the error. For further information, see the documentation for particular implementations of
the architecture.

63 62 61 60 59 58 57 56 55 54 45 44 43 42 32

V
A
L

O
V
E
R

U
C

E
N

M
I
S
C
V

A
D
D
R
V

P
C
C

T
C
C

Implementation-specific information

D
ef

er
re

d
Po

is
on Implementation-specific information

31 16 15 0

Model-Specific Extended Error Code MCA Error Code

Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 UC Uncorrected Error R/W*
60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*
57 PCC Processor-Context Corrupt R/W*
56 Implementation-specific information R/W*
55 TCC Task-Context Corrupt R/W*
54:45 Implementation-specific information R/W*
44 Deferred Deferred error R/W*
43 Poison Poisoned data consumed R/W*
42:32 Implementation-specific information R/W*
31:16 Model-Specific Extended Error Code R/W*
15:0 MCA Error Code R/W*
*System software can only clear this bit to 0.

Machine Check Architecture 275

24593—Rev. 3.30—September 2018 AMD64 Technology

• Implementation-specific Information—Bits 56, 54:45, 42:32. These bit ranges hold model-specific
error information. Software should not rely on the field definitions in these ranges being consistent
between processor implementations. For details see the BKDG or PPR for desired
implementations of the architecture.

• Poison—Bit 43. When set to 1, this bit indicates that the uncorrected error condition being
reported is due to the attempted use of data that was previous detected as in error (and could not be
corrected) and marked as known-bad.

• Deferred—Bit 44. When set to 1, this bit indicates that hardware has determined that the error
condition being logged has not affected the execution of any instruction stream and that action by
system software to prevent or correct an error is not required. No machine-check exception is
signalled. Hardware will monitor the error and log an uncorrected error when the execution of any
thread of execution is impacted.

• TCC—Bit 55. When set to 1, this bit indicates that the hardware context of the process thread to
which the error was reported may have been corrupted. Continued operation of the thread may
have unpredictable results. When this bit is cleared, the hardware context of the process thread to
which the error was reported is not corrupted and recovery of the process thread is possible. This
bit is only meaningful when MCA_STATUS[PCC]=0.

• PCC—Bit 57. When set to 1, this bit indicates that the processor state is likely to be corrupt due to
an uncorrected error. In this case, it is possible that software cannot reliably continue execution.
When this bit is cleared, the processor state is not corrupted and recovery is still possible. If the
PCC bit is set in any error bank, the processor will clear RIPV and EIPV in the MCG_STATUS
register.

• ADDRV—Bit 58. When set to 1, this bit indicates that the contents of the corresponding error-
reporting address register (MCi_ADDR) are valid. When this bit is cleared, the contents of
MCi_ADDR are not valid.

• MISCV—Bit 59. When set to 1, this bit indicates that additional information about the error is
saved in the corresponding error-reporting miscellaneous register (MCi_MISC0). When cleared,
this bit indicates that the contents of the MCi_MISC0 register are not valid.

• EN—Bit 60. When set to 1, this bit indicates that the error condition is enabled in the
corresponding error-reporting control register (MCi_CTL). Errors disabled by MCi_CTL do not
cause a machine-check exception.

• UC—Bit 61. When set to 1, this bit indicates that the logged error status is for an uncorrected error.
When cleared, the error class is determined by looking at the Deferred bit; the error is a Corrected
error if the Deferred bit is clear or a Deferred error if the Deferred bit is set. (See Section 9.1.2,
“Error Detection, Logging, and Reporting,” on page 264, for more detail on these error classes.)

• OVER—Bit 62. This bit is set to 1 by the processor if the VAL bit is already set to 1 as the
processor attempts to write error information into MCi_STATUS. In this situation, the machine-
check mechanism handles the contents of MCi_STATUS as follows:
- For processor implementations that log errors for disabled reporting banks, status for an

enabled error replaces status for a disabled error.
- Status for a deferred error replaces status for a corrected error.

276 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

- Status for an uncorrected error replaces status for a corrected or deferred error.
- Status for an enabled uncorrected error is never replaced.
See Section “MCA Overflow” on page 272 for more information on this field.

• VAL—Bit 63. This bit is set to 1 by the processor if the contents of MCi_STATUS are valid.
Software should clear the VAL bit after reading the MCi_STATUS register, otherwise a subsequent
machine-check error sets the OVER bit as described above.

When a machine-check error occurs, the processor writes an error code into the appropriate
MCi_STATUS register MCA error-code field. The MCi_STATUS[VAL] bit is set to 1, indicating that
the MCi_STATUS register contents are valid.

MCA error-codes are used to report errors in the memory hierarchy, the system bus, and the system-
interconnection logic. Error-codes are divided into subfields that are used to describe the cause of an
error. The information is implementation-specific. For further information, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

Machine-Check Address Registers. Each error-reporting register bank includes a machine-check
address register (MCi_ADDR) that the processor uses to report the address or location associated with
the logged error. The address field can hold a virtual (linear) address, a physical address, or a value
indicating an internal physical location, depending on the type of error. For further information, see the
documentation for particular implementations of the architecture. The contents of this register are
valid only if the ADDRV bit in the corresponding MCi_STATUS register is set to 1.

Machine-Check Miscellaneous-Error Information Register 0(MCi_MISC0). Each error-reporting
register bank includes the Machine-Check Miscellaneous 0 register that the processor uses to report
additional error information.

In some implementations, the MCi_MISC0 register is used for error thresholding. Thresholding is a
mechanism provided by hardware to:
• count detected errors, and
• (optionally) generate an APIC-based interrupt when a programmed number of errors has been

counted.

Processor hardware counts detected errors and ensures that multiple error sources do not share the
same thresholding register. Software can use corrected error counts to help predict which components
might soon fail (begin generating uncorrectable errors) and schedule their replacement.

Threshold counters increment for error sources that are enabled for logging.

The MCi_MISC0[BlkPtr] field is used to point to any additional MCi_MISCj registers, where j > 0. If
this field is zero, no additional MCi_MISC registers are implemented. If this field is one, and
Fn8000_0007_EBX[ScalableMca]=1, additional MCi_MISC registers are implemented.

Additional Machine-Check Miscellaneous-Error Information Registers (MCi_MISCj). If the
MCi_MISC0[BlkPtr] field is non-zero and Fn8000_0007_EBX[ScalableMca]=0, up to 8 additional

Machine Check Architecture 277

24593—Rev. 3.30—September 2018 AMD64 Technology

MCi_MISCj registers can be implemented for the error-reporting bank i (for a total of 9). These
registers are allocated in contiguous blocks of 8, with MCi_MISC1 addressed by:

 MCi_MISC1 address = C000_0400h + (MCi_MISC0[BlkPtr] << 3)

This is illustrated in Figure 9-7 below.

Figure 9-7. MCi_MISC1 Addressing

The format of implemented MCi_MISCj registers depends upon their use and use can vary from one
implementation to another. Figure 9-8 below illustrates the format of a miscellaneous error
information register when used as an error thresholding register.

All miscellaneous error information registers will contain the VAL field in bit position 63.
MCi_MISC0 must contain the BLKP field in bits 31:24.

MCi_CTL
MCi_STATUS
MCi_ADDR

C000_0400h + (MCi_MISC0[BlkPtr] << 3)
MCi_MISC1
MCi_MISC2
MCi_MISC3

. . .

MCi_MISC0

MCi_MISC8

278 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 9-8. Miscellaneous Information Register (Thresholding Register Format)

The fields within the MCi_MISCj register are:
• Valid (VAL)—Bit 63. When set to 1, indicates that the counter present (CTRP) and block pointer

(BLKP) fields in this register are valid.
• Counter Present (CTRP)—Bit 62. When set to 1, indicates the presence of a threshold counter.
• Locked (LKD)—Bit 61. When set to 1, indicates that the threshold counter is not available for OS

use. If this is the case, writes to bits 60:0 of this register are ignored and do not generate a fault.
Software must check the Locked bit before writing into the thresholding register.
This field is write-enabled by MSR C001_0015h Hardware Configuration Register
[MCSTATUSWrEn].

• IntP (Thresholding Interrupt Supported)—Bit 60. When set, this bit indicates that the reporting of
threshold overflow via interrupt is supported. Interrupt type is determined by the setting of the
INTT field.

• LVT Offset (LVTOFF)—Bits 55:52. This field specifies the address of the APIC LVT entry to
deliver the threshold counter interrupt. Software must initialize the APIC LVT entry before
enabling the threshold counter to generate the APIC interrupt; otherwise, undefined behavior may
result.
APIC LVT address = (MCi_MISCj[LvtOff] << 4) + 500h

63 62 61 60 59 56 55 52 51 50 49 48 47 32

V
A
L

C
T
R
P

L
K
D In

tP Reserved LVTOFF

C
N
T
E

I
N
T
T

O
F ERRCT

31 24 23 0

BLKP Reserved

Bits Mnemonic Description R/W Reset
63 VAL Valid R 1b
62 CTRP Counter Present R 1b
61 LKD Locked R/W 0b
60 IntP Thresholding Interrupt Supported R Xb
59:56 Reserved
55:52 LVTOFF LVT Offset R/W 0000b
51 CNTE Counter Enable R/W 0b
50:49 INTT Interrupt Type R/W 00b
48 OF Overflow R/W Xb
47:32 ERRCT Error Counter R/W XXXXh
31:24 BLKP Block pointer for additional MISC registers R
23:0 Reserved

Machine Check Architecture 279

24593—Rev. 3.30—September 2018 AMD64 Technology

• Counter Enable (CNTE)—Bit 51. When set to 1, counting of implementation-dependent errors is
enabled; otherwise, counting is disabled.

• Interrupt Type (INTT)—Bits 50:49. The value of this field specifies the type of interrupt signaled
when the value of the overflow bit changes from 0 to 1.
- 00b = No interrupt
- 01b = APIC-based interrupt
- 10b = Reserved
- 11b = Reserved

• Overflow (OF)—Bit 48. The value of this field is maintained through a warm reset. This bit is set
by hardware when the error counter increments to its maximum implementation-supported value
(from FFFEh to FFFFh for the maximum implementation-supported value). This is defined as the
threshold level. When the overflow bit is set, the interrupt selected by the interrupt type field is
generated. Software must reset this bit to zero in the interrupt handler routine when they update the
error counter.

• Error Counter (ERRCT)—Bits 47:32. This field is maintained through a warm reset. The size of
the threshold counter is implementation-dependent. Implementations with less than 16 bits fill the
most significant unimplemented bits with zeros.
Software enumerates the counter bits to discover the size of the counter and the threshold level
(when counter increments to the maximum count implemented). Software sets the starting error
count as follows:
Starting error count = threshold level – desired software error count to cause overflow
The error counter is incremented by hardware when errors for the associated error counter are
logged. When this counter overflows, it stays at the maximum error count (with no rollover).

• Block pointer for additional MISC registers (BLKP)—Bits 31:24. This field is only valid when
valid (VAL) bit is set. When non-zero, this field is used to indicate the presence of additional
MCi_MISC registers.

Other formats for miscellaneous information registers are implementation-dependent, see the BIOS
and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to
your product for more details.

9.4 Initializing the Machine-Check Mechanism
Following a processor reset, all machine-check error-reporting enable bits are disabled. System
software must enable these bits before machine-check errors can be reported. Generally, system
software should initialize the machine-check mechanism using the following process:
• Execute the CPUID instruction and verify that the processor supports the machine-check

exception (MCE) and machine-check registers (MCA). Software should not proceed with
initializing the machine-check mechanism if the machine-check registers are not supported.

• If the machine-check registers are supported, system software should take the following steps:

280 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

- Check to see if the CTLP bit in the MCG_CAP register is set to 1. If it is, then the MCG_CTL
register is supported by the processor. If the MCG_CTL register is supported, software should
set its enable bits to 1 for the machine-check features it uses. Software can load MCG_CTL
with all 1s to enable all available machine-check reporting banks.

- Read the COUNT field from the MCG_CAP register to determine the number of error-
reporting register banks supported by the processor. For each error-reporting register bank,
software should set the enable bits to 1 in the MCi_CTL register for the error types it wants the
processor to report. Software can write each MCi_CTL with all 1s to enable all error-reporting
mechanisms.
Not enabling reporting banks that may be involved in the reporting of uncorrected errors can
lead to the loss of system reliability and error recoverability.

- Check the VAL bit on each implemented MCi_STATUS register. It is possible that valid error-
status information has already been logged in the MCi_STATUS registers at the time software
is attempting to initialize them. The status can reflect errors logged prior to a warm reset or
errors recorded during the system power-up and boot process. Before clearing the
MCi_STATUS registers, software should examine their contents and log any errors found.

- After saving any valid error information contained in the MCi_STATUS, MCi_ADDR, and
any implemented miscellaneous error information registers for each implemented reporting
bank, software should clear all status fields in the MCi_STATUS register for each bank by
writing all 0s to the register.

• As a final step in the initialization process, system software should enable the machine-check
exception by setting CR4[MCE] to 1.

A machine-check condition that occurs while CR4[MCE] is cleared will result in the processor core
entering the shutdown state.

9.5 Using MCA Features
System software can detect and handle logged errors using three methods:
1. Polling

Software can periodically examine the machine-check status registers for errors, and save any
error information found. Uncorrected errors found during polling will require some type of
immediate response to initiate recovery or shutdown.

2. Enabling machine-check reporting
When reporting is enabled, any uncorrected error that occurs causes control to be transferred to the
machine-check exception handler. The exception handler can be designed for a specific processor
implementation or can be generalized to work on multiple implementations.

3. Setting up and enabling interrupts for deferred and corrected errors
In many implementations, MCA hardware can be configured to generate an interrupt hardware on
the detection of a deferred error or when a programmed corrected error threshold is reached.

Machine Check Architecture 281

24593—Rev. 3.30—September 2018 AMD64 Technology

These methods are not mutually exclusive.

9.5.1 Determining the Scope of Detected Errors

Table 9-4 details the actions that recovery software should take and the level of recovery possible
based on status information returned in the MCi_STATUS and MCG_STATUS registers.

9.5.2 Handling Machine Check Exceptions

The processor uses the interrupt control-transfer mechanism to invoke an exception handler after a
machine-check exception occurs. This requires system software to initialize the interrupt-descriptor
table (IDT) with either an interrupt gate or a trap gate that references the interrupt handler. See
“Legacy Protected-Mode Interrupt Control Transfers” on page 239 and “Long-Mode Interrupt Control
Transfers” on page 249 for more information on interrupt control transfers.

At a minimum, the machine-check exception handler must be capable of logging errors for later
examination. This can be a sufficient implementation for some handlers. More thorough exception-
handler implementations can analyze the error to determine if it is unrecoverable, and whether it can
be recovered in software.

Machine-check exception handlers that attempt recovery must be thorough in their analysis and their
corrective actions. The following guidelines should be used when writing such a handler:
• The status registers in all the enabled error-reporting register banks must be examined to identify

the cause of the machine-check exception. Read the COUNT field from MCG_CAP to determine
the number of status registers supported by the processor.

• Check the valid bit in each status register (MCi_STATUS[VAL]). The MCi_STATUS register does
not need to be examined when its valid bit is clear.

Table 9-4. Error Scope
MCi_STATUS

Error Scope
PCC TCC UC Deferred

1 — 1 — System fatal error. Error has corrupted the processor core architectural
state. System processing must be terminated.

0 0 1 — Recoverable error. If software can correct the error, the interrupted
program can be resumed.

0 1 1 —
Containable error. The interrupted instruction stream cannot be resumed.
System-level recovery may be possible if software can localize the error
and terminate any affected software processes.

0 0 0 1

Deferred error. Immediate software action is not required. A latent error
has been discovered, but not yet consumed. Error handling software may
attempt to correct this data error, or prevent access by processes which
map the data, or make the physical resource containing the data
inaccessible.

0 0 0 0 Hardware corrected error. No software action is required. Error
information should be saved for analysis.

282 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

• Check the valid MCi_STATUS registers to see if error recovery is possible. Error recovery is not
possible when:
- The processor-context corrupt bit (MCi_STATUS[PCC]) is set to 1.
- The error-overflow status bit (MCi_STATUS[OVER]) is set and the processor does not support

recoverable MCi_STATUS overflow (as indicated by feature bit CPUID
Fn8000_0007_EBX[McaOverflowRecov] = 0).

- The processor does not support Machine Check Recovery as indicated by feature bit CPUID
Fn8000_0007_EBX[SUCCOR].

If error recovery is not possible, the handler should log the error information and return to the
system software responsible for shutting down the processor core.

• Check the MCi_STATUS[UC] bit to see if the processor corrected the error. If UC is set, the
processor did not correct the error and the exception handler must correct the error before
restarting the interrupted program.
- If MCA Recovery is supported:

 • Check MCA_STATUS[TCC].
 • If TCC is set, the context of the process thread executing on the interrupted logical core may

be corrupt and the thread cannot be recovered. The rest of the system is unaffected; it is
possible to terminate only the affected process thread.

 • If TCC is clear, the context of the process thread executing on the interrupted logical core is
not corrupt. Recovery of the process thread may be possible, but only if the uncorrected
error condition is first corrected by software; otherwise, the interrupted process thread must
be terminated.

If the handler cannot correct the error or the MCG_STATUS[RIPV] bit is cleared, it should not
return control to the interrupted program, but should log the error information and terminate the
software process that was about to consume the uncorrected data. If the error has compromised the
state of a guest operating system, the guest should be restarted. If the state of the virtual machine
has been corrupted, the virtual machine must be reinitialized.

• When identifying the error condition, portable exception handlers should examine only the
architecturally defined fields of the MCi_STATUS register.

• If the MCG_STATUS[RIPV] bit is set, the interrupted program can be restarted reliably at the
instruction pointer address pushed onto the exception handler stack. If RIPV = 0, the interrupted
program cannot be restarted reliably at that location, although it can be restarted at that location for
debugging purposes.

• When logging errors, particularly those that are not recoverable, check the MCG_STATUS[EIPV]
bit to see if the instruction-pointer address pushed onto the exception handler stack is related to the
machine-check error. If EIPV = 0, the address is not guaranteed to be related to the error.

• Before exiting the machine-check handler, clear the MCG_STATUS[MCIP] bit. MCIP indicates a
machine-check exception occurred. If this bit is set when another machine-check exception occurs,
the processor enters the shutdown state.

Machine Check Architecture 283

24593—Rev. 3.30—September 2018 AMD64 Technology

• When an exception handler is able to, at a minimum, successfully log an error condition, the
MCi_STATUS registers should be cleared before exiting the machine-check handler. Software is
responsible for clearing at least the MCi_STATUS[VAL] bits.

• Additional machine-check exception-handler portability can be added by having the handler use
the CPUID instruction to identify the processor and its capabilities. Implementation-specific
software can be added to the machine-check exception handler based on the processor information
reported by CPUID.

9.5.3 Reporting Corrected Errors

Machine-check exceptions do not occur if the error is corrected by the processor. If system software
wishes to detect and save information concerning corrected machine-check errors, a system-service
routine must be provided to check the contents of the machine-check status registers for corrected
errors. The service routine can be invoked by system software on a periodic basis, or by an error-
thresholding interrupt.

A service routine that gathers error information for corrected errors should perform the following:
• Examine the status register (MCi_STATUS) in each of the enabled error-reporting register banks.

For each MCi_STATUS register with a set valid bit (VAL=1), the service routine should:
- Save the contents of the MCi_STATUS register.
- Save the contents of the corresponding MCi_ADDR register if MCi_STATUS[ADDRV] = 1.
- Save the contents of the corresponding MCi_MISC register if MCi_STATUS[MISCV] = 1.

• Once the information found in the error-reporting register banks is saved, the MCi_STATUS
register should be cleared. This allows the processor to properly report any subsequent errors in the
MCi_STATUS registers.

• The service routine can save the time-stamp counter with each error logged. This can help in
determining how frequently errors occur. For further information, see “Time-Stamp Counter” on
page 371.

• In multiprocessor configurations, the service routine can save the processor-node identifier. This
can help locate a failing multiprocessor-system component, which can then be isolated from the
rest of the system. For further information, see the documentation for particular implementations
of the architecture.

284 Machine Check Architecture

AMD64 Technology 24593—Rev. 3.30—September 2018

System-Management Mode 285

24593—Rev. 3.30—September 2018 AMD64 Technology

10 System-Management Mode

System-management mode (SMM) is an operating mode designed for system-control activities like
power management. Normally, these activities are transparent to conventional operating systems and
applications. SMM is used by platform firmware and specialized low-level device drivers, rather than
the operating system.

The SMM interrupt-handling mechanism differs substantially from the standard interrupt-handling
mechanism described in Chapter 8, “Exceptions and Interrupts.” SMM is entered using a special
external interrupt called the system-management interrupt (SMI). After an SMI is received by the
processor, the processor saves the processor state in a separate address space, called SMRAM. The
SMM-handler software and data structures are also located in the SMRAM space. Interrupts and
exceptions that ordinarily cause control transfers to the operating system are disabled when SMM is
entered. The processor exits SMM, restores the saved processor state, and resumes normal execution
by using a special instruction, RSM.

In SMM, address translation is disabled and addressing is similar to real mode. SMM programs can
address up to 4 Gbytes of physical memory. See “SMM Operating-Environment” on page 295 for
additional information on memory addressing in SMM.

The following sections describe the components of the SMM mechanism:
• “SMM Resources” on page 286—this section describes SMRAM, the SMRAM save-state area

used to hold the processor state, and special SMRAM save-state entries used in support of SMM.
• “Using SMM” on page 295—this section describes the mechanism of entering and exiting SMM.

It also describes SMM memory allocation, addressing, and interrupts and exceptions.

Of these mechanisms, only the format of the SMRAM save-state area differs between the AMD64
architecture and the legacy architecture.

Note: Model-independent aspects of SMM operation are described here; see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual of a given processor
family for possible model-specific details.

10.1 SMM Differences
There are functional differences between the SMM support in the AMD64 architecture and the SMM
support found in previous architectures. These are:
• The SMRAM state-save area layout is changed to hold the 64-bit processor state.
• The initial processor state upon entering SMM is expanded to reflect the 64-bit nature of the

processor.
• New conditions exist that can cause a processor shutdown while in SMM.

286 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

• The auto-halt restart and I/O-instruction restart entries in the SMRAM state-save area are one byte
each instead of two bytes each.

• SMRAM caching considerations are modified because the legacy FLUSH# external signal
(writeback, if modified, and invalidate) is not supported on implementations of the AMD64
architecture.

• Some previous AMD x86 processors saved and restored the CR2 register in the SMRAM state-
save area. This register is not saved by the SMM implementation in the AMD64 architecture.
SMM handlers that save and restore CR2 must perform the operation in software.

10.2 SMM Resources
The SMM resources supported by the processor consist of SMRAM, the SMRAM state-save area, and
special entries within the SMRAM state-save area. In addition to the save-state area, SMRAM
includes space for the SMM handler.

10.2.1 SMRAM

SMRAM is the memory-address space accessed by the processor when in SMM. The default size of
SMRAM is 64 Kbytes and can range in size between 32 Kbytes and 4 Gbytes. System logic can use
physically separate SMRAM and main memory, directing memory transactions to SMRAM after
recognizing SMM is entered, and redirecting memory transactions back to system memory after
recognizing SMM is exited. When separate SMRAM and main memory are used, the system designer
needs to provide a method of mapping SMRAM into main memory so that the SMI handler and data
structures can be loaded.

Figure 10-1 on page 287 shows the default SMRAM memory map. The default SMRAM code-
segment (CS) has a base address of 0003_0000h (the base address is automatically scaled by the
processor using the CS-selector register, which is set to the value 3000h). This default SMRAM-base
address is known as SMBASE. A 64-Kbyte memory region, addressed from 0003_0000h to
0003_FFFFh, makes up the default SMRAM memory space. The top 32 Kbytes (0003_8000h to
0003_FFFFh) must be supported by system logic, with physical memory covering that entire address
range. The top 512 bytes (0003_FE00h to 0003_FFFFh) of this address range are the default SMM
state-save area. The default entry point for the SMM interrupt handler is located at 0003_8000h.

System-Management Mode 287

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 10-1. Default SMRAM Memory Map

10.2.2 SMBASE Register

The format of the SMBASE register is shown in Figure 10-2. SMBASE is an internal processor
register that holds the value of the SMRAM-base address. SMBASE is set to 30000h after a processor
reset.

Figure 10-2. SMBASE Register

In some operating environments, relocation of SMRAM to a higher memory area can provide more
low memory for legacy software. SMBASE relocation is supported when the SMM-base relocation bit
in the SMM-revision identifier (bit 17) is set to 1. In processors implementing the AMD64
architecture, SMBASE relocation is always supported.

Software can only modify SMBASE (relocate the SMRAM-base address) by entering SMM,
modifying the SMBASE image stored in the SMRAM state-save area, and exiting SMM. The SMM-

513-250.eps

SMM State-Save Area

SMRAM

0003_FFFFh

0003_FE00h

0003_8000h

0003_0000h

SMM Handler

(SMBASE+8000h)

(SMBASE)

(SMBASE+FFFFh)

031

SMRAM Base

288 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

handler entry point must be loaded at the new memory location specified by SMBASE+8000h. The
next time SMM is entered, the processor saves its state in the new state-save area at
SMBASE+0FE00h, and begins executing the SMM handler at SMBASE+8000h. The new SMBASE
address is used for every SMM until it is changed, or a hardware reset occurs.

When SMBASE is used to relocate SMRAM to an address above 1 Mbyte, 32-bit address-size-
override prefixes must be used to access this memory. This is because addressing in SMM behaves as
it does in real mode, with a 16-bit default operand size and address size. The values in the 16-bit
segment-selector registers are left-shifted four bits to form a 20-bit segment-base address. Without
using address-size overrides, the maximum computable address is 10FFEFh.

Because SMM memory-addressing is similar to real-mode addressing, the SMBASE address must be
less than 4 Gbytes.

10.2.3 SMRAM State-Save Area

When an SMI occurs, the processor saves its state in the 512-byte SMRAM state-save area during the
control transfer into SMM. The format of the state-save area defined by the AMD64 architecture is
shown in Table 10-1. This table shows the offsets in the SMRAM state-save area relative to the
SMRAM-base address. The state-save area is located between offset 0_FE00h (SMBASE+0_FE00h)
and offset 0_FFFFh (SMBASE+0_FFFFh). Software should not modify offsets specified as read-only
or reserved, otherwise unpredictable results can occur.

Table 10-1. AMD64 Architecture SMM State-Save Area
Offset (Hex)

from SMBASE Contents Size Allowable
Access

FE00h

ES

Selector Word

Read-Only
FE02h Attributes Word
FE04h Limit Doubleword
FE08h Base Quadword
FE10h

CS

Selector Word

Read-Only
FE12h Attributes Word
FE14h Limit Doubleword
FE18h Base Quadword
FE20h

SS

Selector Word

Read-Only
FE22h Attributes Word
FE24h Limit Doubleword
FE28h Base Quadword
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 289

24593—Rev. 3.30—September 2018 AMD64 Technology

FE30h

DS

Selector Word

Read-Only
FE32h Attributes Word
FE34h Limit Doubleword
FE38h Base Quadword
FE40h

FS

Selector Word

Read-Only
FE42h Attributes Word
FE44h Limit Doubleword
FE48h Base Quadword
FE50h

GS

Selector Word

Read-Only
FE52h Attributes Word
FE54h Limit Doubleword
FE58h Base Quadword
FE60h–FE63h

GDTR

Reserved 4 Bytes

Read-Only
FE64h Limit Word
FE66h–FE67h Reserved 2 Bytes
FE68h Base Quadword
FE70h

LDTR

Selector Word

Read-Only
FE72h Attributes Word
FE74h Limit Doubleword
FE78h Base Quadword
FE80h–FEB3h

IDTR

Reserved 4 Bytes

Read-Only
FE84h Limit Word
FEB6h–FEB7h Reserved 2 Bytes
FE88h Base Quadword
FE90h

TR

Selector Word

Read-Only
FE92h Attributes Word
FE94h Limit Doubleword
FE98h Base Quadword
FEA0h I/O Instruction Restart RIP Quadword Read-Only
FEA8h I/O Instruction Restart RCX Quadword Read-Only
FEB0h I/O Instruction Restart RSI Quadword Read-Only
FEB8h I/O Instruction Restart RDI Quadword Read-Only
FEC0h I/O Instruction Restart Dword Doubleword Read-Only
FEC4h–FEC7h Reserved 4 Bytes —

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

290 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

FEC8h I/O Instruction Restart Byte
Read/Write

FEC9h Auto-Halt Restart Byte
FECAh—FECFh Reserved 5 Bytes —
FED0h EFER Quadword Read-Only
FED8h SVM Guest Quadword

Read-OnlyFEE0h SVM Guest VMCB Physical Address Quadword
FEE8h SVM Guest Virtual Interrupt Quadword
FEF0h—FEFBh Reserved 10 Bytes —

FEFCh SMM-Revision Identifier1 Doubleword Read-Only

FF00h SMBASE Doubleword Read/Write
FF04h—FF1Fh Reserved 27 Bytes —
FF20h SVM Guest PAT Quadword

Read-Only
FF28h SVM Host EFER Quadword
FF30h SVM Host CR4 Quadword
FF38h SVM Host CR3 Quadword
FF40h SVM Host CR0 Quadword
FF48h CR4 Quadword

Read-OnlyFF50h CR3 Quadword
FF58h CR0 Quadword
FF60h DR7 Quadword

Read-Only
FF68h DR6 Quadword
FF70h RFLAGS Quadword Read/Write
FF78h RIP Quadword

Read/Write

FF80h R15 Quadword
FF88h R14 Quadword
FF90h R13 Quadword
FF98h R12 Quadword
FFA0h R11 Quadword
FFA8h R10 Quadword
FFB0h R9 Quadword
FFB8h R8 Quadword

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 291

24593—Rev. 3.30—September 2018 AMD64 Technology

A number of other registers are not saved or restored automatically by the SMM mechanism. See
“Saving Additional Processor State” on page 297 for information on using these registers in SMM.

As a reference for legacy processor implementations, the legacy SMM state-save area format is shown
in Table 10-2. Implementations of the AMD64 architecture do not use this format.

FFC0h RDI Quadword

Read/Write

FFC8h RSI Quadword
FFD0h RBP Quadword
FFD8h RSP Quadword
FFE0h RBX Quadword
FFE8h RDX Quadword
FFF0h RCX Quadword
FFF8h RAX Quadword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture)

Offset (Hex)
from SMBASE Contents Size Allowable

Access
FE00h—FEF7h Reserved 248 Bytes —
FEF8h SMBASE Doubleword Read/Write
FEFCh SMM-Revision Identifier Doubleword Read-Only
FF00h I/O Instruction Restart Word

Read/Write
FF02h Auto-Halt Restart Word
FF04h—FF87h Reserved 132 Bytes —
FF88h GDT Base Doubleword Read-Only
FF8Ch—FF93h Reserved Quadword —
FF94h IDT Base Doubleword Read-Only
FF98h—FFA7h Reserved 16 Bytes —
Note:

1. The offset for the SMM-revision identifier is compatible with previous implementations.

Table 10-1. AMD64 Architecture SMM State-Save Area (continued)
Offset (Hex)

from SMBASE Contents Size Allowable
Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

292 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

10.2.4 SMM-Revision Identifier

The SMM-revision identifier specifies the SMM version and the available SMM extensions
implemented by the processor. Software reads the SMM-revision identifier from offset FEFCh in the
SMM state-save area of SMRAM. This offset location is compatible with earlier versions of SMM.
Software must not write to this location. Doing so can produce undefined results. Figure 10-3 on
page 293 shows the format of the SMM-revision identifier.

FFA8h ES Doubleword

Read-Only

FFACh CS Doubleword
FFB0h SS Doubleword
FFB4h DS Doubleword
FFB8h FS Doubleword
FFBCh GS Doubleword
FFC0h LDT Base Doubleword

Read-Only
FFC4h TR Doubleword
FFC8h DR7 Doubleword

Read-Only
FFCCh DR6 Doubleword
FFD0h EAX Doubleword

Read/Write

FFD4h ECX Doubleword
FFD8h EDX Doubleword
FFDCh EBX Doubleword
FFE0h ESP Doubleword
FFE4h EBP Doubleword
FFE8h ESI Doubleword
FFECh EDI Doubleword
FFF0h EIP Doubleword Read/Write
FFF4h EFLAGS Doubleword Read/Write
FFF8h CR3 Doubleword

Read-Only
FFFCh CR0 Doubleword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD64
Architecture) (continued)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

System-Management Mode 293

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 10-3. SMM-Revision Identifier

The fields within the SMM-revision identifier are:
• SMM-revision Level—Bits 15:0. Specifies the version of SMM supported by the processor. The

SMM-revision level is of the form 0_xx64h, where xx starts with 00 and is incremented for later
revisions to the SMM mechanism.

• I/O Instruction Restart—Bit 16. When set to 1, the processor supports restarting I/O instructions
that are interrupted by an SMI. This bit is always set to 1 by implementations of the AMD64
architecture. See “I/O Instruction Restart” on page 299 for information on using this feature.

• SMM Base Relocation—Bit 17. When set to 1, the processor supports relocation of SMRAM. This
bit is always set to 1 by implementations of the AMD64 architecture. See “SMBASE Register” on
page 287 for information on using this feature.

All remaining bits in the SMM-revision identifier are reserved.

10.2.5 SMRAM Protected Areas

Two areas are provided as safe areas for SMM code and data that are not readily accessible by non-
SMM applications. The SMI handler can be located in one of these two ranges, or it can be located
outside of these ranges. The handler is placed in the desired range by setting SMBASE accordingly.

The ASeg range is located at a fixed address from A_0000h to B_FFFFh. The TSeg range is located at
a variable base specified by the SMM_ADDR MSR with a variable size specified by the
SMM_MASK MSR. These ranges must never overlap.

Each CPU memory access is in the TSeg range if the following is true:

Phys Addr[51:17] & SMM_MASK[51:17] = SMM_ADDR[51:17] & SMM_MASK[51:17].

513-251eps

SMM-Revision Level

015161731

Reserved

Description Bits

SMM-Revision Level
I/O Instruction Restart
SMM Base Relocation

15:0
16
17

18

1 1

294 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

For example, if the TSeg range spans 256 Kbytes starting at address 10_0000h, then SMM_ADDR
=0010_0000h and SMM_MASK=FFFC_0000h. This results in a TSeg address range from 0010_0000
to 0013_FFFFh. The TSeg range must be aligned to a 128 Kbyte boundary and the minimum TSeg
size is 128 Kbytes.

Figure 10-4. SMM_ADDR Register Format

• SMM TSeg Base Address (BASE)—Bits 51:17. Specifies the base address of the TSeg range of
protected addresses.

Figure 10-5. SMM_MASK Register Format

• ASeg Address Range Enable (AE)—Bit 0. Specifies whether the ASeg address range is enabled for
protection. When the bit is set to 1, the ASeg address range is enabled for protection. When cleared
to 0, the ASeg address range is disabled for protection.

63 52 51 32

Reserved, MBZ BASE[51:32]

31 17 16 0

BASE[31:17] Reserved, MBZ

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:17 BASE SMM TSeg Base Address R/W
16:0 Reserved Reserved, Must be Zero

63 52 51 32

Reserved, MBZ MASK[51:32]

31 17 16 2 1 0

MASK[31:17] Reserved, MBZ TE AE

Bits Mnemonic Description R/W
63:52 Reserved Reserved, Must be Zero
51:17 MASK TSeg Mask R/W
16:2 Reserved Reserved, Must be Zero
1 TE Tseg Address Range Enable R/W
0 AE Aseg Address Range Enable R/W

System-Management Mode 295

24593—Rev. 3.30—September 2018 AMD64 Technology

• TSeg Address Range Enable (TE)—Bit 1. Specifies whether the TSeg address range is enabled for
protection. When the bit is set to 1, the TSeg address range is enabled for protection. When cleared
to 0, the TSeg address range is disabled for protection.

• TSeg Mask (MASK)—Bits 51:17. Specifies the mask used to determine the TSeg range of protected
addresses. The physical address is in the TSeg range if the following is true:
Phys Addr[51:17] & SMM_MASK[51:17] = SMM_ADDR[51:17] & SMM_MASK[51:17].

Note that a processor is not required to implement all 52 bits of the physical address.

10.3 Using SMM
10.3.1 System-Management Interrupt (SMI)

SMM is entered using the system-management interrupt (SMI). SMI is an external non-maskable
interrupt that operates differently from and independently of other interrupts. SMI has priority over all
other external interrupts, including NMI (see “Priorities” on page 234 for a list of the interrupt
priorities). SMIs are disabled when in SMM, which prevents reentrant calls to the SMM handler.

When an SMI is received by the processor, the processor stops fetching instructions and waits for
currently-executing instructions to complete and write their results. The SMI also waits for all
buffered memory writes to update the caches or system memory. When these activities are complete,
the processor uses implementation-dependent external signaling to acknowledge back to the system
that it has received the SMI.

10.3.2 SMM Operating-Environment

The SMM operating-environment is similar to real mode, except that the segment limits in SMM are 4
Gbytes rather than 64 Kbytes. This allows an SMM handler to address memory in the range from 0h to
0FFFF_FFFFh. As with real mode, segment-base addresses are restricted to 20 bits in SMM, and the
default operand-size and address-size is 16 bits. To address memory locations above 1 Mbyte, the
SMM handler must use the 32-bit operand-size-override and address-size-override prefixes.

After saving the processor state in the SMRAM state-save area, a processor running in SMM sets the
segment-selector registers and control registers into a state consistent with real mode. Other registers
are also initialized upon entering SMM, as shown in Table 10-3.

Table 10-3. SMM Register Initialization
Register Initial SMM Contents

CS

Selector SMBASE right-shifted 4 bits
Base SMBASE
Limit FFFF_FFFFh
Attr Read-Write-Execute

296 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

10.3.3 Exceptions and Interrupts

All hardware interrupts are disabled upon entering SMM, but exceptions and software interrupts are
not disabled. If necessary, the SMM handler can re-enable hardware interrupts. Software that handles
interrupts in SMM should consider the following:
• SMI—If an SMI occurs while the processor is in SMM, it is latched by the processor. The latched

SMI occurs when the processor leaves SMM.
• NMI—If an NMI occurs while the processor is in SMM, it is latched by the processor, but the NMI

handler is not invoked until the processor leaves SMM with the execution of an RSM instruction.
A pending NMI causes the handler to be invoked immediately after the RSM completes and before
the first instruction in the interrupted program is executed.
An SMM handler can unmask NMI interrupts by simply executing an IRET. Upon completion of
the IRET instruction, the processor recognizes the pending NMI, and transfers control to the NMI
handler. Once an NMI is recognized within SMM using this technique, subsequent NMIs are
recognized until SMM is exited. Later SMIs cause NMIs to be masked, until the SMM handler
unmasks them.

• Exceptions—Exceptions (internal processor interrupts) are not disabled and can occur while in
SMM. Therefore, the SMM-handler software should be written to avoid generating exceptions.

• Software Interrupts—The software-interrupt instructions (BOUND, INTn, INT3, and INTO) can
be executed while in SMM. However, it is not recommended that the SMM handler use these
instructions.

• Maskable Interrupts—RFLAGS.IF is cleared to 0 by the processor when SMM is entered.
Software can re-enable maskable interrupts while in SMM, but it must follow the guidelines listed
below for handling interrupts.

• Debug Interrupts—The processor disables the debug interrupts when SMM is entered by clearing
DR7 to 0 and clearing RFLAGS.TF to 0. The SMM handler can re-enable the debug facilities
while in SMM, but it must follow the guidelines listed below for handling interrupts.

DS, ES, FS, GS, SS

Selector 0000h
Base 0000_0000_0000_0000h
Limit FFFF_FFFFh
Attr Read-Write

RIP 0000_0000_0000_8000h
RFLAGS 0000_0000_0000_0002h

CR0
PE, EM, TS, PG bits cleared to 0.
All other bits are unmodified.

CR4 0000_0000_0000_0000h
DR7 0000_0000_0000_0400h
EFER 0000_0000_0000_0000h

Table 10-3. SMM Register Initialization (continued)
Register Initial SMM Contents

System-Management Mode 297

24593—Rev. 3.30—September 2018 AMD64 Technology

• INIT—The processor does not recognize INIT while in SMM.

Because the RFLAGS.IF bit is cleared when entering SMM, the HLT instruction should not be
executed in SMM without first setting the RFLAGS.IF bit to 1. Setting this bit to 1 allows the
processor to exit the halt state by using an external maskable interrupt.

In the cases where an SMM handler must accept and handle interrupts and exceptions, several
guidelines must be followed:
• Interrupt handlers must be loaded and accessible before enabling interrupts.
• A real-mode interrupt vector table located at virtual (linear) address 0 is required.
• Segments accessed by the interrupt handler cannot have a base address greater than 20 bits because

of the real-mode addressing used in SMM. In SMM, the 16-bit value stored in the segment-selector
register is left-shifted four bits to form the 20-bit segment-base address, like real mode.

• Only the IP (rIP[15:0]) is pushed onto the stack as a result of an interrupt in SMM, because of the
real-mode addressing used in SMM. If the SMM handler is interrupted at a code-segment offset
above 64 Kbytes, then the return address on the stack must be adjusted by the interrupt-handler,
and a RET instruction with a 32-bit operand-size override must be used to return to the SMM
handler.

• If the interrupt-handler is located below 1 Mbyte, and the SMM handler is located above 1 Mbyte,
a RET instruction cannot be used to return to the SMM handler. In this case, the interrupt handler
can adjust the return pointer on the stack, and use a far CALL to transfer control back to the SMM
handler.

10.3.4 Invalidating the Caches

The processor can cache SMRAM-memory locations. If the system implements physically separate
SMRAM and system memory, it is possible for SMRAM and system memory locations to alias into
identical cache locations. In some processor implementations, the cache contents must be written to
memory and invalidated when SMM is entered and exited. This prevents the processor from using
previously-cached main-memory locations as aliases for SMRAM-memory locations when SMM is
entered, and vice-versa when SMM is exited.

Implementations of the AMD64 architecture do not require cache invalidation when entering and
exiting SMM. Internally, the processor keeps track of SMRAM and system-memory accesses
separately and properly handles situations where aliasing occurs. Cached system memory and
SMRAM locations can persist across SMM mode changes. Removal of the requirement to writeback
and invalidate the cache simplifies SMM entry and exit and allows SMM code to execute more
rapidly.

10.3.5 Saving Additional Processor State

Several registers are not saved or restored automatically by the SMM mechanism. These are:
• The 128-bit media instruction registers.
• The 64-bit media instruction registers.

298 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

• The x87 floating-point registers.
• The page-fault linear-address register (CR2).
• The task-priority register (CR8).
• The debug registers, DR0, DR1, DR2, and DR3.
• The memory-type range registers (MTRRs).
• Model-specific registers (MSRs).

These registers are not saved because SMM handlers do not normally use or modify them. If an SMI
results in a processor reset (due to powering down the processor, for example) or the SMM handler
modifies the contents of the unsaved registers, the SMM handler should save and restore the original
contents of those registers. The unsaved registers, along with those stored in the SMRAM state-save
area, need to be saved in a non-volatile storage location if a processor reset occurs. The SMM handler
should execute the CPUID instruction to determine the feature set available in the processor, and be
able to save and restore the registers required by those features. For more information on using the
CPUID instruction, see Section 3.3, “Processor Feature Identification,” on page 63.

The SMM handler can execute any of the 128-bit media, 64-bit media, or x87 instructions. A simple
method for saving and restoring those registers is to use the FXSAVE and FXRSTOR instructions,
respectively, if it is supported by the processor. See “Saving Media and x87 Execution Unit State” on
page 310 for information on saving and restoring those registers.

Floating-point exceptions can occur when the SMM handler uses media or x87 floating-point
instructions. If the SMM handler uses floating-point exception handlers, they must follow the usage
guidelines established in “Exceptions and Interrupts” on page 296. A simple method for dealing with
floating-point exceptions while in SMM is to simply mask all exception conditions using the
appropriate floating-point control register. When the exceptions are masked, the processor handles
floating-point exceptions internally in a default manner, and allows execution to continue
uninterrupted.

10.3.6 Operating in Protected Mode and Long Mode

Software can enable protected mode from SMM and it can also enable and activate long mode. An
SMM handler can use this capability to enter 64-bit mode and save additional processor state that
cannot be accessed from outside 64-bit mode (for example, the most-significant 32 bits of CR2).

10.3.7 Auto-Halt Restart

The auto-halt restart entry is located at offset FEC9h in the SMM state-save area. The size of this field
is one byte, as compared with two bytes in previous versions of SMM.

When entering SMM, the processor loads the auto-halt restart entry to indicate whether SMM was
entered from the halt state, as follows:
• Bit 0 indicates the processor state upon entering SMM:

- When set to 1, the processor entered SMM from the halt state.

System-Management Mode 299

24593—Rev. 3.30—September 2018 AMD64 Technology

- When cleared to 0, the processor did not enter SMM from the halt state.
• Bits 7:1 are cleared to 0.

The SMM handler can write the auto-halt restart entry to specify whether the return from SMM should
take the processor back to the halt state or to the instruction-execution state specified by the SMM
state-save area. The values written are:
• Clear to 00h—The processor returns to the state specified by the SMM state-save area.
• Set to any non-zero value—The processor returns to the halt state.

If the return from SMM takes the processor back to the halt state, the HLT instruction is not re-
executed. However, the halt special bus-cycle is driven on the processor bus after the RSM instruction
executes.

The result of entering SMM from a non-halt state and returning to a halt state is not predictable.

10.3.8 I/O Instruction Restart

The I/O-instruction restart entry is located at offset FEC8h in the SMM state-save area. The size of this
field is one byte, as compared with two bytes in previous versions of SMM. The I/O-instruction restart
mechanism is supported when the I/O-instruction restart bit (bit 16) in the SMM-revision identifier is
set to 1. This bit is always set to 1 in the AMD64 architecture.

When an I/O instruction is interrupted by an SMI, the I/O-instruction restart entry specifies whether
the interrupted I/O instruction should be re-executed following an RSM that returns from SMM. Re-
executing a trapped I/O instruction is useful, for example, when an I/O write is performed to a
powered-down disk drive. When this occurs, the system logic monitoring the access can issue an SMI
to have the SMM handler power-up the disk drive and retry the I/O write. The SMM handler does this
by querying system logic and detecting the failed I/O write, asking system logic to initiate the disk-
drive power-up sequence, enabling the I/O instruction restart mechanism, and returning from SMM.
Upon returning from SMM, the I/O write to the disk drive is restarted.

When an SMI occurs, the processor always clears the I/O-instruction restart entry to 0. If the SMI
interrupted an I/O instruction, then the SMM handler can modify the I/O-instruction restart entry as
follows:
• Clear to 00h (default value)—The I/O instruction is not restarted, and the instruction following the

interrupted I/O-instruction is executed. When a REP (repeat) prefix is used with an I/O instruction,
it is possible that the next instruction to be executed is the next I/O instruction in the repeat loop.

• Set to any non-zero value—The I/O instruction is restarted.

While in SMM, the handler must determine the cause of the SMI and examine the processor state at the
time the SMI occurred to determine whether or not an I/O instruction was interrupted.
Implementations provide state information in the SMM save-state area to assist in this determination:
• I/O Instruction Restart DWORD—indicates whether the SMI interrupted an I/O instruction, and

saves extra information describing the I/O instruction.

300 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

• I/O Instruction Restart RIP—the RIP of the interrupted I/O instruction.
• I/O Instruction Restart RCX—the RCX of the interrupted I/O instruction.
• I/O Instruction Restart RSI—the RSI of the interrupted I/O instruction.
• I/O Instruction Restart RDI—the RDI of the interrupted I/O instruction.

Figure 10-6. I/O Instruction Restart Dword

The fields are as follows:
• PORT—Intercepted I/O port
• SZ32—32-bit I/O port size
• SZ16—16-bit I/O port size
• SZ8—8-bit I/O port size
• REP—Repeated port access
• STR—String based port access (INS, OUTS)
• VAL—Valid (SMI was detected during an I/O instruction.)
• TYPE—Access type (0 = OUT instruction, 1 = IN instruction).

10.4 Leaving SMM
Software leaves SMM and returns to the interrupted program by executing the RSM instruction. RSM
causes the processor to load the interrupted state from the SMRAM state-save area and then transfer
control back to the interrupted program. RSM cannot be executed in any mode other than SMM,
otherwise an invalid-opcode exception (#UD) occurs.

An RSM causes a processor shutdown if an invalid-state condition is found in the SMRAM state-save
area. Only an external reset, external processor-initialization, or non-maskable external interrupt
(NMI) can cause the processor to leave the shutdown state. The invalid SMRAM state-save-area
conditions that can cause a processor shutdown during an RSM are:
• CR0.PE=0 and CR0.PG=1.
• CR0.CD=0 and CR0.NW=1.
• Certain reserved bits are set to 1, including:

- Any CR0 bit in the range 63:32 is set to 1.
- Any unsupported bit in CR3 is set to 1.
- Any unsupported bit in CR4 is set to 1.

31 16 15 7 6 5 4 3 2 1 0

PORT Reserved
S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

System-Management Mode 301

24593—Rev. 3.30—September 2018 AMD64 Technology

- Any DR6 bit or DR7 bit in the range 63:32 is set to 1.
- Any unsupported bit in EFER is set to 1.

• Invalid returns to long mode, including:
- EFER.LME=1, CR0.PG=1, and CR4.PAE=0.
- EFER.LME=1, CR0.PG=1, CR4.PAE=1, CS.L=1, and CS.D=1.

• The SSM revision identifier is modified.

Some SMRAM state-save-area conditions are ignored, and the registers, or bits within the registers,
are restored in a default manner by the processor. This avoids a processor shutdown when an invalid
condition is stored in SMRAM. The default conditions restored by the processor are:
• The EFER.LMA register bit is set to the value obtained by logically ANDing the SMRAM values

of EFER.LME, CR0.PG, and CR4.PAE.
• The RFLAGS.VM register bit is set to the value obtained by logically ANDing the SMRAM

values of RFLAGS.VM, CR0.PE, and the inverse of EFER.LMA.
• The base values of FS, GS, GDTR, IDTR, LDTR, and TR are restored in canonical form. Those

values are sign-extended to bit 63 using the most-significant implemented bit.
• Unimplemented segment-base bits in the CS, DS, ES, and SS registers are cleared to 0.

10.5 Multiprocessor Considerations
For multiprocessor operation, each logical processor must be given a separate SMBASE value so that
the save-state areas do not overlap. For systems with fewer than 64 logical processors it is sufficient to
stagger the SMBASE values by 512 bytes. Note that this also offsets theSMI entry point by the same
amount for each processor. With 64 or more logical processors, the entry points will start to collide
with the save-state areas. Staggering the SMBASE values by 1024 bytes results in 512-byte entry
point areas interleaved with the 512-byte state-save areas, and so provides scaling beyond 63 logical
processors.

Further details on multiprocessor aspects of SMM may be found in the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual for a given processor family.

302 System-Management Mode

AMD64 Technology 24593—Rev. 3.30—September 2018

SSE, MMX, and x87 Programming 303

24593—Rev. 3.30—September 2018 AMD64 Technology

11 SSE, MMX, and x87 Programming

This chapter describes the system-software implications of supporting applications that use the
Streaming SIMD Extensions (SSE), MMX™, and x87 instructions. Throughout this chapter, these
instructions are collectively referred to as media and x87 (media/x87) instructions. A complete listing
of the instructions that fall in this category—and the detailed operation of each instruction—can be
found in volumes 4 and 5. Refer to Volume 1 for information on using these instructions in application
software.

The SSE instruction set is comprised of the legacy SSE instruction set which includes the SSE1, SSE2,
SSE3, SSSE3, SSE4A, SSE4.1, and SSE4.2 subsets and the extended SSE instruction set which
includes the AVX, FMA4, and XOP subsets. Many of the extended SSE instructions support both 128-
bit and 256-bit data types.

11.1 Overview of System-Software Considerations
Processor implementations can support different combinations of the SSE, MMX, and x87 instruction
sets. Two sets of registers—independent of the general-purpose registers—support these instructions.
The SSE instructions operate on the YMM/XMM registers, and the 64-bit media and x87-instructions
operate on the aliased MMX/x87 registers. The SSE and x87 floating-point instruction sets have
distinct status registers, control registers, exception vectors, and system-software control bits for
managing the operating environment. System software that supports use of these instructions must be
able to manage these resources properly including:
• Detecting support for the instruction set, and enabling any optional features, as necessary.
• Saving and restoring the processor media or x87 state.
• Execution of floating-point instructions (media or x87) can produce exceptions. System software

must supply exception handlers for all unmasked floating-point exceptions.

11.2 Determining Media and x87 Feature Support
Support for the architecturally defined subsets within the media and x87 instructions is
implementation dependent. System software executes the CPUID instruction to determine whether a
processor implements any of these features (see Section 3.3, “Processor Feature Identification,” on
page 63 for more information on using the CPUID instruction). After CPUID is executed feature
support can be determined by examining specific bit fields returned in the EAX, ECX, and EDX
registers.

The following table summarizes the architecturally defined SSE subsets and state management
instructions and gives the feature bits returned by the CPUID function. If the indicated bit is set, the
feature is supported by the processor.

304 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Some instructions may be listed in more than one subset. If software attempts to execute an instruction
belonging to an unsupported instruction subset, an invalid-opcode exception (#UD) occurs. Refer to
Appendix D, “Instruction Subsets and CPUID Feature Flags” in Volume 3 for specific information.

Table 11-1. SSE Subsets - CPUID Feature Identifiers
CPUID Fn Field Name Field Bit Instruction Subset

Legacy SSE
0000_0001h EDX[SSE] EDX[25] Original Streaming SIMD Extensions (SSE1)
0000_0001h EDX[SSE2] EDX[26] SSE2
0000_0001h ECX[SSE3] ECX[0] SSE3
0000_0001h ECX[SSSE3] ECX[9] SSSE3
0000_0001h ECX[SSE41] ECX[19] SSE4.1
0000_0001h ECX[SSE42] ECX[20] SSE4.2

8000_0001h ECX[SSE4A] ECX[6] SSE4A: EXTRQ, INSERTQ, MOVNTSS, and
MOVNTSD instructions

Extended SSE
0000_0001h ECX[AVX] ECX[28] AVX
8000_0001h ECX[XOP] ECX[11] AMD XOP
0000_0001h ECX[FMA] ECX[12] FMA
8000_0001h ECX[FMA4] ECX[16] AMD FMA4

MMX
0000_0001h

or
8000_0001h

EDX[MMX] EDX[23] Original MMX™ Instructions

8000_0001h EDX[MmxExt] EDX[22] AMD Extensions to MMX
8000_0001h EDX[3DNow] EDX[31] AMD 3DNow!™
8000_0001h EDX[3DNowExt] EDX[30] AMD Extensions to 3DNow!

x87
0000_0001h

or
8000_0001h

EDX[FPU] EDX[0] x87 instruction set and facilities

Context Management Instructions
0000_0001h

or
8000_0001h

EDX[FXSR] EDX[24] FXSAVE / FXRSTOR instructions

8000_0001h EDX[FFXSR] EDX[25] Hardware optimizations for FXSAVE / FXRSTOR
0000_0001h ECX[XSAVE] ECX[26] XSAVE / XRSTOR instructions
0000_000Dh

ECX=01h EAX[XSAVEOPT] EAX[0] XSAVEOPT

SSE, MMX, and x87 Programming 305

24593—Rev. 3.30—September 2018 AMD64 Technology

11.3 Enabling SSE Instructions
Use of the 256-bit and 128-bit media instructions by application software requires system software
support. System software must determine which SSE subsets are supported, enable those that are to be
used, and supply code to handle the various exceptions that may occur during the execution of these
instructions. The legacy SSE instructions and the extended SSE instructions often require unique
exception handling.

11.3.1 Enabling Legacy SSE Instruction Execution

When legacy SSE instructions are supported, system software must set CR4.OSFXSR to let the
processor know that the software supports the FXSAVE/FXRSTOR instructions. When the processor
detects CR4.OSFXSR = 1, it allows execution of the legacy SSE instructions. If system software does
not set CR4.OSFXSR, any attempt to execute these instructions causes an invalid-opcode exception
(#UD). System software must also clear the CR0.EM (emulate coprocessor) bit to 0, otherwise an
attempt to execute a legacy SSE instruction causes a #UD exception. An attempt to execute either
FXSAVE or FXRSTOR when CR0.EM is set results in a #NM exception.

System software should also set the CR0.MP (monitor coprocessor) bit to 1. When CR0.EM=0 and
CR0.MP=1, all media instructions, x87 instructions, and the FWAIT/WAIT instructions cause a
device-not-available exception (#NM) when the CR0.TS bit is set. System software can use the #NM
exception to perform lazy context switching, saving and restoring media and x87 state only when
necessary after a task switch. See “CR0 Register” on page 42 for more information.

11.3.2 Enabling Extended SSE Instruction Execution

After the steps specified above are completed to enable legacy SSE instruction execution, additional
steps are required to enable the extended SSE instructions and state management. System software
must carry out the following process:
• Confirm that the hardware supports the XSAVE, XRSTOR, XSETBV, and XGETBV instructions

and the XCR0 register (XFEATURE_ENABLED_MASK) by executing the CPUID instruction
function 0000_0001h. If CPUID Fn0000_0001_ECX[XSAVE] is set, hardware support is verified.

• Optionally confirm hardware support of the XSAVEOPT instruction by executing CPUID function
0000_000Dh, sub-function 1 (ECX = 1). If CPUID Fn0000_000D_EAX_x1[XSAVEOPT] is set,
the processor supports the XSAVEOPT instruction. XSAVEOPT is a performance optimized
version of XSAVE.

• Confirm that hardware supports the extended SSE instructions by verifying
XFeatureSupportedMask[2:0] = 111b. XFeatureSupportedMask is accessed via the CPUID
instruction function 0000_000Dh, sub-function 0 (ECX = 0). XFeatureSupportedMask[31:0] is
returned in the EAX register.
If CPUID Fn0000_000D_EAX_x0[2:0] = 111b, hardware supports x87, legacy SSE, and extended
SSE instructions. Bit 0 of EAX signifies x87 floating-point and MMX support, bit 1 signifies
legacy SSE support, and bit 2 signifies extended SSE support. Support for both x87 and legacy
SSE instructions are required for processors that support the extended SSE instructions.

306 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

• Set CR4[OSXSAVE] (bit 18) to enable the use of the XSETBV and XGETBV instructions.
XSETBV is a privileged instruction that writes the XCRn registers. XCR0 is the
XFEATURE_ENABLED_MASK used to manage media and x87 processor state using the
XSAVE, XSAVEOPT, and XRSTOR instructions.

• Enable the x87/MMX, legacy SSE, and extended SSE instructions and processor state
management by setting the x87, SSE, and YMM bits of XCR0
(XFEATURE_ENABLED_MASK). This is done via the privileged instruction XSETBV.
Enabling extended SSE capabilities without enabling legacy SSE capabilities is not allowed. The
x87 flag (bit 0) of the XFEATURE_ENABLED_MASK must be set when writing XCR0.

• Determine the XSAVE/XRSTOR memory save area size requirement. The field
XFeatureEnabledSizeMax specifies the size requirement in bytes based on the currently enabled
extended features and is returned in the EBX register after execution of CPUID Function
0000_000Dh, sub-function 0 (ECX = 0).

• Allocate the save/restore area based on the information obtained in the previous step.

For a detailed description of the XSETBV and XGETBV instructions, see individual instruction
reference pages in Volume 4. See the section entitled “XFEATURE_ENABLED_MASK” in Volume 4
for details on the field definitions for XFEATURE_ENABLED_MASK.

For more information on using the CPUID instruction to obtain processor feature information, see
Section 3.3, “Processor Feature Identification,” on page 63.

11.3.3 SIMD Floating-Point Exception Handling

System software must supply an exception handler if unmasked SSE floating-point exceptions are
allowed to occur. When an unmasked exception is detected, the processor transfers control to the
SIMD floating-point exception (#XF) handler provided by the operating system. System software
must let the processor know that the #XF handler is available by setting CR4.OSXMMEXCPT to 1. If
this bit is set to 1, the processor transfers control to the #XF handler when it detects an unmasked
exception, otherwise a #UD exception occurs. When the processor detects a masked exception, it
handles it in a default manner regardless of the CR4.OSXMMEXCPT value.

11.4 Media and x87 Processor State
The media and x87 processor state includes the contents of the registers used by SSE, MMX, and x87
instructions. System software that supports such applications must be capable of saving and restoring
these registers.

11.4.1 SSE Execution Unit State

Figure 11-1 shows the registers whose contents are affected by execution of SSE instructions. These
include:
• YMM/XMM0–15—Sixteen 256-bit/128-bit SSE registers. In legacy and compatibility modes,

software access is limited to the first eight registers.

SSE, MMX, and x87 Programming 307

24593—Rev. 3.30—September 2018 AMD64 Technology

• MXCSR—The 32-bit Media eXtensions Control and Status Register.

All of these registers are visible to application software. Refer to “Streaming SIMD Extensions Media
and Scientific Programming” in Volume 1 for more information on these registers.

Figure 11-1. SSE Execution Unit State

11.4.2 MMX Execution Unit State

Figure 11-2 on page 308 shows the register contents that are affected by execution of 64-bit media
instructions. These registers include:
• mmx0–mmx7—Eight 64-bit media registers.
• FSW—Two fields (TOP and ES) in the 16-bit x87 status word register.

513-314 ymm.eps

255 127 0

YMM0

YMM1

YMM2

YMM3

YMM4

YMM5

YMM6

YMM7

YMM8

YMM9

YMM10

YMM11

YMM12

YMM13

YMM14

YMM15

XMM0

XMM1

XMM2

XMM3

XMM4

XMM5

XMM6

XMM7

XMM8

XMM9

XMM10

XMM11

XMM12

XMM13

XMM14

XMM15

Available in all modes

Available only in 64-bit mode

31 0

MXCSRMedia eXtension Control and Status Register

308 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

• FTW—The 16-bit x87 tag word.

Figure 11-2. MMX Execution Unit State

The 64-bit media instructions and x87 floating-point instructions share the same physical data
registers. Figure 11-2 shows how the 64-bit registers (MMX0–MMX7) are aliased onto the low 64 bits
of the 80-bit x87 floating-point physical data registers (FPR0–FPR7). Refer to “64-Bit Media
Programming” in Volume 1 for more information on these registers.

Of the registers shown in Figure 11-2, only the eight 64-bit MMX registers are visible to 64-bit media
application software. The processor maintains the contents of the two fields of the x87 status word—
top-of-stack-pointer (TOP) and exception summary (ES)—and the 16-bit x87 tag word during
execution of 64-bit media instructions, as described in “Actions Taken on Executing 64-Bit Media
Instructions” in Volume 1.

64-bit media instructions do not generate x87 floating-point exceptions, nor do they set any status
flags. However, 64-bit media instructions can trigger an unmasked floating-point exception caused by
a previously executed x87 instruction. 64-bit media instructions do this by reading the x87 FSW.ES bit
to determine whether such an exception is pending.

11.4.3 x87 Execution Unit State

Figure 11-3 on page 310 shows the registers whose contents are affected by execution of x87 floating-
point instructions. These registers include:

v2_MMX_regs.eps

MMX Registers
79 0

MMX0

MMX1

MMX2

MMX3

MMX4

MMX5

MMX6

MMX7

015

6364

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

FSW

ESTOP

FTWx87 Tag Word

x87 Status Word
Visible to application
software

Written by processor
hardware

SSE, MMX, and x87 Programming 309

24593—Rev. 3.30—September 2018 AMD64 Technology

• fpr0–fpr7—Eight 80-bit floating-point physical registers.
• FCW—The 16-bit x87 control word register.
• FSW—The 16-bit x87 status word register.
• FTW—The 16-bit x87 tag word.
• Last x87 Instruction Pointer—This value is a pointer (32-bit, 48-bit, or 64-bit, depending on

effective operand size and mode) to the last non-control x87 floating-point instruction executed.
• Last x87 Data Pointer—The pointer (32-bit, 48-bit, or 64-bit, depending on effective operand size

and mode) to the data operand referenced by the last non-control x87 floating-point instruction
executed, if that instruction referenced memory; if it did not, then this value is implementation
dependent.

• Last x87 Opcode—An 11-bit permutation of the instruction opcode from the last non-control x87
floating-point instruction executed.

Of the registers shown in Figure 11-3 on page 310, only FPR0–FPR7, FCW, and FSW are directly
updated by x87 application software. The processor maintains the contents of the FTW, instruction and
data pointers, and opcode registers during execution of x87 instructions. Refer to “Registers” in
Volume 1 for more information on these registers.

The 11-bit instruction opcode register holds a permutation of the two-byte instruction opcode from the
last non-control x87 instruction executed by the processor. (For a definition of non-control x87
instruction, see “Control” in Chapter 6 of Volume 1.) The opcode field is formed as follows:
• Opcode Register Field[10:8] = First x87 opcode byte[2:0].
• Opcode Register Field[7:0] = Second x87 opcode byte[7:0].

For example, the x87 opcode D9 F8h is stored in the opcode register as 001_1111_1000b. The low-
order three bits of the first opcode byte, D9h (1101_1001b), are stored in opcode-register bits 10:8.
The second opcode byte, F8h (1111_1000b), is stored in bits 7:0 of the opcode register. The high-order
five bits of the first opcode byte (1101_1b) are not needed because they are identical for all x87
instructions.

310 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 11-3. x87 Execution Unit State

11.4.4 Saving Media and x87 Execution Unit State

In most cases, operating systems, exception handlers, and device drivers should save and restore the
media and/or x87 processor state between task switches or other interventions in the execution of 128-
bit, 64-bit, or x87 procedures. Application programs are also free to save and restore state at any time.

In general, system software should use the FXSAVE and FXRSTOR instructions to save and restore
the entire media and x87 processor state. The FSAVE/FNSAVE and FRSTOR instructions can be used
for saving and restoring the x87 state. Because the 64-bit media registers are physically aliased onto
the x87 registers, the FSAVE/FNSAVE and FRSTOR instructions can also be used to save and restore
the 64-bit media state. However, FSAVE/FNSAVE and FRSTOR do not save or restore the 128-bit
media state.

Tag Word

Status Word

Control Word

v2_x87_regs.eps

x87 Floating-Point Registers
79 0

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

015

63

010

Last x87 Instruction Pointer

Last x87 Data Pointer

Opcode

FCW

FSW

FTWx87 Tag Word

x87 Status Word

x87 Control Word

SSE, MMX, and x87 Programming 311

24593—Rev. 3.30—September 2018 AMD64 Technology

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE/FNSAVE and FRSTOR instructions save
and restore the entire register state for 64-bit media instructions and x87 floating-point instructions.
The FSAVE instruction stores the register state, but only after handling any pending unmasked-x87
floating-point exceptions. The FNSAVE instruction stores the register state but skips the reporting and
handling of these exceptions. The state of all MMX/FPR registers is saved, as well as all other x87
state (the control word register, status word register, tag word, instruction pointer, data pointer, and last
opcode). After saving this state, the tag state for all MMX/FPR registers is changed to empty and is
thus available for a new procedure.

Starting on page 312, Figure 11-4 through Figure 11-7 show the memory formats used by the
FSAVE/FNSAVE and FRSTOR instructions when storing the x87 state in various processor modes
and using various effective-operand sizes. This state includes:
• x87 Data Registers

- FPR0–FPR7 80-bit physical data registers.
• x87 Environment

- FCW: x87 control word register
- FSW: x87 status word register
- FTW: x87 tag word
- Last x87 instruction pointer
- Last x87 data pointer
- Last x87 opcode

The eight data registers are stored in the 80 bytes following the environment information. Instead of
storing these registers in their physical order (FPR0–FPR7), the processor stores the registers in the
their stack order, ST(0)–ST(7), beginning with the top-of-stack, ST(0).

312 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

ST(7)[79:48] +68h

… …

ST(1)[15:0] ST(0)[79:64] …

ST(0)[63:32] …

ST(0)[31:0] +1Ch

Reserved, IGN Data DS Selector[15:0] +18h

Data Offset[31:0] +14h

00000b Instruction Opcode[10:0] Instruction CS Selector[15:0] +10h

Instruction Offset[31:0] +0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

SSE, MMX, and x87 Programming 313

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)

Bit Offset Byte
Offset31 16 15 0

ST(7)[79:48] +68h

… …

ST(1)[15:0] ST(0)[79:64] …

ST(0)[63:32] …

ST(0)[31:0] +1Ch

0000b Data Offset[3:16] 0000 0000 0000b +18h

Reserved, IGN Data Offset[15:0] +14h

0000b Instruction Offset[31:16] 0 Instruction Opcode[10:0] +10h

Reserved, IGN Instruction Offset[15:0] +0Ch

Reserved, IGN x87 Tag Word (FTW) +08h

Reserved, IGN x87 Status Word (FSW) +04h

Reserved, IGN x87 Control Word (FCW) +00h

314 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)[79:64] +5Ch

… …

ST(0)[79:48] +14h

ST(0)[47:16] +10h

ST(0)[15:0] Data DS Selector[15:0] +0Ch

Data Offset[15:0] Instruction CS Selector[15:0] +08h

Instruction Offset[15:0] x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

SSE, MMX, and x87 Programming 315

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes)

FLDENV/FNLDENV and FSTENV Instructions. The FLDENV/FNLDENV and FSTENV
instructions load and store only the x87 floating-point environment. These instructions, unlike the
FSAVE/FNSAVE and FRSTOR instructions, do not save or restore the x87 data registers. The
FLDENV/FSTENV instructions do not save the full 64-bit data and instruction pointers. 64-bit
applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV. The format of the
saved x87 environment images for protected mode and real/virtual mode are the same as those of the
first 14-bytes of the FSAVE/FNSAVE images for 16-bit operands or 32/64-bit operands, respectively.
See Figure 11-4 on page 312, Figure 11-5 on page 313, Figure 11-6 on page 314, and Figure 11-7.

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions save and restore
the entire 128-bit media, 64-bit media, and x87 state. These instructions usually execute faster than
FSAVE/FNSAVE and FRSTOR because they do not normally save and restore the x87 exception
pointers (last-instruction pointer, last data-operand pointer, and last opcode). The only case in which
they do save the exception pointers is the relatively rare case in which the exception-summary bit in

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)[79:64] +5Ch

… …

ST(0)[79:48] +14h

ST(0)[47:16] +10h

ST(0)[15:0] Data
[19:16] 0000 0000 0000b +0Ch

Data Offset [15:0]
Instruc-

tion
[19:16]

0 Instruction Opcode[10:0] +08h

Instruction Offset [15:0] x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

316 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

the x87 status word (FSW.ES) is set to 1, indicating that an unmasked exception has occurred. The
FXSAVE and FXRSTOR memory format contains fields for storing these values.

Unlike FSAVE and FNSAVE, the FXSAVE instruction does not alter the x87 tag word. Therefore, the
contents of the shared 64-bit MMX and 80-bit FPR registers can remain valid after an FXSAVE
instruction (or any other value the tag bits indicated before the save). Also, FXSAVE (like FNSAVE)
does not check for pending unmasked-x87 floating-point exceptions.

Figure 11-9 on page 323 shows the memory format of the media x87 state in long mode. If a 32-bit
operand size is used in 64-bit mode, the memory format is the same, except that RIP and RDS are
stored as sel:offset pointers, as shown in Figure 11-10 on page 324.

For more information on the FXSAVE and FXRSTOR instructions, see individual instruction listings
in "64-Bit Media Instruction Reference" of Volume 5.

SSE, MMX, and x87 Programming 317

24593—Rev. 3.30—September 2018 AMD64 Technology

11.5 XSAVE/XRSTOR Instructions

The XSAVE, XSAVEOPT, XRSTOR, XGETBV, and XSETBV instructions and associated data
structures extend the FXSAVE/FXRSTOR memory image used to manage processor states and
provide additional functionality. These instructions do not obviate the FXSAVE/FXRSTOR
instructions. For more information about FXSAVE/FXRSTOR, see “FXSAVE and FXRSTOR
Instructions” in Volume 2. For detailed descriptions of FXSAVE and FXRSTOR, see individual
instruction listings in AMD64 Architecture Programmer’s Manual “Volume 5: 64-Bit Media and x87
Floating-Point Instructions.”

The CPUID instruction is used to identify features supported in processor hardware. Extended control
registers are used to enable and disable the handling of processor states associated with supported
hardware features and to communicate to an application whether an operating system supports a
particular feature that has a processor state specific to it.

11.5.1 CPUID Enhancements
• CPUID Fn0000_00001_ECX[XSAVE] indicates that the processor supports XSAVE/XRSTOR

instructions and at least one XCR.
• CPUID Fn0000_00001_ECX[OSXSAVE] indicates whether the operating system has enabled

extensible state management and supports processor extended state management.
• CPUID Fn0000_0000D enumerates processor states (including legacy x87 FPU states, SSE states,

and processor extended states), the offset, and the size of the save area for each processor extended
state. Sub-functions (ECX > 0) provide details concerning features and support of processor states
enumerated in the root function.

11.5.2 XFEATURE_ENABLED_MASK
XFEATURE_ENABLED_MASK is set up by privileged software to enable the saving and restoring
of extended processor architectural state information supported by a specific processor. Clearing
defined bit fields in this mask inhibits the XSAVE instruction from saving (and XRSTOR from
restoring) this state information.

XFEATURE_ENABLED_MASK is addressed as XCR0 in the extended control register space and is
accessed via the XSETBV and XGETBV instructions.

XFEATURE_ENABLED_MASK is defined as follows:

63 62 61 3 2 1 0

X LWP Reserved YMMSSE x87

318 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 11-8. XFEATURE_ENABLED_MASK Register (XCR0)

Hardware initializes XCR0 to 0000_0000_0000_0001h. On writing this register, software must insure
that XCR0[63:3] is clear, XCR0[0] is set, and that XCR0[2:1] is not equal to 10b. An attempt to write
data that violates these rules results in a #GP.

11.5.3 Extended Save Area
The XSAVE/XRSTOR save area extends the legacy 512-byte FXSAVE/FXRSTOR memory image to
provide a compatible register state management environment as well as an upward migration path. The
save area is architecturally defined to be extendable and enumerated by the sub-functions of CPUID
Fn 0000_000Dh. Figure 11-2 shows the format of the XSAVE/XRSTOR area.

The register fields of the first 512 bytes of the XSAVE/XRSTOR area are the same as those of the
FXSAVE/FXRSTOR area, but the 512-byte area is organized as x87 FPU states, MXCSR (including
MXCSR_MASK), and XMM registers. The layout of the save area is fixed and may contain non-
contiguous individual save areas because a processor does not support certain extended states or
because system software does not support certain processor extended states. The save area is not
compacted when features are not saved or are not supported by the processor or by system software.

Bits Mnemonic Description
63 X Reserved specifically for XCR0 bit vector expansion.

Reserved, MBZ.
62 LWP When set, Lightweight Profiling (LWP) extensions are enabled and

XSAVE/XRSTOR supports LWP state management.
61:3 — Reserved, MBZ

2 YMM When set, 256-bit SSE state management is supported by
XSAVE/XRSTOR.
Must be set to enable AVX extensions.

1 SSE When set, 128-bit SSE state management is supported by
XSAVE/XRSTOR. This bit must be set if YMM is set.
Must be set to enable AVX extensions.

0 x87 x87 FPU state management is supported by XSAVE/XRSTOR. Must be
set to 1.

Table 11-2. Extended Save Area Format
Save Area Offset (Byte) Size (Bytes)

FPU/SSE Save Area 0 512
Header 512 64

Reserved, (Ext_Save_Area_2) CPUID Fn 0000_000D_EBX_x02 CPUID Fn 0000_000D_EAX_x02
Reserved, (Ext_Save_Area_3) CPUID Fn 0000_000D_EBX_x03 CPUID Fn 0000_000D_EAX_x03
Reserved, (Ext_Save_Area_4) CPUID Fn 0000_000D_EBX_x04 CPUID Fn 0000_000D_EAX_x04

Reserved, (…) … …
Note: Bytes 464–511 are available for software use. XRSTOR ignores bytes 464–511 of an XSAVE image.

SSE, MMX, and x87 Programming 319

24593—Rev. 3.30—September 2018 AMD64 Technology

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 63.

11.5.4 Instruction Functions
CR4.OSXSAVE and XCR0 can be read at all privilege levels but written only at ring 0.
• XGETBV reads XCR0.
• XSETBV writes XCR0, ring 0 only.
• XRSTOR restores states specified by bitwise AND of a mask operand in EDX:EAX with XCR0.
• XSAVE (and XSAVEOPT) saves states specified by bitwise AND of a mask operand in

EDX:EAX with XCR0.

11.5.5 YMM States and Supported Operating Modes
Extended instructions operate on YMM states by means of extended (XOP/VEX) prefix encoding.
When a processor supports YMM states, the states exist in all operating modes, but interfaces to access
the YMM states may vary by mode. Processor support for extended prefix encoding is independent of
processor support of YMM states.

Instructions that use extended prefix encoding are generally supported in long and protected modes,
but are not supported in real or virtual 8086 modes, or when entering SMM mode. Bits 255:128 of the
YMM register state are maintained across transitions into and out of these modes. The
XSAVE/XRSTOR instructions function in all operating modes; XRSTOR can modify YMM register
state in any operating mode, using state information from the XSAVE/XRSTOR area.

11.5.6 Extended SSE Execution State Management
Operating system software must use the XSAVE/XRSTOR instructions for extended SSE execution
state management. XSAVEOPT, a performance optimized version of XSAVE, may be used instead of
XSAVE once the XSAVE/XRSTOR save area is initialized. In the following discussion XSAVEOPT
may be substituted for the instruction XSAVE. The instructions also provide an interface to manage
XMM/MXCSR states and x87 FPU states in conjunction with processor extended states. An operating
system must enable extended SSE execution state management prior to the execution of extended SSE
instructions. Attempting to execute an extended SSE instruction without enabling execution state
management causes a #UD exception.

11.5.6.1 Enabling Extended SSE Instruction Execution

To enable extended SSE instruction execution and state management, system software must carry out
the following process:
• Confirm that the hardware supports the XSAVE, XRSTOR, XSETBV, and XGETBV instructions

and the XCR0 register (XFEATURE_ENABLED_MASK) by executing the CPUID instruction
function 0000_0001h. If CPUID Fn0000_0001_ECX[XSAVE] is set, hardware support is verified.

320 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

• Optionally confirm hardware support of the XSAVEOPT instruction by executing CPUID function
0000_000Dh, sub-function 1 (ECX = 1). If CPUID Fn0000_000D_EAX_x1[XSAVEOPT] is set,
the processor supports the XSAVEOPT instruction. XSAVEOPT is a performance optimized
version of XSAVE. (SDCR-3580)

• Confirm that hardware supports the extended SSE instructions by verifying
XFeatureSupportedMask[2:0] = 111b. XFeatureSupportedMask is accessed via the CPUID
instruction function 0000_000Dh, sub-function 0 (ECX = 0).
If CPUID Fn0000_000D_EAX_x0[2:0] = 111b, hardware supports x87, legacy SSE, and extended
SSE instructions. Bit 0 of EAX signifies x87 floating-point and MMX support, bit 1 signifies
legacy SSE support, and bit 2 signifies extended SSE support. Support for both x87 and legacy
SSE instructions are required for processors that support the extended SSE instructions.

• Set CR4[OSXSAVE] (bit 18) to enable the use of the XSETBV and XGETBV instructions.
XSETBV is a privileged instruction that writes the XCRn registers. XCR0 is the
XFEATURE_ENABLED_MASK used to manage media and x87 processor state using the
XSAVE, XSAVEOPT, and XRSTOR instructions.

• Enable the x87/MMX, legacy SSE, and extended SSE instructions and processor state
management by setting the x87, SSE, and YMM bits of XCR0
(XFEATURE_ENABLED_MASK). Enabling extended SSE capabilities without enabling legacy
SSE capabilities is not allowed. The x87 flag (bit 0) of the XFEATURE_ENABLED_MASK must
be set when writing XCR0.

• Determine the XSAVE/XRSTOR memory save area size requirement. The field
XFeatureEnabledSizeMax specifies the size requirement in bytes based on the currently enabled
extended features and is returned in the EAX register after execution of CPUID Function
0000_000Dh, sub-function 0 (ECX = 0).

• Allocate the save/restore area based on the information obtained in the previous step.

For more information on the XSETBV and XGETBV instructions, see individual instruction
descriptions in Volume 4. XFEATURE_ENABLED_MASK fields are defined in Section 11.5.2
above.

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 63.

SSE, MMX, and x87 Programming 321

24593—Rev. 3.30—September 2018 AMD64 Technology

11.5.7 Saving Processor State
The XSTATE header starts at byte offset 512 in the save area. XSTATE_BV is the first 64-bit field in
the header. The order of bit vectors in XSTATE_BV matches the order of bit vectors in XCR0. The
XSAVE instruction sets bits in the XSTATE_BV vector field when it writes the corresponding
processor extended state to a save area in memory. XSAVE modifies only bits for processor states
specified by bitwise AND of the XSAVE bit mask operand in EDX:EAX with XCR0. If software
modifies the save area image of a particular processor state component directly, it must also set the
corresponding bit of XSTATE_BV. If the bit is not set, directly modified state information in a save
area image may be ignored by XRSTOR.

XSAVEOPT, a performance optimized version of the XSAVE instruction, may be used (if supported)
in lieu of the XSAVE instruction once the XSAVE/XRSTOR save area has been initialized via the
execution of the XSAVE instruction.

11.5.8 Restoring Processor State
When XRSTOR is executed, processor state components are updated only if the corresponding bits in
the mask operand (EDX:EAX) and XCR0 are both set. For each updated component, when the
corresponding bit in the XSTATE_BV field in the save area header is set, the component is loaded
from the save area in memory. When the XSTATE_BV bit is cleared, the state is set to the hardware-
specified initial values shown in Table 11-3.

11.5.9 MXCSR State Management
The MXCSR has no hardware-specified initial state; it is read from the save area in memory whenever
either XMM or YMM_HI are updated.

11.5.10Mode-Specific XSAVE/XRSTOR State Management
Some state is conditionally saved or updated, depending on processor state:

Table 11-3. XRSTOR Hardware-Specified Initial Values
Component Initial Value

x87 FCW = 037Fh
FSW = 0000h

Empty/Full = 00h (FTW = FFFFh)
x87 Error Pointers = 0

ST0 - ST7 = 0
 XMM XMM0 - XMM15 = 0, if 64-bit mode

XMM0 - XMM7 = 0, if !64-bit mode
YMM_HI YMM_HI0 -Y MM_HI15 = 0, if 64-bit mode

YMM_HI0-YMM_HI7 = 0, if !64-bit mode
LWP LWP disabled

322 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

• The x87 error pointers are not saved or restored if the state saved or loaded from memory doesn't
have a pending #MF.

• XMM8–XMM15 are not saved or restored in non 64-bit mode.
• YMM_HI8–YMM_HI15 are not saved or restored in non 64-bit mode.

SSE, MMX, and x87 Programming 323

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 11-9. FXSAVE and FXRSTOR Image (64-bit Mode)

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte
Reserved, IGN +1F0h

… …

Reserved, IGN +1A0h

XMM15 +190h

XMM14 +180h

XMM13 +170h

XMM12 +160h

XMM11 +150h

XMM10 +140h

XMM9 +130h

XMM8 +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Reserved, IGN ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR RDP1 +10h

RIP1 FOP 0 FTW FSW FCW +00h

1. Stored as sel:offset if operand size is 32 bits. 32bit sel:offset format of the pointers is shown in figure 11-10.

324 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 11-10. FXSAVE and FXRSTOR Image (Non-64-bit Mode)

Software can read and write all fields within the FXSAVE and FXRSTOR memory image. These
fields include:
• FCW—Bytes 01h–00h. x87 control word.
• FSW—Bytes 03h–02h. x87 status word.
• FTW—Byte 04h. x87 tag word. See “FXSAVE Format for x87 Tag Word” on page 325 for

additional information on the FTW format saved by the FXSAVE instruction.
• (Byte 05h contains the value 00h.)
• FOP—Bytes 07h–06h. last x87 opcode.
• Last x87 Instruction Pointer—A pointer to the last non-control x87 floating-point instruction

executed by the processor:

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte
Reserved, IGN +1F0h

… …

Reserved, IGN +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

Reserved, IGN ST(7) +90h

Reserved, IGN ST(6) +80h

Reserved, IGN ST(5) +70h

Reserved, IGN ST(4) +60h

Reserved, IGN ST(3) +50h

Reserved, IGN ST(2) +40h

Reserved, IGN ST(1) +30h

Reserved, IGN ST(0) +20h

MXCSR_MASK MXCSR rsrvd, IGN DS DP +10h

rsrvd, IGN CS EIP FOP 0 FTW FSW FCW +00h

SSE, MMX, and x87 Programming 325

24593—Rev. 3.30—September 2018 AMD64 Technology

- RIP (64-bit format)—Bytes 0Fh–08h. 64-bit offset into the code segment (used without a CS
selector).

- EIP (32-bit format)—Bytes 0Bh–08h. 32-bit offset into the code segment.
- CS (32-bit format)—Bytes 0Dh–0Ch. Segment selector portion of the pointer.

• Last x87 Data Pointer—If the last non-control x87 floating point instruction referenced memory,
this value is a pointer to the data operand referenced by the last non-control x87 floating-point
instruction executed by the processor:
- RDP (64-bit format)—Bytes 17h–10h. 64-bit offset into the data segment (used without a DS

selector).
- DP (32-bit format)—Bytes 13h–10h. 32-bit offset into the data segment.
- DS (32-bit format)—Bytes 15h–14h. Segment selector portion of the pointer.
If the last non-control x87 instruction did not reference memory, then the value in the pointer is
implementation dependent.

• MXCSR—Bytes 1Bh–18h. 128-bit media-instruction control and status register. This register is
saved only if CR4.OSFXSR is set to 1.

• MXCSR_MASK—Bytes 1Fh–1Ch. Set bits in MXCSR_MASK indicate supported feature bits in
MXCSR. For example, if bit 6 (the DAZ bit) in the returned MXCSR_MASK field is set to 1, the
DAZ mode and the DAZ flag in MXCSR are supported. Cleared bits in MXCSR_MASK indicate
reserved bits in MXCSR. If software attempts to set a reserved bit in the MXCSR register, a #GP
exception will occur. To avoid this exception, after software clears the FXSAVE memory image
and executes the FXSAVE instruction, software should use the value returned by the processor in
the MXCSR_MASK field when writing a value to the MXCSR register, as follows:
- MXCSR_MASK = 0: If the processor writes a zero value into the MXCSR_MASK field, the

denormals-are-zeros (DAZ) mode and the DAZ flag in MXCSR are not supported. Software
should use the default mask value, 0000_FFBFh (bit 6, the DAZ bit, and bits 31:16 cleared to
0), to mask any value it writes to the MXCSR register to ensure that all reserved bits in
MXCSR are written with 0, thus avoiding a #GP exception.

- MXCSR_MASK … 0: If the processor writes a non-zero value into the MXCSR_MASK field,
software should AND this value with any value it writes to the MXCSR register.

• MMXn/FPRn—Bytes 9Fh–20h. Shared 64-bit media and x87 floating-point registers. As in the
case of the x87 FSAVE instruction, these registers are stored in stack order ST(0)–ST(7). The
upper six bytes in the memory image for each register are reserved.

• XMMn—Bytes 11Fh–A0h. 128-bit media registers. These registers are saved only if
CR4.OSFXSR is set to 1.

FXSAVE Format for x87 Tag Word. Rather than saving the entire x87 tag word, FXSAVE saves a
single-byte encoded version. FXSAVE encodes each of the eight two-bit fields in the x87 tag word as
follows:
• Two-bit values of 00, 01, and 10 are encoded as a 1, indicating the corresponding x87 FPRn

register holds a value.

326 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

• A two-bit value of 11 is encoded as a 0, indicating the corresponding x87 FPRn is empty.

For example, assume an FSAVE instruction saves an x87 tag word with the value 83F1h. This tag-
word value describes the x87 FPRn contents as follows:

When an FXSAVE is used to write the x87 tag word to memory, it encodes the value as E3h. This
encoded version describes the x87 FPRn contents as follows:

If necessary, software can decode the single-bit FXSAVE tag-word fields into the two-bit field FSAVE
uses by examining the contents of the corresponding FPR registers saved by FXSAVE. Table 11-4 on
page 327 shows how the FPR contents are used to find the equivalent FSAVE tag-field value. The
fraction column refers to fraction portion of the extended-precision significand (bits 62:0). The integer
bit column refers to the integer-portion of the significand (bit 63). See Chapter 11, “SSE, MMX, and
x87 Programming,” on page 303 for more information on floating-point numbering formats.

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0
Tag Word Value (hex) 8 3 F 1

Tag Value (binary) 10 00 00 11 11 11 00 01
Meaning Special Valid Valid Empty Empty Empty Valid Zero

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0
Encoded Tag Byte

 (hex) E 3

Tag Value (binary) 1 1 1 0 0 0 1 1
Meaning Valid Valid Valid Empty Empty Empty Valid Valid

SSE, MMX, and x87 Programming 327

24593—Rev. 3.30—September 2018 AMD64 Technology

Performance Considerations. When system software supports multi-tasking, it must be able to
save the processor state for one task and load the state for another. For performance reasons, the media
and/or x87 processor state is usually saved and loaded only when necessary. System software can save
and load this state at the time a task switch occurs. However, if the new task does not use the state,
loading the state is unnecessary and reduces performance.

The task-switch bit (CR0.TS) is provided as a lazy context-switch mechanism that allows system
software to save and load the processor state only when necessary. When CR0.TS=1, a device-not-
available exception (#NM) occurs when an attempt is made to execute a 128-bit media, 64-bit media,
or x87 instruction. System software can use the #NM exception handler to save the state of the
previous task, and restore the state of the current task. Before returning from the exception handler to
the media or x87 instruction, system software must clear CR0.TS to 0 to allow the instruction to be
executed. Using this approach, the processor state is saved only when the registers are used.

In legacy mode, the hardware task-switch mechanism sets CR0.TS=1 during a task switch (see “Task
Switched (TS) Bit” on page 44 for more information). In long mode, the hardware task-switching is
not supported, and the CR0.TS bit is not set by the processor. Instead, the architecture assumes that
system software handles all task-switching and state-saving functions. If CR0.TS is to be used in long
mode for controlling the save and restore of media or x87 state, system software must set and clear it
explicitly.

Table 11-4. Deriving FSAVE Tag Field from FXSAVE Tag Field
Encoded
FXSAVE
Tag Field

Exponent Integer Bit2 Fraction1 Type of Value
Equivalent

FSAVE
Tag Field

1 (Valid)

All 0s

0 All 0s Zero 01 (Zero)
0 Not all 0s Denormal

10 (Special)
1 All 0s

Pseudo Denormal
1 Not all 0s

Neither
all 0s

nor all 1s

0

don’t care

Unnormal

1 Normal 00 (Valid)

All 1s
0 Pseudo Infinity

or Pseudo NaN
10 (Special)

1
All 0s Infinity

Not all 0s NaN
0 (Empty) don’t care Empty 11 (Empty)

Note:
1. Bits 62:0 of the significand. Bit 62, the most-significant bit of the fraction, is also called the M bit.
2. Bit 63 of the significand, also called the J bit.

328 SSE, MMX, and x87 Programming

AMD64 Technology 24593—Rev. 3.30—September 2018

Task Management 329

24593—Rev. 3.30—September 2018 AMD64 Technology

12 Task Management

This chapter describes the hardware task-management features. All of the legacy x86 task-
management features are supported by the AMD64 architecture in legacy mode, but most features are
not available in long mode. Long mode, however, requires system software to initialize and maintain
certain task-management resources. The details of these resource-initialization requirements for long
mode are discussed in “Task-Management Resources” on page 330.

12.1 Hardware Multitasking Overview
A task (also called a process) is a program that the processor can execute, suspend, and later resume
executing at the point of suspension. During the time a task is suspended, other tasks are allowed to
execute. Each task has its own execution space, consisting of:
• Code segment and instruction pointer.
• Data segments.
• Stack segments for each privilege level.
• General-purpose registers.
• rFLAGS register.
• Local-descriptor table.
• Task register, and a link to the previously-executed task.
• I/O-permission and interrupt-permission bitmaps.
• Pointer to the page-translation tables (CR3).

The state information defining this execution space is stored in the task-state segment (TSS)
maintained for each task.

Support for hardware multitasking is provided in legacy mode. Hardware multitasking provides
automated mechanisms for switching tasks, saving the execution state of the suspended task, and
restoring the execution state of the resumed task. When hardware multitasking is used to switch tasks,
the processor takes the following actions:
• Suspends execution of the task, allowing any executing instructions to complete and save their

results.
• Saves the task execution state in the task TSS.
• Loads the execution state for the new task from its TSS.
• Begins executing the new task at the location specified in the new task TSS.

Software can switch tasks by branching to a new task using the CALL or JMP instructions. Exceptions
and interrupts can also switch tasks if the exception or interrupt handlers are themselves separate tasks.
IRET can be used to return to an earlier task.

330 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

12.2 Task-Management Resources
The hardware-multitasking features are available when protected mode is enabled (CR0.PE=1).
Protected-mode software execution, by definition, occurs as part of a task. While system software is
not required to use the hardware-multitasking features, it is required to initialize certain task-
management resources for at least one task (the current task) when running in protected mode. This
single task is needed to establish the protected-mode execution environment. The resources that must
be initialized are:
• Task-State Segment (TSS)—A segment that holds the processor state associated with a task.
• TSS Descriptor—A segment descriptor that defines the task-state segment.
• TSS Selector—A segment selector that references the TSS descriptor located in the GDT.
• Task Register—A register that holds the TSS selector and TSS descriptor for the current task.

Figure 12-1 on page 331 shows the relationship of these resources to each other in both 64-bit and 32-
bit operating environments.

Task Management 331

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 12-1. Task-Management Resources

A fifth resource is available in legacy mode for use by system software that uses the hardware-
multitasking mechanism to manage more than one task:
• Task-Gate Descriptor—This form of gate descriptor holds a reference to a TSS descriptor and is

used to control access between tasks.

513-254.eps

32-Bit Limit64-Bit or 32-Bit Base Address Attributes

Task Register (Hidden From Software)
015

TSS Selector

Task Register (Visible)

Global-Descriptor
Table

TSS Descriptor

I/O-Bitmap Base Address

I/O-Permission Bitmap

Interrupt-Redirection Bitmap

Task-State Segment

+

332 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

The task-management resources are described in the following sections.

12.2.1 TSS Selector

TSS selectors are selectors that point to task-state segment descriptors in the GDT. Their format is
identical to all other segment selectors, as shown in Figure 12-2.

Figure 12-2. Task-Segment Selector

The selector format consists of the following fields:

Selector Index. Bits 15:3. The selector-index field locates the TSS descriptor in the global-descriptor
table.

Table Indicator (TI) Bit. Bit 2. The TI bit must be cleared to 0, which indicates that the GDT is used.
TSS descriptors cannot be located in the LDT. If a reference is made to a TSS descriptor in the LDT, a
general-protection exception (#GP) occurs.

Requestor Privilege-Level (RPL) Field. Bits 1:0. RPL represents the privilege level (CPL) the
processor is operating under at the time the TSS selector is loaded into the task register.

12.2.2 TSS Descriptor

The TSS descriptor is a system-segment descriptor, and it can be located only in the GDT. The format
for an 8-byte, legacy-mode and compatibility-mode TSS descriptor can be found in “System
Descriptors” on page 85. The format for a 16-byte, 64-bit mode TSS descriptor can be found in
“System Descriptors” on page 90.

The fields within a TSS descriptor (all modes) are described in “Descriptor Format” on page 80. The
following additional information applies to TSS descriptors:
• Segment Limit—A TSS descriptor must have a segment limit value of at least 67h, which defines a

minimum TSS size of 68h (104 decimal) bytes. If the limit is less than 67h, an invalid-TSS
exception (#TS) occurs during the task switch. When an I/O-permission bitmap, interrupt-
redirection bitmap, or additional state information is included in the TSS, the limit must be set to a
value large enough to enclose that information. In this case, if the TSS limit is not large enough to

15 3 2 1 0

Selector Index TI RPL

Bits Mnemonic Description
15:3 Selector Index
2 TI Table Indicator
1:0 RPL Requestor Privilege Level

Task Management 333

24593—Rev. 3.30—September 2018 AMD64 Technology

hold the additional information, a #GP exception occurs when an attempt is made to access beyond
the TSS limit. No check for the larger limit is performed during the task switch.

• Type—Four system-descriptor types are defined as TSS types, as shown in Table 4-5 on page 85.
Bit 9 is used as the descriptor busy bit (B). This bit indicates that the task is busy when set to 1, and
available when cleared to 0. Busy tasks are the currently running task and any previous (outer)
tasks in a nested-task hierarchy. Task recursion is not supported, and a #GP exception occurs if an
attempt is made to transfer control to a busy task. See “Nesting Tasks” on page 347 for additional
information.
In long mode, the 32-bit TSS types (available and busy) are redefined as 64-bit TSS types, and
only 64-bit TSS descriptors can be used. Loading the task register with an available 64-bit TSS
causes the processor to change the TSS descriptor type to indicate a busy 64-bit TSS. Because long
mode does not support task switching, the TSS-descriptor busy bit is never cleared by the
processor to indicate an available 64-bit TSS.
Sixteen-bit TSS types are illegal in long mode. A general-protection exception (#GP) occurs if a
reference is made to a 16-bit TSS.

12.2.3 Task Register

The task register (TR) points to the TSS location in memory, defines its size, and specifies its
attributes. As with the other descriptor-table registers, the TR has two portions. A visible portion holds
the TSS selector, and a hidden portion holds the TSS descriptor. When the TSS selector is loaded into
the TR, the processor automatically loads the TSS descriptor from the GDT into the hidden portion of
the TR.

The TR is loaded with a new selector using the LTR instruction. The TR is also loaded during a task
switch, as described in “Switching Tasks” on page 343.

Figure 12-3 shows the format of the TR in legacy mode.

Figure 12-3. TR Format, Legacy Mode

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

334 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 12-4 shows the format of the TR in long mode (both compatibility mode and 64-bit mode).

Figure 12-4. TR Format, Long Mode

The AMD64 architecture expands the TSS-descriptor base-address field to 64 bits so that system
software running in long mode can access a TSS located anywhere in the 64-bit virtual-address space.
The processor ignores the 32 high-order base-address bits when running in legacy mode. Because the
TR is loaded from the GDT, the system-segment descriptor format has been expanded to 16 bytes by
the AMD64 architecture in support of 64-bit mode. See “System Descriptors” on page 90 for more
information on this expanded format. The high-order base-address bits are only loaded from 64-bit
mode using the LTR instruction. Figure 12-5 shows the relationship between the TSS and GDT.

Figure 12-5. Relationship between the TSS and GDT

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

513-210.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

Task Selector

TSS Attributes

TSS Limit

TSS Base Address

Task
State

Segment

Global Descriptor Table Register Task Register

Task Management 335

24593—Rev. 3.30—September 2018 AMD64 Technology

Long mode requires the use of a 64-bit TSS type, and this type must be loaded into the TR by
executing the LTR instruction in 64-bit mode. Executing the LTR instruction in 64-bit mode loads the
TR with the full 64-bit TSS base address from the 16-byte TSS descriptor format (compatibility mode
can only load 8-byte system descriptors). A processor running in either compatibility mode or 64-bit
mode uses the full 64-bit TR.base address.

12.2.4 Legacy Task-State Segment

The task-state segment (TSS) is a data structure in memory that the processor uses to save and restore
the execution state for a task when a task switch occurs. Figure 12-6 on page 336 shows the format of
a legacy 32-bit TSS.

336 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 12-6. Legacy 32-bit TSS

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes) IOPB
Base

Interrupt-Redirection Bitmap (IRB) (Eight 32-Bit Locations)

↑
↓ Operating-System Data Structure ↑

↓

I/O-Permission Bitmap Base Address Reserved, IGN T +64h

Reserved, IGN LDT Selector +60h

Reserved, IGN GS +5Ch

Reserved, IGN FS +58h

Reserved, IGN DS +54h

Reserved, IGN SS +50h

Reserved, IGN CS +4Ch

Reserved, IGN ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

Reserved, IGN SS2 +18h

ESP2 +14h

Reserved, IGN SS1 +10h

ESP1 +0Ch

Reserved, IGN SS0 +08h

ESP0 +04h

Reserved, IGN Link (Prior TSS Selector) +00h

Task Management 337

24593—Rev. 3.30—September 2018 AMD64 Technology

The 32-bit TSS contains three types of fields:
• Static fields are read by the processor during a task switch when a new task is loaded, but are not

written by the processor when a task is suspended.
• Dynamic fields are read by the processor during a task switch when a new task is loaded, and are

written by the processor when a task is suspended.
• Software-defined fields are read and written by software, but are not read or written by the

processor. All but the first 104 bytes of a TSS can be defined for software purposes, minus any
additional space required for the optional I/O-permission bitmap and interrupt-redirection bitmap.

TSS fields are not read or written by the processor when the LTR instruction is executed. The LTR
instruction loads the TSS descriptor into the TR and marks the task as busy, but it does not cause a task
switch.

The TSS fields used by the processor in legacy mode are:
• Link—Bytes 01h–00h, dynamic field. Contains a copy of the task selector from the previously-

executed task. See “Nesting Tasks” on page 347 for additional information.
• Stack Pointers—Bytes 1Bh–04h, static field. Contains the privilege 0, 1, and 2 stack pointers for

the task. These consist of the stack-segment selector (SSn), and the stack-segment offset (ESPn).
• CR3—Bytes 1Fh–1Ch, static field. Contains the page-translation-table base-address (CR3)

register for the task.
• EIP—Bytes 23h–20h, dynamic field. Contains the instruction pointer (EIP) for the next instruction

to be executed when the task is restored.
• EFLAGS—Bytes 27h–24h, dynamic field. Contains a copy of the EFLAGS image at the point the

task is suspended.
• General-Purpose Registers—Bytes 47h–28h, dynamic field. Contains a copy of the EAX, ECX,

EDX, EBX, ESP, EBP, ESI, and EDI values at the point the task is suspended.
• Segment-Selector Registers—Bytes 59h–48h, dynamic field. Contains a copy of the ES, CS, SS,

DS, FS, and GS, values at the point the task is suspended.
• LDT Segment-Selector Register—Bytes 63h–60h, static field. Contains the local-descriptor-table

segment selector for the task.
• T (Trap) Bit—Bit 0 of byte 64h, static field. This bit, when set to 1, causes a debug exception

(#DB) to occur on a task switch. See “Breakpoint Instruction (INT3)” on page 362 for additional
information.

• I/O-Permission Bitmap Base Address—Bytes 67h–66h, static field. This field represents a 16-bit
offset into the TSS. This offset points to the beginning of the I/O-permission bitmap, and the end of
the interrupt-redirection bitmap.

• I/O-Permission Bitmap—Static field. This field specifies protection for I/O-port addresses (up to
the 64K ports supported by the processor), as follows:
- Whether the port can be accessed at any privilege level.
- Whether the port can be accessed outside the privilege level established by EFLAGS.IOPL.

338 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

- Whether the port can be accessed when the processor is running in virtual-8086 mode.
Because one bit is used per 8-byte I/O-port, this bitmap can take up to 8 Kbytes of TSS space. The
bitmap can be located anywhere within the first 64 Kbytes of the TSS, as long as it is above byte
103. The last byte of the bitmap must contain all ones (0FFh). See “I/O-Permission Bitmap” on
page 338 for more information.

• Interrupt-Redirection Bitmap—Static field. This field defines how each of the 256-possible
software interrupts is directed in a virtual-8086 environment. One bit is used for each interrupt, for
a total bitmap size of 32 bytes. The bitmap can be located anywhere above byte 103 within the first
64 Kbytes of the TSS. See “Interrupt Redirection of Software Interrupts” on page 258 for
information on using this field.

The TSS can be paged by system software. System software that uses the hardware task-switch
mechanism must guarantee that a page fault does not occur during a task switch. Because the processor
only reads and writes the first 104 TSS bytes during a task switch, this restriction only applies to those
bytes. The simplest approach is to align the TSS on a page boundary so that all critical bytes are either
present or not present. Then, if a page fault occurs when the TSS is accessed, it occurs before the first
byte is read. If the page fault occurs after a portion of the TSS is read, the fault is unrecoverable.

I/O-Permission Bitmap. The I/O-permission bitmap (IOPB) allows system software to grant less-
privileged programs access to individual I/O ports, overriding the effect of RFLAGS.IOPL for those
devices. When an I/O instruction is executed, the processor checks the IOPB only if the processor is in
virtual x86 mode or the CPL is greater than the RFLAGS.IOPL field. Each bit in the IOPB
corresponds to a byte I/O port. A word I/O port corresponds to two consecutive IOPB bits, and a
doubleword I/O port corresponds to four consecutive IOPB bits. Access is granted to an I/O port of a
given size when all IOPB bits corresponding to that port are clear. If any bits are set, a #GP occurs.

The IOPB is located in the TSS, as shown by the example in Figure 12-7 on page 339. Each TSS can
have a different copy of the IOPB, so access to individual I/O devices can be granted on a task-by-task
basis. The I/O-permission bitmap base-address field located at byte 66h in the TSS is an offset into the
TSS locating the start of the IOPB. If all 64K IO ports are supported, the IOPB base address must not
be greater than 0DFFFh, otherwise accesses to the bitmap cause a #GP to occur. An extra byte must be
present after the last IOPB byte. This byte must have all bits set to 1 (0FFh). This allows the processor
to read two IOPB bytes each time an I/O port is accessed. By reading two IOPB bytes, the processor
can check all bits when unaligned, multi-byte I/O ports are accessed.

Task Management 339

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 12-7. I/O-Permission Bitmap Example

Bits in the IOPB sequentially correspond to I/O port addresses. The example in Figure 12-7 shows bits
12 through 15 in the second doubleword of the IOPB cleared to 0. Those bit positions correspond to
byte I/O ports 44h through 47h, or alternatively, doubleword I/O port 44h. Because the bits are cleared
to zero, software running at any privilege level can access those I/O ports.

By adjusting the TSS limit, it may happen that some ports in the I/O-address space have no
corresponding IOPB entry. Ports not represented by the IOPB will cause a #GP exception. Referring
again to Figure 12-7, the last IOPB entry is at bit 23 in the fourth IOPB doubleword, which
corresponds to I/O port 77h. In this example, all ports from 78h and above will cause a #GP exception,
as if their permission bit was set to 1.

12.2.5 64-Bit Task State Segment

Although the hardware task-switching mechanism is not supported in long mode, a 64-bit task state
segment (TSS) must still exist. System software must create at least one 64-bit TSS for use after
activating long mode, and it must execute the LTR instruction, in 64-bit mode, to load the TR register
with a pointer to the 64-bit TSS that serves both 64-bit-mode programs and compatibility-mode
programs.

The legacy TSS contains several fields used for saving and restoring processor-state information. The
legacy fields include general-purpose register, EFLAGS, CR3 and segment-selector register state,
among others. Those legacy fields are not supported by the 64-bit TSS. System software must save and
restore the necessary processor-state information required by the software-multitasking
implementation (if multitasking is supported). Figure 12-8 on page 341 shows the format of a 64-bit
TSS.

The 64-bit TSS holds several pieces of information important to long mode that are not directly related
to the task-switch mechanism:
• RSPn—Bytes 1Bh–04h. The full 64-bit canonical forms of the stack pointers (RSP) for privilege

levels 0 through 2.

Bit Offset Byte
Offset31 16 15 0

1111_1111 IOPB+Ch

IOPB+8h

0 0 0 0 IOPB+4h

IOPB

I/O-Permission Bitmap Base Address +64h

. . .

+00h

340 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

• ISTn—Bytes 5Bh–24h. The full 64-bit canonical forms of the interrupt-stack-table (IST) pointers.
See “Interrupt-Stack Table” on page 253 for a description of the IST mechanism.

• I/O Map Base Address—Bytes 67h–66h. The 16-bit offset to the I/O-permission bit map from the
64-bit TSS base. The function of this field is identical to that in a legacy 32-bit TSS. See “I/O-
Permission Bitmap” on page 338 for more information.

Task Management 341

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 12-8. Long Mode TSS Format

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes) IOPB
Base

↑
↓

↑
↓

I/O Map Base Address Reserved, IGN +64h

Reserved, IGN
+60h

+5Ch

IST7[63:32] +58h

IST7[31:0] +54h

IST6[63:32] +50h

IST6[31:0] +4Ch

IST5[63:32] +48h

IST5[31:0] +44h

IST4[63:32] +40h

IST4[31:0] +3Ch

IST3[63:32] +38h

IST3[31:0] +34h

IST2[63:32] +30h

IST2[31:0] +2Ch

IST1[63:32] +28h

IST1[31:0] +24h

Reserved, IGN
+20h

+1Ch

RSP2[63:32] +18h

RSP2[31:0] +14h

RSP1[63:32] +10h

RSP1[31:0] +0Ch

RSP0[63:32] +08h

RSP0[31:0] +04h

Reserved, IGN +00h

342 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

12.2.6 Task Gate Descriptor (Legacy Mode Only)

Task-gate descriptors hold a selector reference to a TSS and are used to control access between tasks.
Unlike a TSS descriptor or other gate descriptors, a task gate can be located in any of the three
descriptor tables (GDT, LDT, and IDT). Figure 12-9 shows the format of a task-gate descriptor.

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only

The task-gate descriptor fields are:
• System (S) and Type—Bits 12 and 11:8 (respectively) of byte +4. These bits are encoded by

software as 00101b to indicate a task-gate descriptor type.
• Present (P)—Bit 15 of byte +4. The segment-present bit indicates the segment referenced by the

gate descriptor is loaded in memory. If a reference is made to a segment when P=0, a segment-not-
present exception (#NP) occurs. This bit is set and cleared by system software and is never altered
by the processor.

• Descriptor Privilege-Level (DPL)—Bits 14:13 of byte +4. The DPL field indicates the gate-
descriptor privilege level. DPL can be set to any value from 0 to 3, with 0 specifying the most
privilege and 3 the least privilege.

12.3 Hardware Task-Management in Legacy Mode
This section describes the operation of the task-switch mechanism when the processor is running in
legacy mode. None of these features are supported in long mode (either compatibility mode or 64-bit
mode).

12.3.1 Task Memory-Mapping

The hardware task-switch mechanism gives system software a great deal of flexibility in managing the
sharing and isolation of memory—both virtual (linear) and physical—between tasks.

Segmented Memory. The segmented memory for a task consists of the segments that are loaded
during a task switch and any segments that are later accessed by the task code. The hardware task-
switch mechanism allows tasks to either share segments with other tasks, or to access segments in
isolation from one another. Tasks that share segments actually share a virtual-address (linear-address)
space, but they do not necessarily share a physical-address space. When paging is enabled, the virtual-
to-physical mapping for each task can differ, as is described in the following section. Shared segments

31 16 15 14 13 12 11 8 7 0

Reserved, IGN P DPL S Type Reserved, IGN +4

TSS Selector Reserved, IGN +0

Task Management 343

24593—Rev. 3.30—September 2018 AMD64 Technology

do share physical memory when paging is disabled, because virtual addresses are used as physical
addresses.

A number of options are available to system software that shares segments between tasks:
• Sharing segment descriptors using the GDT. All tasks have access to the GDT, so it is possible for

segments loaded in the GDT to be shared among tasks.
• Sharing segment descriptors using a single LDT. Each task has its own LDT, and that LDT selector

is automatically saved and restored in the TSS by the processor during task switches. Tasks,
however, can share LDTs simply by storing the same LDT selector in multiple TSSs. Using the
LDT to manage segment sharing and segment isolation provides more flexibility to system
software than using the GDT for the same purpose.

• Copying shared segment descriptors into multiple LDTs. Segment descriptors can be copied by
system software into multiple LDTs that are otherwise not shared between tasks. Allowing
segment sharing at the segment-descriptor level, rather than the LDT level or GDT level, provides
the greatest flexibility to system software.

In all three cases listed above, the actual data and instructions are shared between tasks only when the
tasks’ virtual-to-physical address mappings are identical.

Paged Memory. Each task has its own page-translation table base-address (CR3) register, and that
register is automatically saved and restored in the TSS by the processor during task switches. This
allows each task to point to its own set of page-translation tables, so that each task can translate virtual
addresses to physical addresses independently. Page translation must be enabled for changes in CR3
values to have an effect on virtual-to-physical address mapping. When page translation is disabled, the
tables referenced by CR3 are ignored, and virtual addresses are equivalent to physical addresses.

12.3.2 Switching Tasks

The hardware task-switch mechanism transfers program control to a new task when any of the
following occur:
• A CALL or JMP instruction with a selector operand that references a task gate is executed. The

task gate can be located in either the LDT or GDT.
• A CALL or JMP instruction with a selector operand that references a TSS descriptor is executed.

The TSS descriptor must be located in the GDT.
• A software-interrupt instruction (INTn) is executed that references a task gate located in the IDT.
• An exception or external interrupt occurs, and the vector references a task gate located in the IDT.
• An IRET is executed while the EFLAGS.NT bit is set to 1, indicating that a return is being

performed from an inner-level task to an outer-level task. The new task is referenced using the
selector stored in the current-task link field. See “Nesting Tasks” on page 347 for additional
information. The RET instruction cannot be used to switch tasks.

When a task switch occurs, the following operations are performed automatically by the processor:

344 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

• The processor performs privilege-checking to determine whether the currently-executing program
is allowed to access the target task. If this check fails, the task switch is aborted without modifying
the processor state, and a general-protection exception (#GP) occurs. The privilege checks
performed depend on the cause of the task switch:
- If the task switch is initiated by a CALL or JMP instruction through a TSS descriptor, the

processor checks that both the currently-executing program CPL and the TSS-selector RPL are
numerically less-than or equal-to the TSS-descriptor DPL.

- If the task switch takes place through a task gate, the CPL and task-gate RPL are compared
with the task-gate DPL, and no comparison is made using the TSS-descriptor DPL. See “Task
Switches Using Task Gates” on page 345.

- Software interrupts, hardware interrupts, and exceptions all transfer control without checking
the task-gate DPL.

- The IRET instruction transfers control without checking the TSS-descriptor DPL.
• The processor performs limit-checking on the target TSS descriptor to verify that the TSS limit is

greater than or equal to 67h (at least 104 bytes). If this check fails, the task switch is aborted
without modifying the processor state, and an invalid-TSS exception (#TS) occurs.

• The current-task state is saved in the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers.
Up to this point, any exception that occurs aborts the task switch without changing the processor
state. From this point forward, any exception that occurs does so in the context of the new task. If
an exception occurs in the context of the new task during a task switch, the processor finishes
loading the new-task state without performing additional checks. The processor transfers control
to the #TS handler after this state is loaded, but before the first instruction is executed in the new
task. When a #TS occurs, it is possible that some of the state loaded by the processor did not
participate in segment access checks. The #TS handler must verify that all segments are accessible
before returning to the interrupted task.

• The task register (TR) is loaded with the new-task TSS selector, and the hidden portion of the TR is
loaded with the new-task descriptor. The TSS now referenced by the processor is that of the new
task.

• The current task is marked as busy. The previous task is marked as available or remains busy,
based on the type of linkage. See “Nesting Tasks” on page 347 for more information.

• CR0.TS is set to 1. This bit can be used to save other processor state only when it becomes
necessary. For more information, see the next section, “Saving Other Processor State.”

• The new-task state is loaded from the TSS. This includes the next-instruction pointer (EIP),
EFLAGS, the general-purpose registers, and the segment-selector registers. The processor clears
the segment-descriptor present (P) bits (in the hidden portion of the segment registers) to prevent
access into the new segments, until the task switch completes successfully.

• The LDTR and CR3 registers are loaded from the TSS, changing the virtual-to-physical mapping
from that of the old task to the new task. Because this is done in the middle of accessing the new
TSS, system software must guarantee that TSS addresses are translated identically in all tasks.

Task Management 345

24593—Rev. 3.30—September 2018 AMD64 Technology

• The descriptors for all previously-loaded segment selectors are loaded into the hidden portion of
the segment registers. This sets or clears the P bits for the segments as specified by the new
descriptor values.

If the above steps complete successfully, the processor begins executing instructions in the new task
beginning with the instruction referenced by the CS:EIP far pointer loaded from the new TSS. The
privilege level of the new task is taken from the new CS segment selector’s RPL.

Saving Other Processor State. The processor does not automatically save the registers used by the
media or x87 instructions. Instead, the processor sets CR0.TS to 1 during a task switch. Later, when an
attempt is made to execute any of the media or x87 instructions while TS=1, a device-not-available
exception (#NM) occurs. System software can then save the previous state of the media and x87
registers and clear the CR0.TS bit to 0 before executing the next media/x87 instruction. As a result, the
media and x87 registers are saved only when necessary after a task switch.

12.3.3 Task Switches Using Task Gates

When a control transfer to a new task occurs through a task gate, the processor reads the task-gate DPL
(DPLG) from the task-gate descriptor. Two privilege checks, both of which must pass, are performed
on DPLG before the task switch can occur successfully:
• The processor compares the CPL with DPLG. The CPL must be numerically less than or equal to

DPLG for this check to pass. In other words, the following expression must be true: CPL ≤ DPLG.
• The processor compares the RPL in the task-gate selector with DPLG. The RPL must be

numerically less than or equal to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

Unlike call-gate control transfers, the processor does not read the DPL from the target TSS descriptor
(DPLS) and compare it with the CPL when a task gate is used.

Figure 12-10 on page 346 shows two examples of task-gate privilege checks. In Example 1, the
privilege checks pass:
• The task-gate DPL (DPLG) is at the lowest privilege (3), specifying that software running at any

privilege level (CPL) can access the gate.
• The selector referencing the task gate passes its privilege check because the RPL is numerically

less than or equal to DPLG.

In Example 2, both privilege checks fail:
• The task-gate DPL (DPLG) specifies that only software at privilege-level 0 can access the gate.

The current program does not have enough privilege to access the task gate, because its CPL is 2.
• The selector referencing the task-gate descriptor does not have a high enough privilege to complete

the reference. Its RPL is numerically greater than DPLG.

Although both privilege checks failed in the example, if only one check fails, access into the target task
is denied.

346 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

Because the legacy task-switch mechanism is not supported in long mode, software cannot use task
gates in long mode. Any attempt to transfer control to another task using a task gate in long mode
causes a general-protection exception (#GP) to occur.

Figure 12-10. Privilege-Check Examples for Task Gates

513-255.eps

Example 1: Privilege Check Passes

DPLG=3

Task-Gate Descriptor
Task-State
Segment

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Task-Gate Descriptor

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Task-State
Segment

Access Allowed

Access Denied

Task Management 347

24593—Rev. 3.30—September 2018 AMD64 Technology

12.3.4 Nesting Tasks

The hardware task-switch mechanism supports task nesting through the use of EFLAGS nested-task
(NT) bit and the TSS link-field. The manner in which these fields are updated and used during a task
switch depends on how the task switch is initiated:
• The JMP instruction does not update EFLAGS.NT or the TSS link-field. Task nesting is not

supported by the JMP instruction.
• The CALL instruction, INTn instructions, interrupts, and exceptions can only be performed from

outer-level tasks to inner-level tasks. All of these operations set the EFLAGS.NT bit for the new
task to 1 during a task switch, and copy the selector for the previous task into the new-task link
field.

• An IRET instruction which returns to another task only occurs when the EFLAGS.NT bit for the
current task is set to 1, and only can be performed from an inner-level task to an outer-level task.
When an IRET results in a task switch, the new task is referenced using the selector stored in the
current-TSS link field. The EFLAGS.NT bit for the current task is cleared to 0 during the task
switch.

Table 12-1 summarizes the effect various task-switch initiators have on EFLAGS.NT, the TSS link-
field, and the TSS-busy bit. (For more information on the busy bit, see the next section, “Preventing
Recursion.”)

Programs running at any privilege level can set EFLAGS.NT to 1 and execute the IRET instruction to
transfer control to another task. System software can keep control over improperly nested-task
switches by initializing the link field of all TSSs that it creates. That way, improperly nested-task
switches always transfer control to a known task.

Preventing Recursion. Task recursion is not allowed by the hardware task-switch mechanism. If
recursive-task switches were allowed, they would replace a previous task-state image with a newer
image, discarding the previous information. To prevent recursion from occurring, the processor uses

Table 12-1. Effects of Task Nesting

Task-Switch
Initiator

Old Task New Task

EFLAGS.NT Link
(Selector) Busy EFLAGS.NT Link

(Selector) Busy

JMP — — Clear to 0
(was 1) — — Set to 1

CALL
INTn

Interrupt
Exception

— —
(Was 1) Set to 1 Old Task Set to 1

IRET Clear to 0
(was 1) — Clear to 0

(was 1) —

Note:
“—” indicates no change is made.

348 Task Management

AMD64 Technology 24593—Rev. 3.30—September 2018

the busy bit located in the TSS-descriptor type field (bit 9 of byte +4). Use of this bit depends on how
the task switch is initiated:
• The JMP instruction clears the busy bit in the old task to 0 and sets the busy bit in the new task to 1.

A general-protection exception (#GP) occurs if an attempt is made to JMP to a task with a set busy
bit.

• The CALL instruction, INTn instructions, interrupts, and exceptions set the busy bit in the new
task to 1. The busy bit in the old task remains set to 1, preventing recursion through task-nesting
levels. A general-protection exception (#GP) occurs if an attempt is made to switch to a task with a
set busy bit.

• An IRET to another task (EFLAGS.NT must be 1) clears the busy bit in the old task to 0. The busy
bit in the new task is not altered, because it was already set to 1.

Table 12-1 on page 347 summarizes the effect various task-switch initiators have on the TSS-busy bit.

Software Debug and Performance Resources 349

24593—Rev. 3.30—September 2018 AMD64 Technology

13 Software Debug and Performance
Resources

Testing, debug, and performance optimization consume a significant portion of the time needed to
develop a new computer or software product and move it successfully into production. To stay
competitive, product developers need tools that allow them to rapidly detect, isolate, and correct
problems before a product is shipped. The goal of the debug and performance features incorporated
into processor implementations of the AMD64 architecture is to support the tool chain solutions used
in software and hardware product development.

The debug and performance resources that can be supported by AMD64 architecture implementations
include:
• Software Debug—software-debug facilities include the debug registers (DR0–DR7), debug

exception, and breakpoint exception. Additional features are provided using model-specific
registers (MSRs). These registers are used to set breakpoints on branches, interrupts, and
exceptions and to single step from one branch to the next. The software-debug capability is
described in the following section.

• Performance Monitoring Counters—Performance monitoring counters (PMCs) are provided to
count specific processor hardware events. A set of control registers allow the selection of events to
be monitored and a corresponding set of counter registers track the frequency of monitored events.
These counters are described in Section 13.2 “Performance Monitoring Counters” on page 364.

• Instruction-Based Sampling— Instruction-based sampling is a hardware-based facility that
enables system software to capture specific data concerning instruction fetch and instruction
execution operation based on random sampling. This facility is described in Section 13.3
“Instruction-Based Sampling” on page 373.

• Lightweight Profiling—AMD64 architecture provides instructions that allow user-level programs
to manage the gathering of instruction statistics using very little overhead. This facility is
described in Section 13.4 “Lightweight Profiling” on page 386.

Although a subset of the facilities listed are available in all processor implementations, the remainder
are optional. Support for optional facilities is indicated via CPUID feature bits. The means of
determining support for each architected facility is described along with the facility in the sections that
follow.

A given processor product may include additional debug and performance monitoring capabilities
beyond those which are architecturally-defined. For details see the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manualapplicable to your product.

350 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.1 Software-Debug Resources
Software can program breakpoints into the debug registers, causing a debug exception (#DB) when
matches occur on instruction-memory addresses, data-memory addresses, or I/O addresses. The
breakpoint exception (#BP) is also supported to allow software to set breakpoints by placing INT3
instructions in the instruction memory for a program. Program control is transferred to the breakpoint
exception (#BP) handler when an INT3 instruction is executed.

In addition to the debug features supported by the debug registers (DR0–DR7), the processor also
supports features supported by model-specific registers (MSRs). Together, these capabilities provide a
rich set of breakpoint conditions, including:
• Breakpoint On Address Match—Breakpoints occur when the address stored in a address-

breakpoint register matches the address of an instruction or data reference. Up to four address-
match breakpoint conditions can be set by software.

• Single Step All Instructions—Breakpoints can be set to occur on every instruction, allowing a
debugger to examine the contents of registers as a program executes.

• Single Step Control Transfers—Breakpoints can be set to occur on control transfers, such as calls,
jumps, interrupts, and exceptions. This can allow a debugger to narrow a problem search to a
specific section of code before enabling single stepping of all instructions.

• Breakpoint On Any Instruction—Breakpoints can be set on any specific instruction using either the
address-match breakpoint condition or using the INT3 instruction to force a breakpoint when the
instruction is executed.

• Breakpoint On Task Switch—Software forces a #DB exception to occur when a task switch is
performed to a task with the T bit in the TSS set to 1. Debuggers can use this capability to enable or
disable debug conditions for a specific task.

Problem areas can be identified rapidly using the information supplied by the debug registers when
breakpoint conditions occur:
• Special conditions that cause a #DB exception are recorded in the DR6 debug-status register,

including breakpoints due to task switches and single stepping. The DR6 register also identifies
which address-breakpoint register (DR0–DR3) caused a #DB exception due to an address match.
When combined with the DR7 debug-control register settings, the cause of a #DB exception can be
identified.

• To assist in analyzing the instruction sequence a processor follows in reaching its current state, the
source and destination addresses of control-transfer events are saved by the processor. These
include branches (calls and jumps), interrupts, and exceptions. Debuggers can use this information
to narrow a problem search to a specific section of code before single stepping all instructions.

13.1.1 Debug Registers
The AMD64 architecture supports the legacy debug registers, DR0–DR7. These registers are
expanded to 64 bits by the AMD64 architecture. In legacy mode and in compatibility mode, only the
lower 32 bits are used. In these modes, writes to a debug register fill the upper 32 bits with zeros, and

Software Debug and Performance Resources 351

24593—Rev. 3.30—September 2018 AMD64 Technology

reads from a debug register return only the lower 32 bits. In 64-bit mode, all 64 bits of the debug
registers are read and written. Operand-size prefixes are ignored.

The debug registers can be read and written only when the current-protection level (CPL) is 0 (most
privileged). Attempts to read or write the registers at a lower-privilege level (CPL>0) cause a general-
protection exception (#GP).

Several debug registers described below are model-specific registers (MSRs). See “Software-Debug
MSRs” on page 590 for a listing of the debug-MSR numbers and their reset values. Some processor
implementations include additional MSRs used to support implementation-specific software debug
features. For more information on these registers and their capabilities, see the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product.

13.1.1.1 Address-Breakpoint Registers (DR0-DR3)
Figure 13-1 shows the format of the four address-breakpoint registers, DR0-DR3. Software can load a
virtual (linear) address into any of the four registers, and enable breakpoints to occur when the address
matches an instruction or data reference. The MOV DRn instructions do not check that the virtual
addresses loaded into DR0–DR3 are in canonical form. Breakpoint conditions are enabled using the
debug-control register, DR7 (see “Debug-Control Register (DR7)” on page 353).

Figure 13-1. Address-Breakpoint Registers (DR0–DR3)

13.1.1.2 Reserved Debug Registers (DR4, DR5)
The DR4 and DR5 registers are reserved and should not be used by software. These registers are
aliased to the DR6 and DR7 registers, respectively. When the debug extensions are enabled
(CR4[DE] = 1) attempts to access these registers cause an invalid-opcode exception (#UD).

63 0

Breakpoint 0 64-bit Virtual (linear) Address

63 0

Breakpoint 1 64-bit Virtual (linear) Address

63 0

Breakpoint 2 64-bit Virtual (linear) Address

63 0

Breakpoint 3 64-bit Virtual (linear) Address

352 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.1.1.3 Debug-Status Register (DR6)
Figure 13-2 on page 352 shows the format of the debug-status register, DR6. Debug status is loaded
into DR6 when an enabled debug condition is encountered that causes a #DB exception.

Figure 13-2. Debug-Status Register (DR6)

Bits 15:13 of the DR6 register are not cleared by the processor and must be cleared by software after
the contents have been read. Register fields are:
• Breakpoint-Condition Detected (B3–B0)—Bits 3:0. The processor updates these four bits on every

debug breakpoint or general-detect condition. A bit is set to 1 if the corresponding address-
breakpoint register detects an enabled breakpoint condition, as specified by the DR7 Ln, Gn, R/Wn
and LENn controls, and is cleared to 0 otherwise. For example, B1 (bit 1) is set to 1 if an address-
breakpoint condition is detected by DR1.

• Debug-Register-Access Detected (BD)—Bit 13. The processor sets this bit to 1 if software
accesses any debug register (DR0–DR7) while the general-detect condition is enabled
(DR7[GD] = 1).

• Single Step (BS)—Bit 14. The processor sets this bit to 1 if the #DB exception occurs as a result of
single-step mode (rFLAGS[TF] = 1). Single-step mode has the highest-priority among debug
exceptions. Other status bits within the DR6 register can be set by the processor along with the BS
bit.

• Task-Switch (BT)—Bit 15. The processor sets this bit to 1 if the #DB exception occurred as a result
of task switch to a task with a TSS T-bit set to 1.

63 32

MBZ

31 16 15 14 13 12 11 4 3 2 1 0

Read as 1s B
T

B
S

B
D

R
A
Z

Read as 1s B
3

B
2

B
1

B
0

Bits Mnemonic Description R/W
63:16 Reserved MBZ
15 BT Breakpoint Task Switch R/W
14 BS Breakpoint Single Step R/W
13 BD Breakpoint Debug Access Detected R/W
12 Reserved Read as Zero
11:4 Reserved Read as 1s
3 B3 Breakpoint #3 Condition Detected R/W
2 B2 Breakpoint #2 Condition Detected R/W
1 B1 Breakpoint #1 Condition Detected R/W
0 B0 Breakpoint #0 Condition Detected R/W

Software Debug and Performance Resources 353

24593—Rev. 3.30—September 2018 AMD64 Technology

All remaining bits in the DR6 register are reserved. Reserved bits 31:16 and 11:4 must all be set to 1,
while reserved bit 12 must be cleared to 0. In 64-bit mode, the upper 32 bits of DR6 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
exception, #GP(0).

13.1.1.4 Debug-Control Register (DR7)
Figure 13-3 shows the format of the debug-control register, DR7. DR7 is used to establish the
breakpoint conditions for the address-breakpoint registers (DR0–DR3) and to enable debug
exceptions for each address-breakpoint register individually. DR7 is also used to enable the general-
detect breakpoint condition.

Figure 13-3. Debug-Control Register (DR7)

63 32

Reserved, MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 RAZ
G
D

RAZ
R
A
1

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

Bits Mnemonic Description R/W
63:32 — Reserved, MBZ
31:30 LEN3 Length of Breakpoint #3 R/W
29:28 R/W3 Type of Transaction(s) to Trap R/W
27:26 LEN2 Length of Breakpoint #2 R/W
25:24 R/W2 Type of Transaction(s) to Trap R/W
23:22 LEN1 Length of Breakpoint #1 R/W
21:20 R/W1 Type of Transaction(s) to Trap R/W
19:18 LEN0 Length of Breakpoint #0 R/W
17:16 R/W0 Type of Transaction(s) to Trap R/W
15:14 — Reserved, RAZ
13 GD General Detect Enabled R/W
12:11 — Reserved, RAZ
10 — Reserved, read as 1
9 GE Global Exact Breakpoint Enabled R/W
8 LE Local Exact Breakpoint Enabled R/W
7 G3 Global Exact Breakpoint #3 Enabled R/W
6 L3 Local Exact Breakpoint #3 Enabled R/W
5 G2 Global Exact Breakpoint #2 Enabled R/W
4 L2 Local Exact Breakpoint #2 Enabled R/W
3 G1 Global Exact Breakpoint #1 Enabled R/W
2 L1 Local Exact Breakpoint #1 Enabled R/W
1 G0 Global Exact Breakpoint #0 Enabled R/W
0 L0 Local Exact Breakpoint #0 Enabled R/W

354 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

The fields within the DR7 register are all read/write. These fields are:
• Local-Breakpoint Enable (L3–L0)—Bits 6, 4, 2, and 0 (respectively). Software individually sets

these bits to 1 to enable debug exceptions to occur when the corresponding address-breakpoint
register (DRn) detects a breakpoint condition while executing the current task. For example, if L1
(bit 2) is set to 1 and an address-breakpoint condition is detected by DR1, a #DB exception occurs.
These bits are cleared to 0 by the processor when a hardware task-switch occurs.

• Global-Breakpoint Enable (G3–G0)—Bits 7, 5, 3, and 1 (respectively). Software sets these bits to
1 to enable debug exceptions to occur when the corresponding address-breakpoint register (DRn)
detects a breakpoint condition while executing any task. For example, if G1 (bit 3) is set to 1 and an
address-breakpoint condition is detected by DR1, a #DB exception occurs. These bits are never
cleared to 0 by the processor.

• Local-Enable (LE)—Bit 8. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing the current task. This bit is ignored by implementations of the
AMD64 architecture. All breakpoint conditions, except certain string operations preceded by a
repeat prefix, are exact.

• Global-Enable (GE)—Bit 9. Software sets this bit to 1 in legacy implementations to enable exact
breakpoints while executing any task. This bit is ignored by implementations of the AMD64
architecture. All breakpoint conditions, except certain string operations preceded by a repeat
prefix, are exact.

• General-Detect Enable (GD)—Bit 13. Software sets this bit to 1 to cause a debug exception to
occur when an attempt is made to execute a MOV DRn instruction to any debug register
(DR0–DR7). This bit is cleared to 0 by the processor when the #DB handler is entered, allowing
the handler to read and write the DRn registers. The #DB exception occurs before executing the
instruction, and DR6[BD] is set by the processor. Software debuggers can use this bit to prevent
the currently-executing program from interfering with the debug operation.

• Read/Write (R/W3–R/W0)—Bits 29:28, 25:24, 21:20, and 17:16 (respectively). Software sets these
fields to control the breakpoint conditions used by the corresponding address-breakpoint registers
(DRn). For example, control-field R/W1 (bits 21:20) controls the breakpoint conditions for the
DR1 register. The R/Wn control-field encodings specify the following conditions for an address-
breakpoint to occur:
- 00—Only on instruction execution.
- 01—Only on data write.
- 10—This encoding is further qualified by CR4[DE] as follows:

. CR4[DE] = 0—Condition is undefined.

. CR4[DE] = 1—Only on I/O read or I/O write.
- 11—Only on data read or data write.

• Length (LEN3–LEN0)—Bits 31:30, 27:26, 23:22, and 19:18 (respectively). Software sets these
fields to control the range used in comparing a memory address with the corresponding address-
breakpoint register (DRn). For example, control-field LEN1 (bits 23:22) controls the breakpoint-
comparison range for the DR1 register.

Software Debug and Performance Resources 355

24593—Rev. 3.30—September 2018 AMD64 Technology

The value in DRn defines the low-end of the address range used in the comparison. LENn is used
to mask the low-order address bits in the corresponding DRn register so that they are not used in
the address comparison. To work properly, breakpoint boundaries must be aligned on an address
corresponding to the range size specified by LENn. The LENn control-field encodings specify the
following address-breakpoint-comparison ranges:
- 00—1 byte.
- 01—2 byte, must be aligned on a word boundary.
- 10—8 byte, must be aligned on a quadword boundary. (Long mode only; otherwise undefined.)
- 11—4 byte, must be aligned on a doubleword boundary.
If the R/Wn field is used to specify instruction breakpoints (R/Wn=00), the corresponding LENn
field must be set to 00. Setting LENn to any other value produces undefined results.

All remaining bits in the DR7 register are reserved. Reserved bits 15:14 and 12:11 must all be cleared
to 0, while reserved bit 10 must be set to 1. In 64-bit mode, the upper 32 bits of DR7 are reserved and
must be written with zeros. Writing a 1 to any of the upper 32 bits results in a general-protection
#GP(0) exception.

13.1.1.5 64-Bit-Mode Extended Debug Registers
In 64-bit mode, additional encodings for debug registers are available. The R bit of the REX prefix is
used to modify the ModRM reg field when that field encodes a control register. These additional
encodings enable the processor to address DR8–DR15.

Access to the DR8–DR15 registers is implementation-dependent. The architecture does not require
any of these extended debug registers to be implemented. Any attempt to access an unimplemented
register results in an invalid-opcode exception (#UD).

13.1.1.6 Debug-Control MSR (DebugCtl)
Figure 13-4 on page 356 shows the format of the debug-control MSR (DebugCtl). DebugCtl provides
additional debug controls over control-transfer recording and single stepping, and external-breakpoint
reporting and trace messages. DebugCtl is read and written using the RDMSR and WRMSR
instructions.

356 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-4. Debug-Control MSR (DebugCtl)

The fields within the DebugCtl register are:
• Last-Branch Record (LBR)—Bit 0, read/write. Software sets this bit to 1 to cause the processor to

record the source and target addresses of the last control transfer taken before a debug exception
occurs. The recorded control transfers include branch instructions, interrupts, and exceptions. See
“Control-Transfer Breakpoint Features” on page 362 for more details on the registers. See
Figure 13-5 on page 357 for the format of the control-transfer recording MSRs.

• Branch Single Step (BTF)—Bit 1, read/write. Software uses this bit to change the behavior of the
rFLAGS[TF] bit. When this bit is cleared to 0, the rFLAGS[TF] bit controls instruction single
stepping, (normal behavior). When this bit is set to 1, the rFLAGS[TF] bit controls single stepping
on control transfers. The single-stepped control transfers include branch instructions, interrupts,
and exceptions. Control-transfer single stepping requires both BTF = 1 and rFLAGS[TF] = 1. See
“Control-Transfer Breakpoint Features” on page 362 for more details on control-transfer single
stepping.

• Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write. Software uses these
bits to control the type of information reported by the four external performance-
monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding
external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the
corresponding external pin (BPi) reports breakpoint information.

All remaining bits in the DebugCtl register are reserved.

63 32

Reserved

31 6 5 4 3 2 1 0

Reserved
P
B
3

P
B
2

P
B
1

P
B
0

B
T
F

L
B
R

Bits Mnemonic Description R/W
63:6 Reserved
5 PB3 Performance Monitoring Pin Control R/W
4 PB2 Performance Monitoring Pin Control R/W
3 PB1 Performance Monitoring Pin Control R/W
2 PB0 Performance Monitoring Pin Control R/W
1 BTF Branch Single Step R/W
0 LBR Last-Branch Record R/W

Software Debug and Performance Resources 357

24593—Rev. 3.30—September 2018 AMD64 Technology

13.1.1.7 Control-Transfer Recording MSRs
Figure 13-5 on page 357 shows the format of the 64-bit control-transfer recording MSRs:
LastBranchToIP, LastBranchFromIP, LastIntToIP, and LastIntFromIP. These registers are loaded
automatically by the processor when the DebugCtl[LBR] bit is set to 1. These MSRs are read-only.

Figure 13-5. Control-Transfer Recording MSRs

13.1.2 Setting Breakpoints
Breakpoints can be set to occur on either instruction addresses or data addresses using the breakpoint-
address registers, DR0–DR3 (DRn). The values loaded into these registers represent the breakpoint-
location virtual address. The debug-control register, DR7, is used to enable the breakpoint registers
and to specify the type of access and the range of addresses that can trigger a breakpoint.

Software enables the DRn registers using the corresponding local-breakpoint enable (Ln) or global-
breakpoint enable (Gn) found in the DR7 register. Ln is used to enable breakpoints only while the
current task is active, and it is cleared by the processor when a task switch occurs. Gn is used to enable
breakpoints for all tasks, and it is never cleared by the processor.

The R/Wn fields in DR7, along with the CR4[DE] bit, specify the type of access required to trigger a
breakpoint when an address match occurs on the corresponding DRn register. Breakpoints can be set to
occur on instruction execution, data reads and writes, and I/O reads and writes. The R/Wn and
CR4[DE] encodings used to specify the access type are described on page 354 of “Debug-Control
Register (DR7).”

The LENn fields in DR7 specify the size of the address range used in comparison with data or
instruction addresses. LENn is used to mask the low-order address bits in the corresponding DRn
register so that they are not used in the address comparison. Breakpoint boundaries must be aligned on
an address corresponding to the range size specified by LENn. Assuming the access type matches the

63 0

LastBranchToIP - 64-bit Segment Offset (RIP)

63 0

LastBranchFromIP - 64-bit Segment Offset (RIP)

63 0

LastIntToIP - 64-bit Segment Offset (RIP)

63 0

LastIntFromIP - 64-bit Segment Offset (RIP)

358 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

type specified by R/Wn, a breakpoint occurs if any accessed byte falls within the range specified by
LENn. For instruction breakpoints, LENn must specify a single-byte range. The LENn encodings used
to specify the address range are described on page 354 of “Debug-Control Register (DR7).”

Table 13-1 shows several examples of data accesses, and whether or not they cause a #DB exception to
occur based on the breakpoint address in DRn and the breakpoint-address range specified by LENn. In
this table, R/Wn always specifies read/write access.

Table 13-1. Breakpoint-Setting Examples
Data-Access

Address
(hexadecimal)

Access Size
(bytes)

Byte-Addresses in Data-
Access

(hexadecimal)

Breakpoint-Address
Range

(hexadecimal)
Result

DRn=F000, LENn=00 (1 Byte)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000

#DB

EFFE
2 EFFE, EFFF —
4 EFFE, EFFF, F000, F001

#DB
F000 1 F000
F001 2 F001, F002

—
F005 4 F005, F006, F007, F008

DRn=F004, LENn=11 (4 Bytes)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F004–F007
—EFFE

2 EFFE, EFFF
4 EFFE, EFFF, F000, F001

F000 1 F000
F001 2 F001, F002
F005 4 F005, F006, F007, F008 #DB

DRn=F005, LENn=10 (8 Bytes)

EFFB 8 EFFB, EFFC, EFFD, EFFE,
EFFF, F000, F001

F000–F007

#DB

EFFE
2 EFFE, EFFF —
4 EFFE, EFFF, F000, F001

#DB
F000 1 F000
F001 2 F001, F002
F005 4 F005, F006, F007, F008

Note:
“—” indicates no #DB occurs.

Software Debug and Performance Resources 359

24593—Rev. 3.30—September 2018 AMD64 Technology

13.1.3 Using Breakpoints
A debug exception (#DB) occurs when an enabled-breakpoint condition is encountered during
program execution. The debug-handler must check the debug-status register (DR6), the conditions
enabled by the debug-control register (DR7), and the debug-control MSR (DebugCtl), to determine
the #DB cause. The #DB exception corresponds to interrupt vector 1. See “#DB—Debug Exception
(Vector 1)” on page 219.

Instruction breakpoints and general-detect conditions cause the #DB exception to occur before the
instruction is executed, while all other breakpoint and single-stepping conditions cause the #DB
exception to occur after the instruction is executed. Table 13-2 summarizes where the #DB exception
occurs based on the breakpoint condition.

Instruction breakpoints and general-detect conditions have a lower interrupt-priority than the other
breakpoint and single-stepping conditions (see “Priorities” on page 234). Data-breakpoint conditions
on the previous instruction occur before an instruction-breakpoint condition on the next instruction.
However, if instruction and data breakpoints can occur as a result of executing a single instruction, the
instruction breakpoint occurs first (before the instruction is executed), followed by the data breakpoint
(after the instruction is executed).

13.1.3.1 Instruction Breakpoints
Instruction breakpoints are set by loading a breakpoint-address register (DRn) with the desired
instruction virtual-address, and then setting the corresponding DR7 fields as follows:
• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 00b to specify that the contents of DRn are to be compared only with the virtual

address of the next instruction to be executed.
• LENn must be set to 00b.

When a #DB exception occurs due to an instruction breakpoint-address in DRn, the corresponding Bn
field in DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs before

Table 13-2. Breakpoint Location by Condition
Breakpoint Condition Breakpoint Location

Instruction
Before Instruction is Executed

General Detect
Data Write Only

After Instruction is Executed1Data Read or Data Write
I/O Read or I/O Write

Single Step1
After Instruction is Executed

Task Switch
Note:

1. Repeated operations (REP prefix) can breakpoint between iterations.

360 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

the instruction is executed, and the breakpoint-instruction address is pushed onto the debug-handler
stack. If multiple instruction breakpoints are set, the debug handler can use the Bn field to identify
which register caused the breakpoint.

Returning from the debug handler causes the breakpoint instruction to be executed. Before returning
from the debug handler, the rFLAGS[RF] bit should be set to 1 to prevent a reoccurrence of the #DB
exception due to the instruction-breakpoint condition. The processor ignores instruction-breakpoint
conditions when rFLAGS[RF] = 1, until after the next instruction (in this case, the breakpoint
instruction) is executed. After the next instruction is executed, the processor clears rFLAGS[RF].

13.1.3.2 Data Breakpoints
Data breakpoints are set by loading a breakpoint-address register (DRn) with the desired data virtual-
address, and then setting the corresponding DR7 fields as follows:
• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 01b to specify that the data virtual-address is compared with the contents of DRn

only during a memory-write. Setting this field to 11b specifies that the comparison takes place
during both memory reads and memory writes.

• LENn is set to 00b, 01b, 11b, or 10b to specify an address-match range of one, two, four, or eight
bytes, respectively. Long mode must be active to set LENn to 10b.

When a #DB exception occurs due to a data breakpoint address in DRn, the corresponding Bn field in
DR6 is set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the data-
access instruction is executed, which means that the original data is overwritten by the data-access
instruction. If the debug handler needs to report the previous data value, it must save that value before
setting the breakpoint.

Because the breakpoint occurs after the data-access instruction is executed, the address of the
instruction following the data-access instruction is pushed onto the debug-handler stack. Repeated
string instructions, however, can trigger a breakpoint before all iterations of the repeat loop have
completed. When this happens, the address of the string instruction is pushed onto the stack during a
#DB exception if the repeat loop is not complete. A subsequent IRET from the #DB handler returns to
the string instruction, causing the remaining iterations to be executed. Most implementations cannot
report breakpoints exactly for repeated string instructions, but instead report the breakpoint on an
iteration later than the iteration where the breakpoint occurred.

13.1.3.3 I/O Breakpoints
I/O breakpoints are set by loading a breakpoint-address register (DRn) with the I/O-port address to be
trapped, and then setting the corresponding DR7 fields as follows:
• Ln or Gn is set to 1 to enable the breakpoint for either the local task or all tasks, respectively.
• R/Wn is set to 10b to specify that the I/O-port address is compared with the contents of DRn only

during execution of an I/O instruction. This encoding of R/Wn is valid only when debug
extensions are enabled (CR4[DE] = 1).

Software Debug and Performance Resources 361

24593—Rev. 3.30—September 2018 AMD64 Technology

• LENn is set to 00b, 01b, or 11b to specify the breakpoint occurs on a byte, word, or doubleword
I/O operation, respectively.

The I/O-port address specified by the I/O instruction is zero extended by the processor to 64 bits before
comparing it with the DRn registers.

When a #DB exception occurs due to an I/O breakpoint in DRn, the corresponding Bn field in DR6 is
set to 1 to indicate that a breakpoint condition occurred. The breakpoint occurs after the instruction is
executed, which means that the original data is overwritten by the breakpoint instruction. If the debug
handler needs to report the previous data value, it must save that value before setting the breakpoint.

Because the breakpoint occurs after the instruction is executed, the address of the instruction following
the I/O instruction is pushed onto the debug-handler stack, in most cases. In the case of INS and OUTS
instructions that use the repeat prefix, however, the breakpoint occurs after the first iteration of the
repeat loop. When this happens, the I/O-instruction address can be pushed onto the stack during a #DB
exception if the repeat loop is not complete. A subsequent return from the debug handler causes the
next I/O iteration to be executed. If the breakpoint condition is still set, the #DB exception reoccurs
after that iteration is complete.

13.1.3.4 Task-Switch Breakpoints
Breakpoints can be set in a task TSS to raise a #DB exception after a task switch. Software enables a
task breakpoint by setting the T bit in the TSS to 1. When a task switch occurs into a task with the T bit
set, the processor completes loading the new task state. Before the first instruction is executed, the
#DB exception occurs, and the processor sets DR6[BT] to 1, indicating that the #DB exception
occurred as a result of task breakpoint.

The processor does not clear the T bit in the TSS to 0 when the #DB exception occurs. Software must
explicitly clear this bit to disable the task breakpoint. Software should never set the T-bit in the debug-
handler TSS if a separate task is used for #DB exception handling, otherwise the processor loops on
the debug handler.

13.1.3.5 General-Detect Condition
General-detect is a special debug-exception condition that occurs when software running at any
privilege level attempts to access any of the DRn registers while DR7[GD] is set to 1. When a #DB
exception occurs due to the general-detect condition, the processor clears DR7[GD] and sets DR6[BD]
to 1. Clearing DR7[GD] allows the debug handler to access the DRn registers without causing infinite
#DB exceptions.

A debugger enables general detection to prevent other software from accessing and interfering with
the debug registers while they are in use by the debugger. The exception is taken before executing the
MOV DRn instruction so that the DRn contents are not altered.

362 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.1.4 Single Stepping
Single-step breakpoints are enabled by setting the rFLAGS[TF] bit to 1. When single stepping is
enabled, a #DB exception occurs after every instruction is executed until it is disabled by clearing
rFLAGS[TF]. However, the instruction that sets the TF bit, and the instruction that follows it, is not
single stepped.

When a #DB exception occurs due to single stepping, the processor clears rFLAGS[TF] before
entering the debug handler, so that the debug handler itself is not single stepped. The processor also
sets DR6[BS] to 1, which indicates that the #DB exception occurred as a result of single stepping. The
rFLAGS image pushed onto the debug-handler stack has the TF bit set, and single stepping resumes
when a subsequent IRET pops the stack image into the rFLAGS register.

Single-step breakpoints have a higher priority than external interrupts. If an external interrupt occurs
during single stepping, control is transferred to the #DB handler first, causing the rFLAGS[TF] bit to
be cleared. Next, before the first instruction in the debug handler is executed, the processor transfers
control to the pending-interrupt handler. This allows external interrupts to be handled outside of
single-step mode.

The INTn, INT3, and INTO instructions clear the rFLAGS[TF] bit when they are executed. If a
debugger is used to single-step software that contains these instructions, it must emulate them instead
of executing them.

The single-step mechanism can also be set to single step only control transfers, rather than single step
every instruction. See “Single Stepping Control Transfers” on page 363 for additional information.

13.1.5 Breakpoint Instruction (INT3)
The INT3 instruction, or the INTn instruction with an operand of 3, can be used to set breakpoints that
transfer control to the breakpoint-exception (#BP) handler rather than the debug-exception handler.
When a debugger uses the breakpoint instructions to set breakpoints, it does so by replacing the first
bytes of an instruction with the breakpoint instruction. The debugger replaces the breakpoint
instructions with the original-instruction bytes to clear the breakpoint.

INT3 is a single-byte instruction while INTn with an operand of 3 is a two-byte instruction. The
instructions have slightly different effects on the breakpoint exception-handler stack. See “#BP—
Breakpoint Exception (Vector 3)” on page 220 for additional information on this exception.

13.1.6 Control-Transfer Breakpoint Features
A control transfers is accomplished by using one of following instructions:
• JMP, CALL, RET
• Jcc, JrCXZ, LOOPcc
• JMPF, CALLF, RETF
• INTn, INT 3, INTO, ICEBP

Software Debug and Performance Resources 363

24593—Rev. 3.30—September 2018 AMD64 Technology

• Exceptions, IRET
• SYSCALL, SYSRET, SYSENTER, SYSEXIT
• INTR, NMI, SMI, RSM

13.1.6.1 Recording Control Transfers
Software enables control-transfer recording by setting DebugCtl[LBR] to 1. When this bit is set, the
processor updates the recording MSRs automatically when control transfers occur:
• LastBranchFromIP and LastBranchToIP Registers—On branch instructions, the

LastBranchFromIP register is loaded with the segment offset of the branch instruction, and the
LastBranchToIP register is loaded with the first instruction to be executed after the branch. On
interrupts and exceptions, the LastBranchFromIP register is loaded with the segment offset of the
interrupted instruction, and the LastBranchToIP register is loaded with the offset of the interrupt or
exception handler.

• LastIntFromIP and LastIntToIP Registers—The processor loads these from the LastBranchFromIP
register and the LastBranchToIP register, respectively, when most interrupts and exceptions are
taken. These two registers are not updated, however, when #DB or #MC exceptions are taken, or
the ICEBP instruction is executed.

The processor automatically disables control-transfer recording when a debug exception (#DB) occurs
by clearing DebugCtl[LBR] to 0. The contents of the control-transfer recording MSRs are not altered
by the processor when the #DB occurs. Before exiting the debug-exception handler, software can set
DebugCtl[LBR] to 1 to re-enable the recording mechanism.

Debuggers can trace a control transfer backward from a bug to its source using the recording MSRs
and the breakpoint-address registers. The debug handler does this by updating the breakpoint registers
from the recording MSRs after a #DB exception occurs, and restarting the program. The program takes
a #DB exception on the previous control transfer, and this process can be repeated. The debug handler
cannot simply copy the contents of the recording MSR into the breakpoint-address register. The
recording MSRs hold segment offsets, while the debug registers hold virtual (linear) addresses. The
debug handler must calculate the virtual address by reading the code-segment selector (CS) from the
interrupt-handler stack, then reading the segment-base address from the CS descriptor, and adding that
base address to the offset in the recording MSR. The calculated virtual-address can then be used as a
breakpoint address.

13.1.6.2 Single Stepping Control Transfers
Software can enable control-transfer single stepping by setting DebugCtl[BTF] to 1 and rFLAGS[TF]
to 1. The processor automatically disables control-transfer single stepping when a debug exception
(#DB) occurs by clearing DebugCtl[BTF]. rFLAGS[TF] is also cleared when a #DB exception occurs.
Before exiting the debug-exception handler, software must set both DebugCtl[BTF] and rFLAGS[TF]
to 1 to restart single stepping.

When enabled, this single-step mechanism causes a #DB exception to occur on every branch
instruction, interrupt, or exception. Debuggers can use this capability to perform a “coarse” single step

364 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

across blocks of code (bound by control transfers), and then, as the problem search is narrowed, switch
into a “fine” single-step mode on every instruction (DebugCtl[BTF] = 0 and rFLAGS[TF] = 1).

Debuggers can use both the single-step mechanism and recording mechanism to support full backward
and forward tracing of control transfers.

13.2 Performance Monitoring Counters
The AMD64 architecture supports a set of hardware-based performance-monitoring counters (PMCs)
that can be utilized to measure the frequency or duration of certain hardware events. MSRs allow the
selection of events to be monitored and include a set of corresponding counter registers that
accumulate a count of monitored events.

Software tools can use these counters to identify performance bottlenecks, such as sections of code
that have high cache-miss rates or frequently mispredicted branches. This information can then be
used as a guide for improving overall performance or eliminating performance problems through
software optimizations or hardware-design improvements.

Software performance analysis tools often require a means to time-stamp an event or measure elapsed
time between two events. The time-stamp counter provides this capability. See Section 13.2.4 “Time-
Stamp Counter” on page 371.

The registers used in support of performance monitoring are model-specific registers (MSRs). See
“Model-Specific Registers (MSRs)” on page 58 for a general discussion of MSRs and “Performance-
Monitoring MSRs” on page 591 for a listing of the performance-monitoring MSR numbers and their
reset values.

13.2.1 Performance Counter MSRs
The legacy architecture defines four performance counters (PerfCtrn) and corresponding event-select
registers (PerfEvtSeln). Extensions add northbridge and L2 cache performance monitoring counters.
Each *PerfCtr register counts events selected by the corresponding *PerfEvtSel register.

An architectural extension augments the number of performance and event-select registers by adding
two more processor counter / event-select pairs. Further extensions add four counter / event-select
pairs dedicated to counting northbridge (NB) events and four counter / event-select pairs dedicated to
counting L2 cache (L2I) events.

Core logic includes instruction execution pipelines, execution units, and caches closest to the
execution hardware. The NB includes logic that routes data traffic between caches, external I/O
devices, and a system memory controller which reads and writes system memory (usually
implemented as external DRAM). The L2 cache is a cache that is further away from the processor core
than the L1 cache or caches. This cache is normally larger than the L1 cache(s) and requires more
processor cycles to access. An L2 cache may be shared between physical processor cores.

Software Debug and Performance Resources 365

24593—Rev. 3.30—September 2018 AMD64 Technology

All implementations support the base set of four performance counter / event-select pairs. Support for
the extended performance monitoring registers and the performance-related events selectable via the
*PerfEvtSel registers vary by implementation and are described in the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manual for that processor.

Core performance counters are used to count processor core events, such as data-cache misses, or the
duration of events, such as the number of clocks it takes to return data from memory after a cache miss.
During event counting, hardware increments a counter each time it detects an occurrence of a specified
event. During duration measurement, hardware counts the number of processor clock cycles required
to complete a specific hardware function.

NB performance counters are used to count events that occur within the northbridge. The L2I
performance counters are used to count events associated with accessing the L2 cache.

Performance counters and event-select registers are implemented as machine-specific registers
(MSRs). The base set of four PerfCtr and PerfEvtSel registers are accessed via a legacy set of MSRs
and the extended set of six core PerfCtr / PerfEvtSel registers are accessed via a different set. Extended
core PerfCtr / PerfEvtSel registers 0–3 alias the legacy set.

Support for the extended set of core PerfCtr registers and associated PerfEvtSel registers, as well as the
sets of northbridge and L2 cache counter / event-select pairs are indicated by CPUID feature bits. See
“Detecting Hardware Support for Performance Counters” on page 371. The MSR address assignments
for the legacy and extended performance / event-select pairs are listed in Appendix A, Section A.6,
“Performance-Monitoring MSRs” on page 591.

The length, in bits, of the performance counters is implementation-dependent, but the maximum
length supported is 64 bits. Figure 13-6 shows the format of the performance counter registers.

Figure 13-6. Performance Counter Format

For a given processor, all implemented performance counter registers can be read and written by
system software running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. The
architecture also provides an instruction, RDPMC, which may be employed by user-mode software to
read the architected core, northbridge, and L2 performance counters.

The RDPMC instruction loads the contents of the architected performance counter register specified
by the index value contained in the ECX register, into the EDX register and the EAX register. The high
32 bits are returned in EDX, and the low 32 bits are returned in EAX. RDPMC can be executed only at
CPL = 0, unless system software enables use of the instruction at all privilege levels. RDPMC can be
enabled for use at all privilege levels by setting CR4[PCE] (the performance-monitor counter-enable
bit) to 1. When CR4[PCE] = 0 and CPL > 0, attempts to execute RDPMC result in a general-

63 0

event or duration count

366 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

protection exception (#GP). For more information on the RDPMC instruction, see the instruction
reference page in Volume 3 of this manual.

Writing the performance counters can be useful if software wants to count a specific number of events,
and then trigger an interrupt when that count is reached. An interrupt can be triggered when a
performance counter overflows (see “Counter Overflow” on page 371 for additional information).
Software should use the WRMSR instruction to load the count as a two’s-complement negative
number into the performance counter. This causes the counter to overflow after counting the
appropriate number of times.

The performance counters are not guaranteed to produce identical measurements each time they are
used to measure a particular instruction sequence, and they should not be used to take measurements of
very small instruction sequences. The RDPMC instruction is not serializing, and it can be executed
out-of-order with respect to other instructions around it. Even when bound by serializing instructions,
the system environment at the time the instruction is executed can cause events to be counted before
the counter value is loaded into EDX:EAX. The following sections describe the core performance
event-select and the northbridge performance event-select registers.

Core Performance Event-Select Registers
The core performance event-select registers (PerfEvtSeln) are 64-bit registers used to specify the
events counted by the core performance counters, and to control other aspects of their operation. Each
performance counter supported by the implementation has a corresponding event-select register that
controls its operation. Figure 13-7 below shows the format of the core PerfEvtSel register.

Software Debug and Performance Resources 367

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-7. Core Performance Event-Select Register (PerfEvtSeln)

The fields shown in Figure 13-7 above are further described below:
• HG_ONLY (Host/Guest Only): read/write. This field qualifies events to be counted based on

virtualization operating mode (guest or host). The following table defines how HG_ONLY
qualifies the counting of events:

• EVENT_SELECT[11:8] (Event Select): read/write. This field extends the EVENT_SELECT field
from 8 bits to 12 bits. See EVENT_SELECT[7:0] below.

63 42 41 40 39 36 35 32

Reserved HG_
ONLY Reserved EVENT_

SELECT[11:8]

31 24 23 22 21 20 19 18 17 16 15 8 7 0

CNT_MASK
I
N
V

E
N

I
N
T

E
DG
E

O
S

U
S
R

UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:42 — Reserved
41:40 HG_ONLY Host/Guest Only R/W
39:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits 11:8 R/W
31:24 CNT_MASK Counter Mask R/W
23 INV Invert Comparison R/W
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19 — Reserved
18 EDGE Edge Detect R/W
17 OS Operating-System Mode R/W
16 USR User Mode R/W
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits 7:0 R/W

Table 13-3. Host/Guest Only Bits
Host Mode

(Bit 41)
Guest Mode

(Bit 40) Events Counted

0 0 All events, irrespective of guest or host mode
0 1 Guest events, if EFER[SVME] = 1
1 0 Host events, if EFER[SVME] = 1
1 1 Guest and host events, if EFER[SVME] = 1

368 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

• CNT_MASK (Counter Mask): read/write. Used with INV bit to control the counting of multiple
events that occur within one clock cycle. The table below describes this:

• INV (Invert Comparison): read/write. Used with CNT_MASK field to control the counting of
multiple events within one clock cycle. See table above.

• EN (Counter Enable): read/write. Software sets this bit to 1 to enable the PerfEvtSeln register, and
counting in the corresponding PerfCtrn register. Clearing this bit to 0 disables the register pair.

• INT (Interrupt Enable): read/write. Software sets this bit to 1 to enable an interrupt to occur when
the performance counter overflows (see “Counter Overflow” on page 371 for additional
information). Clearing this bit to 0 disables the triggering of the interrupt.

• EDGE (Edge Detect): read/write. Software sets this bit to 1 to count the number of edge transitions
from the negated to asserted state. This feature is useful when coupled with event-duration
monitoring, as it can be used to calculate the average time spent in an event. Clearing this bit to 0
disables edge detection.

• OS (Operating-System Mode) and USR (User Mode): read/write. Software uses these bits to
control the privilege level at which event counting is performed according to Table 13-5.

• UNIT_MASK (Unit Mask): read/write. This field further specifies or qualifies the event specified
by the EVENT_SELECT field. Depending on implementation, it may be used to specify a sub-
event within the class specified by the EVENT_SELECT field or it may act as bit mask and be
used to specify a number of events within the class to be monitored simultaneously.

Table 13-4. Count Control Using CNT_MASK and INV
CNT_MASK INV Increment Value

00h –
Corresponding PerfCtr[n] register is incremented by the number of events
occurring in a clock cycle. If the number of events is equal to or greater than 32, the
count register is incremented by 32.

FFh:01h1
0 Corresponding PerfCtr[n] register is incremented by 1, if the number of events

occurring in a clock cycle is greater than or equal to the CNT_MASK value.

1 Corresponding PerfCtr[n]register is incremented by 1, if the number of events
occurring in a clock cycle is less than the CNT_MASK value.

Note 1: Maximum CNT_MASK value (in the range FFh:01h is implementation dependent. Consult applicable BIOS
and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual.

Table 13-5. Operating-System Mode and User Mode Bits
OS

(Bit 17)
USR

(Bit 16) Event Counting

0 0 No counting.
0 1 Only at CPL > 0.
1 0 Only at CPL = 0.
1 1 At all privilege levels.

Software Debug and Performance Resources 369

24593—Rev. 3.30—September 2018 AMD64 Technology

• EVENT_SELECT[7:0] (Event Select [7:0]): read/write. This field concatenated with
EVENT_SELECT[11:8] specifies the event or event duration to be counted by the corresponding
PerfCtr[n] register. The events that can be monitored are implementation dependent. In some
implementations, support for a specific EVENT_SELECT value may restricted to a subset of the
available performance counters. For more information, see the BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming Reference Manualapplicable to your product.

The core performance event-select registers can be read and written only by system software running
at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or write
these registers at CPL > 0 causes a general-protection exception to occur.

Northbridge (NB) Performance Event-Select Registers
The NB performance event-select registers (NB_PerfEvtSeln) are 64-bit registers used to specify the
events counted by the northbridge performance counters, and to control other aspects of their
operation. Each performance counter supported by the implementation has a corresponding event-
select register that controls its operation. Figure 13-8 below shows the format of the NB_PerfEvtSeln
register.

Figure 13-8. Northbridge Performance Event-Select Register (NB_PerfEvtSeln)

The northbridge performance event-select registers can be read and written only by system software
running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or
write these registers at CPL > 0 causes a general-protection exception to occur.

63 36 35 32

Reserved EVENT_
SELECT[11:8]

31 23 22 21 20 19 16 15 8 7 0

Reserved E
N

I
N
T

Reserved UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits [11:8] R/W
31:23 — Reserved
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19:16 — Reserved
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits [7:0] R/W

370 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

For more information on the defined fields within the NB_PerfEvtSeln registers, see the BIOS and
Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manualapplicable to your
product.

L2 Cache (L2I) Performance Event-Select Registers
The L2 cache performance event-select registers (L2I_PerfEvtSeln) are 64-bit registers used to specify
the events counted by the L2 cache performance counters, and to control other aspects of their
operation. Each performance counter supported by the implementation has a corresponding event-
select register that controls its operation. Figure 13-9 below shows the format of the L2I_PerfEvtSeln
register.

Figure 13-9. L2 Cache Performance Event-Select Register (L2I_PerfEvtSeln)

The L2 cache performance event-select registers can be read and written only by system software
running at CPL = 0 using the RDMSR and WRMSR instructions, respectively. Any attempt to read or
write these registers at CPL > 0 causes a general-protection exception to occur.

For more information on the defined fields within the L2I_PerfEvtSeln registers, see the BIOS and
Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manualapplicable to your
product.

Instructions Retired Performance counter
This is a dedicated counter that is always counting instructions retired. It exists at MSR address
C000_00E9. It is enabled by setting a 1 to HWCR[30] and its support is indicated by CPUID
Fn8000_0008_EBX[1].

63 36 35 32

Reserved EVENT_
SELECT[11:8]

31 23 22 21 20 19 16 15 8 7 0

Reserved E
N

I
N
T

Reserved UNIT_MASK EVENT_SELECT[7:0]

Bits Mnemonic Description R/W
63:36 — Reserved
35:32 EVENT_SELECT[11:8] Event select bits [11:8] R/W
31:23 — Reserved
22 EN Counter Enable R/W
21 — Reserved
20 INT Interrupt Enable R/W
19:16 — Reserved
15:8 UNIT_MASK Unit Mask R/W
7:0 EVENT_SELECT[7:0] Event select bits [7:0] R/W

Software Debug and Performance Resources 371

24593—Rev. 3.30—September 2018 AMD64 Technology

13.2.2 Detecting Hardware Support for Performance Counters
Support for extended core, northbridge, and L2 cache performance counters is implementation-
dependent. Support on a given processor implementation can be verified using the CPUID instruction.

CPUID Fn8000_0001_ECX[PerfCtrExtCore] = 1 indicates support for the six architecturally defined
extended core performance counters and their associated event-select registers. CPUID
Fn8000_0001_ECX[PerfCtrExtNB] = 1 indicates support for the four architecturally defined
northbridge performance counter / event-select pairs and CPUID Fn8000_0001_ECX[PerfCtrExtL2I]
= 1 indicates support for the four architecturally defined L2 cache performance counter / event-select
pairs.

See Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the
CPUID instruction.

A given processor may implement other performance measurement MSRs with similar capabilities
even if one of the optional architected facilities are not.

13.2.3 Using Performance Counters

13.2.3.1 Starting and Stopping
Performance measurement using the PerfCtrn, NB_PerfCtrn, and L2I_PerfCtrn registers is initiated by
setting the corresponding *PerfEvtSeln[EN] bit to 1. Counting is stopped by clearing the
*PerfEvtSeln[EN] bit. Software must initialize the remaining *PerfEvtSeln fields with the appropriate
setup information before or at the same time EN is set. Counting begins when the WRMSR instruction
that sets *PerfEvtSeln[EN] to 1 completes execution. Counting stops when the WRMSR instruction
that clears the EN bit completes execution.

13.2.3.2 Counter Overflow
Some processor implementations support an interrupt-on-overflow capability that allows an interrupt
to occur when one of the *PerfCtrn registers overflows. The source and type of interrupt is
implementation dependent. Some implementations cause a debug interrupt to occur, while others
make use of the local APIC to specify the interrupt vector and trigger the interrupt when an overflow
occurs. Software enables or disables the triggering of an interrupt on counter overflow by setting or
clearing the *PerfEvtSeln[INT] bit.

If system software makes use of the interrupt-on-overflow capability, an interrupt handler must be
provided that can record information relevant to the counter overflow. Before returning from the
interrupt handler, the performance counter can be re-initialized to its previous state so that another
interrupt occurs when the appropriate number of events are counted.

13.2.4 Time-Stamp Counter
The time-stamp counter (TSC) is used to count processor-clock cycles. The TSC is cleared to 0 after a
processor reset. After a reset, the TSC is incremented at a rate corresponding to the baseline frequency

372 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

of the processor (which may differ from actual processor frequency in low power modes of operation).
Each time the TSC is read, it returns a monotonically-larger value than the previous value read from
the TSC. When the TSC contains all ones, it wraps to zero. The TSC in a 1-GHz processor counts for
almost 600 years before it wraps. Figure 13-10 shows the format of the 64-bit time-stamp counter
(TSC).

Figure 13-10. Time-Stamp Counter (TSC)

The TSC is a model-specific register that can also be read using one of the special read time-stamp
counter instructions, RDTSC (Read Time-Stamp Counter) or RDTSCP (Read Time-Stamp Counter
and Processor ID). The RDTSC and RDTSCP instructions load the contents of the TSC into the EDX
register and the EAX register. The high 32 bits are loaded into EDX, and the low 32 bits are loaded into
EAX. The RDTSC and RDTSCP instructions can be executed at any privilege level and from any
processor mode. However, system software can disable the RDTSC or RDTSCP instructions for
programs that run at CPL > 0 by setting CR4[TSD] (the time-stamp disable bit) to 1. When
CR4[TSD] = 1 and CPL > 0, attempts to execute RDSTC or RDSTCP result in a general-protection
exception (#GP).

The TSC register can be read and written using the RDMSR and WRMSR instructions, respectively.
The programmer should use the CPUID instruction to determine whether these features are supported.
If EDX bit 4 (as returned by CPUID function 1) is set, then the processor supports TSC, the RDTSC
instruction and CR4[TSD]. If EDX bit 27 returned by CPUID function 8000_0001h is set, then the
processor supports the RDTSCP instruction.

The TSC register can be used by performance-analysis applications, along with the performance-
monitoring registers, to help determine the relative frequency of an event or its duration. Software can
also use the TSC to time software routines to help identify candidates for optimization. In general, the
TSC should not be used to take very short time measurements, because the resulting measurement is
not guaranteed to be identical each time it is made. The RDTSC instruction (unlike the RDTSCP
instruction) is not serializing, and can be executed out-of-order with respect to other instructions
around it. Even when bound by serializing instructions, the system environment at the time the
instruction is executed can cause additional cycles to be counted before the TSC value is loaded into
EDX:EAX.

When using the TSC to measure elapsed time, programmers must be aware that for some
implementations, the rate at which the TSC is incremented varies based on the processor power
management state (Pstate). For other implementations, the TSC increment rate is fixed and is not
subject to power-management related changes in processor frequency. CPUID Fn
8000_0007h_EDX[TscInvariant] = 1 indicates that the TSC increment rate is a constant.

63 0

TSC

Software Debug and Performance Resources 373

24593—Rev. 3.30—September 2018 AMD64 Technology

For more information on using the CPUID instruction to obtain processor implementation
information, see Section 3.3, “Processor Feature Identification,” on page 63.

13.3 Instruction-Based Sampling
Instruction-Based Sampling (IBS) is a hardware facility that can be used to gather specific metrics
related to processor instruction fetch and instruction execution activity. Data capture is performed by
hardware at a sampling interval specified by values programmed in IBS sampling control registers.
The IBS facility can be utilized by software to perform code profiling based on statistical sampling.

There are two independent data gathering components of IBS: instruction fetch sampling and
instruction execution sampling. Instruction fetch sampling provides information about instruction
address translation look-aside buffer (ITLB) and instruction cache behavior for a randomly selected
fetch block, under the control of the IBS Fetch Control Register. Instruction execution sampling
provides information about instruction execution behavior by tracking the execution of a single micro-
operation (op) that is randomly selected, under the control of the IBS Execution Control Register.

When the programmed interval for fetch sampling has expired, the fetch sampling component of IBS
selects and tags the next fetch block. IBS hardware records specific performance information about the
tagged fetch. In a similar manner, when the programmed interval for op sampling has expired, the op
sampling component of IBS selects and tags the next op being dispatched for execution.

When data collection for the tagged fetch or op is complete, the hardware signals an interrupt. An
interrupt handler can then read the performance information that was captured for the fetch or op in
IBS MSRs, save it, and re-enable the hardware to take the next sample.

More information about the IBS facility and how software can use it to perform code profiling can be
found in the Software Optimization Guide for your specific product. The Software Optimization Guide
for AMD Family 15h Processors is order #47414.

Support for the IBS feature is indicated by the CPUID Fn 8000_0001h_ECX[IBS]. For more
information on using the CPUID instruction to obtain processor implementation information, see
Section 3.3, “Processor Feature Identification,” on page 63.

13.3.1 IBS Fetch Sampling
When a processor fetches an instruction, it is actually reading a contiguous range of instruction bytes
that contains the instruction from memory or from cache. This range of bytes loaded by the processor
in one operation is called a fetch block. The size and address-alignment characteristics of the fetch
block are implementation-dependent. In the following discussion, the term instruction fetch or simply
fetch refers to this operation of reading a fetch block.

Instruction fetch sampling records the following performance information for each tagged fetch:
• If the fetch completed or was aborted
• The number of core clock cycles spent on the fetch

374 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

• If the fetch hit or missed the instruction cache
• If the instruction fetch hit or missed the instruction TLBs
• The fetch address translation page size
• The linear and physical address associated with the fetch

IBS selects and tags a fetch at a programmable rate. When enabled by the IBS Fetch Control Register
(IbsFetchEn = 1 and IbsFetchVal = 0), an internal 20-bit fetch interval counter increments for every
successful completion of a fetch operation. When the value in bits 19:4 of the fetch counter equal the
value in the IbsFetchMaxCnt field of the IBS Fetch Control Register, the next fetch block is tagged for
data collection.

When the tagged fetch completes or is aborted, the status of the fetch is written to the IBS Fetch
Control Register and the associated linear address and physical address are written in the IBS Fetch
Linear Address Register and IBS Fetch Physical Address Register, respectively. The IbsFetchVal bit is
set in the IBS Fetch Control Register and an interrupt is generated as specified by the local APIC.

The interrupt service routine saves the performance information stored in the IBS fetch registers.
Software can then initiate another sample by resetting the IbsFetchVal bit in the IBS Fetch Control
Register. Hardware initializes bits 19:4 of the internal fetch interval counter with the value in the
IbsFetchCnt field. If the IbsFetchCtl[IbsRandEn] bit is set, bits 3:0 of the fetch interval counter are re-
initialized by hardware with a pseudo-random value; otherwise bits 3:0 are cleared.

13.3.2 IBS Fetch Sampling Registers
The IBS fetch sampling registers consist of the status and control register (IBS Fetch Control Register)
and the associated fetch address registers (IBS Fetch Linear Address Register and IBS Fetch Physical
Address Register). The IBS fetch sampling registers are accessed using the RDMSR and WRMSR
instructions.

IBS Fetch Control Register
63 58 57 56 55 54 53 52 51 50 49 48 47 32

Reserved, MBZ

Ib
sR

an
dE

n

Ib
sL

1T
lb

M
is

s

Ib
sL

1T
lb

Pg
Sz

Ib
sP

hy
Ad

dr
Va

lid
Ib

sI
cM

is
s

Ib
sF

et
ch

C
om

p
Ib

sF
et

ch
Va

l
Ib

sF
et

ch
En

IbsFetchLat

31 16 15 0

IbsFetchCnt IbsFetchMaxCnt

Software Debug and Performance Resources 375

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-11. IBS Fetch Control Register(IbsFetchCtl)

The fields shown in Figure 13-11 are further described below:
• IbsRandEn (IBS Randomize Tagging Enable)—Bit 57, read/write. Software sets this bit to 1 to add

variability to the interval at which fetch operations are selected for tagging. When set, bits 3:0 of
the fetch interval counter are set to a pseudo-random value when the IbsFetchCtl register is written.
Clearing this bit causes bits 3:0 of the fetch interval counter to be reset to zero.

• IbsL1TlbMiss (IBS Fetch L1 TLB Miss)—Bit 55, read/write. This bit is set if the tagged fetch
missed in the L1 TLB.

• IbsL1TlbPgSz[1:0] (IBS Fetch L1 TLB Page Size)—Bits 54:53, read/write. This field indicates the
page size of the translation in the L1 TLB for the tagged fetch. This field is valid only if
IbsPhyAddrVal = 1. The table below defines the encoding of this two-bit field:

Some implementations might not support all page sizes. Note: The page size in the L1 TLB might
not match the page size in the page table.

• IbsPhyAddrValid (IBS Fetch Physical Address Valid)—Bit 52, read/write. This bit is set if the
physical address of the tagged fetch is valid. When this bit is set, the IbsL1TlbPgSz field and the
contents of the IBS Fetch Physical Address Register (see definition of this register below) are both
valid.

• IbsIcMiss (IBS Instruction Cache Miss)—Bit 51, read/write. This bit is set if the tagged fetch
missed in the instruction cache.

Bit(s) Field Mnemonic Descriptive Name R/W
63:58 — Reserved, MBZ
57 IbsRandEn IBS Randomize Tagging Enable R/W
56 — Reserved
55 IbsL1TlbMiss IBS Fetch L1 TLB Miss R/W
54:53 IbsL1TlbPgSz IBS Fetch L1 TLB Page Size R/W
52 IbsPhyAddrValid IBS Fetch Physical Address Valid R/W
51 IbsIcMiss IBS Instruction Cache Miss R/W
50 IbsFetchComp IBS Fetch Complete R/W
49 IbsFetchVal IBS Fetch Valid R/W
48 IbsFetchEn IBS Fetch Enable R/W
47:32 IbsFetchLat IBS Fetch Latency R/W
31:16 IbsFetchCnt IBS Fetch Count R/W
15:0 IbsFetchMaxCnt IBS Fetch Maximum Count R/W

Value Page Size
00b 4 Kbyte
01b 2 Mbyte
10b 1 Gbyte
11b Reserved

376 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

• IbsFetchComp (IBS Fetch Complete)—Bit 50, read/write. This bit is set if the tagged fetch
completes and data is available for use by the instruction decoder.

• IbsFetchVal (IBS Fetch Valid)—Bit 49, read/write. This bit is set if the tagged fetch either
completes or is aborted. When the bit is set, captured data for the tagged fetch is available and the
fetch interval counter stops. An interrupt is generated as specified by the local APIC. The interrupt
handler should read and save the captured performance data before clearing the bit.

• IbsFetchEn (IBS Fetch Enable)—Bit 48, read/write. Software sets this bit to enable fetch
sampling. Clearing this bit to 0 disables fetch sampling.

• IbsFetchLat[15:0] (IBS Fetch Latency)—Bits 47:32, read/write. This 16-bit field indicates the
number of core clock cycles from the initiation of the fetch to the delivery of the instruction bytes
to the core. If the fetch is aborted before it completes, this field returns the number of clock cycles
from the initiation of the fetch to its abortion.

• IbsFetchCnt[15:0] (IBS Fetch Count)—Bits 31:16, read/write. This 16-bit field returns the current
value of bits 19:4 of the fetch interval counter on a read. Bits 19:4 of the fetch interval counter are
set to this value on a write.

• IbsFetchMaxCnt[15:0] (IBS Fetch Maximum Count)—Bits 15:0, read/write. This 16-bit field
specifies the maximum count value of bits 19:4 of the fetch interval counter. When the value in bits
19:4 of the fetch counter equals the value in this field, the next fetch block is tagged for profiling.

IBS Fetch Linear Address Register

Figure 13-12. IBS Fetch Linear Address Register (IbsFetchLinAd)

This is a read-only register. Reading the IbsFetchLinAd MSR returns the 64-bit linear address of the
tagged fetch. This address may correspond to the first byte of an AMD64 instruction or the start of the
fetch block. The address is valid only if the IbsFetchVal bit is set. The address is in canonical form.

63 32

IbsFetchLinAd[63:32]

31 0

IbsFetchLinAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsFetchLinAd IBS Fetch Linear Address RO

Software Debug and Performance Resources 377

24593—Rev. 3.30—September 2018 AMD64 Technology

IBS Fetch Physical Address Register

Figure 13-13. IBS Fetch Physical Address Register (IbsFetchPhysAd)

This is a read-only register. Reading the IbsFetchPhysAd MSR returns the 52-bit physical address of
the tagged fetch. This address may correspond to the first byte of an AMD64 instruction or the start of
the fetch block. The address is valid only if both the IbsPhyAddrValid and the IbsFetchVal bits of the
IbsFetchCtl register are set. Otherwise, the contents of this register are undefined. The indicated size of
52 bits is an architectural limit. Specific processors may implement fewer bits.

13.3.3 IBS Execution Sampling
Instruction execution performance is measured by tagging an op associated with an instruction. The
tagged op joins other ops in a queue waiting to be dispatched and executed. Instructions that decode to
more than one op may return different performance data depending upon which op associated with the
instruction is tagged. IBS returns the following performance information for each retired tagged op:
• Branch status for branch ops.
• For a load or store op:

- Whether the load or store missed in the data cache.
- Whether the load or store address hit or missed in the TLBs.
- The linear and physical address of the data operand associated with the load or store operation.
- Source information for cache, DRAM, MMIO, or I/O accesses.

IBS selects and tags an op at a programmable rate. When enabled by the IBS Execution Control
Register (IbsOpEn = 1 and IbsOpVal = 0), an internal 27-bit op interval counter increments either once
for every core clock cycle, if IbsOpCntCtl is cleared, or once for every dispatched op, if IbsOpCntCtl
is set.

When the value in bits 26:4 of the op counter equals the value in the IbsOpMaxCnt field of the IBS
Execution Control Register, an op is tagged in the next cycle. When the op is retired, the execution
status of the op is written to the IBS execution registers, and IbsOpVal bit of the IBS Execution Control

63 52 51 32

Reserved, MBZ IbsFetchPhysAd[51:32]

31 0

IbsFetchPhysAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:52 — Reserved, MBZ n/a
51:0 IbsFetchPhysAd IBS Fetch Physical Address RO

378 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Register is set. When this is complete, an interrupt is signalled to the local APIC. The local APIC
should be programmed to deliver this interrupt to the processor core.

The interrupt service routine must save the performance information stored in IBS execution registers.
Software can then initiate another sample by resetting the IbsOpVal bit in the IBS Execution Control
Register.

Aborted ops do not produce an IBS execution sample. If the tagged op aborts (i.e., does not retire),
hardware resets bits 26:7 of the op interval counter to zero, and bits 6:0 to a random value. The op
counter continues to increment and another op is selected when the value in bits 26:4 of the op interval
counter equals the value in the IbsOpMaxCnt field.

Randomization of sampling interval: A degree of randomization of the sampling interval is
necessary to ensure fairness in sampling, especially for loop-intensive code. For execution sampling
this must be done by software. This is accomplished when writing the IbsOpCtl register to clear the
IbsOpVal bit and initiate a new sampling interval. At that time software can provide a small random
number (4-6 bits) in the IbsOpCurCnt field to offset the starting count, thereby randomizing the point
at which the count reaches the IbsOpMaxCnt value and triggers a sample.

13.3.4 IBS Execution Sampling Registers
The IBS execution sampling registers consist of the control register (IBS Execution Control Register),
the linear address register (IBS Op Linear Address Register), and three execution data registers (IBS
Op Data 1–3). The IBS execution sampling registers are accessed using the RDMSR and WRMSR
instructions.

IBS Execution Control Register (IbsOpCtl)
63 59 58 32

Reserved, MBZ IbsOpCurCnt[26:0]

31 27 26 20 19 18 17 16 15 0

Reserved, MBZ IbsOpMaxCnt[26:20]

Ib
sO

pC
nt

C
tl

Ib
sO

pV
al

Ib
sO

pE
n

R
es

er
ve

d

IbsOpMaxCnt[19:4]

Software Debug and Performance Resources 379

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-14. IBS Execution Control Register (IbsOpCtl)

The fields shown in Figure 13-14 are further described below:
• IbsOpCurCnt[26:0] (IBS Op Current Count)—Bits 58:32, read/write. This field returns the current

value of the op counter, and provides the starting value of the counter when software writes this
register to clear the IbsOpVal bit and start another sampling interval.

• IbsOpMaxCnt[26:20] (IBS Op Maximum Count[26:20])—Bits 26:20, read/write. This field is
used to specify the most significant 7 bits of the IbsOpMaxCnt.

• IbsOpCntCtl (IBS Op Counter Control)—Bit 19, read/write. This bit controls op tagging. When
this bit is zero, IBS counts core clock cycles in order to select an op for tagging. When this bit is
one, IBS counts dispatched ops in order to select an op for tagging.

• IbsOpVal (IBS Op Sample Valid)—Bit 18, read/write. This bit is set when a tagged op retires and
indicates that new instruction execution data is available. The op counter stops counting. An
interrupt is generated as specified by the local APIC. The software interrupt handler captures the
performance data before clearing the bit to enable the hardware to take another sample.

• IbsOpEn (IBS Op Sample Enable)—Bit read/write. Software sets this bit to enable IBS execution
sampling. Clearing this bit disables IBS execution sampling.

• IbsOpMaxCnt[19:4] (IBS Op Maximum Count[19:4]): read/write. This field specifies the
maximum count value for bits 19:4 of the op interval counter. When the value in bits 26:4 of the op
interval counter equal the value specified by the concatenation of the IbsOpMaxCnt[26:20] field
with this field, the next op is tagged for profiling.

Bit(s) Field Mnemonic Descriptive Name R/W
63:59 — Reserved, MBZ
58:32 IbsOpCurCnt[26:0] IBS Op Current Count, bits 26:0 R/W
31:27 — Reserved, MBZ
26:20 IbsOpMaxCnt[26:20] IBS Op Maximum Count, bits 26:20 R/W
19 IbsOpCntCtl IBS Op Counter Control R/W
18 IbsOpVal IBS Op Sample Valid R/W
17 IbsOpEn IBS Op Sampling Enable R/W
16 — Reserved, MBZ
15:0 IbsOpMaxCnt[19:4] IBS Op Maximum Count, bits 19:4 R/W

380 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

IBS Op Linear Address Register (IbsOpRip)

Figure 13-15. IBS Op Linear Address Register (IbsOpRip)

IbsOpRip[63:0] (IBS Op Linear Address): read/write. Specifies the linear address for the instruction
from which the tagged op was issued. The address is valid only if the IbsOpCtl[IbsOpVal] bit is set and
the IbsOpData1[IbsRipInvalid] bit is cleared. The address is in canonical form.

63 32

IbsOpRip[63:31]

31 0

IbsOpRip[31:0]

Bit(s) Field
Mnemonic

Descriptive Name R/W

63:0 IbsOpRip IBS Op Linear Address R/W

Software Debug and Performance Resources 381

24593—Rev. 3.30—September 2018 AMD64 Technology

IBS Op Data 1 Register (IbsOpData1)
The IBS Op Data 1 Register provides core cycle counts for tagged ops and performance data for
tagged ops which perform a branch.

Figure 13-16. IBS Op Data 1 Register (IbsOpData1)

The fields shown in Figure 13-16 are further described below:
• IbsRipInvalid (IbsOpRip Register Invalid)—Bit 38, read/write. If this bit is set, the contents of the

IbsOpRip register are not valid.
• IbsOpBrnRet (IBS Op Branch Retired)—Bit 37, read/write. This bit is set if the tagged op

performs a branch that retired.
• IbsOpBrnMisp (IBS Op Branch Mispredicted)—Bit 36, read/write. This bit is set if the tagged op

performs a retired mispredicted branch.
• IbsOpBrnTaken (IBS Op Branch Taken)—Bit 35, read/write. This bit is set if the tagged op

performs a retired taken branch.
• IbsOpReturn (IBS Op RET)—Bit 34, read/write. This bit is set if the tagged op performs a retired

subroutine return (RET).

63 39 38 37 36 35 34 33 32

Reserved

Ib
sR

ip
In

va
lid

Ib
sO

pB
rn

R
et

Ib
sO

pB
rn

M
is

p
Ib

sO
pB

rn
Ta

ke
n

Ib
sO

pR
et

ur
n

R
es

er
ve

d

31 0

Reserved

Bit(s) Field Mnemonic Descriptive Name R/W
63:39 — Reserved
38 IbsRipInvalid IbsOpRip Register Invalid R/W
37 IbsOpBrnRet IBS Op Branch Retired R/W
36 IbsOpBrnMisp IBS Op Branch Mispredicted R/W
35 IbsOpBrnTaken IBS Op Branch Taken R/W
34 IbsOpReturn IBS Op RET R/W
33:0 — Reserved

382 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

IBS Op Data 2 Register (IbsOpData2)
The IBS Op Data 2 Register captures northbridge-related performance data. The information captured
is implementation-dependent. See the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manualapplicable to your product for details.

Software Debug and Performance Resources 383

24593—Rev. 3.30—September 2018 AMD64 Technology

IBS Op Data 3 Register (IbsOpData3)
Data Cache (first-level cache) performance data is captured in IBS Op Data 3 Register. If a load or
store operation crosses a 128-bit boundary, the data returned in this register is the data for the access to
the data below the 128-bit boundary.

Figure 13-17. IBS Op Data 3 Register (IbsOpData3)

The fields shown in Figure 13-17 are further described below:

63 48 47 32

Reserved IbsDcMissLat[15:0]

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Ib
sD

cP
hy

Ad
dr

Va
lid

Ib
sD

cL
in

Ad
dr

Va
lid

R
es

er
ve

d
Ib

sD
cL

oc
ke

dO
p

Ib
sD

cU
cM

em
Ac

c
Ib

sD
cW

cM
em

Ac
c

Reserved

Ib
sD

cM
is

Ac
c

Ib
sD

cM
is

s
R

es
er

ve
d

Ib
sD

cL
1t

lb
H

it1
G

Ib
sD

cL
1t

lb
H

it2
M

R
es

er
ve

d
Ib

sD
cL

1t
lb

M
is

s
Ib

sS
tO

p
Ib

sL
dO

p

Bit(s) Field Mnemonic Descriptive Name R/W
63:48 — Reserved
47:32 IbsDcMissLat[15:0] IBS Data Cache Miss Latency R/W
31:19 — Reserved
18 IbsDcPhyAddrValid IBS Data Cache Physical Address Valid R/W
17 IbsDcLinAddrValid IBS Data Cache Linear Address Valid R/W
16 — Reserved
15 IbsDcLockedOp IBS Data Cache Locked Op R/W
14 IbsDcUcMemAcc IBS Data Cache UC Memory Access R/W
13 IbsDcWcMemAcc IBS Data Cache WC Memory Access R/W
12:9 — Reserved
8 IbsDcMisAcc IBS Data Cache Misaligned Access Penalty R/W
7 IbsDcMiss IBS Data Cache Miss R/W
6 — Reserved
5 IbsDcL1tlbHit1G IBS Data Cache L1 TLB Hit 1-Gbyte Page R/W
4 IbsDcL1tlbHit2M IBS Data Cache L1 TLB Hit 2-Mbyte Page R/W
3 — Reserved
2 IbsDcL1tlbMiss IBS Data Cache L1 TLB Miss R/W
1 IbsStOp IBS Store Operation R/W
0 IbsLdOp IBS Load Operation R/W

384 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

• IbsDcMissLat[15:0] (IBS Data Cache Miss Latency)—Bits 47:32, read/write. This field indicates
the number of core clock cycles from when a miss is detected in the data cache to when the data is
delivered to the core. The value is not valid for data cache store operations.

• IbsDcPhyAddrValid (IBS Data Cache Physical Address Valid)—Bit 18, read/write. This bit is set
if the physical address in the IBS DC Physical Address Register is valid for a load or store
operation.

• IbsDcLinAddrValid (IBS Data Cache Linear Address Valid)—Bit 17, read/write. This bit is set if
the linear address in the IBS DC Linear Address Register is valid for a load or store operation.

• IbsDcLockedOp (IBS Data Cache Locked Op)—Bit 15, read/write. This bit is set if the tagged
load or store operation was a locked operation.

• IbsDcUcMemAcc (IBS Data Cache UC Memory Access)—Bit 14, read/write. This bit is set if the
tagged load or store operation accessed uncacheable memory.

• IbsDcWcMemAcc (IBS Data Cache WC Memory Access)—Bit 13, read/write. This bit is set if the
tagged load or store operation accessed write combining memory.

• IbsDcMisAcc (IBS Data Cache Misaligned Access Penalty)—Bit 8, read/write. This bit is set if a
tagged load or store operation incurred a performance penalty due to a misaligned access.

• IbsDcMiss (IBS Data Cache Miss)—Bit 7, read/write. This bit is set if the cache line used by the
tagged load or store operation was not present in the data cache.

• IbsDcL1tlbHit1G (IBS Data Cache L1 TLB Hit 1-Gbyte Page)—Bit 5, read/write. This bit is set if
the physical address for the tagged load or store operation was present in a 1-Gbyte page table
entry in the data cache L1 TLB.

• IbsDcL1tlbHit2M (IBS Data Cache L1 TLB Hit 2-Mbyte Page)—Bit 4, read/write. This bit is set if
the physical address for the tagged load or store operation was present in a 2-Mbyte page table
entry in the data cache L1 TLB.

• IbsDcL1tlbMiss (IBS Data Cache L1 TLB Miss)—Bit 2, read/write. This bit is set if the physical
address for the tagged load or store operation was not present in the data cache L1 TLB.

• IbsStOp (IBS Store Op)—Bit 1, read/write. This bit is set if the tagged op was a store.
• IbsLdOp (IBS Load Op)—Bit 0, read/write. This bit is set if the tagged op was a load.

IBS Data Cache Linear Address Register (IbsDcLinAd)
63 32

IbsDcLinAd[63:32]

Software Debug and Performance Resources 385

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-18. IBS Data Cache Linear Address Register (IbsDcLinAd)

IbsDcLinAd[63:0] (IBS Data Cache Linear Address): read/write. Specifies the linear address of the
tagged op's memory operand. The address is valid only if IbsOpData3[IbsDcLinAdVal] is set. The
address is in canonical form.

IBS Data Cache Physical Address Register (IbsDcPhysAd)

Figure 13-19. IBS Data Cache Physical Address Register (IbsDcPhysAd)

IbsDcPhysAd (IBS Data Cache Physical Address): read/write. Specifies the physical address of the
tagged op's memory operand. The address is valid only if IbsOpData3[IbsDcPhyAdVal] is set.

IBS Branch Target Address Register (IbsBrTarget)

31 0

IbsDcLinAd[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsDcLinAd IBS Data Cache Linear Address R/W

63 52 51 32

Reserved, MBZ IbsDcPhysAd[51:32]

31 0

IbsDcPhysAd[31:0]

Bit(s) Field
Mnemonic Descriptive Name R/W

63:52 — Reserved, MBZ
51:0 IbsDcPhysAd IBS Data Cache Physical Address R/W

63 32

IbsBrTarget[63:32]

386 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-20. IBS Branch Target Address Register (IbsBrTarget)

IbsBrTarget (IBS Branch Target): read/write. Specifies the 64-bit linear address for the branch target.
The address is in canonical form. The branch target address is valid if it is non-zero. For a conditional
branch not taken, the value supplied in this register is the fall-through address.

13.4 Lightweight Profiling
Lightweight Profiling (LWP) is an AMD64 extension that allows user mode processes to gather
performance data about themselves with very low overhead. LWP is supported in both long mode and
legacy mode. Modules such as managed runtime environments and dynamic optimizers can use LWP
to monitor the running program with high accuracy and high resolution. They can quickly discover
performance problems and opportunities and immediately act on this information.

LWP allows a program to gather performance data and examine it either by polling or by taking an
occasional interrupt. It introduces minimal additional state to the CPU and the process. LWP differs
from the existing performance counters and from Instruction Based Sampling (IBS) because it collects
large quantities of data before taking an interrupt. This substantially reduces the overhead of using
performance feedback. An application can avoid the need to enable and process interrupts by polling
the LWP data.

A program can control LWP data collection entirely in user mode. It can start, stop, and reconfigure
profiling without calling the kernel.

LWP runs within the context of a thread, so it can be used by multiple processes in a system at the same
time without interference. This also means that if one thread is using LWP and another is not, the latter
thread incurs no profiling overhead.

LWP can be programmed to run in one of two modes: synchronized mode or continuous mode. In
synchronized mode the recording of events stops when the buffer set up to hold event records becomes
full. In continuous mode, the storing of events wraps in the buffer overwriting older records.

13.4.1 Overview
When enabled, LWP hardware monitors one or more events during the execution of user-mode code
and periodically inserts event records into a ring buffer in the address space of the running process. If
performance timestamping is supported and enabled, each event record captured is timestamped using

31 0

IbsBrTarget[31:0]

Bit(s) Field Mnemonic Descriptive Name R/W
63:0 IbsBrTarget IBS branch target linear address R/W

Software Debug and Performance Resources 387

24593—Rev. 3.30—September 2018 AMD64 Technology

the value read from the performance timestamp counter (PTSC). Timestamping is enabled by setting
the Flags.PTSC bit of the Lightweight Profiling Control Block (LWPCB). When the ring buffer is
filled beyond a user-specified threshold, the hardware can cause an interrupt which the operating
system (OS) uses to signal a process to empty the ring buffer. With proper OS support, the interrupt
can even be delivered to a separate process or thread.

LWP only counts instructions that retire in user mode (CPL = 3). Instructions that change to CPL 3
from some other level are not counted, since the instruction address is not an address in user mode
space. LWP does not count hardware events while the processor is in system management mode
(SMM) and while entering or leaving SMM.

Once LWP is enabled, each user-mode thread uses the LLWPCB and SLWPCB instructions to control
LWP operation. These instructions refer to a data structure in application memory called the
Lightweight Profiling Control Block, or LWPCB, to specify the profiling parameters and to interact
with the LWP hardware. The LWPCB in turn points to a buffer in memory in which LWP stores event
records.

Each thread in a multi-threaded process must configure LWP separately. A thread has its own ring
buffer and counters which are context switched with the rest of the thread state. However, a single
monitor thread could collect and process LWP data from multiple other threads.

LWP may be set up to run in one of two modes:
• Synchronized Mode

LWP runs in synchronized mode when it is started with LWPCB.Flags.CONT = 0. In this mode,
LWP will not advance the ring buffer pointer when the event ring buffer is full. It simply
increments LWPCB.MissedEvents to count the number of missed event records. In synchronized
mode, a thread can remove event records from the ring buffer by advancing the ring buffer tail
pointer without stopping LWP in the executing thread. If the buffer had been full, event records
will again be written and the ring buffer pointer will be advanced.

• Continuous Mode
LWP runs in continuous mode when it is started with LWPCB.Flags.CONT = 1. In this mode,
LWP will store an event record even when the event ring buffer is full, wrapping around in the ring
buffer and overwriting the oldest event record. In continuous mode, LWPCB.MissedEvents counts
the number of times that such wrapping has occurred. The only reliable way to read events from
the ring buffer when LWP is in continuous mode is to stop LWP in the running thread before
accessing the LWPCB and the ring buffer contents. Support for continuous mode is indicated by
CPUID Fn8000_001C_EAX[LwpCont].

During profiling, the LWP hardware monitors and reports on one or more types of events. Following
are the steps in this process:

388 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

1. Count—Each time an instruction is retired, LWP decrements its internal event counters for all of
the events associated with the instruction. An instruction can cause zero, one, or multiple events.
For instance, an indirect jump through a pointer in memory counts as an instruction retired, a
branch retired, and may also cause up to two DCache misses (or more, if there is a TLB miss) and
up to two ICache misses.
- Some events may have filters or conditions on them that regulate counting. For instance, the

application may configure LWP so that only cache miss events with latency greater than a
specified minimum are eligible to be counted.

2. Gather—When an event counter becomes negative, the event should be reported. LWP gathers
an event record and, if enabled, samples the value in the PTSC to be included in the record as the
TimeStamp value. The event’s counter may continue to count below zero until the record is
written to the event ring buffer.
For most events, such as instructions retired, LWP gathers an event record describing the
instruction that caused the counter to become negative. However, it is valid for LWP to gather
event record data for the next instruction that causes the event, or to take other measures to capture
a record. Some of these options are described with the individual events.
- An implementation can choose to gather event information on one or many events at any one

time. If multiple event counters become negative, an advanced LWP implementation might
gather one event record per event and write them sequentially. A basic LWP implementation
may choose one of the eligible events. Other events continue counting but wait until the first
event record is written. LWP picks the next eligible instructions for the waiting events. This
situation should be extremely uncommon if software chooses large event interval values.

- LWP may discard an event occurrence. For instance, if the LWPCB or the event ring buffer
needs to be paged in from disk, LWP might choose not to preserve the pending event data. If an
event is discarded, LWP gathers an event record for the next instruction to cause the event.

- Similarly, if LWP needs to replay an instruction to gather a complete event record, the replay
may abort instead of retiring. The event counter continues counting below zero and LWP
gathers an event record for the next instruction to cause the event.

3. Store—When a complete event record is gathered, LWP stores it into the event ring buffer in the
process’ address space and advances the ring buffer head pointer.
- LWP checks to see if the ring buffer is full, i.e., if advancing the ring buffer head pointer would

make it equal to the tail pointer. If the buffer is full, LWP increments the 64-bit counter
LWPCB.MissedEvents. If LWP is running in synchronized mode, it does not advance the head
pointer. If LWP is running in continuous mode, it always advances the head pointer and
LWPCB.MissedEvents counts the number of times that the buffer wrapped.

- If more than one event record reaches the Store stage simultaneously, only one need be stored.
Though LWP might store all such event records, it may delay storing some event records or it
may discard the information and proceed to choose the next eligible instruction for the
discarded event type(s). This behavior is implementation dependent.

- The store need not complete synchronously with the instruction retiring. In other words, if
LWP buffers the event record contents, the Store stage (and subsequent stages) may complete

Software Debug and Performance Resources 389

24593—Rev. 3.30—September 2018 AMD64 Technology

some number of cycles after the tagged instruction retires. The data about the event and the
instruction are precise, but the Report and Reset steps (below) may complete later.

4. Report—If LWP threshold interrupts are enabled and the space used in the event ring buffer
exceeds a user-defined threshold, LWP initiates an interrupt. The OS can use this to signal the
process to empty the ring buffer. Note that the interrupt may occur significantly later than the
event that caused the threshold to be reached.

5. Reset—For each event that was stored, the counter is reset to its programmed interval. If
requested by the application, LWP applies randomization to the low order bits of the interval.
Counting for that event continues. Reset happens if the ring buffer head pointer was advanced or
if the missed event counter was incremented. If the event counter went below -1, indicating that
additional events occurred between the selected event and the time it was reported, that overrun
value reduces the reset value so as to preserve the statistical distribution of events.
For all events except the LWPVAL instruction, the hardware may impose a minimum on the reset
value of an event counter. This prevents the system from spending too much time storing samples
rather than making forward progress on the application. Any minimum imposed by the hardware
can be detected by examining the EventIntervaln fields in the LWPCB after enabling LWP.

An application should periodically remove event records from the ring buffer and advance the tail
pointer. (If the application does not process the event records quickly enough or often enough, the
LWP hardware will detect that the ring buffer is full and will miss events.) There are two ways to
process the gathered events: interrupts or polling.

The application can wait until a threshold interrupt occurs to process the event records in the ring
buffer. This requires OS or driver support. (As a consequence, interrupts can only be enabled if a
kernel mode routine allows it; see “LWP_CFG — LWP Configuration MSR” on page 404) One usage
model is to associate the LWP interrupt with a semaphore or mutex. When the interrupt occurs, the OS
or driver signals the associated object. A thread waiting on the object wakes up and empties the ring
buffer. Other models are possible, of course.

Alternatively, the application can have a thread that periodically polls the ring buffer. The polling
thread need not be part of the process that is using LWP. It can be in a separate process that shares the
memory containing the LWP control block and ring buffer.

Access to the ring buffer uses a lockless protocol between the LWP hardware and the application. The
hardware owns the head pointer and the area in the ring buffer from the head pointer up to (but not
including) the tail pointer. The application must not modify the head pointer nor rely on any data in the
area of the ring buffer owned by the hardware. If the application has a stale value for the head pointer,
it may miss an existing event record but it will never read invalid data. When the application is done
emptying the ring buffer, it should refresh its copy of the head pointer to see if the LWP hardware has
added any new event records.

Similarly, the application owns the tail pointer and the area in the ring buffer from the tail pointer up to
(but not including) the head pointer. The hardware will never modify the tail pointer or overwrite the
data in that region of the ring buffer. If the hardware has a stale value for the tail pointer, it may

390 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

consider that the ring buffer is full or at its threshold, but it will never overwrite valid data. Instead, it
refreshes its copy of the tail pointer and rechecks to see if the full or threshold condition still applies.

When LWP is in continuous mode, this lockless protocol does not work, since the LWP hardware may
overwrite the event records in the ring buffer when it advances the head pointer past the tail pointer.
Because of this, the application must stop LWP before removing event records from the ring buffer.
This prevents the hardware from wrapping through the ring buffer asynchronously from the
application’s attempt to remove data from it.

To use continuous mode properly, the application should set LWPCB.MissedEvents to 0 and set the
head and tail pointers to the start of the ring buffer before starting LWP. To empty the ring buffer, the
application should stop LWP. If LWPCB.MissedEvents is 0, the buffer did not wrap and there are event
records starting at the tail pointer and continuing up to (but not including) the head pointer. If
MissedEvents is not 0, the buffer wrapped and there are event records starting with the oldest one
pointed to by the head pointer and continuing (possibly wrapping) all the way around to the newest one
just before the head pointer.

13.4.2 Events and Event Records
When a monitored event overflows its event counter, LWP puts an event record into the LWP event
ring buffer. If event timestamping is supported and enabled, each event record will include a
TimeStamp value. This value is a copy of the contents of Performance Timestamp Counter (PTSC)
zero-extended if necessary to 64 bits.

The PTSC is a free-running counter that increments at a constant rate of 100MHz and is synchronized
across all cores on a node to within +/-1. This counter starts when the processor is initialized and
cannot be reset or modified. It is at least 40 bits wide. Privileged code can read the PTSC value via the
RDMSR instruction. The size of the counter is indicated by the 2-bit field CPUID
Fn8000_0008_ECX[PerfTscSize]. A value of 00b means that the PTSC is 40 bits wide; 01b means 48
bits, 10b means 56 bits, and 11b indicates a full 64 bits.

The PTSC can be correlated to the architectural TSC that runs at the P0 frequency. An application can
read the TSC and PTSC, wait a 1000 clock periods or so, then read them again. The ratio of the
differences is the scaling factor for the counters.

The event record size is fixed but may vary based on implementation. The event record size for a given
processor is discovered by executing CPUID Fn8000_001C and extracting the value of the
LwpEventSize field. (See “Detecting LWP Capabilities” on page 401). Current implementations fix
the record size at 32 bytes and this size is used in the record format specifications below.

Reserved fields and fields that are not defined for a particular event are set to zero when LWP writes an
event record.

Software Debug and Performance Resources 391

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-21. Generic Event Record

Table 13-6 below lists the event identifiers for the events defined in version 1 of LWP. They are
described in detail in the following sections.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

(Event-specific data) Flags CoreId EventId 0

InstructionAddress 8

(Event-specific address or data) 16

TimeStamp 24

Bytes Field Description

0 EventId Event identifier specifying the event record type. Valid identifiers are
1 to 255. 0 is an invalid identifier.

1 CoreId

CPU core identifier value from COREID field of LWP_CFG (see
“LWP_CFG — LWP Configuration MSR” on page 404). For multicore
systems, this typically identifies the core on which LWP is running.
This allows software to aggregate event records from multiple
threads into a single data structure without losing CPU information. It
also allows software to detect when a thread has migrated from one
core to another.

3–2 Flags Event-specific flags.
7–4 Event-specific data.

15–8 InstructionAddress

The Effective Address of the instruction that triggered this event
record. This is the value before adding in the CS base address. If the
base is non-zero, software must track it. (Modern operating systems
use a CS base of zero, and CS is unused in long mode.)

23–16 Event-specific address or other data.

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

Table 13-6. EventId Values
EventId Description

0 Reserved – invalid event
1 Programmed value sample
2 Instructions retired
3 Branches retired
4 DCache misses

392 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.2.1 Programmed Value Sample
LWP decrements the event counter each time the program executes the LWPVAL instruction (see
“LWPVAL — Insert Value Sample in LWP Ring Buffer” on page 409). When the counter becomes
negative, it stores an event record with an EventId of 1. The data in the event record come from the
operands to the instruction as detailed in the instruction description.

Figure 13-22. Programmed Value Sample Event Record

13.4.2.2 Instructions Retired
LWP decrements the event counter each time an instruction retires. When the counter becomes
negative, it stores a generic event record with an EventId of 2.

Instructions are counted if they execute entirely in user mode (CPL = 3). Instructions that change to
CPL 3 from some other level are not counted, since the instruction address is not an address in user
mode space. All user mode instructions are counted, including LWPVAL and LWPINS.

5 CPU clocks not halted
6 CPU reference clocks not halted

255 Programmed event

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data1 Flags CoreId EventId=1 0

InstructionAddress 8

Data2 16

TimeStamp 24

Bytes Field Description
0 EventId Event identifier = 1
1 CoreId CPU core identifier from LWP_CFG
3–2 Flags Immediate value (bottom 16 bits)
7–4 Data1 Reg/mem value
15–8 InstructionAddress Instruction address of LWPVAL instruction
23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

Table 13-6. EventId Values (continued)
EventId Description

Software Debug and Performance Resources 393

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-23. Instructions Retired Event Record

13.4.2.3 Branches Retired
LWP decrements the event counter each time a transfer of control retires, regardless of whether or not
it is taken. When the counter becomes negative, it stores an event record with an EventId of 3.

Control transfer instructions that are counted are:
• JMP (near), Jcc, JCXZ, JEXCZ, and JRCXZ
• LOOP, LOOPE, and LOOPNE
• CALL (near) and RET (near)

LWP does not count JMP (far), CALL (far), RET (far), traps, or interrupts (whether synchronous or
asynchronous), nor does it count operations that switch to or from ring 3, SMM, or SVM, such as
SYSCALL, SYSENTER, SYSEXIT, SYSRET, VMMCALL, INT, or INTO.

Some implementations of the AMD64 architecture perform an optimization called “fusing” when a
compare operation (or other operation that sets the condition codes) is followed immediately by a
conditional branch. The processor fuses these into a single operation internally before they are
executed. While this is invisible to the programmer, the address of the actual branch is not available for
LWP to report when the (fused) instruction retires. In this case, LWP sets the FUS bit in the event
record and reports the address of the operation that set the condition codes. If FUS is set, software can
find the address of the actual branch by decoding the instruction at the reported InstructionAddress and

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=2 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 2
1 7:0 CoreId CPU identifier from LWP_CFG
7–2 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started
with LWPCB.Flags.PTSC = 1, zero otherwise.

394 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

adding its length to that address. (Note that fused instructions do count as 2 instructions for the
Instructions Retired event, since there were 2 x86 instructions originally.)

Software Debug and Performance Resources 395

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-24. Branch Retired Event Record

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved
T
K
N

P
R
D

P
R
V

F
U
S

Reserved CoreId EventId=3 0

InstructionAddress 8

TargetAddress 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 3
1 7:0 CoreId CPU core identifier from LWP_CFG
3–2 11:0 Reserved

3 4 FUS

1—Fused operation. InstructionAddress points to a compare
operation (or other operation that sets the condition
codes) immediately preceding the branch.

0—InstructionAddress points to the branch instruction.

3 5 PRV

1—PRD bit is valid
0—Prediction information is not available
Some implementations of LWP may be unable to capture
branch prediction information on some or all branches.

3 6 PRD

1—Branch was predicted correctly
0—Mispredicted
If PRV = 0, the value of PRD is unpredictable and should be
ignored.
For unconditional branches, PRD=1 if PRV=1.

3 7 TKN
1—Branch was taken
0—Branch not taken
Always 1 for unconditional branches.

7–4 Reserved
15–8 InstructionAddress Instruction address

23–16 TargetAddress

Address of instruction executed after branch. This is the
target if the branch was taken and the fall-through address if
the branch was a not-taken conditional branch.
TargetAddress is the Effective Address value before adding
in the CS base address.

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started
with LWPCB.Flags.PTSC = 1, zero otherwise.

396 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.2.4 DCache Misses
LWP decrements the event counter each time a load from memory causes a DCache miss whose
latency exceeds the LwpCacheLatency threshold and/or whose data come from a level of the cache or
memory hierarchy that is selected for counting. When the counter becomes negative, LWP stores an
event record with an EventId of 4.

A misaligned access that causes two misses on a single load decrements the event counter by 1 and, if
it reports an event, the data are for the lowest address that missed. LWP only counts loads directly
caused by the instruction. It does not count cache misses that are indirectly due to TLB walks, LDT or
GDT references, TLB misses, etc. Cache misses caused by LWP itself accessing the LWPCB or the
event ring buffer are not counted.

Measuring Latency
The x86 architecture allows multiple loads to be outstanding simultaneously. An implementation of
LWP might not have a full latency counter for every load that is waiting for a cache miss to be
resolved. Therefore, an implementation may apply any of the following simplifications. Software
using LWP should be prepared for this.
• The implementation may round the latency to a multiple of 2^j. This is a small power of 2, and the

value of j must be 1 to 4. For example, in the rest of this section, assume that j = 4, so 2^j = 16. The
low 4 bits of latency reported in the event record will be 0. The actual latency counter is
incremented by 16 every 16 cycles of waiting. The value of j is returned as LwpLatencyRnd (see
“Detecting LWP Capabilities” on page 401).

• The implementation may do an approximation when starting to count latency. If counting is in
increments of 16, the 16 cycles need not start when the load begins to wait. The implementation
may bump the latency value from 0 to 16 any time during the first 16 cycles of waiting.

• The implementation may cap total latency to 2^n-16 (where n >= 10). The latency counter is thus a
saturating counter that stops counting when it reaches its maximum value. For example, if n = 10,
the latency value will count from 0 to 1008 in steps of 16 and then stop at 1008. (If n = 10, each
counter is only 6 bits wide.) The value of n is returned as LwpLatencyMax (see “Detecting LWP
Capabilities” on page 401).

Note that the latency threshold used to filter events is a multiple of 16. This value is used in the
comparison that decides whether a cache miss event is eligible to be counted.

Reporting the DCache Miss Data Address
The event record for a DCache miss reports the linear address of the data (after adding in the segment
base address, if any). The way an implementation records the linear address affects the exact event that
is reported and the amount of time it takes to report a cache miss event. The implementation may
report the event immediately, report the next eligible event once the counter becomes negative, or
replay the instruction.

Software Debug and Performance Resources 397

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-25. DCache Miss Event Record

13.4.2.5 CPU Clocks not Halted
LWP decrements the event counter each clock cycle that the CPU is not in a halted state (due to
STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 5. This counter varies in real-time frequency as the core clock frequency changes.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Latency SRC
D
A
V

Reserved CoreId EventId=4 0

InstructionAddress 8

DataAddress 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 4
1 7:0 CoreId CPU identifier from LWP_CFG
2–3 11:0 Reserved

3 4 DAV
1—DataAddress is valid
0—Address is unavailable

3 5:7 SRC

Data source for the requested data

7–4 Latency Total latency of cache miss (in cycles)
15–8 InstructionAddress Instruction address
23–16 DataAddress Address of memory reference (if flag bit 28 = 1)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started
with LWPCB.Flags.PTSC = 1, zero otherwise.

0 No valid status
1 Local L3 cache
2 Remote CPU or L3 cache
3 DRAM
4 Reserved (for Remote cache)
5 Reserved
6 Reserved
7 Other (MMIO/Config/PCI/APIC)

398 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-26. CPU Clocks not Halted Event Record

13.4.2.6 CPU Reference Clocks not Halted
LWP decrements the event counter each reference clock cycle that the CPU is not in a halted state (due
to STPCLK or a HLT instruction). When the counter becomes negative, it stores a generic event record
with an EventId of 6.

The reference clock runs at a constant frequency that is independent of the core frequency and of the
performance state. The reference clock frequency is processor dependent. The processor may
implement this event by subtracting the ratio of (reference clock frequency / core clock frequency)
each core clock cycle.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=5 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 5
1 7:0 CoreId CPU identifier from LWP_CFG
7–2 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started
with LWPCB.Flags.PTSC = 1, zero otherwise.

Software Debug and Performance Resources 399

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-27. CPU Reference Clocks not Halted Event Record

13.4.2.7 Programmed Event
When a program executes the LWPINS instruction (see “LWPINS — Insert User Event Record in LWP
Ring Buffer” on page 410), the processor stores an event record with an event identifier of 255. The
data in the event record come from the operands to the instruction as detailed in the instruction
description.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Reserved Reserved CoreId EventId=6 0

InstructionAddress 8

Reserved 16

TimeStamp 24

Bytes Bits Field Description
0 7:0 EventId Event identifier = 6
1 7:0 CoreId CPU identifier from LWP_CFG
2–7 Reserved
15–8 InstructionAddress Instruction address
23–16 Reserved

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started
with LWPCB.Flags.PTSC = 1, zero otherwise.

400 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-28. Programmed Event Record

13.4.2.8 Other Events
The overall design of LWP allows easy extension to the list of events that it can monitor. The following
are possibilities for events that may be added in future versions of LWP:
• DTLB misses
• FPU operations
• ICache misses
• ITLB misses

13.4.3 Detecting LWP
An application uses the CPUID instruction to identify whether Lightweight Profiling is present and
which of its capabilities are available for use. An operating system uses CPUID to determine whether
LWP is supported on the hardware and to determine which features of LWP are supported and can be
made available to applications.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data1 Flags CoreId EventID =
255 0

InstructionAddress 8

Data2 16

TimeStamp 24

Bytes Field Description
0 EventId Event identifier = 255
1 CoreId CPU identifier from LWP_CFG
3–2 Flags Imm16 value
7–4 Data1 Reg/mem value
15–8 InstructionAddress Instruction address of LWPINS instruction
23–16 Data2 Reg value (zero extended if running in legacy mode)

31–24 TimeStamp Performance Time Stamp Counter value if LWP was started with
LWPCB.Flags.PTSC = 1, zero otherwise.

Software Debug and Performance Resources 401

24593—Rev. 3.30—September 2018 AMD64 Technology

13.4.3.1 Detecting LWP Presence
LWP is supported on a processor if CPUID Fn8000_0001_ECX[LWP] (bit 15) is set. This bit is
identical to the value of CPUID Fn0000_000D_EDX_x0[bit 30], which is bit 62 of the
XFeatureSupportedMask and indicates XSAVE support for LWP. A system can check either of those
bits to determine if LWP is supported. Since LWP requires XSAVE, software can assume that this bit
being set implies that CPUID Fn0000_0001_ECX[XSAVE] (bit 26) is also set.

13.4.3.2 Detecting LWP XSAVE Area
The size of the LWP extended state save area used by XSAVE/XRSTOR is 128 bytes (080h). This
value is returned by CPUID Fn0000_000D_ EAX_x3E (ECX=62).

The offset of the LWP save area from the beginning of the XSAVE/XRSTOR area is 832 bytes (340h).
This value is returned by CPUID Fn0000_000D_ EBX_x3E (ECX=62).

The size of the LWP save area is included in the XFeatureSupportedSizeMax value returned by
CPUID Fn0000_000D_ECX_x0 (ECX=0).

If LWP is enabled in the XFEATURE_ENABLED_MASK, the size of the LWP save area is included
in the XFeatureEnabledSizeMax value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0).

13.4.3.3 Detecting LWP Capabilities
The values returned by CPUID Fn8000_001C indicate the capabilities of LWP. See Table 13-7,
“Lightweight Profiling CPUID Values” for a listing of the returned values.

Bit 0 of EAX is a copy of bit 62 from XFEATURE_ENABLED_MASK and indicates whether LWP is
available for use by applications. If it is 1, the processor supports LWP and the operating system has
enabled LWP for applications.

Bits 31:1 returned in EAX are taken from the LWP_CFG MSR and reflect the LWP features that are
available for use. These are a subset of the bits returned in EDX, which reflect the full capabilities of
LWP on current processor. The operating system can make a subset of LWP available if it cannot
handle all supported features. For instance, if the OS cannot handle an LWP threshold interrupt, it can
disable the feature. User-mode software must assume that the bits in EAX describe the features it can
use. Operating systems should use the bits from EDX to determine the supported capabilities of LWP
and make all or some of those features available.

Under SVM, if a VMM allows the migration of guests among processors that all support LWP, it must
arrange for CPUID to report the logical AND of the supported feature bits over all processors in the
migration pool. Other CPUID values must also be reported as the “least common denominator” among
the processors.

402 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

EAX

0 LwpAvail

1—LWP is available to application programs. The hardware and
the operating system support LWP.

0—LWP is not available.
This bit is a copy of bit 62 of the XFEATURE_ENABLED_MASK
register (XCR0).

1 LwpVAL LWPVAL instruction (EventId = 1) is available.
2 LwpIRE Instructions retired event (EventId = 2) is available.
3 LwpBRE Branch retired event (EventId = 3) is available.
4 LwpDME DCache miss event (EventId = 4) is available.
5 LwpCNH CPU clocks not halted event (EventId = 5) is available.
6 LwpRNH CPU reference clocks not halted event (EventId = 6) is available.

28:7 Reserved
29 LwpCont Sampling in continuous mode is available.
30 LwpPTSC Performance Time Stamp Counter in event records is available.
31 LwpInt Interrupt on threshold overflow is available.

EBX

7:0 LwpCbSize
Size in quadwords of the LWPCB. This value is at least
(LwpEventOffset / 8) + LwpMaxEvents but an implementation
may require a larger control block.

15:8 LwpEventSize Size in bytes of an event record in the LWP event ring buffer. (32
for LWP Version 1.)

23:16 LwpMaxEvents
Maximum supported EventId value (not including EventId 255
used by the LWPINS instruction). Not all events between 1 and
LwpMaxEvents are necessarily supported.

31:24 LwpEventOffset

Offset from the start of the LWPCB to the EventInterval1 field.
Software uses this value to locate the area of the LWPCB that
describes events to be sampled. This permits expansion of the
initial fixed region of the LWPCB. LwpEventOffset is always a
multiple of 8.

Software Debug and Performance Resources 403

24593—Rev. 3.30—September 2018 AMD64 Technology

ECX

4:0 LwpLatencyMax
Number of bits in cache latency counters (10 to 31).
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

5 LwpDataAddress

1—Cache miss event records report the data address of the
reference.

0—Data address is not reported.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

8:6 LwpLatencyRnd

The amount by which cache latency is rounded. The bottom
LwpLatencyRnd bits of latency information will be zero. The actual
number of bits implemented for the counter is (LwpLatencyMax –
LwpLatencyRnd).
Must be 0 to 4.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

15:9 LwpVersion Version of LWP implementation. (1 for LWP Version 1.)

23:16 LwpMinBufferSize

Minimum size of the LWP event ring buffer, in units of 32 event
records. At least 32*LwpMinBufferSize records must be allocated
for the LWP event ring buffer, and hence the size of the ring buffer
must be at least 32 * LwpMinBufferSize * LwpEventSize bytes. If
0, there is no minimum.

27:24 Reserved

28 LwpBranchPrediction

1—Branches Retired events can be filtered based on whether the
branch was predicted properly. The values of NMB and NPB in
the LWPCB enable filtering based on prediction.

0—NMB and NPB fields of the LWPCB are ignored.
0 if Branches Retired event is not supported (EDX[LwpBRE] = 0).

29 LwpIpFiltering
1—IP filtering is supported.
0—IP filtering is not supported. The IPI, IPF, BaseIP, and LimitIP

fields of the LWPCB are ignored.

30 LwpCacheLevels

1—Cache-related events can be filtered by the cache level that
returned the data. The value of CLF in the LWPCB enables
cache level filtering.

0—CLF is ignored.
An implementation must support filtering either by latency or by
cache level. It may support both.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

31 LwpCacheLatency

1—Cache-related events can be filtered by latency. The value of
MinLatency in the LWPCB controls filtering.

0—MinLatency is ignored.
An implementation must support filtering either by latency or by
cache level. It may support both.
0 if DCache miss event is not supported (EDX[LwpDME] = 0).

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

404 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

For more information on using the CPUID instruction, refer to Section 3.3, “Processor Feature
Identification,” on page 63.

13.4.4 LWP Registers
The XFEATURE_ENABLED_MASK register (extended control register XCR0) and the LWP model-
specific registers describe and control the LWP hardware. The MSRs are available if CPUID
Fn8000_0001_ECX[LWP] (bit 15) is set. LWP can only be used if the system has made support for
LWP state management available in XFEATURE_ENABLED_MASK.

13.4.4.1 XFEATURE_ENABLED_MASK Support
LWP requires that the processor support the XSAVE/XRSTOR instructions to manage LWP state,
along with the XSETBV/XGETBV instructions that manage the enabled state mask. An operating
system uses XSETBV to set bit 62 of XFEATURE_ENABLED_MASK to indicate that it supports
management of LWP state and allows applications to use LWP. When the system makes LWP
available by setting bit 62 of XFEATURE_ENABLED_MASK, LWP is initially disabled
(LWP_CBADDR is zero).

See “Guidelines for Operating Systems” on page 427 for details on how to implement LWP support in
an operating system.

13.4.4.2 LWP_CFG — LWP Configuration MSR
LWP_CFG (MSR C000_0105h) controls which features of LWP are available on the processor. The
operating system loads LWP_CFG at start-up time (or at the time an LWP driver is loaded) to indicate

EDX 0 LwpAvail
LWP is supported. If 0, the remainder of the data returned by
CPUID should be ignored.
This bit is a copy of CPUID Fn8000_0001_ECX[LWP] (bit 15).

1 LwpVAL LWPVAL instruction (EventId = 1) is supported.
2 LwpIRE Instructions retired event (EventId = 2) is supported.

3 LwpBRE Branch retired event (EventId = 3) is supported.
4 LwpDME DCache miss event (EventId = 4) is supported.
5 LwpCNH CPU clocks not halted event (EventId = 5) is supported.

6 LwpRNH CPU reference clocks not halted event (EventId = 6) is supported.
28:7 Reserved
29 LwpCont Sampling in continuous mode is supported.

30 LwpPTSC Performance Time Stamp Counter in event records is supported.
31 LwpInt Interrupt on threshold overflow is supported.

Table 13-7. Lightweight Profiling CPUID Values
Reg Bits Field Description

Software Debug and Performance Resources 405

24593—Rev. 3.30—September 2018 AMD64 Technology

its level of support for LWP. Only bits for supported features (those that are set in CPUID
Fn8000_001C_EDX) can be turned on in LWP_CFG. Attempting to set other bits causes a #GP fault.

User code can examine LWP_CFG bits 31:1 by reading CPUID Fn8000_001C_EAX.

Bits 39:32 of LWP_CFG contains the COREID value that LWP will store into the CoreId field of
every event record written by this core. The operating system should initialize this value to be the local
APIC number, obtained from CPUID Fn0000_0001_EBX[LocalApicId] (bits 31:24). COREID is
present so that when LWP is used in a virtualized environment, it has access to the core number
without needing to enter the hypervisor. On systems that support x2APIC, local APIC numbers may be
more than 8 bits wide. The operating system may then assign LWP COREID values that are small and
identify the core within a cluster. If the system has more than 256 cores, there will be unavoidable
duplication of COREID values.

Bits 47:40 of LWP_CFG specify the vector number that LWP will use when it signals a ring buffer
threshold interrupt.

The reset value of LWP_CFG is 0.

Figure 13-29. LWP_CFG — Lightweight Profiling Features MSR

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved VECTOR COREID
I
N
T

P
T
S
C

C
O
N
T

Reserved
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bits Field Description
0 Reserved
1 VAL Allow the LWPVAL instruction.
2 IRE Allow LWP to count instructions retired.
3 BRE Allow LWP to count branches retired.
4 DME Allow LWP to count DCache misses.
5 CNH Allow LWP to count CPU clocks not halted.
6 RNH Allow LWP to count CPU reference clocks not halted.
28:7 Reserved
29 CONT Enable continuous mode. If 0, LWP will always use synchronized mode.

30 PTSC Enable storing Performance Time Stamp Counter (PTSC) in the TimeStamp
field of event records, if PTSC is available.

31 INT Allow LWP to generate an interrupt when threshold is exceeded.
39:32 COREID Value to store in CoreId field when writing an event record.

47:40 VECTOR Interrupt vector number to use for LWP Threshold interrupts. Must be
provided if INT=1.

63:48 Reserved

406 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.4.3 LWP_CBADDR — LWPCB Address MSR
LWP_CBADDR (MSR C000_0106h) provides access to the internal copy of the LWPCB linear
address.

RDMSR from this register returns the current LWPCB address without performing any of the
operations described for the SLWPCB instruction.

WRMSR to this register with a non-zero value generates a #GP fault; use LLWPCB or XRSTOR to
load an LWPCB address.

Writing a zero to LWP_CBADDR immediately disables LWP, discarding any internal state. For
instance, an operating system can write a zero to stop LWP when it terminates a thread.

Note that LWP_CBADDR contains the linear address of the control block. All references to the
LWPCB that are made by microcode during the normal operation of LWP ignore the DS segment
register.

The reset value of LWP_CBADDR is 0. This means that when the system sets bit 62 of
XFEATURE_ENABLED_MASK to make LWP available, it is initially disabled.

13.4.5 LWP Instructions
This section describes the instructions included in the AMD64 architecture to support LWP. These
instructions raise #UD if LWP is not supported or if bit 62 of XFEATURE_ENABLED_MASK is 0
indicating that LWP is not available.

The LLWPCB instruction enables or disables Lightweight Profiling and controls the events being
profiled. The SLWPCB instruction queries the current state of Lightweight Profiling.

LWP provides two instructions for inserting user data into the event ring buffer. The LWPINS
instruction unconditionally stores an event record into the ring buffer, while the LWPVAL instruction
uses an LWP event counter to sample program values at defined intervals.

The instructions LLWPCB, SLWPCB, LWPINS, and LWPVAL are also described in the chapter
"General-Purpose Instruction Reference" of Volume 3. Refer to reference pages for the individual
instruction for information on instruction encoding, flags affected, and exception behavior.

13.4.5.1 LLWPCB — Load LWPCB Address
Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

Software Debug and Performance Resources 407

24593—Rev. 3.30—September 2018 AMD64 Technology

Action
1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes

a #UD exception.
2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See

“SLWPCB — Store LWPCB Address” on page 408 for details on saving the active LWP state.
If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

3. If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.
4. The LWPCB address is non-zero. LLWPCB validates it as follows:

- If any part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes
a #GP exception.

- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB
causes a #GP exception.

- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF
exception.

If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating
system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value
in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-1 and EventCountern to some
starting value (where j-1 is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes
If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

408 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer
allows it to access the LWPCB or the ring buffer. However, a #GP fault will occur if the application
uses XRSTOR to restore LWP state saved by XSAVE. Programs should avoid using
XSAVE/XRSTOR on LWP state if DS has changed. This only applies when the CPL ≠ 0; kernel mode
operation of XRSTOR is unaffected by changes to DS. See “XSAVE/XRSTOR” on page 420 for
details.

Operating system and hypervisor code that runs when the CPL ≠ 3 should use XSAVE and XRSTOR
to control LWP rather than using LLWPCB (see below). Use WRMSR to write 0 to LWP_CBADDR
to immediately stop LWP without saving its current state (see “LWP_CBADDR — LWPCB Address
MSR” on page 406).

It is possible to execute LLWPCB when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

13.4.5.2 SLWPCB — Store LWPCB Address
Flushes LWP state to memory and returns the current effective address of the LWPCB in the specified
register.

If LWP is not currently enabled, SLWPCB sets the specified register to zero.

The flush operation stores the internal event counters for active events and the current ring buffer head
pointer into the LWPCB. If there is an unwritten event record pending, it is written to the event ring
buffer.

If LWP_CBADDR is not zero, the value returned is an effective address that is calculated by
subtracting the current DS.Base address from the linear address kept in LWP_CBADDR. Note that if
DS has changed between the time LLWPCB was executed and the time SLWPCB is executed, this
might result in an address that is not currently accessible by the application.

SLWPCB generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

It is possible to execute SLWPCB when the CPL ≠ 3 or when SMM is active, but if the LWPCB
pointer is not zero, the system software must ensure that the LWPCB and the entire ring buffer are
properly mapped into writable memory in order to avoid a #PF fault. Using SLWPCB in these
situations is not recommended.

Software Debug and Performance Resources 409

24593—Rev. 3.30—September 2018 AMD64 Technology

13.4.5.3 LWPVAL — Insert Value Sample in LWP Ring Buffer
Decrements the event counter associated with the Programmed Value Sample event (see “Programmed
Value Sample” on page 392). If the resulting counter value is negative, inserts an event record into the
LWP event ring buffer in memory and advances the ring buffer pointer. If the counter is not negative
and the ModRM operand specifies a memory location, that location is not accessed.

The event record has an EventId of 1. The value in the register specified by vvvv (first operand) is
stored in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register
or memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value
(third operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-22 on
page 392.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
continuous mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in synchronized mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

Note
When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to
become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different EventId values).

410 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.5.4 LWPINS — Insert User Event Record in LWP Ring Buffer
Inserts a record into the LWP event ring buffer in memory and advances the ring buffer pointer.

The record has an EventId of 255. The value in the register specified by vvvv (first operand) is stored
in the Data2 field at bytes 23–16 (zero extended if the operand size is 32). The value in a register or
memory location (second operand) is stored in the Data1 field at bytes 7–4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3–2. See Figure 13-28 on
page 400.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled, an
interrupt is signaled. If LWP is in continuous mode and the new head pointer equals the tail pointer, the
MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in synchronized mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL ≠ 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
is not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different EventId values).

13.4.6 LWP Control Block
An application uses the LWP Control Block (LWPCB) to specify the details of Lightweight Profiling
operation. It is an interactive region of memory in which some fields are controlled and modified by
the LWP hardware and others are controlled and modified by the software that processes the LWP
event records.

Software Debug and Performance Resources 411

24593—Rev. 3.30—September 2018 AMD64 Technology

Most of the fields in the LWPCB are constant for the duration of a LWP session (the time between
enabling LWP and disabling it). This means that they are loaded into the LWP hardware when it is
enabled, and may be periodically reloaded from the same location as needed. The contents of the
constant fields must not be changed during a LWP run or results will be unpredictable. Changing the
LWPCB memory to read-only or unmapped will cause an exception the next time LWP attempts to
access it. To change values in the LWPCB, disable LWP, change the LWPCB (or create a new one),
and re-enable LWP.

A few fields are modified by the LWP hardware to communicate progress to the software that is
emptying the event ring buffer. Software may read them but should never modify them during an LWP
session. Other fields are for software to modify to indicate that progress has been made in emptying
the ring buffer. Software writes these fields and the LWP hardware reads them as needed.

For efficiency, some of the LWPCB fields may be shadowed internally in the LWP hardware unit when
profiling is enabled. LWP refreshes these fields from (or flushes them to) memory as needed to allow
software to make progress. For more information, refer to “LWPCB Access” on page 426.

The BufferTailOffset field is at offset 64 in the LWPCB in order to place it in a separate cache line on
most implementations, assuming that the LWPCB itself is aligned properly. This allows the software
thread that is emptying the ring buffer to retain write ownership of that cache line without colliding
with the changes made by LWP when writing BufferHeadOffset. In addition, most implementations
will use a value of 128 as the offset to the EventInterval1 field, since that places the event information
in a separate cache line.

All fields in the LWPCB (as shown in Figure 13-30) that are marked as “Reserved” (or “Rsvd”) should
be zero.

412 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-30. LWPCB — Lightweight Profiling Control Block

The R/W column in Table 13-8 below indicates how a field is used while LWP is enabled:

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Random BufferSize Flags 0

BufferBase 8

Reserved BufferHeadOffset 16

MissedEvents 24

Filters Threshold 32

BaseIP 40

LimitIP 48

Reserved 56

Reserved BufferTailOffset 64

Reserved for software 72

Reserved for software 80

.

.
Reserved

.

.

88

7 2

Rsvd
25 0

EventCounter1
7 2

Rsvd
25 0

EventInterval1
E = LwpEventOffset

E

7 2

Rsvd
25 0

EventCounter2
7 2

Rsvd
25 0

EventInterval2
E
+8

. . .
7 2

Rsvd
25 0

EventCounterN
7 2

Rsvd
25 0

EventIntervalN
N = LwpMaxEvents

...

Software Debug and Performance Resources 413

24593—Rev. 3.30—September 2018 AMD64 Technology

• LWP — hardware modifies the field; software may read it, but must not change it
• Init — hardware reads and modifies the field while executing LLWPCB; the field must then remain

unchanged as long as the LWPCB is in use
• SW — software may modify the field; hardware may read it, but does not change it
• No — field must remain unchanged as long as the LWPCB is in use

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields
Bytes Bits Field Description R/W

3–0 Flags

Flags indicating which events should be or are being counted
(see Figure 13-31, “LWPCB Flags”) and whether threshold
interrupts should be enabled.
Before executing LLWPCB, the application sets Flags to a bit
mask of the events (and interrupt) that should be enabled.
LLWPCB does a logical “and” of this mask with the available
feature bits in LWP_CFG and rewrites Flags with the mask of
features actually enabled.

Init

7–4 27:0 BufferSize

Total size of the event ring buffer (in bytes). Must be a multiple of
the event record size LwpEventSize (the value used internally
will be rounded down if not). BufferSize must be at least (32 *
LwpMinBufferSize * LwpEventSize).

No

7 7:4 Random

Number of bits of randomness to use in counters. Each time a
counter is loaded from an interval to start counting down to the
next event to record, the bottom Random bits are set to a random
value. This avoids fixed patterns in events.

No

15–8 BufferBase

The Effective Address of the event ring buffer. Should be aligned
on a 64-byte boundary for reasonable performance. Software is
encouraged to align the ring buffer to a page boundary for best
performance. If the default address size is less than 64 bits, the
upper bits of BufferBase must be zero.
LLWPCB converts BufferBase to a linear address and stores it
internally. LWPCB.BufferBase is not modified.

No

19–16 BufferHeadOffset

Unsigned offset from BufferBase specifying where the LWP
hardware will store the next event record. When
BufferHeadOffset == BufferTailOffset, the ring buffer is empty.
BufferHeadOffset must always be less than BufferSize; LWP will
use a value of 0 if BufferHeadOffset is too large. Also, it must
always be a multiple of LwpEventSize; LWP will round it down if
not.

LWP

23–20 Reserved

31–24 MissedEvents

The 64-bit count of the number of events that were missed. A
missed event occurs when LWP stores an event record, attempts
to advance BufferHeadOffset, and discovers that it would be
equal to BufferTailOffset. In this case, LWP leaves
BufferHeadOffset unchanged and instead increments the
MissedEvents counter. Thus, when the ring buffer is full, the last
event record is overwritten.

LWP

414 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

35–32 Threshold

Threshold for signaling an interrupt to indicate that the ring buffer
is filling up. If threshold interrupts are enabled in Flags, then
when LWP advances BufferHeadOffset, it computes the space
used as ((BufferHeadOffset – BufferTailOffset) % BufferSize). If
the space used equals or exceeds Threshold, LWP causes an
interrupt.
If Threshold is greater than BufferSize, no interrupt will ever be
taken. If Threshold is zero, an interrupt will be taken every time
an event record is stored in the ring buffer.
Threshold is an unsigned integer multiple of LwpEventSize (the
value used internally will be rounded down if not).
Ignored if threshold interrupts are not available in LWP_CFG or if
they are not enabled in Flags

No

39–36 Filters

Filters to qualify which events are eligible to be counted. This
field includes bits to filter branch events by type and prediction
status, and bits and values to filter cache events by type and
latency. See Figure 13-32, “LWPCB Filters” for details.

47–40 BaseIP

Low limit of the IP filtering range. An instruction must start at a
location greater than or equal to BaseIP to be in range.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to
indicate that IP filtering is not supported.

No

55–48 LimitIP

High limit of the IP filtering range. An instruction must start at a
location less than or equal to LimitIP to be in range.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to
indicate that IP filtering is not supported.

No

63–56 Reserved

67–64 BufferTailOffset

Unsigned offset from BufferBase to the oldest event record in the
ring buffer. BufferTailOffset is maintained by software and must
always be less than BufferSize and a multiple of LwpEventSize. If
software stores a value of BufferTailOffset into the LWPCB that
violates these rules, the LWP hardware might not detect ring
buffer overflow or threshold conditions properly.

SW

71–68 Reserved

72–87 Reserved for software use. These bytes are never read or written
by the LWP hardware SW

(E-1) –
88

Reserved area between the fixed portion of the LWPCB and the
event specifiers. Should be zero. The EventInterval1 field is at
offset E = LwpEventOffset.

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields (continued)
Bytes Bits Field Description R/W

Software Debug and Performance Resources 415

24593—Rev. 3.30—September 2018 AMD64 Technology

The LLWPCB instruction reads the Flags word from the LWPCB to determine which events to profile
and whether threshold interrupts should be enabled. LLWPCB writes the Flags word after turning off
bits corresponding to features which are not currently available.

(E+3)–
E 25:0 EventInterval1

Reset value for counting events of type EventId = 1
(Programmed Value Sample). A value of n specifies that after
n+1 (modified by Random) LWPVAL instructions, LWP will store
an event record in the ring buffer.
EventInterval1 is a signed value. If it is negative, LLWPCB will
use zero and will store zero into EventInterval1 in the LWPCB.
The Programmed Value Sample event is the only one which
allows an interval to be below the implementation minimum
interval value.

Init

E+3 7:2 Reserved
(E+7)–
(E+4) 25:0 EventCounter1 Starting (LLWPCB) or current (SLWPCB) value of counter. This is

a signed number. LLWPCB treats a negative value as zero. LWP

E+7 7:2 Reserved

(E+11)
–

(E+8)
25:0 EventInterval2

Reset value for counting events of type EventId = 2 (Instructions
Retired). A value of n specifies that after n+1 (modified by
Random) instructions are retired, LWP will store an event record
in the ring buffer.
EventInterval2 is a signed value. If it is negative or is below the
implementation minimum, LLWPCB will use the minimum and
will store that value into EventInterval2 in the LWPCB.

Init

E+11 7:2 Reserved
(E+15)

–
(E+12)

57:32 EventCounter2 Starting (LLWPCB) or current (SLWPCB) value of counter. This is
a signed number. LLWPCB treats a negative value as zero. LWP

E+15 7:2 Reserved

Event3… Repeat event configuration similar to EventInterval2 and
EventCounter2 for EventId values from 3 to LwpMaxEvents.

Table 13-8. LWPCB — Lightweight Profiling Control Block Fields (continued)
Bytes Bits Field Description R/W

416 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 13-31. LWPCB Flags

Event counting can be filtered by a number of conditions which are specified in the Filters word of the
LLWPCB. The IP filtering applies to all events. Cache level filtering applies to all events that interact
with the caches. Branch filtering applies to the Branches Retired event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
N
T

P
T
S
C

C
O
N
T

Reserved
R
N
H

C
N
H

D
M
E

B
R
E

I
R
E

V
A
L

Bit Field Input to LLWPCB Value after LLWPCB
0 Reserved
1 VAL Enable LWPVAL instruction LWPVAL instruction enabled
2 IRE Enable Instructions Retired event Instructions Retired event enabled
3 BRE Enable Branches Retired event Branches Retired event enabled
4 DME Enable DCache miss event DCache Miss event enabled
5 CNH Enable CPU clocks not halted event CPU Clocks Not Halted event enabled

6 RNH Enable CPU reference clocks not halted
event

CPU Reference Clocks Not Halted event
enabled

28:7 Reserved

29 CONT

1—Use continuous mode. If the ring
buffer overflows, LWP continues to
store events and advance BufferHead.
Software must stop LWP in order to
empty the ring buffer.

0—Use synchronized mode.

LWP operates in continuous mode if input
bit is set and continuous mode is
available. Otherwise, LWP operates in
synchronous mode.

30 PTSC

1—Store the Performance Time Stamp
Counter (PTSC) in the TimeStamp
field of each event record, if PTSC is
available.

0—Store 0 in the TimeStamp field.

Performance Time Stamp Counter value
will be stored if input bit is set and PTSC
feature is available. Otherwise 0 is stored.

31 INT Enable threshold interrupts. Threshold interrupts are enabled.

Software Debug and Performance Resources 417

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 13-32. LWPCB Filters

The following table provides detailed descriptions of the fields in the Filters word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I
P
F

I
P
I

N
R
B

N
C
B

N
A
B

N
P
B

N
M
B

Reserved
O
T
H

R
A
M

R
D
C

N
B
C

C
L
F

MinLatency

Bits Field Description
7:0 MinLatency Minimum latency for a cache-related event
8 CLF Cache level filtering
9 NBC Northbridge cache events
10 RDC Remote data cache events
11 RAM DRAM cache events
12 OTH Other cache events
24:13 Reserved
25 NMB No mispredicted branches
26 NPB No predicted branches
27 NAB No absolute branches
28 NCB No conditional branches
29 NRB No unconditional relative branches
30 IPI IP filtering invert
31 IPF IP filtering

418 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Table 13-9. LWPCB Filters Fields
Bits Field Description

7:0 MinLatency

Minimum latency for a cache-related event to be eligible for LWP counting.
Applies to all cache-related events being monitored. MinLatency is multiplied
by 16 to get the actual latency in cycles, providing less resolution but a
larger range for filtering. An implementation may have a maximum for the
latency value. If MinLatency*16 exceeds this maximum value, the maximum
is used instead. A value of 0 disables filtering by latency.
Ignored if no cache latency event is enabled or if the CPUID
LwpCacheLatency bit is 0 to indicate that the implementation does not filter
by latency (use the CLF bits to get a similar effect). At least one of these
mechanisms is supported if any cache miss events are supported.

8 CLF

Cache level filtering.
1—Enables filtering cache-related events by the cache level or memory level

that returned the data. It enables the next 4 bits. Cache-related events
are only eligible for counting if the bit describing the memory level is on.

0—Disables cache level filtering. The next 4 bits are ignored, and any cache
or memory level is eligible.

Ignored if no cache latency event is enabled or if the CPUID
LwpCacheLevels bit is 0 to indicate that the implementation does not filter by
cache level (use the MinLatency field to get a similar effect). At least one of
these mechanisms is supported if any cache miss events are supported.

9 NBC

Northbridge cache events.
1—Count cache-related events that are satisfied from data held in a cache

that resides on the northbridge.
0—Ignore northbridge cache events
Ignored if CLF is 0.

10 RDC

Remote data cache events.
1—Count cache-related events that are satisfied from data held in a remote

data cache.
0—Ignore remote cache events.
Ignored if CLF is 0.

11 RAM

DRAM cache events.
1—Count cache-related events that are satisfied from DRAM.
0—Ignore DRAM cache events.
Ignored if CLF is 0.

12 OTH

Other cache events.
1—Count cache-related events that are satisfied from other sources, such

as MMIO, Config space, PCI space, or APIC.
0—Ignore such cache events
Ignored if CLF is 0.

24:13 Reserved

Software Debug and Performance Resources 419

24593—Rev. 3.30—September 2018 AMD64 Technology

25 NMB

No mispredicted branches.
1—Mispredicted branches will not be counted.
0—Mispredicted branches will be counted if not suppressed by other filter

conditions.
Caution: If NMB and NPB are both set, no branches will be counted.
Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not
filter by prediction.

26 NPB

No predicted branches.
1—Correctly predicted branches will not be counted. Note that since direct

branches are always predicted correctly, this is a superset of the NDB
filter.

0—Correctly predicted branches will be counted if not suppressed by other
filter conditions.

Caution: If NMB and NPB are both set, no branches will be counted.
Ignored if the Branches Retired event is not enabled or if the CPUID
LwpBranchPrediction bit is 0 to indicate that the implementation does not
filter by prediction.

27 NAB

No absolute branches.
1—Absolute branches will not be counted. This only applies to jumps

through a register or memory (JMP opcode FF /4) and calls through a
register or memory (CALL opcode FF /2). Relative branches (both
conditional and unconditional) are counted normally if not disabled via
the NRB or NCB bits.

0—Absolute branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

28 NCB

No conditional branches.
1—Conditional branches will not be counted. This only applies to conditional

jumps (Jcc) and loops (LOOPcc). Unconditional relative branches,
indirect jumps through a register or memory, and returns are counted
normally if not disabled via the NRB or NAB bits.

0—Conditional branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

Table 13-9. LWPCB Filters Fields (continued)
Bits Field Description

420 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.7 XSAVE/XRSTOR
LWP requires that the processor support the XSAVE/XRSTOR instructions for managing extended
processor state components.

13.4.7.1 Configuration
The processor uses bit 62 of XFEATURE_ENABLED_MASK (register XCR0) to indicate whether
LWP state can be saved and restored, and thus whether LWP is available to applications. The LWP
XSAVE area length and offset from the beginning of the XSAVE area are available from the CPUID
instruction (see “Detecting LWP XSAVE Area” on page 401). In Version 1 of LWP, the LWP XSAVE
area is 128 (080h) bytes long and the offset is 832 (340h) bytes.

13.4.7.2 XSAVE Area
Figure 13-33 below shows the layout of the XSAVE area for LWP. It is large enough to allow for future
expansion of the number of event counters. Details of the fields are in Table 13-10.

29 NRB

No unconditional relative branches.
1—Unconditional relative branches will not be counted. This applies to

unconditional jumps (JMP), calls (CALL), and returns (RET). Conditional
branches and indirect jumps or calls through a register or memory are
counted normally if not disabled via the NCB or NAB bits.

0—Direct branches will be counted if not suppressed by other filter
conditions.

Caution: If NRB, NCB, and NAB are all set, no branches will be counted.
Ignored if the Branches Retired event is not enabled.

30 IPI

IP filtering invert.
1—IP filtering inverted. Only instructions outside the range from BaseIP to

LimitIP are eligible for LWP counting.
0—IP filtering normal. Only instructions inside the range from BaseIP to

LimitIP are eligible for LWP counting.
Ignored if IPF is zero or if the CPUID LwpIpFiltering bit is 0 to indicate that IP
filtering is not supported.

31 IPF

IP filtering.
1—IP filtering enabled. The values of the BaseIP and LimitIP fields specify a

range of instruction addresses that are eligible for LWP event counting
and reporting. The range is inclusive if IPI is 0 and exclusive if IPI is 1.

0—IP filtering disabled; instructions at every address are eligible for LWP
counting.

Ignored if the CPUID LwpIpFiltering bit is 0 to indicate that IP filtering is not
supported.

Table 13-9. LWPCB Filters Fields (continued)
Bits Field Description

Software Debug and Performance Resources 421

24593—Rev. 3.30—September 2018 AMD64 Technology

All fields in the XSAVE area that are marked as “Reserved” (or “Rsvd”) must be zero.

Figure 13-33. XSAVE Area for LWP

Byte 7 Byte 06 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

LWPCBAddress 0

BufferHeadOffset Counter Flags (Reserved) Cntr
Flags 8

BufferBase 16

Filters
31 28

Rsvd
27 0

BufferSize 24

Saved Event Record

32

40

48

56

EventCounter2 EventCounter1 64

EventCounter4 EventCounter3 72

EventCounter6 EventCounter5 80

Reserved for EventCounter8 Reserved for EventCounter7 88

Reserved for EventCounter10 Reserved for EventCounter9 96

Reserved for EventCounter12 Reserved for EventCounter11 104

Reserved for EventCounter14 Reserved for EventCounter13 112

Reserved for EventCounter16 Reserved for EventCounter15 120

422 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

13.4.7.3 XSAVE operation
If LWP is not currently enabled (i.e., if LWP_CBADDR = 0), no state needs to be stored. XSAVE sets
bit 62 in XSAVE.HEADER.XSTATE_BV to 0 so that an attempt to restore state from this save area
will use the processor supplied values. See “Processor supplied values” on page 424.

If LWP is enabled, XSAVE stores the various internal LWP values into the XSAVE area with no
checking or conversion and sets bit 62 in XSAVE.HEADER.XSTATE_BV to 1.

13.4.7.4 XRSTOR operation
If bit 62 in XFEATURE_ENABLED_MASK (XCR0) is 0 or if bit 62 of EDX:EAX (EDX[30]) is 0,
XRSTOR does not alter the LWP state.

If the above bits are 1 but bit 62 in XSAVE.HEADER.XSTATE_BV is 0, XRSTOR writes the LWP
state using the processor supplied values, disabling LWP. See “Processor supplied values” on
page 424.

If all of the above bits are 1, XRSTOR loads LWP state from the XSAVE area as follows:
1. The internal pointers and sizes are loaded.

Table 13-10. XSAVE Area for LWP Fields
Bytes Bits Field Description

7–0 LWPCBAddress Address of LWPCB. 0 if LWP is disabled, in which case the rest of
the save area is ignored. This is a linear address.

9–8 0 — Reserved

9–8 1 CntrFlags.Counter1
1—Event with EventId 1 is active. XRSTOR will make the event

active and restore its counter from EventCounter1.
0—Event 1 is not active. XRSTOR will make the event inactive.

9–8 6:2 CntrFlags.Countern Bit flags defined as above for EventCounter2–6.
9–8 15:7 — Reserved for counter flags

11–10 15:0 — Reserved for counter flags
15–12 BufferHeadOffset BufferHeadOffset value
23–16 BufferBase Address of the event ring buffer. This is a linear address.
27–24 27:0 BufferSize Size of the event ring buffer
27–24 31:28 — Reserved
31–28 Filters Profiling filters (same as the Filters field in the LWPCB)

63–32 SavedEventRecord If an event record is pending, the data to write. May be sparse. Zero
in the EventId field means no record pending.

67–64 EventCounter1 Counter for event 1 (valid if CntrFlags.Counter1 bit is set)
87–68 EventCountern Counters for events 2–6 (valid if the respective Countern bit is set)
127–88 — Reserved for future event counters

Software Debug and Performance Resources 423

24593—Rev. 3.30—September 2018 AMD64 Technology

- If BufferSize is below the implementation minimum, LWP is disabled and XRSTOR of LWP
state terminates.

- If BufferSize is not a multiple of the event record size, it is rounded down.
- If BufferHeadOffset is greater than (BufferSize - LwpEventSize), a value of 0 is used instead.
- If BufferHeadOffset is not a multiple of the event record size, it is rounded down.

2. For each bit that is set in the Flags field that corresponds to an available event (as currently set in
the LWP_CFG MSR), the corresponding event is enabled and the event counter is loaded from the
EventCountern field. All other events are disabled.

3. If the EventId field in the SavedEventRecord is non-zero, there was a pending event when
XSAVE was executed. XRSTOR loads the event record into hardware. LWP will store it into the
event ring buffer as soon as possible once the CPL is 3.
Software should not alter the SavedEventRecord field. An implementation may ignore a saved
event record if it was not constructed by XSAVE. Storing an event into SavedEventRecord and
then executing XRSTOR is not a reliable way of injecting an event into the ring buffer.

Note that if LWP is already enabled when executing XRSTOR, the old LWP state is overwritten
without being saved.

No interrupt is generated by XRSTOR if the restored value of BufferHeadOffset results in a buffer that
is filled beyond the threshold. The interrupt will occur the next time an event record is stored.

XRSTOR may not restore all of the state necessary for LWP to operate. The LWP hardware will read
additional state from the LWPCB when it stores then next event record.

If the CPL = 0, XRSTOR simply reloads the LWPCB address and the ring buffer address from the
XSAVE area. Kernel software is trusted not to alter the area in such a way as to allow access to
memory that the application could not otherwise read or write. The linear addresses in the XSAVE area
were validated when the application executed LLWPCB.

If the CPL ≠ 0, XRSTOR first validates the LWPCB and ring buffer pointers. This prevents an
application from altering the XSAVE area in order to gain access to memory that it could not otherwise
read or write (based on the current values in the DS segment register). Note that if a program’s DS
value changes after doing a successful LLWPCB, it might be incapable of doing an XSAVE and then
an XRSTOR of LWP state. The XRSTOR will fail if the new DS value no longer allows access to the
linear addresses corresponding to the LWPCB or the ring buffer. Programs should avoid this behavior.

If XRSTOR is executed when the CPL ≠ 0, the system performs additional checks on the LWPCB and
ring buffer addresses according to the pseudo-code below. A “Store-type Segment_check” fails if the
limit check fails (address is beyond the segment limit) or if the segment is read-only.

bool Check(uint64 addr, uint32 size) { // Utility function
if (!64bit_Mode)

addr = truncate32(addr - DS.BASE)
uint64 top = addr + size - 1;
if (! Store-type Segment_check on DS:[addr] || // Check lower bound
 ! Store-type Segment_check on DS:[top]) // and upper bound

424 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

return false;
return true;

}

if (! Check(XSAVE.LWPCBAddress, sizeof(LWPCB)) ||
 ! Check(XSAVE.BufferAddress, XSAVE.BufferSize))

Disable LWP

If any of the address checks fails, LWP is disabled. No fault is generated. A program that executes
XRSTOR when the CPL ≠ 0 and DS has changed can use SLWPCB to check whether LWP is running.

As with all features that use XSAVE and XRSTOR, if bit 62 of XFEATURE_ENABLED_MASK
(XCR0) is 0 but bit 62 of XSAVE.HEADER.XSTATE_BV is 1, XRSTOR will cause a #GP(0)
exception.

13.4.7.5 Processor supplied values
If XRSTOR is executed when bit 62 of XFEATURE_ENABLED_MASK (XCR0) and EDX:EAX are
both 1, but the corresponding bit in XSAVE.HEADER.XSTATE_BV is 0, it indicates that there is no
LWP state to restore. In this case, LWP_CBADDR is set to 0 and LWP is disabled. Other processor
internal state for LWP is set to 0 as necessary to avoid security issues.

13.4.8 Implementation Notes
The following subsections describe other LWP considerations.

13.4.8.1 Multiple Simultaneous Events
Multiple events are possible when an instruction retires. For instance, an indirect jump through a
pointer in memory can trigger the instructions retired, branches retired, and DCache miss events
simultaneously. LWP counts all events that apply to the instruction, but might not store event records
for all events whose event counters became negative. It is implementation dependent as to how many
event records are stored when multiple event counters simultaneously become negative. If not all
events cause event records to be stored, the choice of which event(s) to report is implementation
dependent and may vary from run to run on the same processor.

13.4.8.2 Processor State for Context Switch, SVM, and SMM
Implementations of LWP have internal state to hold information such as the current values of the
counters for the various events, a pointer into the event ring buffer, and a copy of the tail pointer for
quick detection of threshold and overflow states.

There are times when the system must preserve the volatile LWP state. When the operating system
context switches from one user thread to another, the old user state must be saved with the thread’s
context and the new state must be loaded. When a hypervisor decides to switch from one guest OS to
another, the same must be done for the guest systems’ states. Finally, state must be stored and reloaded
when the system enters and exits SMM, since the SMM code may decide to shut off power to the core.

Software Debug and Performance Resources 425

24593—Rev. 3.30—September 2018 AMD64 Technology

Hardware does not maintain the LWP state in the active LWPCB. This is because the counters change
with every event (not just every reported event), so keeping them in memory would generate a large
amount of unnecessary memory traffic. Also, the LWPCB is in user memory and may be paged out to
disk at any time, so the memory may not be available when needed.

Saving State at Thread Context Switches
LWP requires that an operating system use the XSAVE and XRSTOR instructions to save and restore
LWP state across context switches.

XRSTOR restores the LWP volatile state when restoring other system state. Some additional LWP
state will be restored from the LWPCB when operations in ring 3 require that information.

LWP does not support the “lazy” state save and restore that is possible for floating point and SSE state.
It does not interact with the CR0[TS] bit. Operating systems that support LWP must always do an
XSAVE to preserve the old thread’s LWP context and an XRSTOR to set up the new LWP context. The
OS can continue to do a lazy switch of the FP and SSE state by ensuring that the corresponding bits in
EDX:EAX are clear when it executes the XSAVE and XRSTOR to handle the LWP context.

Saving State at SVM Worldswitch to a Different Guest
Hypervisors that allow guests to use LWP must save and restore LWP state when the guest OS
changes. In addition to the usual information in the VMCB, the hypervisor must use
XSAVE/XRSTOR to maintain the volatile LWP state and must also save and restore LWP_CFG. When
switching between a guest that uses LWP and one that does not, the hypervisor changes the value of
XFEATURE_ENABLED_MASK (XCR0), which ensures that LWP is only enabled in the appropriate
guest(s).

A hypervisor need not modify the LWP state if the guest OS is not changed.

Enabling SVM Live Migration
Some hypervisors support live migration of a guest virtual machine. Live migration is when a
hypervisor preserves the entire state of the guest running on one physical machine, copies that state to
another physical machine, and then resumes execution of the guest on the new hardware.

To allow live migration among machines which may have different internal implementations of LWP,
the hypervisor must present the common subset of features among all the hosts in the pool of machines
that can be used. Furthermore, since the hypervisor may XSAVE LWP state on one machine and
XRSTOR it on another machine, the contents of the XSAVE area must be consistent across all
implementations.

This means that an implementation of LWP keeps all event counters internally, not in the LWPCB. If
implementations were permitted to differ in this detail, a counter might not get properly restored after
migrating the guest machine.

426 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

Saving State at SMM Entry and Exit
SMM entry and exit must save and restore LWP state when the processor is going to change power
state. SMM must use XSAVE/XRSTOR and must also save and restore LWP_CFG. Since LWP is ring
3 only and is inactive in System Management Mode, its state should not need to be saved and restored
otherwise.

Notes on Restoring LWP State
The LWPCB may not be in memory at all times. Therefore, the LWP hardware does not attempt to
access it while still in the OS kernel/VMM/SMM, since that access might fault. Some LWP state is
restored once the processor is in ring 3 and can take a #PF exception without crashing. This usually
happens the next time LWP needs to store an event record into the ring buffer.

13.4.8.3 LWPCB Access
Several LWPCB fields are written asynchronously by the LWP hardware and by the user software.
This section discusses techniques for reducing the associated memory traffic. This is interesting to
software because it influences what state is kept internally in LWP, and it explains the protocol
between the hardware filling the event ring buffer and the software emptying it.

The hardware keeps an internal copy of the event ring buffer head pointer. It need not flush the head
pointer to the LWPCB every time it stores an event record. The flush can be done periodically or it can
be deferred until a threshold or buffer full condition happens or until the application executes
LLWPCB or SLWPCB. Exceeding the buffer threshold always forces the head pointer to memory so
that the interrupt handler emptying the ring buffer sees the threshold condition.

The hardware may keep an internal copy of the event ring buffer tail pointer. It need not read the
software-maintained tail pointer unless it detects a threshold or buffer full condition. At that point, it
rereads the tail pointer to see if software has emptied some records from the ring buffer. If so, it
recomputes the condition and acts accordingly. This implies that software polling the ring buffer
should begin processing event records when it detects a threshold condition itself. To avoid a race
condition with software, the hardware rereads the tail pointer every time it stores an event record while
the threshold condition appears to be true. (An implementation can relax this to “every nth time” for
some small value of n.) It also rereads it whenever the ring buffer appears to be full.

The interval values used to reset the counters can be cached in the hardware when the LLWPCB
instruction is executed, or they can be read from the LWPCB each time the counter overflows.

The ring buffer base and size are cached in the hardware.

The MissedEvents value is a counter for an exceptional condition and is kept in memory.

The cached LWP state is refreshed from the LWPCB when LWP is enabled either explicitly via
LLWPCB or implicitly when needed in ring 3 after LWP state is restored via XRSTOR.

Caching implies that software cannot reliably change sampling intervals or other cached state by
modifying the LWPCB. The change might not be noticed by the LWP hardware. On the other hand,
changing state in the LWPCB while LWP is running may change the operation at an unpredictable

Software Debug and Performance Resources 427

24593—Rev. 3.30—September 2018 AMD64 Technology

moment in the future if LWP context is saved and restored due to context switching. Software must
stop and restart LWP to ensure that any changes reliably take effect.

13.4.8.4 Security
The operating system must ensure that information does not leak from one process to another or from
the kernel to a user process. Hence, if it supports LWP at all, the operating system must ensure that the
state of the LWP hardware is set appropriately when a context switch occurs and when a new process
or thread is created. LWP state for a new thread can be initialized by executing XRSTOR with bit 62 of
XSAVE.HEADER.XSTATE_BV set to 0 and the corresponding bit in EDX:EAX set to 1.

13.4.8.5 Interrupts
The LWP threshold interrupt vector number is specified in the LWP_CFG MSR. The operating system
must assign a vector for LWP threshold interrupts and fill in the corresponding entry in the interrupt-
descriptor table. Note that the LWP interrupt is not shared with the performance counter interrupt,
since the system allows concurrent and independent use of those two mechanisms.

13.4.8.6 Memory Access During LWP Operation
When LWP needs to save an event record in the event ring buffer, it accesses the user memory
containing the ring buffer and sometimes the memory containing the LWPCB. This causes a Page
Fault (#PF) exception if those pages are not in memory.

A particular implementation of LWP has several ways to deal with page faults when storing an event
record. These may include saving the event record in the XSAVE area and retrying the store later,
reexecuting the instruction, or discarding the event and reporting the next event of the appropriate
type.

Note that this reinforces the notion that LWP is a sampling mechanism. Programs cannot rely on it to
precisely capture every nth instance of an event. It captures approximately every nth instance.

13.4.8.7 Guidelines for Operating Systems
To support LWP, an operating system should follow the following guidelines. Most of these operations
should be done on each core of a multi-core system.

System initialization
1. Use CPUID Fn0000_0000 to ensure that the system is running on an “Authentic AMD”

processor, and then check CPUID Fn8000_0001_ECX[LWP] to ensure that the processor
supports LWP.
Alternatively, check CPUID Fn0000_000D_EDX_x0[30] to ensure that the system supports the
LWP XSAVE area, indicating that the processor supports LWP.

2. Enable XSAVE operations by setting CR4[OSXSAVE].
3. Enable LWP by executing XSETBV to set bit 62 of XCR0.

428 Software Debug and Performance Resources

AMD64 Technology 24593—Rev. 3.30—September 2018

4. Assign a unique interrupt vector number for LWP threshold interrupts and load the corresponding
entry in the interrupt-descriptor table with the address of the interrupt handler. This handler
should use some system-specific method to forward any threshold interrupts to the application.

5. Make LWP available by setting LWP_CFG. To enable all supported LWP features, set
LWP_CFG[31:0] to the value returned by CPUID Fn8000_001C_EDX. Set
LWP_CFG[COREID] to the APIC core number (or some other value unique to the core) and
LWP_CFG[VECTOR] to the assigned interrupt vector number.

Thread support
• For each thread, allocate an XSAVE area that is at least as big as the XFeatureEnabledSizeMax

value returned by CPUID Fn0000_000D_EBX_x0 (ECX=0). This is good practice for any system
that supports XSAVE.

• When creating a new process or thread, execute XRSTOR with bit 62 of EDX:EAX set to 1 and bit
62 of XSAVE.HEADER.XSTATE_BV set to 0. This ensures that LWP is turned off for any new
thread. Alternatively, use WRMSR to write 0 into LWP_CBADDR before starting the thread.

• When saving a running thread’s context, execute XSAVE with bit 62 of EDX:EAX set to 1 to save
the thread’s LWP state. It takes almost no time or resources if the thread is not using LWP.

• When restoring a thread’s context, execute XRSTOR with bit 62 of EDX:EAX set to 1. This
restores the LWP state for the thread or disables LWP if the thread is not using it.

• When a thread exits or aborts, use WRMSR to store 0 into LWP_CBADDR. This ensures that
LWP is turned off.

13.4.8.8 Summary of LWP State
LWP adds the following visible state to the AMD64 architecture:
• CPUID Fn8000_0001_ECX[LWP] (bit 15) to indicate LWP support.
• CPUID Fn8000_001C to indicate LWP features.
• Two new MSRs: LWP_CFG, LWP_CBADDR,.
• Four new instructions: LLWPCB, SLWPCB, LWPINS, and LWPVAL.
• Bit 62 in XCR0 (XFEATURE_ENABLED_MASK)
• A new XSAVE area for LWP state.
• New fields for LWP state in the SVM and SMM context, whether in the VMCB and SMM save

area or elsewhere.

See Section 3.3, “Processor Feature Identification,” on page 63 for information on using the CPUID
instruction to obtain information about processor capabilites.

Processor Initialization and Long Mode Activation 429

24593—Rev. 3.30—September 2018 AMD64 Technology

14 Processor Initialization and Long Mode
Activation

This chapter describes the hardware actions taken following a processor reset and the steps that must
be taken to initialize processor resources and activate long mode. In some cases the actions required
are implementation-specific with references made to the appropriate implementation-specific
documentation.

14.1 Processor Initialization
System logic can initialize the processor in either of two ways. One method, called RESET, is usually
initiated by the assertion of an external signal (typically designated RESET#). The other method,
called INIT, is typically initiated by another processor by means of an INIT interprocessor interrupt
(IPI). See “Interprocessor Interrupts (IPI)” on page 559 for more information.

Both initialization techniques place the processor in real mode and initialize processor resources to a
known, consistent state from which software can begin execution. The processor begins execution
when the RESET# pin is deasserted or the INIT state is exited.

The RESET method places the processor in a known state and prepares it to begin execution in real
mode. The INIT method is similar except it does not modify the state of certain registers. See Section
14.1.3 on page 430 for a comparison of these initialization methods.

System logic ensures that the processor transitions through the RESET state whenever power is
reapplied after a planned or unplanned interruption. A RESET can also be performed when power is
stable. An INIT can be performed at any time after the processor is powered up.

14.1.1 Built-In Self Test (BIST)

An optional built-in self-test can be performed after the processor is reset. The mechanism for
triggering the BIST is implementation-specific, and can be found in the hardware documentation for
the implementation. The number of processor cycles BIST can consume before completing is also
implementation-specific but typically consumes several million cycles.

BIST can be used by system implementations to assist in verifying system integrity, thereby improving
system reliability, availability, and serviceability. The internal BIST hardware generally tests all
internal array structures for errors. These structures can include (but are not limited to):
• All internal caches, including the tag arrays as well as the data arrays.
• All TLBs.
• Internal ROMs, such as the microcode ROM and floating-point constant ROM.
• Branch-prediction structures.

430 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

EAX is loaded with zero if BIST completes without detecting errors. If any hardware faults are
detected during BIST, a non-zero value is loaded into EAX.

14.1.2 Clock Multiplier Selection

The internal processor clock runs at some multiple of the system clock. The processor-to-system clock
multiple does not have to be fixed by a processor implementation but instead can be programmable
through hardware or software, or some combination of the two. For information on selecting the
processor-clock multiplier, see the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product.

14.1.3 Processor Initialization State

Table 14-1 shows the initial processor state following either RESET or INIT. Except as indicated,
processor resources generally are set to the same value after either RESET or INIT.

Table 14-1. Initial Processor State
Processor Resource Value After RESET Value After INIT

CR0 0000_0000_6000_0010h
CD and NW are unchanged
Bit 4 (reserved) = 1
All others = 0

CR2, CR3, CR4 0
CR8 0 Not modified
RFLAGS 0000_0000_0000_0002h
EFER 0
RIP 0000_0000_0000_FFF0h

CS

Selector = F000h
Base = 0000_0000_FFFF_0000h
Limit = FFFFh
Attributes = See Table 14-2 on page 432

DS, ES, FS, GS, SS

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2 on page 432

GDTR, IDTR
Base = 0
Limit = FFFFh

LDTR, TR

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2 on page 432

RAX
0
(non-zero if BIST is run and fails)

0

Processor Initialization and Long Mode Activation 431

24593—Rev. 3.30—September 2018 AMD64 Technology

Table 14-2 on page 432 shows the initial state of the segment-register attributes (located in the hidden
portion of the segment registers) following either RESET or INIT.

RDX Family/Model/Stepping, including extended family and extended
model—see “Processor Implementation Information” on page 433

RBX, RCX, RBP, RSP, RDI, RSI,
R8, R9, R10, R11, R12, R13, R14,
R15

0

x87 Floating-Point State

FPR0–FPR7 = 0
Control Word = 0040h
Status Word = 0000h
Tag Word = 5555h
Instruction CS = 0000h
Instruction Offset = 0
x87 Instruction Opcode = 0
Data-Operand DS = 0000h
Data-Operand Offset = 0

Not modified

64-Bit Media State MMX0–MMX7 = 0 Not modified

SSE State
XMM0–XMM15 = 0
MXCSR = 1F80h

Not modified

Memory-Type Range Registers See “Memory-Typing MSRs” on
page 586 Not modified

Machine-Check Registers See “Machine-Check MSRs” on
page 589 Not modified

DR0, DR1, DR2, DR3 0
DR6 0000_0000_FFFF_0FF0h
DR7 0000_0000_0000_0400h
Time-Stamp Counter 0 Not modified

Performance-Monitor Resources See “Performance-Monitoring
MSRs” on page 591 Not modified

Other Model-Specific Registers See “MSR Cross-Reference” on
page 581 Not modified

Instruction and Data Caches
Invalidated Not modified

Instruction and Data TLBs
APIC Enabled Not modified
SMRAM Base Address (SMBASE) 0003_0000h Not modified

Table 14-1. Initial Processor State (continued)
Processor Resource Value After RESET Value After INIT

432 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

14.1.4 Multiple Processor Initialization

Following reset in multiprocessor configurations, the processors use a multiple-processor
initialization protocol to negotiate which processor becomes the bootstrap processor. This bootstrap
processor then executes the system initialization code while the remaining processors wait for
software initialization to complete. For further information, see the documentation for particular
implementations of the architecture.

14.1.5 Fetching the First Instruction

After a RESET or INIT, the processor is operating in 16-bit real mode. Normally within real mode, the
code-segment base-address is formed by shifting the CS-selector value left four bits. The base address
is then added to the value in EIP to form the physical address into memory. As a result, the processor
can only address the first 1 Mbyte of memory when in real mode.

However, immediately following RESET or INIT, the CS-selector register is loaded with F000h, but
the CS base-address is not formed by left-shifting the selector. Instead, the CS base-address is
initialized to FFFF_0000h. EIP is initialized to FFF0h. Therefore, the first instruction fetched from
memory is located at physical-address FFFF_FFF0h (FFFF_0000h + 0000_FFF0h).

The CS base-address remains at this initial value until the CS-selector register is loaded by software.
This can occur as a result of executing a far jump instruction or call instruction, for example. When CS
is loaded by software, the new base-address value is established as defined for real mode (by left
shifting the selector value four bits).

Table 14-2. Initial State of Segment-Register Attributes
Attribute Value (Binary) Description

G 0 Byte Granularity
D/B 0 16-Bit Segment
L (CS Only) 0 Legacy-Mode Segment
P 1 Segment is Present
DPL 00 Privilege-Level 0

S and
Type

Code
Segment

S = 1
Type = 1010

Executable/Readable Code Segment

Data
Segment

S = 1
Type = 0010

Read/Write Data Segment

LDTR
S = 0
Type = 0010

LDT

TR
S = 0
Type = 0011

Busy 16-Bit TSS

Processor Initialization and Long Mode Activation 433

24593—Rev. 3.30—September 2018 AMD64 Technology

14.2 Hardware Configuration
14.2.1 Processor Implementation Information

Software can read processor-identification information from the EDX register immediately following
RESET or INIT. This information can be used to initialize software to perform processor-specific
functions. The information stored in EDX is defined as follows:
• Stepping ID (bits 3:0)—This field identifies the processor-revision level.
• Extended Model (bits 19:16) and Model (bits 7:4)—These fields combine to differentiate

processor models within a instruction family. For example, two processors may share the same
microarchitecture but differ in their feature set. Such processors are considered different models
within the same instruction family. This is a split field, comprising an extended-model portion in
bits 19:16 with a legacy portion in bits 7:4

• Extended Family (bits 27:20) and Family (bits 11:8)—These fields combine to differentiate
processors by their microarchitecture.

The CPUID instruction can be used to obtain the same information. This is done by executing CPUID
with either function 1 or function 8000_0001h. Additional information about the processor and the
features supported can be gathered using CPUID with other feature codes. See Section 3.3, “Processor
Feature Identification,” on page 63 for additional information.

14.2.2 Enabling Internal Caches

Following a RESET (but not an INIT), all instruction and data caches are disabled, and their contents
are invalidated (the MOESI state is set to the invalid state). Software can enable these caches by
clearing the cache-disable bit (CR0.CD) to zero (RESET sets this bit to 1). Software can further refine
caching based on individual pages and memory regions. Refer to “Cache Control Mechanisms” on
page 182 for more information on cache control.

Memory-Type Range Registers (MTRRs). Following a RESET (but not an INIT), the
MTRRdefType register is cleared to 0, which disables the MTRR mechanism. The variable-range and
fixed-range MTRR registers are not initialized and are therefore in an undefined state. Before enabling
the MTRR mechanism, the initialization software (usually platform firmware) must load these
registers with a known value to prevent unexpected results. Clearing these registers, for example, sets
memory to the uncacheable (UC) type.

14.2.3 Initializing Media and x87 Processor State

Some resources used by x87 floating-point instructions and media instructions must be initialized by
software before being used. Initialization software can use the CPUID instruction to determine
whether the processor supports these instructions, and then initialize their resources as appropriate.

x87 Floating-Point State Initialization. Table 14-3 on page 434 shows the differences between the
initial x87 floating-point state following a RESET and the state established by the FINIT/FNINIT
instruction. An INIT does not modify the x87 floating-point state. The initialization software can

434 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

execute an FINIT or FNINIT instruction to prepare the x87 floating-point unit for use by application
software. The FINIT and FNINIT instructions have no effect on the 64-bit media state.

Initialization software should also load the MP, EM, and NE bits in the CR0 register as appropriate for
the operating system. The recommended settings are:
• MP=1—Setting MP to 1 causes a device-not-available exception (#NM) to occur when the

FWAIT/WAIT instruction is executed and the task-switched bit (CR0.TS) is set to 1. This supports
operating systems that perform lazy context-switching of x87 floating-point state.

• EM=0—Clearing EM to 0 allows the x87 floating-point unit to execute instructions rather than
causing a #NM exception (CR0.EM=1). System software sets EM to 1 only when software
emulation of x87 instructions is desired.

• NE=1—Setting NE to 1 causes x87 floating-point exceptions to be handled by the floating-point
exception-pending exception (#MF) handler. Clearing this bit causes the processor to externally
indicate the exception occurred, and an external device can then cause an external interrupt to
occur in response.

Refer to “CR0 Register” on page 42 for additional information on these control bits.

64-Bit Media State Initialization. There are no special requirements placed on software to initialize
the processor state used by 64-bit media instructions. This state is initialized completely by the
processor following a RESET. System software should leave CR0.EM cleared to 0 to allow execution
of the 64-bit media instructions. If CR0.EM is set to 1, attempted execution of the 64-bit media
instructions causes an invalid-opcode exception (#UD).

The 64-bit media state is not modified by an INIT.

Table 14-3. x87 Floating-Point State Initialization
x87 Floating-Point

Resource RESET FINIT/FNINIT
Instructions

FPR0–FPR7 0 Not modified

Control Word

0040h
• Round to nearest
• Single precision
• Unmask all exceptions

037Fh
• Round to nearest
• Extended precision
• Mask all exceptions

Status Word 0000h
Tag Word 5555h (FPRn contain zero) FFFFh (FPRn are empty)
Instruction CS 0000h
Instruction Offset 0
x87 Instruction
Opcode 0

Data-Operand DS 0000h
Data-Operand Offset 0

Processor Initialization and Long Mode Activation 435

24593—Rev. 3.30—September 2018 AMD64 Technology

SSE State Initialization. Platform firmware or system software must also prepare the processor to
allow execution of SSE instructions. The required preparations include:
• Leaving CR0.EM cleared to 0 to allow execution of the SSE instructions. If CR0.EM is set to 1,

attempted execution of the SSE instructions except FXSAVE/FXRSTOR causes an invalid-opcode
exception (#UD). An attempt to execute either of these instructions when CR0.EM is set results in
a #NM exception.

• Enabling the SSE instructions by setting CR4.OSFXSR to 1. Software cannot execute the SSE
instructions unless this bit is set. Setting this bit also indicates that system software uses the
FXSAVE and FXRSTOR instructions to save and restore, respectively, the SSE state. These
instructions also save and restore the 64-bit media state and x87 floating-point state.

• Indicating that system software uses the SIMD floating-point exception (#XF) for handling SSE
floating-point exceptions. This is done by setting CR4.OSXMMEXCPT to 1.

• Setting (optionally) the MXCSR mask bits to mask or unmask SSE floating-point exceptions as
desired. Because this register can be read and written by application software, it is not absolutely
necessary for system software to initialize it.

Refer to “CR4 Register” on page 47 for additional information on these CR4 control bits.

14.2.4 Model-Specific Initialization

Implementations of the AMD64 architecture can contain model-specific features and registers that are
not initialized by the processor and therefore require system-software initialization. System software
must use the CPUID instruction to determine which features are supported. Model-specific features
are generally configured using model-specific registers (MSRs), which can be read and written using
the RDMSR and WRMSR instructions, respectively.

Some of the model-specific features are pervasive across many processor implementations of the
AMD64 architecture and are therefore described within this volume. These include:
• System-call extensions, which must be enabled in the EFER register before using the SYSCALL

and SYSRET instructions. See “System-Call Extension (SCE) Bit” on page 56 for information on
enabling these instructions.

• Memory-typing MSRs. See “Memory-Type Range Registers (MTRRs)” on page 433 for
information on initializing and using these registers.

• The machine-check mechanism. See “Initializing the Machine-Check Mechanism” on page 279
for information on enabling and using this capability.

• Extensions to the debug mechanism. See “Software-Debug Resources” on page 350 for
information on initializing and using these extensions.

• The performance-monitoring resources. See “Performance Monitoring Counters” on page 364 for
information on initializing and using these resources.

Initialization of other model-specific features used by the page-translation mechanism and long mode
are described throughout the remainder of this section.

436 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

Some model-specific features are not pervasive across processor implementations and are therefore
not described in this volume. For more information on these features and their initialization
requirements, see the BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming
Reference Manual applicable to your product.

14.3 Initializing Real Mode
A basic real-mode (real-address-mode) operating environment must be initialized so that system
software can initialize the protected-mode operating environment. This real-mode environment must
include:
• A real-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in real

mode. The IDT base-address value in the IDTR initialized by the processor can be used, or system
software can relocate the IDT by loading a new base-address into the IDTR.

• The real-mode interrupt and exception handlers. These must be loaded before enabling external
interrupts.
Because the processor can always accept a non-maskable interrupt (NMI), it is possible an NMI
can occur before initializing the IDT or the NMI handler. System hardware must provide a
mechanism for disabling NMIs to allow time for the IDT and NMI handler to be properly
initialized. Alternatively, the IDT and NMI handler can be stored in non-volatile memory that is
referenced by the initial values loaded into the IDTR.
Maskable interrupts can be enabled by setting EFLAGS.IF after the real-mode IDT and interrupt
handlers are initialized.

• A valid stack pointer (SS:SP) to be used by the interrupt mechanism should interrupts or
exceptions occur. The values of SS:SP initialized by the processor can be used.

• One or more data-segment selectors for storing the protected-mode data structures that are created
in real mode.

Once the real-mode environment is established, software can begin initializing the protected-mode
environment.

14.4 Initializing Protected Mode
Protected mode must be entered before activating long mode. A minimal protected-mode environment
must be established to allow long-mode initialization to take place. This environment must include the
following:
• A protected-mode IDT for vectoring interrupts and exceptions to the appropriate handlers while in

protected mode.
• The protected-mode interrupt and exception handlers referenced by the IDT. Gate descriptors for

each handler must be loaded in the IDT.
• A GDT which contains:

Processor Initialization and Long Mode Activation 437

24593—Rev. 3.30—September 2018 AMD64 Technology

- A code descriptor for the code segment that is executed in protected mode.
- A read/write data segment that can be used as a protected-mode stack. This stack can be used

by the interrupt mechanism if interrupts or exceptions occur.

Software can optionally load the GDT with one or more data segment descriptors, a TSS descriptor,
and an LDT descriptor for use by long-mode initialization software.

After the protected-mode data structures are initialized, system software must load the IDTR and
GDTR with pointers to those data structures. Once these registers are initialized, protected mode can
be enabled by setting CR0.PE to 1.

If legacy paging is used during the long-mode initialization process, the page-translation tables must
be initialized before enabling paging. At a minimum, one page directory and one page table are
required to support page translation. The CR3 register must be loaded with the starting physical
address of the highest-level table supported in the page-translation hierarchy. After these structures are
initialized and protected mode is enabled, paging can be enabled by setting CR0.PG to 1.

14.5 Initializing Long Mode
From protected mode, system software can initialize the data structures required by long mode and
store them anywhere in the first 4 Gbytes of physical memory. These data structures can be relocated
above 4 Gbytes once long mode is activated. The data structures required by long mode include the
following:
• An IDT with 64-bit interrupt-gate descriptors. Long-mode interrupts are always taken in 64-bit

mode, and the 64-bit gate descriptors are used to transfer control to interrupt handlers running in
64-bit mode. See “Long-Mode Interrupt Control Transfers” on page 249 for more information.

• The 64-bit mode interrupt and exception handlers to be used in 64-bit mode. Gate descriptors for
each handler must be loaded in the 64-bit IDT.

• A GDT containing segment descriptors for software running in 64-bit mode and compatibility
mode, including:
- Any LDT descriptors required by the operating system or application software.
- A TSS descriptor for the single 64-bit TSS required by long mode.
- Code descriptors for the code segments that are executed in long mode. The code-segment

descriptors are used to specify whether the processor is operating in 64-bit mode or
compatibility mode. See “Code-Segment Descriptors” on page 88, “Long (L) Attribute Bit” on
page 89, and “CS Register” on page 71 for more information.

- Data-segment descriptors for software running in compatibility mode. The DS, ES, and SS
segments are ignored in 64-bit mode. See “Data-Segment Descriptors” on page 89 for more
information.

- FS and GS data-segment descriptors for 64-bit mode, if required by the operating system. If
these segments are used in 64-bit mode, system software can also initialize the full 64-bit base

438 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

addresses using the WRMSR instruction. See “FS and GS Registers in 64-Bit Mode” on
page 72 for more information.

The existing protected-mode GDT can be used to hold the long-mode descriptors described above.
• A single 64-bit TSS for holding the privilege-level 0, 1, and 2 stack pointers, the interrupt-stack-

table pointers, and the I/O-redirection-bitmap base address (if required). This is the only TSS
required, because hardware task-switching is not supported in long mode. See “64-Bit Task State
Segment” on page 339 for more information.

• The 4-level page-translation tables required by long mode. Long mode also requires the use of
physical-address extensions (PAE) to support physical-address sizes greater than 32 bits. See
“Long-Mode Page Translation” on page 130 for more information.

If paging is enabled during the initialization process, it must be disabled before enabling long mode.
After the long-mode data structures are initialized, and paging is disabled, software can enable and
activate long mode.

14.6 Enabling and Activating Long Mode
Long mode is enabled by setting the long-mode enable control bit (EFER.LME) to 1. However, long
mode is not activated until software also enables paging. When software enables paging while long
mode is enabled, the processor activates long mode, which the processor indicates by setting the long-
mode-active status bit (EFER.LMA) to 1. The processor behaves as a 32-bit x86 processor in all
respects until long mode is activated, even if long mode is enabled. None of the new 64-bit data sizes,
addressing, or system aspects available in long mode can be used until EFER.LMA=1.

Table 14-4 shows the control-bit settings for enabling and activating the various operating modes of
the AMD64 architecture. The default address and data sizes are shown for each mode. For the methods
of overriding these default address and data sizes, see “Instruction Prefixes” in Volume 1.

Processor Initialization and Long Mode Activation 439

24593—Rev. 3.30—September 2018 AMD64 Technology

Long mode uses two code-segment-descriptor bits, CS.L and CS.D, to control the operating
submodes. If long mode is active, CS.L = 1, and CS.D = 0, the processor is running in 64-bit mode, as
shown in Table 14-4 on page 439. With this encoding (CS.L=1, CS.D=0), default operand size is 32
bits and default address size is 64 bits. Using instruction prefixes, the default operand size can be
overridden to 64 bits or 16 bits, and the default address size can be overridden to 32 bits.

The final encoding of CS.L and CS.D in long mode (CS.L=1, CS.D=1) is reserved for future use.

When long mode is active and CS.L is cleared to 0, the processor is in compatibility mode, as shown in
Table 14-4 on page 439. In compatibility mode, CS.D controls default operand and address sizes
exactly as it does in the legacy x86 architecture. Setting CS.D to 1 specifies default operand and
address sizes as 32 bits. Clearing CS.D to 0 specifies default operand and address sizes as 16 bits.

14.6.1 Activating Long Mode

Switching the processor to long mode requires several steps. In general, the sequence involves
disabling paging (CR0.PG=0), enabling physical-address extensions (CR4.PAE=1), loading CR3,
enabling long mode (EFER.LME=1), and finally enabling paging (CR0.PG=1).

Specifically, software must follow this sequence to activate long mode:
1. If starting from page-enabled protected mode, disable paging by clearing CR0.PG to 0. This

requires that the MOV CR0 instruction used to disable paging be located in an identity-mapped
page (virtual address equals physical address).

2. In any order:

Table 14-4. Processor Operating Modes

Mode

Encoding
Default

Address
Size

(bits)2

Default
Data
Size

(bits)2

EF
ER

.L
M

A
1

C
S.

L

C
S.

D

Long
Mode

64-Bit
Mode

1
1 0 64 32

Compatibility
Mode

0
1 32 32
0 16 16

Legacy Mode 0 x
1 32 32
0 16 16

Note:
1. EFER.LMA is set by the processor when software sets EFER.LME and CR0.PG

according to the sequence described in “Activating Long Mode” on page 439.
2. See “Instruction Prefixes” in Volume 1 for overrides to default sizes.

440 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

- Enable physical-address extensions by setting CR4.PAE to 1. Long mode requires the use of
physical-address extensions (PAE) in order to support physical-address sizes greater than 32
bits. Physical-address extensions must be enabled before enabling paging.

- Load CR3 with the physical base-address of the level-4 page-map-table (PML4). See “Long-
Mode Page Translation” on page 130 for details on creating the 4-level page translation tables
required by long mode.

- Enable long mode by setting EFER.LME to 1.
3. Enable paging by setting CR0.PG to 1. This causes the processor to set the EFER.LMA bit to 1.

The instruction following the MOV CR0 that enables paging must be a branch, and both the MOV
CR0 and the following branch instruction must be located in an identity-mapped page.

14.6.2 Consistency Checks

The processor performs long-mode consistency checks whenever software attempts to modify any of
the control bits directly involved in activating long mode (EFER.LME, CR0.PG, and CR4.PAE). A
general-protection exception (#GP) occurs when a consistency check fails. Long-mode consistency
checks ensure that the processor does not enter an undefined mode or state that results in unpredictable
behavior.

Long-mode consistency checks cause a general-protection exception (#GP) to occur if:
• An attempt is made to enable or disable long mode while paging is enabled.
• Long mode is enabled, and an attempt is made to enable paging before enabling physical-address

extensions (PAE).
• Long mode is enabled, and an attempt is made to enable paging while CS.L=1.
• Long mode is active and an attempt is made to disable physical-address extensions (PAE).

Table 14-5 summarizes the long-mode consistency checks made during control-bit transitions.

14.6.3 Updating System Descriptor Table References

Immediately after activating long mode, the system-descriptor-table registers (GDTR, LDTR, IDTR,
TR) continue to reference legacy descriptor tables. The tables referenced by these descriptors all reside
in the lower 4 Gbytes of virtual-address space. After activating long mode, 64-bit operating-system
software should use the LGDT, LLDT, LIDT, and LTR instructions to load the system descriptor-table

Table 14-5. Long-Mode Consistency Checks
Control Bit Transition Check

EFER.LME
0 → 1 If (CR0.PG=1) then #GP(0)
1 → 0 If (CR0.PG=1) then #GP(0)

CR0.PG 0 → 1
If ((EFER.LME=1) & (CR4.PAE=0) then #GP(0)
If ((EFER.LME=1) & (CS.L=1)) then #GP(0)

CR4.PAE 1 → 0 If (EFER.LMA=1) then #GP(0)

Processor Initialization and Long Mode Activation 441

24593—Rev. 3.30—September 2018 AMD64 Technology

registers with references to the 64-bit versions of the descriptor tables. See “Descriptor Tables” on
page 73 for details on descriptor tables in long mode.

Long mode requires 64-bit interrupt-gate descriptors to be stored in the interrupt-descriptor table
(IDT). Software must not allow exceptions or interrupts to occur between the time long mode is
activated and the subsequent update of the interrupt-descriptor-table register (IDTR) that establishes a
reference to the 64-bit IDT. This is because the IDTR continues to reference a 32-bit IDT immediately
after long mode is activated. If an interrupt or exception occurred before updating the IDTR, a legacy
32-bit interrupt gate would be referenced and interpreted as a 64-bit interrupt gate, with unpredictable
results.

External interrupts can be disabled using the CLI instruction. Non-maskable interrupts (NMI) and
system-management interrupts (SMI) must be disabled using external hardware. See “Long-Mode
Interrupt Control Transfers” on page 249 for more information on long mode interrupts.

14.6.4 Relocating Page-Translation Tables

The long-mode page-translation tables must be located in the first 4 Gbytes of physical-address space
before activating long mode. This is necessary because the MOV CR3 instruction used to initialize the
page-map level-4 base address must be executed in legacy mode before activating long mode. Because
the MOV CR3 is executed in legacy mode, only the low 32 bits of the register are written, which limits
the location of the page-map level-4 translation table to the low 4 Gbytes of memory. Software can
relocate the page tables anywhere in physical memory, and re-initialize the CR3 register, after long
mode is activated.

14.7 Leaving Long Mode
To return from long mode to legacy protected mode with paging enabled, software must deactivate and
disable long mode using the following sequence:
1. Switch to compatibility mode and place the processor at the highest privilege level (CPL=0).
2. Deactivate long mode by clearing CR0.PG to 0. This causes the processor to clear the LMA bit to

0. The MOV CR0 instruction used to disable paging must be located in an identity-mapped page.
Once paging is disabled, the processor behaves as a standard 32-bit x86 processor.

3. Load CR3 with the physical base-address of the legacy page tables.
4. Disable long mode by clearing EFER.LME to 0.
5. Enable legacy page-translation by setting CR0.PG to 1. The instruction following the MOV CR0

that enables paging must be a branch, and both the MOV CR0 and the following branch
instruction must be located in an identity-mapped page.

14.8 Long-Mode Initialization Example
Following is sample code that outlines the steps required to place the processor in long mode.

442 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

mydata segment para
;;
;
; This generic data-segment holds pseudo-descriptors used
; by the LGDT and LIDT instructions.
;
;;
;
; Establish a temporary 32-bit GDT and IDT.
;
pGDT32 label fword ; Used by LGDT.
 dw gdt32_limit ; GDT limit ...
 dd gdt32_base ; and 32-bit GDT base
pIDT32 label fword ; Used by LIDT.
 dw idt32_limit ; IDT limit ...
 dd idt32_base ; and 32-bit IDT base
;
; Establish a 64-bit GDT and IDT (64-bit linear base-
; address)
;
pGDT64 label tbyte ; Used by LGDT.
 dw gdt64_limit ; GDT limit ...
 dq gdt64_base ; and 64-bit GDT base
pIDT64 label tbyte ; Used by LIDT.
 dw idt64_limit ; IDT limit ...
 dq idt64_base ; and 64-bit IDT base
mydata ends ; end of data segment
code16 segment para use16 ; 16-bit code segment
;;;
; 16-bit code, real mode
;
;;
;
; Initialize DS to point to the data segment containing
; pGDT32 and PIDT32. Set up a real-mode stack pointer, SS:SP,
; in case of interrupts and exceptions.
;

cli
mov ax, seg mydata
mov ds, ax
mov ax, seg mystack
mov ss, ax
mov sp, esp0

;
; Use CPUID to determine if the processor supports long mode. ;

mov eax, 80000000h ; Extended-function 8000000h.
cpuid ; Is largest extended function
cmp eax, 80000000h ; any function > 80000000h?
jbe no_long_mode ; If not, no long mode.
mov eax, 80000001h ; Extended-function 8000001h.

Processor Initialization and Long Mode Activation 443

24593—Rev. 3.30—September 2018 AMD64 Technology

cpuid ; Now EDX = extended-features flags.
bt edx, 29 ; Test if long mode is supported.
jnc no_long_mode ; Exit if not supported.

;
; Load the 32-bit GDT before entering protected mode.
; This GDT must contain, at a minimum, the following
; descriptors:
; 1) a CPL=0 16-bit code descriptor for this code segment.
; 2) a CPL=0 32/64-bit code descriptor for the 64-bit code.
; 3) a CPL=0 read/write data segment, usable as a stack
; (referenced by SS).
;
; Load the 32-bit IDT, in case any interrupts or exceptions
; occur after entering protected mode, but before enabling
; long mode).
;
; Initialize the GDTR and IDTR to point to the temporary
; 32-bit GDT and IDT, respectively.
;

lgdt ds:[pGDT32]
lidt ds:[pIDT32]

;
; Enable protected mode (CR0.PE=1).
;

mov eax, 000000011h
mov cr0, eax

;
; Execute a far jump to turn protected mode on.
; code16_sel must point to the previously-established 16-bit
; code descriptor located in the GDT (for the code currently
; being executed).
;

db 0eah ;Far jump...
dw offset now_in_prot;to offset...
dw code16_sel ;in current code segment.

;;;
; At this point we are in 16-bit protected mode, but long
; mode is still disabled.
;
;;
now_in_prot:
;
; Set up the protected-mode stack pointer, SS:ESP.
; Stack_sel must point to the previously-established stack
; descriptor (read/write data segment), located in the GDT.
; Skip setting DS/ES/FS/GS, because we are jumping right to
; 64-bit code.
;

mov ax, stack_sel
mov ss, ax
mov esp, esp0

444 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

;
; Enable the 64-bit page-translation-table entries by
; setting CR4.PAE=1 (this is _required_ before activating
; long mode). Paging is not enabled until after long mode
; is enabled.
;

mov eax, cr4
bts eax, 5
mov cr4, eax

;
; Create the long-mode page tables, and initialize the
; 64-bit CR3 (page-table base address) to point to the base
; of the PML4 page table. The PML4 page table must be located
; below 4 Gbytes because only 32 bits of CR3 are loaded when
; the processor is not in 64-bit mode.
;

mov eax, pml4_base ; Pointer to PML4 table (<4GB).
mov cr3, eax ; Initialize CR3 with PML4 base.

;
; Enable long mode (set EFER.LME=1).
;

mov ecx, 0c0000080h ; EFER MSR number.
rdmsr ; Read EFER.
bts eax, 8 ; Set LME=1.
wrmsr ; Write EFER.

;
; Enable paging to activate long mode (set CR0.PG=1)
;

mov eax, cr0 ; Read CR0.
bts eax, 31 ; Set PE=1.
mov cr0, eax ; Write CR0.

;
; At this point, we are in 16-bit compatibility mode
; (LMA=1, CS.L=0, CS.D=0).
; Now, jump to the 64-bit code segment. The offset must be
; equal to the linear address of the 64-bit entry point,
; because 64-bit code is in an unsegmented address space.
; The selector points to the 32/64-bit code selector in the
; current GDT.
;

db 066h
db 0eah
dd start64_linear
dw code64_sel

code16ends ; End of the 16-bit code segment
;;;
;;
;;; Start of 64-bit code
;;
;
;;

Processor Initialization and Long Mode Activation 445

24593—Rev. 3.30—September 2018 AMD64 Technology

code64 para use64
start64: ; At this point, we're using 64-bit code
;
; Point the 64-bit RSP register to the stack’s _linear_
; address. There is no need to set SS here, because the SS
; register is not used in 64-bit mode.
;

mov rsp, stack0_linear
;
; This LGDT is only needed if the long-mode GDT is to be
; located at a linear address above 4 Gbytes. If the long
; mode GDT is located at a 32-bit linear address, putting
; 64-bit descriptors in the GDT pointed to by [pGDT32] is
; just fine. pGDT64_linear is the _linear_ address of the
; 10-byte GDT pseudo-descriptor.
;
; The new GDT should have a valid CPL0 64-bit code segment
; descriptor at the entry-point corresponding to the current
; CS selector. Alternatively, a far transfer to a valid CPL0
; 64-bit code segment descriptor in the new GDT must be done
; before enabling interrupts.
;

lgdt [pGDT64_linear]
;
; Load the 64-bit IDT. This is _required_, because the 64-bit
; IDT uses 64-bit interrupt descriptors, while the 32-bit
; IDT used 32-bit interrupt descriptors. pIDT64_linear is
; the _linear_ address of the 10-byte IDT pseudo-descriptor.
;

lidt [pIDT64_linear]
;
; Set the current TSS. tss_sel should point to a 64-bit TSS
; descriptor in the current GDT. The TSS is used for
; inner-level stack pointers and the IO bit-map.
;

mov ax, tss_sel
ltr ax

;
; Set the current LDT. ldt_sel should point to a 64-bit LDT
; descriptor in the current GDT.
;

mov ax, ldt_sel
lldt ax

;
; Using fs: and gs: prefixes on memory accesses still uses
; the 32-bit fs.base and gs.base. Reload these 2 registers
; before using the fs: and gs: prefixes. FS and GS can be
; loaded from the GDT using a normal “mov fs,foo” type
; instructions, which loads a 32-bit base into FS or GS.
; Alternatively, use WRMSR to assign 64-bit base values to
; MSR_FS_base or MSR_GS_base.

446 Processor Initialization and Long Mode Activation

AMD64 Technology 24593—Rev. 3.30—September 2018

;
mov ecx, MSR_FS_base
mov eax, FsbaseLow
mov edx, FsbaseHi
wrmsr

;
; Reload CR3 if long-mode page tables are to be located above
; 4 Gbytes. Because the original CR3 load was done in 32-bit
; legacy mode, it could only load 32 bits into CR3. Thus, the
; current page tables are located in the lower 4 Gbytes of
; physical memory. This MOV to CR3 is only needed if the
; actual long-mode page tables should be located at a linear
; address above 4 Gbytes.
;

mov rax, final_pml4_base ; Point to PML4
mov cr3, rax ; Load 64-bit CR3

;
; Enable interrupts.
;

sti ; Enabled INTR
<insert 64-bit code here>

Secure Virtual Machine 447

24593—Rev. 3.30—September 2018 AMD64 Technology

15 Secure Virtual Machine

AMD Virtualization™ (AMD-V™) architecture is designed to provide enterprise-class server
virtualization software technology that facilitates virtualization development and deployment. An
SVM enabled virtual machine architecture provides hardware resources that allow a single machine to
run multiple operating systems efficiently, while maintaining secure, resource-guaranteed isolation.

15.1 The Virtual Machine Monitor
A virtual machine monitor (VMM), also known as a hypervisor, consists of software that controls the
execution of multiple guest operating systems on a single physical machine. The VMM provides each
guest the appearance of full control over a complete computer system (memory, CPU, and all
peripheral devices). The use of the term host refers to the execution context of the VMM. World switch
refers to the operation of switching between the host and guest.

Fundamentally, VMMs work by intercepting and emulating in a safe manner sensitive operations in
the guest (such as changing the page tables, which could give a guest access to memory it is not
allowed to access). The AMD SVM provides hardware assists to improve performance and facilitate
implementation of virtualization.

15.2 SVM Hardware Overview
SVM processor support provides a set of hardware extensions designed to enable economical and
efficient implementation of virtual machine systems. Generally speaking, hardware support falls into
two complementary categories: virtualization support and security support.

15.2.1 Virtualization Support

The AMD virtual machine architecture is designed to provide:
• A guest/host tagged TLB to reduce virtualization overhead
• External (DMA) access protection for memory
• Assists for interrupt handling, virtual interrupt support, and enhanced pause filter
• The ability to intercept selected instructions or events in the guest
• Mechanisms for fast world switch between VMM and guest

15.2.2 Guest Mode

This new processor mode is entered through the VMRUN instruction. When in guest mode, the
behavior of some x86 instructions changes to facilitate virtualization.

The CPUID function numbers 4000_0000h–4000_00FFh have been reserved for software use.
Hypervisors can use these function numbers to provide an interface to pass information from the

448 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

hypervisor to the guest. This is similar to extracting information about a physical CPU by using
CPUID. Hypervisors use the CPUID Fn 400000[FF:00] bit to denote a virtual platform.

Feature bit CPUID Fn0000_0001_ECX[31] has been reserved for use by hypervisors to indicate the
presence of a hypervisor. Hypervisors set this bit to 1 and physical CPU's set this bit to zero. This bit
can be probed by the guest software to detect whether they are running inside a virtual machine.

15.2.3 External Access Protection

Guests may be granted direct access to selected I/O devices. Hardware support is designed to prevent
devices owned by one guest from accessing memory owned by another guest (or the VMM).

15.2.4 Interrupt Support

To facilitate efficient virtualization of interrupts, the following support is provided under control of
VMCB flags:

Intercepting physical interrupt delivery. The VMM can request that physical interrupts cause a
running guest to exit, allowing the VMM to process the interrupt.

Virtual interrupts. The VMM can inject virtual interrupts into the guest. Under control of the VMM,
a virtual copy of the EFLAGS.IF interrupt mask bit, and a virtual copy of the APIC's task priority
register are used transparently by the guest instead of the physical resources.

Sharing a physical APIC. SVM allows multiple guests to share a physical APIC while guarding
against malicious or defective guests that might leave high-priority interrupts unacknowledged forever
(and thus shut out other guest's interrupts).

15.2.5 Restartable Instructions

SVM is designed to safely restart, with the exception of task switches, any intercepted instruction
(either atomic or idempotent) after the intercept.

15.2.6 Security Support

To further enable secure initialization SVM provides additional System support.

Attestation. The SKINIT instruction and associated system support (the Trusted Platform Module, or
TPM) allow for verifiable startup of trusted software (such as a VMM), based on secure hash
comparison.

15.3 SVM Processor and Platform Extensions
SVM hardware extensions can be grouped into the following categories:
• State switch—VMRUN, VMSAVE, VMLOAD instructions, global interrupt flag (GIF), and

instructions to manipulate the latter (STGI, CLGI). (“VMRUN Instruction” on page 449,

Secure Virtual Machine 449

24593—Rev. 3.30—September 2018 AMD64 Technology

“VMSAVE and VMLOAD Instructions” on page 472, “Global Interrupt Flag, STGI and CLGI
Instructions” on page 477.)

• Intercepts—allow the VMM to intercept sensitive operations in the guest. (“Intercept Operation”
on page 455 through “Miscellaneous Intercepts” on page 471)

• Interrupt and APIC assists—physical interrupt intercepts, virtual interrupt support, APIC.TPR
virtualization. (“Global Interrupt Flag, STGI and CLGI Instructions” on page 477 and “Interrupt
and Local APIC Support” on page 480)

• SMM intercepts and assists (“SMM Support” on page 483)
• External (DMA) access protection (“External Access Protection” on page 486)
• Nested paging support for two levels of address translation. (“Nested Paging” on page 493)
• Security—SKINIT instruction. (“Secure Startup with SKINIT” on page 500)

15.4 Enabling SVM
The VMRUN, VMLOAD, VMSAVE, CLGI, VMMCALL, and INVLPGA instructions can be used
when the EFER.SVME is set to 1; otherwise, these instructions generate a #UD exception. The
SKINIT and STGI instructions can be used when either the EFER.SVME bit is set to 1 or the feature
flag CPUID Fn8000_0001_ECX[SKINIT] is set to 1; otherwise, these instructions generate a #UD
exception.

Before enabling SVM, software should detect whether SVM can be enabled using the following
algorithm:
if (CPUID Fn8000_0001_ECX[SVM] == 0)
 return SVM_NOT_AVAIL;

if (VM_CR.SVMDIS == 0)
 return SVM_ALLOWED;

if (CPUID Fn8000_000A_EDX[SVML]==0)
 return SVM_DISABLED_AT_BIOS_NOT_UNLOCKABLE
 // the user must change a platform firmware setting to enable SVM
else return SVM_DISABLED_WITH_KEY;
 // SVMLock may be unlockable; consult platform firmware or TPM to obtain the
key.

For more information on using the CPUID instruction to obtain processor capability information, see
Section 3.3, “Processor Feature Identification,” on page 63.

15.5 VMRUN Instruction
The VMRUN instruction is the cornerstone of SVM. VMRUN takes, as a single argument, the
physical address of a 4KB-aligned page, the virtual machine control block (VMCB), which describes a
virtual machine (guest) to be executed. The VMCB contains:

450 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• a list of instructions or events in the guest (e.g., write to CR3) to intercept,
• various control bits that specify the execution environment of the guest or that indicate special

actions to be taken before running guest code, and
• guest processor state (such as control registers, etc.).

Note that VMRUN is not supported inside the SMM handler and the behavior is undefined.

15.5.1 Basic Operation

The VMRUN instruction has an implicit addressing mode of [rAX]. Software must load RAX (EAX
in 32-bit mode) with the physical address of the VMCB, a 4-Kbyte-aligned page that describes a
virtual machine to be executed. The portion of RAX used in forming the address is determined by the
current effective address size.

The VMCB is accessed by physical address and should be mapped as writeback (WB) memory.

VMRUN is available only at CPL-0. A #GP exception is raised if the CPL is greater than 0.
Furthermore, the processor must be in protected mode and EFER.SVME must be set to 1, otherwise, a
#UD exception is raised.

The VMRUN instruction saves some host processor state information in the host state-save area in
main memory at the physical address specified in the VM_HSAVE_PA MSR; it then loads
corresponding guest state from the VMCB state-save area. VMRUN also reads additional control bits
from the VMCB that allow the VMM to flush the guest TLB, inject virtual interrupts into the guest,
etc.

The VMRUN instruction then checks the guest state just loaded. If an illegal state has been loaded, the
processor exits back to the host (see “#VMEXIT” on page 454).

Otherwise, the processor now runs the guest code until an intercept event occurs, at which point the
processor suspends guest execution and resumes host execution at the instruction following the
VMRUN. This is called a #VMEXIT and is described in detail in “#VMEXIT” on page 454.

VMRUN saves or restores a minimal amount of state information to allow the VMM to resume
execution after a guest has exited. This allows the VMM to handle simple intercept conditions quickly.
If additional guest state information must be saved or restored (e.g., to handle more complex intercepts
or to switch to a different guest), the VMM can employ the VMSAVE and VMLOAD instructions (see
“VMSAVE and VMLOAD Instructions” on page 472).

Saving Host State. To ensure that the host can resume operation after #VMEXIT, VMRUN saves at
least the following host state information:
• CS.SEL, NEXT_RIP—The CS selector and rIP of the instruction following the VMRUN. On

#VMEXIT the host resumes running at this address.
• RFLAGS, RAX—Host processor mode and the register used by VMRUN to address the VMCB.
• SS.SEL, RSP—Stack pointer for host.

Secure Virtual Machine 451

24593—Rev. 3.30—September 2018 AMD64 Technology

• CR0, CR3, CR4, EFER—Paging/operating mode for host.
• IDTR, GDTR—The pseudo-descriptors. VMRUN does not save or restore the host LDTR.
• ES.SEL and DS.SEL.

Processor implementations may store only part or none of host state in the memory area pointed to by
VM_HSAVE_PA MSR and may store some or all host state in hidden on-chip memory. Different
implementations may choose to save the hidden parts of the host’s segment registers as well as the
selectors. For these reasons, software must not rely on the format or contents of the host state save
area, nor attempt to change host state by modifying the contents of the host save area.

Loading Guest State. After saving host state, VMRUN loads the following guest state from the
VMCB:
• CS, rIP—Guest begins execution at this address. The hidden state of the CS segment register is

also loaded from the VMCB.
• RFLAGS, RAX.
• SS, RSP—Includes the hidden state of the SS segment register.
• CR0, CR2, CR3, CR4, EFER—Guest paging mode. Writing paging-related control registers with

VMRUN does not flush the TLB since address spaces are switched. See Section 15.16, “TLB
Control,” on page 475.

• INTERRUPT_SHADOW—This flag indicates whether the guest is currently in an interrupt
lockout shadow; see “Interrupt Shadows” on page 482.

• IDTR, GDTR.
• ES and DS—Includes the hidden state of the segment registers.
• DR6 and DR7—The guest’s breakpoint state.
• V_TPR—The guest’s virtual TPR.
• V_IRQ—The flag indicating whether a virtual interrupt is pending in the guest.
• CPL—If the guest is in real mode, the CPL is forced to 0; if the guest is in v86 mode, the CPL is

forced to 3. Otherwise, the CPL saved in the VMCB is used.

The processor checks the loaded guest state for consistency. If a consistency check fails while loading
guest state, the processor performs a #VMEXIT. For additional information, see “Canonicalization
and Consistency Checks” on page 453.

If the guest is in PAE paging mode according to the registers just loaded and nested paging is not
enabled, the processor will also read the four PDPEs pointed to by the newly loaded CR3 value; setting
any reserved bits in the PDPEs also causes a #VMEXIT.

It is possible for the VMRUN instruction to load a guest rIP that is outside the limit of the guest code
segment or that is non-canonical (if running in long mode). If this occurs, a #GP fault is delivered
inside the guest; the rIP falling outside the limit of the guest code segment is not considered illegal
guest state.

452 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

After all guest state is loaded, and intercepts and other control bits are set up, the processor reenables
interrupts by setting GIF to 1. It is assumed that VMM software cleared GIF some time before
executing the VMRUN instruction, to ensure an atomic state switch.

Some processor models allow the VMM to designate certain guest VMCB fields as “clean,” meaning
that they haven't been modified relative to the current state of hardware. This allows the hardware to
optimize execution of VMRUN. See Section 15.15, “VMCB State Caching,” on page 473, for details
on which fields may be affected by this. The descriptions below assume all fields are loaded.

Control Bits. Besides loading guest state, the VMRUN instruction reads various control fields from
the VMCB; most of these fields are not written back to the VMCB on #VMEXIT, since they cannot
change during guest execution:
• TSC_OFFSET—an offset to add when the guest reads the TSC (time stamp counter). Guest writes

to the TSC can be intercepted and emulated by changing the offset (without writing the physical
TSC). This offset is cleared when the guest exits back to the host.

• V_INTR_PRIO, V_INTR_VECTOR, V_IGN_TPR—fields used to describe a virtual interrupt for
the guest (see “Injecting Virtual (INTR) Interrupts” on page 481).

• V_INTR_MASKING—controls whether masking of interrupts (in EFLAGS.IF and TPR) is to be
virtualized (see Section 15.21 on page 480).

• The address space ID (ASID) to use while running the guest.
• A field to control flushing of the TLB during a VMRUN (see Section 15.16).
• The intercept vector describing the active intercepts for the guest. On exit from the guest, the

internal intercept registers are cleared so no host operations will be intercepted.

The maximum ASID value supported by a processor is implementation specific. The value returned in
EBX after executing CPUID Fn8000_000A is the number of ASIDs supported by the processor.

See Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the
CPUID instruction.

Segment State in the VMCB. The segment registers are stored in the VMCB in a format similar to
that for SMM: both base and limit are fully expanded; segment attributes are stored as 12-bit values
formed by the concatenation of bits 55:52 and 47:40 from the original 64-bit (in-memory) segment
descriptors; the descriptor “P” bit is used to signal NULL segments (P=0) where permissible and/or
relevant. The loading of segment attributes from the VMCB (which may have been overwritten by
software) may result in attribute bit values that are otherwise not allowed. However, only some of the
attribute bits are actually observed by hardware, depending on the segment register in question:
• CS—D, L, and R.
• SS—B, P, E, W, and Code/Data
• DS, ES, FS, GS —D, P, DPL, E, W, and Code/Data.
• LDTR—Only the P bit is observed.
• TR—Only TSS type (32 or 16 bit) is relevant because a null TSS is not allowed.

Secure Virtual Machine 453

24593—Rev. 3.30—September 2018 AMD64 Technology

NOTE: For the Stack Segment attributes, P is observed in legacy and compatibility mode. In 64-bit
mode, P is ignored because all stack segments are treated as present.

The VMM should follow these rules when storing segment attributes into the VMCB:
• For NULL segments, set all attribute bits to zero; otherwise, write the concatenation of bits 55:52

and 47:40 from the original 64-bit (in-memory) segment descriptors.
• The processor reads the current privilege level from the CPL field in the VMCB. The CS.DPL will

match the CPL field.
• When in virtual x86 or real mode, the processor ignores the CPL field in the VMCB and forces the

values of 3 and 0, respectively.

When examining segment attributes after a #VMEXIT:
• Test the Present (P) bit to check whether a segment is NULL; note that CS and TR never contain

NULL segments and so their P bit is ignored;
• Retrieve the CPL from the CPL field in the VMCB, not from any segment DPL.

Canonicalization and Consistency Checks. The VMRUN instruction performs consistency
checks on guest state and #VMEXIT performs the appropriate subset of these consistency checks on
host state. Illegal guest state combinations cause a #VMEXIT with error code VMEXIT_INVALID.
The following conditions are considered illegal state combinations:
• EFER.SVME is zero.
• CR0.CD is zero and CR0.NW is set.
• CR0[63:32] are not zero.
• Any MBZ bit of CR3 is set.
• Any MBZ bit of CR4 is set.
• DR6[63:32] are not zero.
• DR7[63:32] are not zero.
• Any MBZ bit of EFER is set.
• EFER.LMA or EFER.LME is non-zero and this processor does not support long mode.
• EFER.LME and CR0.PG are both set and CR4.PAE is zero.
• EFER.LME and CR0.PG are both non-zero and CR0.PE is zero.
• EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-zero.
• The VMRUN intercept bit is clear.
• The MSR or IOIO intercept tables extend to a physical address that is greater than or equal to the

maximum supported physical address.
• Illegal event injection (see Section 15.20 on page 478).
• ASID is equal to zero.

454 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

VMRUN can load a guest value of CR0 with PE = 0 but PG = 1, a combination that is otherwise illegal
(see Section 15.19).

In addition to consistency checks, VMRUN and #VMEXIT canonicalize (i.e., sign-extend to 63 bits)
all base addresses in the segment registers that have been loaded.

On processor models that support designation of clean fields, the final merged hardware state is used
for consistency checks; this may include state from fields marked as clean, if the processor choose to
ignore the indication.

VMRUN and TF/RF Bits in EFLAGS. When considering interactions of VMRUN with the TF and
RF bits in EFLAGS, one must distinguish between the behavior of host as opposed to that of the guest.

From the host point of view, VMRUN acts like a single instruction, even though an arbitrary number
of guest instructions may execute before a #VMEXIT effectively completes the VMRUN. As a single
host instruction, VMRUN interacts with EFLAGS.RF and EFLAGS.TF like ordinary instructions.
EFLAGS.RF suppresses any potential instruction breakpoint match on the VMRUN, and EFLAGS.TF
causes a #DB trap after the VMRUN completes on the host side (i.e., after the #VMEXIT from the
guest). As with any normal instruction, completion of the VMRUN instruction clears the host
EFLAGS.RF bit.

The value of EFLAGS.RF from the VMCB affects the first guest instruction. When VMRUN loads a
guest value of 1 for EFLAGS.RF, that value takes effect and suppresses any potential (guest)
instruction breakpoint on the first guest instruction. When VMRUN loads a guest value of 1 in
EFLAGS.TF, that value does not cause a trace trap between the VMRUN and the first guest
instruction, but rather after completion of the first guest instruction.

Host values of EFLAGS have no effect on the guest and guest values of EFLAGS have no effect on the
host.

See also Section 15.7.1 on page 456 regarding the value of EFLAGS.RF saved on #VMEXIT.

15.6 #VMEXIT
When an intercept triggers, the processor performs a #VMEXIT (i.e., an exit from the guest to the host
context).

On #VMEXIT, the processor:
• Disables interrupts by clearing the GIF, so that after the #VMEXIT, VMM software can complete

the state switch atomically.
• Writes back to the VMCB the current guest state—the same subset of processor state as is loaded

by the VMRUN instruction, including the V_IRQ, V_TPR, and the INTERRUPT_SHADOW bits.
• Saves the reason for exiting the guest in the VMCB’s EXITCODE field; additional information

may be saved in the EXITINFO1 or EXITINFO2 fields, depending on the intercept. Note that the

Secure Virtual Machine 455

24593—Rev. 3.30—September 2018 AMD64 Technology

contents of the EXITINFO1 and EXITINFO2 fields are undefined for intercepts where their use is
not indicated.

• Clears all intercepts.
• Resets the current ASID register to zero (host ASID).
• Clears the V_IRQ and V_INTR_MASKING bits inside the processor.
• Clears the TSC_OFFSET inside the processor.
• Reloads the host state previously saved by the VMRUN instruction. The processor reloads the

host’s CS, SS, DS, and ES segment registers and, if required, re-reads the descriptors from the
host’s segment descriptor tables, depending on the implementation. The segment descriptor tables
must be mapped as present and writable by the host's page tables. Software should keep the host’s
segment descriptor tables consistent with the segment registers when executing VMRUN
instructions. Immediately after #VMEXIT, the processor still contains the guest value for LDTR.
So for CS, SS, DS, and ES, the VMM must only use segment descriptors from the global descriptor
table. Any exception encountered while reloading the host segments causes a shutdown.

• If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated by
the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown.

• Forces CR0.PE = 1, RFLAGS.VM = 0.
• Sets the host CPL to zero.
• Disables all breakpoints in the host DR7 register.
• Checks the reloaded host state for consistency; any error causes the processor to shutdown. If the

host’s rIP reloaded by #VMEXIT is outside the limit of the host’s code segment or non-canonical
(in the case of long mode), a #GP fault is delivered inside the host.

15.7 Intercept Operation
Various instructions and events (such as exceptions) in the guest can be intercepted by means of
control bits in the VMCB. The two primary classes of intercepts supported by SVM are instruction and
exception intercepts.

Exception intercepts. Exception intercepts are checked when normal instruction processing must
raise an exception before resolving possible double-fault conditions and before attempting delivery of
the exception (which includes pushing an exception frame, accessing the IDT, etc.).

For some exceptions, the processor still writes certain exception-specific registers even if the
exception is intercepted. (See the descriptions in Section 15.12 on page 466 and following for details.)
When an external or virtual interrupt is intercepted, the interrupt is left pending.

When an intercept occurs while the guest is in the process of delivering a non-intercepted interrupt or
exception using the IDT, SVM provides additional information on #VMEXIT (See Section 15.7.2 on
page 457).

456 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Instruction intercepts. These occur at well-defined points in instruction execution—before the
results of the instruction are committed, but ordered in an intercept-specific priority relative to the
instruction’s exception checks. Generally, instruction intercepts are checked after simple exceptions
(such as #GP—when CPL is incorrect—or #UD) have been checked, but before exceptions related to
memory accesses (such as page faults) and exceptions based on specific operand values. There are
several exceptions to this guideline, e.g., the RSM instruction. Instruction breakpoints for the current
instruction and pending data breakpoint traps from the previous instruction are designed to be checked
before instruction intercepts.

15.7.1 State Saved on Exit

When triggered, intercepts write an EXITCODE into the VMCB identifying the cause of the intercept.
The EXITINTINFO field signals whether the intercept occurred while the guest was attempting to
deliver an interrupt or exception through the IDT; a VMM can use this information to transparently
complete the delivery (see “Event Injection” on page 478). Some intercepts provide additional
information in the EXITINFO1 and EXITINFO2 fields in the VMCB; see the individual intercept
descriptions for details.

The guest state saved in the VMCB is the processor state as of the moment the intercept triggers. In the
x86 architecture, traps (as opposed to faults) are detected and delivered after the instruction that
triggered them has completed execution. Accordingly, a trap intercept takes place after the execution
of the instruction that triggered the trap in the first place. The saved guest state thus includes the effects
of executing that instruction.

Example: Assume a guest instruction triggers a data breakpoint (#DB) trap which is in turn
intercepted. The VMCB records the guest state after execution of that instruction, so that the saved
CS:rIP points to the following instruction, and the saved DR7 includes the effects of matching the data
breakpoint.

The next sequential instruction pointer (nRIP) is saved in the guest VMCB control area at location C8h
on all #VMEXITs that are due to instruction intercepts, as defined in Section 15.9 on page 461, as well
as MSR and IOIO intercepts and exceptions caused by the INT3, INTO, and BOUND instructions. For
all other intercepts, nRIP is reset to zero.

The nRIP is the RIP that would be pushed on the stack if the current instruction were subject to a trap-
style debug exception, if the intercepted instruction were to cause no change in control flow. If the
intercepted instruction would have caused a change in control flow, the nRIP points to the next
sequential instruction rather than the target instruction.

Some exceptions write special registers even when they are intercepted; see the individual descriptions
in “Exception Intercepts” on page 466 for details.

Support for the NRIP save on #VMEXIT is indicated by CPUID Fn8000_000A_EDX[NRIPS]. See
Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the CPUID
instruction.

Secure Virtual Machine 457

24593—Rev. 3.30—September 2018 AMD64 Technology

15.7.2 Intercepts During IDT Interrupt Delivery

It is possible for an intercept to occur while the guest is attempting to deliver an exception or interrupt
through the IDT (e.g., #PF because the VMM has paged out the guest’s exception stack). In some
cases, such an intercept can result in the loss of information necessary for transparent resumption of
the guest. In the case of an external interrupt, for example, the processor will already have performed
an interrupt acknowledge cycle with the PIC or APIC to obtain the interrupt type and vector, and the
interrupt is thus no longer pending.

To recover from such situations, all intercepts indicate (in the EXITINTINFO field in the VMCB)
whether they occurred during exception or interrupt delivery though the IDT. This mechanism allows
the VMM to complete the intercepted interrupt delivery, even when it is no longer possible to recreate
the event in question.

Figure 15-1. EXITINTINFO for All Intercepts

Despite the instruction name, the events raised by the INT1 (also known as ICEBP), INT3 and INTO
instructions (opcodes F1h, CCh and CEh) are considered exceptions for the purposes of
EXITINTINFO, not software interrupts. Only events raised by the INTn instruction (opcode CDh) are
considered software interrupts.

63 32 31 30 12 11 10 8 7 0

ERRORCODE V Reserved, MBZ EV TYPE VECTOR

Bits Mnemonic Description
63:32 ERRORCODE Error Code
31 V Valid
30:12 — Reserved, MBZ
11 EV Error Code Valid
10:8 TYPE Qualifies the guest exception or interrupt. Table 15-1

shows possible values returned and their corresponding
interrupt or exception types. Values not indicated are
unused and reserved.

7:0 VECTOR 8-bit IDT vector of the interrupt or exception.

Table 15-1. Guest Exception or Interrupt Types
Value Type

0 External or virtual interrupt (INTR)
2 NMI
3 Exception (fault or trap)
4 Software interrupt (caused by INTn instruction)

458 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• Error Code Valid—Bit 11. Set to 1 if the guest exception would have pushed an error code;
otherwise cleared to zero.

• Valid—Bit 31. Set to 1 if the intercept occurred while the guest attempted to deliver an exception
through the IDT; otherwise cleared to zero.

• Errorcode—Bits 63:32. If EV is set to 1, holds the error code that the guest exception would have
pushed; otherwise is undefined.

In the case of multiple exceptions, EXITINTINFO records the aggregate information on all exceptions
but the last (intercepted) one.

Example: A guest raises a #GP during delivery of which a #NP is raised (a scenario that, according to
x86 rules, resolves to a #DF), and an intercepted #PF occurs during the attempt to deliver the #DF.
Upon intercept of the #PF, EXITINTINFO indicates that the guest was in the process of delivering a
#DF when the #PF occurred. The information about the intercepted page fault itself is encoded in the
EXITCODE, EXITINFO1 and EXITINFO2 fields. If the VMM decides to repair and dismiss the #PF,
it can resume guest execution by re-injecting (see “Event Injection” on page 478) the fault recorded in
EXITINTINFO. If the VMM decides that the #PF should be reflected back to the guest, it must
combine the event in EXITINTINFO with the intercepted exception according to x86 rules. In this
case, a #DF plus a #PF would result in a triple fault or shutdown.

15.7.3 EXITINTINFO Pseudo-Code

When delivering exceptions or interrupts in a guest, the processor checks for exception intercepts and
updates the value of EXITINTINFO should an intercept occur during exception delivery. The
following pseudo-code outlines how the processor delivers an event (exception or interrupt) E.
if E is an exception and is intercepted:
 #VMEXIT(E)
E = (result of combining E with any prior events)

if (result was #DF and #DF is intercepted):
 #VMEXIT(#DF)
if (result was shutdown and shutdown is intercepted):
 #VMEXIT(#shutdown)
EXITINTINFO = E // Record the event the guest is delivering.

Attempt delivery of E through the IDT
Note that this may cause secondary exceptions

Once an exception has been successfully taken in the guest:

EXITINTINFO.V = 0 // Delivery succeeded; no #VMEXIT.
Dispatch to first instruction of handler

When an exception triggers an intercept, the EXITCODE, and optionally EXITINFO1 and
EXITINFO2, fields always reflect the intercepted exception, while EXITINTINFO, if marked valid,
indicates the prior exception the guest was attempting to deliver when the intercept occurred.

Secure Virtual Machine 459

24593—Rev. 3.30—September 2018 AMD64 Technology

15.8 Decode Assists
Decode assists are provided to allow hypervisors to decode guest instructions more efficiently. CPUID
Fn8000_000A_EDX[DecodeAssists] = 1 indicates support for this feature. See Section 3.3,
“Processor Feature Identification,” on page 63 for more information on using the CPUID instruction.

15.8.1 MOV CRx/DRx Intercepts

The EXITINFO1 field holds a flag indicating whether the instruction was a MOV CRx and the number
of the GPR operand. MOV-to-CR instructions always set bit 63 and provide the GPR number, except
for CR0 as specified below.

MOV-to-CR0 Special Case. If the instruction is MOV-to-CR, the GPR number is provided; if the
instruction is LMSW or CLTS, no additional information is provided and bit 63 is not set.

MOV-from-CR0 Special Case. If the instruction is MOV-from-CR, the GPR number is provided and
bit 63 is set; if the instruction is SMSW, no information is provided and bit 63 is not set.

15.8.2 INTn Intercepts

EXITINFO1 records the immediate value of the interrupt number for INT n instructions. See Table
15-4.

Table 15-2. EXITINFO1 for MOV CRx

Bit Offsets Field Contents

3:0 GPR number

62:4 0

63 Instruction was MOV CRx—set to1 if the instruction
was a MOV CRx instruction; cleared to 0 otherwise.

Table 15-3. EXITINFO1 for MOV DRx

Bit Offsets Field Contents

3:0 GPR number

63:4 0

Table 15-4. EXITINFO1 for INTn

Bit Offsets Field Contents

7:0 Software interrupt number

460 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.8.3 INVLPG and INVLPGA Intercepts

For an INVLPG intercept, EXITINFO1 provides the linear address after segment base addition and
address size masking produce the effective address size. See Table 15-5. For an INVLPGA intercept,
the linear address is available directly from the guest rAX register and is not provided in EXITINFO1.

15.8.4 Nested and intercepted #PF

In the case of a Nested Page Fault or intercepted #PF, guest instruction bytes at guest CS:RIP are
stored into the 16-byte wide field Guest Instruction Bytes located at offset 0D0h in the VMCB. The
format of this field is summarized in Table 15-6 below. Up to 15 bytes are recorded, read from guest
CS:RIP. If a faulting condition occurs, such as not-present page or exceeding the CS limit, then the
Guest Instruction Bytes field records as many bytes as could be fetched. The number of bytes fetched
is put into the first byte of this field. Zero indicates that no bytes were fetched. The default number of
bytes is always 15. Fewer bytes are returned only if a fault occurs while fetching.

This field is filled in only during data page faults. Instruction-fetch page faults provide no additional
information.

All other intercepts clear bits 0:7 in this field to zero (to indicate an invalid condition);
implementations may leave the other bytes untouched.

63:8 0

Table 15-5. EXITINFO1 for INVLPG

Bit Offsets Field Contents

63:0 Linear address

Table 15-6. Guest Instruction Bytes

Bit Offsets Field Contents

3:0 Number of bytes fetched

4:7 0

127:8 Instruction bytes

Table 15-4. EXITINFO1 for INTn

Bit Offsets Field Contents

Secure Virtual Machine 461

24593—Rev. 3.30—September 2018 AMD64 Technology

15.9 Instruction Intercepts
Table 15-7 specifies the instructions that check a given intercept and, where relevant, how the
intercept is prioritized relative to exceptions.

Table 15-7. Instruction Intercepts
Instruction Intercept Checked By Priority

Read/Write of CR0 MOV TO/FROM CR0, LMSW,
SMSW, CLTS

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For
LMSW and SMSW, checks SVM intercepts before
checking memory exceptions.

Read/Write of CR3
(excluding task
switch)

MOV TO/FROM CR3 (not checked
by task switch operations)

Checks non-memory exceptions first, then the
intercept. If the intercept triggers on a write, the
intercept happens before the TLB is flushed. If
PAE is enabled, the loading of the four PDPEs can
cause a #GP; that exception is checked after the
intercept check, so the VMM handling a CR3
intercept cannot rely on the PDPEs being legal; it
must examine them in software if necessary.
The reads and writes of CR3 that occur in
VMRUN, #VMEXIT or task switches are not
subject to this intercept check.

Read/Write of other
CRs MOV TO/FROM CRn All normal exception checks take precedence over

the SVM intercepts.

Read/Write of Debug
Registers, DRn

MOV TO/FROM DRn. (Not
checked by implicit DR6/DR7
writes.)

All normal exception checks take precedence over
the SVM intercepts.

Selective CR0 Write
Intercept MOV TO CR0, LMSW

Checks non-memory exceptions (CPL, illegal bit
combinations, etc.) before the intercept. For
LMSW and SMSW, checks SVM intercepts before
checking memory exceptions.
The selective write intercept on CR0 triggers only
if a bit other than CR0.TS or CR0.MP is being
changed by the write. In particular, this means that
CLTS does not check this intercept.
When both selective and non-selective CR0-write
intercepts are active at the same time, the non-
selective intercept takes priority. With respect to
exceptions, the priority of this intercept is the same
as the generic CR0-write intercept.
The LMSW instruction treats the selective CR0-
write intercept as a non-selective intercept (i.e., it
intercepts regardless of the value being written).

Reading or Writing
IDTR, GDTR, LDTR,
TR

LIDT, SIDT, LGDT, SGDT, LLDT,
SLDT, LTR, STR

The SVM intercept is checked after #UD and #GP
exception checks, but before any memory access
is performed.

462 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

RDTSC RDTSC Checks all exceptions before the SVM intercept.
RDPMC RDPMC Checks all exceptions before the SVM intercept.
PUSHF PUSHF Takes priority over any exceptions.
POPF POPF Takes priority over any exceptions.
CPUID CPUID No exceptions to check.
RSM RSM The intercept takes priority over any exceptions.
IRET IRET The intercept takes priority over any exceptions.

Software Interrupt INTn

The intercept occurs before any exceptions are
checked. The CS:rIP reported on #VMEXIT are
those of the intercepted INTn instruction.
Though the INTn instruction may dispatch through
IDT vectors in the range of 0–31, those events
cannot be intercepted by means of exception
intercepts (see “Exception Intercepts” on
page 466).

INVD INVD Exceptions (#GP) are checked before the
intercept.

PAUSE PAUSE

No exceptions to check.
VMRUN copies the VMCB.PauseFilterCount into
an internal counter. Each PAUSE instruction
decrements the counter, and the PAUSE intercept
only occurs if the counter goes below zero while
the PAUSE intercept is enabled. The
VMCB.PauseFilterCount field is not written by the
processor. Certain events, including SMI, can
cause the internal count to be reloaded from the
VMCB.
VMCB.PauseFilterCount support is indicated by
EDX[10] as returned by CPUID extended function
8000_000A. If This feature is not supported or
VMCB.PauseFilterCount = 0, then the first PAUSE
instruction can be intercepted.

HLT HLT Checks all exceptions before checking for this
intercept.

INVLPG INVLPG Checks all exceptions (#GP) before the intercept.
INVLPGA INVLPGA Checks all exceptions (#GP) before the intercept.

VMRUN VMRUN
Checks exceptions (#GP) before the intercept.

The current implementation requires that the
VMRUN intercept always be set in the VMCB.

VMLOAD VMLOAD Checks exceptions (#GP) before the intercept.
VMSAVE VMSAVE Checks exceptions (#GP) before the intercept.

Table 15-7. Instruction Intercepts (continued)
Instruction Intercept Checked By Priority

Secure Virtual Machine 463

24593—Rev. 3.30—September 2018 AMD64 Technology

15.10 IOIO Intercepts
The VMM can intercept IOIO instructions (IN, OUT, INS, OUTS) on a port-by-port basis by means of
the SVM I/O permissions map.

15.10.1 I/O Permissions Map

The I/O Permissions Map (IOPM) occupies 12 Kbytes of contiguous physical memory. The map is
structured as a linear array of 64K+3 bits (two 4-Kbyte pages, and the first three bits of a third 4-Kbyte
page) and must be aligned on a 4-Kbyte boundary; the physical base address of the IOPM is specified
in the IOPM_BASE_PA field in the VMCB and loaded into the processor by the VMRUN instruction.
The VMRUN instruction ignores the lower 12 bits of the address specified in the VMCB. If the

VMMCALL VMMCALL
The intercept takes priority over exceptions.
VMMCALL causes #UD in the guest if it is not
intercepted.

STGI STGI Checks exceptions (#GP) before the intercept.
CLGI CLGI Checks exceptions (#GP) before the intercept.
SKINIT SKINIT Checks exceptions (#GP) before the intercept.
RDTSCP RDTSCP Checks all exceptions before the SVM intercept.

ICEBP ICEBP(opcode F1h).

Although the ICEBP instruction dispatches
through IDT vector 1, that event is not
interceptable by means of the #DB exception
intercept.

WBINVD WBINVD Checks exceptions (#GP) before the intercept.
MONITOR MONITOR, MONITORX Checks all exceptions before the intercept.

MWAIT MWAIT, MWAITX

Checks all exceptions before the intercept. There
are conditional and unconditional MWAIT
intercepts. The conditional MWAIT intercept is
checked before the unconditional MWAIT
intercept.
When both conditional and unconditional MWAIT
intercepts are active, the conditional intercept is
checked first. A hypervisor that sets both
intercepts will receive the conditional MWAIT
intercept exit code for a guest MWAIT instruction
that would have entered a low-power state, and
will receive the unconditional MWAIT intercept exit
code for a guest MWAIT instruction that would not
have entered the low-power state. These checks
also apply to MWAITX.

XSETBV XSETBV Checks intercept before exceptions (#GP)

Table 15-7. Instruction Intercepts (continued)
Instruction Intercept Checked By Priority

464 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

address of the last byte in the IOPM is greater than or equal to the maximum supported physical
address, this is treated as illegal VMCB state and causes a #VMEXIT(VMEXIT_INVALID).

Each bit in the IOPM corresponds to an 8-bit I/O port. Bit 0 in the table corresponds to I/O port 0, bit 1
to I/O port 1 and so on. A bit set to 1 indicates that accesses to the corresponding port should be
intercepted. The IOPM is accessed by physical address, and should reside in memory that is mapped as
writeback (WB).

15.10.2 IN and OUT Behavior

If the IOIO_PROT intercept bit is set, the IOPM controls port access. For IN/OUT instructions that
access more than a single byte, the permission bits for all bytes are checked; if any bit is set to 1, the
I/O operation is intercepted.

Exceptions related to virtual x86 mode, IOPL, or the TSS-bitmap are checked before the SVM
intercept check. All other exceptions are checked after the SVM intercept check.

I/O Intercept Information. When an IOIO intercept triggers, the following information (describing
the intercepted operation in order to facilitate emulation) is saved in the VMCB’s EXITINFO1 field:

Figure 15-2. EXITINFO1 for IOIO Intercept

The rIP of the instruction following the IN/OUT is saved in EXITINFO2, so that the VMM can easily
resume the guest after I/O emulation.

31 16 15 12 10 9 8 7 6 5 4 3 2 1 0

PORT Reserved SEG A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

T
Y
P
E

Bits Mnemonic Description
31:16 PORT Intercepted I/O port
15:13 — Reserved
12:10 SEG Effective segment number
9 A64 64-bit address
8 A32 32-bit address
7 A16 16-bit address
6 SZ32 32-bit operand size
5 SZ16 16-bit operand size
4 SZ8 8-bit operand size
3 REP Repeated port access
2 STR String based port access (INS, OUTS)
1 — Reserved
0 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)

Secure Virtual Machine 465

24593—Rev. 3.30—September 2018 AMD64 Technology

15.10.3 (REP) OUTS and INS

Bits 12:10 of the EXITINFO1 field provide the effective segment number (the default segment is DS).
(For segment register encodings, see Table A-32, “16-Bit Register and Memory References” on
page 478, in AMD64 Architecture Programmer’s Manual Volume 3: General-Purpose and System
Instructions.)

INS provides the effective segment (always ES, encoded as 0).

On intercepted SMI-on-I/O, bits 12:10 of EXITINFO1 encode the segment. For definitions of the
remaining bits of this field, see section 15.13.3 on page 469.

15.11 MSR Intercepts
The VMM can intercept RDMSR and WRMSR instructions by means of the SVM MSR permissions
map (MSRPM) on a per-MSR basis.

MSR Permissions Map. The MSR permissions bitmap consists of four separate bit vectors of 16
Kbits (2 Kbytes) each. Each 16 Kbit vector controls guest access to a defined range of 8K MSRs. Each
MSR is covered by two bits defining the guest read and write access permissions. The lsb of the two
bits controls read access to the MSR and the msb controls write access. A value of 1 indicates that the
operation is intercepted. The four separate bit vectors must be packed together and located in two
contiguous physical pages of memory. If the MSR_PROT intercept is active, any attempt to read or
write an MSR not covered by the MSRPM will automatically cause an intercept.

The following table defines the ranges of MSRs covered by the MSR permissions map. Note that the
MSR ranges are not contiguous.

The MSRPM is accessed by physical address and should reside in memory that is mapped as
writeback (WB). The MSRPM must be aligned on a 4KB boundary. The physical base address of the
MSRPM is specified in MSRPM_BASE_PA field in the VMCB and is loaded into the processor by the
VMRUN instruction. The VMRUN instruction ignores the lower 12 bits of the address specified in the
VMCB, and if the address of the last byte in the table is greater than or equal to the maximum
supported physical address, this is treated as illegal VMCB state and causes a
#VMEXIT(VMEXIT_INVALID).

Table 15-8. MSR Ranges Covered by MSRPM
MSRPM Byte Offset MSR Range

000h–7FFh 0000_0000h–0000_1FFFh
800h–FFFh C000_0000h–C000_1FFFh

1000h–17FFh C001_0000h–C001_1FFFh
1800h–1FFFh Reserved

466 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

RDMSR and WRMSR Behavior. If the MSR_PROT bit in the VMCB’s intercept vector is clear,
RDMSR/WRMSR instructions are not intercepted.

RDMSR and WRMSR instructions check for exceptions and intercepts in the following order:
• Exceptions common to all MSRs (e.g., #GP if not at CPL-0)
• Check SVM intercepts in the MSR permission map, if the MSR_PROT intercept is requested.
• Exceptions specific to a given MSR (including password protection, unimplemented MSRs,

reserved bits, etc.)

MSR Intercept Information. On #VMEXIT, the processor indicates in the VMCB’s EXITINFO1
whether a RDMSR (EXITINFO1 = 0) or WRMSR (EXITINFO1 = 1) was intercepted.

15.12 Exception Intercepts
When intercepting exceptions that define an error code (normally pushed onto the exception stack),
the SVM hardware delivers that error code in the VMCB’s EXITINFO1 field; the exception vector
number can be derived from the EXITCODE. The CS.SEL and rIP saved in the VMCB on an
exception-intercept match those that would otherwise have been pushed onto the exception stack
frame, except that when an interrupt-based instruction causes an intercept, the rIP of the instruction is
stored in the VMCB, rather than the rIP of the next instruction. The interrupt-based instructions are
INT3 (opcode CC), INTO, and BOUND.

Unless otherwise noted below, no special registers are written before an exception is intercepted. For
details on guest state saved in the VMCB, see Section 15.7.1.

External interrupts and software interrupts (INTn instruction) do not check the exception intercepts,
even when they use a vector in the range 0 to 31.

Exceptions that occur during the handling of a prior exception are checked for intercepts before being
combined with the prior exception (e.g., into a double-fault). If the result of combining exceptions is a
double-fault or shutdown, the processor checks whether those are intercepted before attempting
delivery.

Example: Assume that the VMM intercepts #GP and #DF exceptions, and the guest raises a (non-
intercepted) #NP, during the delivery of which it also gets a #GP (e.g., due to an illegal IDT entry)—a
situation that, according to x86 semantics, results in a #DF. In this case, #VMEXIT signals an
intercepted #GP, not an intercepted #DF and fills EXITINTINFO with the #NP fault. On the other
hand, if only the #DF intercept were active in this scenario, #VMEXIT would signal an intercepted
#DF.

The following subsections detail the individual intercepts.

Secure Virtual Machine 467

24593—Rev. 3.30—September 2018 AMD64 Technology

15.12.1 #DE (Divide By Zero)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.2 #DB (Debug)

The #DB exception can have fault-type (e.g., instruction breakpoint) or trap-type (e.g., data
breakpoint) behavior; accordingly the intercept differs in what state is saved in the VMCB (see “State
Saved on Exit” on page 456). In either case, however, the value saved for DR6 and DR7 matches what
would be visible to a #DB exception handler (i.e., both #DB faults and traps are permitted to write
DR6 and DR7 before the intercept). The EXITINFO1 and EXITINFO2 fields are undefined.

Fault-type #DB exceptions, whether indicated in EXITCODE or EXITINTINFO, cause the CS:rIP
saved in the VMCB to indicate the instruction that caused the #DB exception. Trap-type #DB
exceptions cause the VMCB’s CS:rIP to indicate the instruction following the instruction that caused
the exception. A vector 1 exception generated by the single byte INT1 instruction (also known as
ICEBP) does not trigger the #DB intercept. Software should use the dedicated ICEBP intercept to
intercept ICEBP (see “Instruction Intercepts” on page 461).

15.12.3 Vector 2 (Reserved)

This intercept bit is not implemented; use the NMI intercept (Section 15.13.2) instead. The effect of
setting this bit is undefined.

15.12.4 #BP (Breakpoint)

This intercept applies to the trap raised by the single byte INT3 (opcode CCh) instruction. The
EXITINFO1 and EXITINFO2 fields are undefined. The CS:rIP reported on #VMEXIT are those of
the INT3 instruction.

15.12.5 #OF (Overflow)

This intercept applies to the trap raised by the INTO (opcode CEh) instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.12.6 #BR (Bound-Range)

This intercept applies to the fault raised by the BOUND instruction. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.12.7 #UD (Invalid Opcode)

The EXITINFO1 and EXITINFO2 fields are undefined.

15.12.8 #NM (Device-Not-Available)

The EXITINFO1 and EXITINFO2 fields are undefined.

468 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.12.9 #DF (Double Fault)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB is
undefined (as is the case for the rIP value pushed on the stack for #DF exceptions). If a double fault is
intercepted, the exceptions leading up to the double fault will have written any status registers
normally written by those exceptions.

15.12.10 Vector 9 (Reserved)

This intercept is not implemented. The effect of setting this bit is undefined.

15.12.11 #TS (Invalid TSS)

The EXITINFO1 and EXITINFO2 fields are undefined. The rIP value saved in the VMCB may point
to either the instruction causing the task switch, or to the first instruction of the incoming task. See
“Task Switch Intercept” on page 471 for information on the EXITINFO1 and EXITINFO2 fields.

15.12.12 #NP (Segment Not Present)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #NP exception.
The EXITINFO2 field is undefined.

15.12.13 #SS (Stack Fault)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #SS exception.
The EXITINFO2 field is undefined.

15.12.14 #GP (General Protection)

The EXITINFO1 field contains the error code that would be pushed on the stack by a #GP exception.

15.12.15 #PF (Page Fault)

This intercept is tested before CR2 is written by the exception. The error code saved in EXITINFO1 is
the same as would be pushed onto the stack by a non-intercepted #PF exception in protected mode.
The faulting address is saved in the EXITINFO2 field in the VMCB. Even when the guest is running in
paged real mode, the processor will deliver the (protected-mode) page-fault error code in
EXITINFO1, for the VMM to use in analyzing the intercepted #PF. The processor may provide
additional instruction decode assist information. (See Section 15.8.4, “Nested and intercepted #PF,”
on page 460.)

15.12.16 #MF (X87 Floating Point)

This intercept is tested after the floating point status word has been written, as is the case for a normal
FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

Secure Virtual Machine 469

24593—Rev. 3.30—September 2018 AMD64 Technology

15.12.17 #AC (Alignment Check)

The EXITINFO1 field contains the error code that would be pushed on the stack by an #AC exception.
The EXITINFO2 field is undefined.

15.12.18 #MC (Machine Check)

The SVM intercept is checked after all #MC-specific registers have been written, but before other
guest state is modified. When #MC is being intercepted, a machine-check exits to the VMM, whenever
possible, and shuts down the processor only when this is not a reasonable option. The EXITINFO1 and
EXITINFO2 fields are undefined.

15.12.19 #XF (SIMD Floating Point)

This intercept is tested after the SIMD status word (MXCSR) has been written, as is the case for a
normal FP exception. The EXITINFO1 and EXITINFO2 fields are undefined.

15.13 Interrupt Intercepts
External interrupts, when intercepted, cause a #VMEXIT; the interrupt is held pending so that the
interrupt can eventually be taken in the VMM. Exception intercepts do not apply to external or
software interrupts, so it is not possible to intercept an interrupt by means of the exception intercepts,
even if the interrupt should happen to use a vector in the range from 0 to 31.

15.13.1 INTR Intercept

This intercept affects physical, as opposed to virtual, maskable interrupts. See “Virtual Interrupt
Intercept” on page 482 for virtualization of maskable interrupts.

15.13.2 NMI Intercept

This intercept affects non-maskable interrupts. NMI interrupts (and SMIs) may be blocked for one
instruction following an STI.

15.13.3 SMI Intercept

This intercept affects System Management Mode Interrupts (SMIs); see “SMM Support” on page 483
for details on SMI handling.

When this intercept triggers, bit 0 of the EXITINFO1 field distinguishes whether the SMI was caused
internally by I/O Trapping (bit 0 = 0), or asserted externally (bit 0 = 1).

If the SMI was asserted while the guest was executing an I/O instruction, extra information (describing
the I/O instruction) is saved in the upper 32 bits of EXITINFO1, and the rIP of the I/O instruction is
saved in EXITINFO2. EXITINFO1 indicates that SMI was asserted during an I/O instruction when the
VALID bit is set.

470 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

If the SMI wasn't asserted during an I/O instruction, the extra EXITINFO1 and EXITINFO2 bits are
undefined.

The SMI intercept is ignored when HWCR[SMMLOCK] is set.

Figure 15-3. EXITINFO1 for SMI Intercept

15.13.4 INIT Intercept

The INIT intercept allows the VMM to intercept the assertion of INIT while a guest is running; see
“INIT Support” on page 482 for a discussion of the INIT-redirection feature.

15.13.5 Virtual Interrupt Intercept

This intercept is taken just before a guest takes a virtual interrupt. When the intercept triggers, the
virtual interrupt has not been taken, and remains pending in the guest's VMCB V_IRQ field. This

63 48 47 44 43 42 41 40 39 38 37 36 35 34 33 32

PORT BRP T
F

R
A
Z

A
64

A
32

A
16

S
Z
32

S
Z
16

S
Z
8

R
E
P

S
T
R

V
A
L

T
Y
P
E

31 12 10 1 0

Reserved, RAZ SEG Reserved, RAZ

S
M
I
S
R
C

Bits Mnemonic Description
63:48 PORT Intercepted I/O port
47:44 BRP I/O breakpoint matches
43 TF EFLAGS TF value
42 — Reserved, RAZ
41 A64 64-bit address
40 A32 32-bit address
39 A16 16-bit address
38 SZ32 32-bit operand size
37 SZ16 16-bit operand size
36 SZ8 8-bit operand size
35 REP Repeated port access
34 STR String based port access (INS, OUTS)
33 VAL Valid (SMI was detected during an I/O instruction)
32 TYPE Access Type (0 = OUT instruction, 1 = IN instruction)
31:13 — Reserved, RAZ
12:10 SEG Effective segment number (see section 15.9)
9:1 — Reserved, RAZ
0 SMISRC SMI source (0 = internal, 1 = external)

Secure Virtual Machine 471

24593—Rev. 3.30—September 2018 AMD64 Technology

intercept is not required for handling fixed local APIC interrupts, but may be used for emulating
ExtINT interrupt delivery mode (which is not masked by the TPR), or legacy PICs in auto-EOI mode.

15.14 Miscellaneous Intercepts
The SVM architecture includes intercepts to handle task switches, processor freezes due to FERR, and
shutdown operations.

15.14.1 Task Switch Intercept

Checked by—Any instruction or event that causes a task switch (e.g., JMP, CALL, exceptions,
interrupts, software interrupts).

Priority—The intercept is checked before the task switch takes place but after the incoming TSS and
task gate (if one was involved) have been checked for correctness.

Task switches can modify several resources that a VMM may want to protect (CR3, EFLAGS, LDT).
However, instead of checking various intercepts (e.g., CR3 Write, LDTR Write) individually, task
switches check only a single intercept bit.

On #VMEXIT, the following information is delivered in the VMCB:
• EXITINFO1[15:0] holds the segment selector identifying the incoming TSS.
• EXITINFO2[31:0] holds the error code to push in the new task, if applicable; otherwise, this field

is undefined.
• EXITINFO2[63:32] holds auxiliary information for the VMM:

- EXITINFO2[36]—Set to 1 if the task switch was caused by an IRET; else cleared to 0.
- EXITINFO2[38]—Set to 1 if the task switch was caused by a far jump; else cleared to 0.
- EXITINFO2[44]—Set to 1 if the task switch has an error code; else cleared to 0.
- EXITINFO2[48]—The value of EFLAGS.RF that would be saved in the outgoing TSS if the

task switch were not intercepted.

15.14.2 Ferr_Freeze Intercept

Checked when the processor freezes due to assertion of FERR (while IGNNE is deasserted, and legacy
handling of FERR is selected in CR0.NE), i.e., while the processor is waiting to be unfrozen by an
external interrupt.

15.14.3 Shutdown Intercept

When this intercept occurs, any condition that normally causes a shutdown causes a #VMEXIT to the
VMM instead. After an intercepted shutdown, the state saved in the VMCB is undefined.

472 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.14.4 Pause Intercept Filtering

On processors that support Pause filtering (indicated by CPUID Fn8000_000A_EDX[PauseFilter] =
1), the VMCB provides a 16 bit PAUSE Filter Count value. On VMRUN this value is loaded into an
internal counter. Each time a PAUSE instruction is executed, this counter is decremented until it
reaches zero at which time a #VMEXIT is generated if PAUSE intercept is enabled. If the PAUSE
Filter Count is set to zero and PAUSE Intercept is enabled, every PAUSE instruction will cause a
#VMEXIT.

In addition, some processor families support Advanced Pause Filtering (indicated by CPUID
Fn8000_000A_EDX[PauseFilterThreshold] = 1). In this mode, a 16-bit PAUSE Filter Threshold field
is added in the VMCB. The threshold value is a cycle count that is used to reset the pause counter.

As with simple Pause filtering, VMRUN loads the PAUSE count VMCB value into an internal
counter. Then, on each PAUSE instruction the hardware checks the elapsed number of cycles since the
most recent PAUSE instruction against the PAUSE Filter Threshold. If the elapsed cycle count is
greater than the PAUSE Filter Threshold, then the internal pause count is reloaded from the VMCB
and execution continues. If the elapsed cycle count is less than the PAUSE Filter Threshold, then the
internal pause count is decremented. If the count value is less than zero and PAUSE intercept is
enabled, a #VMEXIT is triggered.

If Advanced Pause Filtering is supported and PAUSE Filter Threshold field is set to zero, the filter will
operate in the simpler, count only mode.

See Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the
CPUID instruction.

VMSAVE and VMLOAD Instructions. The VMSAVE and VMLOAD instructions take the physical
address of a VMCB in rAX. These instructions complement the state save/restore abilities of VMRUN
instruction and #VMEXIT. They provide access to hidden processor state that software cannot
otherwise access, as well as additional privileged state.

VMSAVE saves the following state to the VMCB indicated by rAX:
• FS, GS, TR, LDTR (including all hidden state)
• KernelGsBase
• STAR, LSTAR, CSTAR, SFMASK
• SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP

VMLOAD loads the corresponding state from the VMCB. VMLOAD and VMSAVE are available
only at CPL-0 (#GP otherwise), and in protected mode with SVM enabled in EFER.SVME (#UD
otherwise).

Secure Virtual Machine 473

24593—Rev. 3.30—September 2018 AMD64 Technology

15.15 VMCB State Caching
VMCB state caching allows the processor to cache certain guest register values in hardware between a
#VMEXIT and subsequent VMRUN instructions and use the cached values to improve context-switch
performance. Depending on the particular processor implementation, VMRUN loads each guest
register value either from the VMCB or from the VMCB state cache, as specified by the value of the
VMCB Clean field in the VMCB. Support for VMCB state caching is indicated by CPUID
Fn8000_000A_EDX[VmcbClean] = 1.

The SVM architecture uses the physical address of the VMCB as a unique identifier for the guest
virtual CPU for the purposes of deciding whether the cached copy belongs to the guest. For the
purposes of VMCB state caching, the ASID is not a unique identifier for a guest virtual CPU.

15.15.1 VMCB Clean Bits

The VMCB Clean field (VMCB offset 0C0h, bits 31:0) controls which guest register values are loaded
from the VMCB state cache on VMRUN. Each set bit in the VMCB Clean field allows the processor to
load one guest register or group of registers from the hardware cache; each clear bit requires that the
processor load the guest register from the VMCB. The clean bits are a hint, since any given processor
implementation may ignore bits that are set to 1 on any given VMRUN, unconditionally loading the
associated register value(s) from the VMCB. Clean bits that are set to zero are always honored.

This field is backward-compatible to CPUs that do not support VMCB state caching; older CPUs
neither cache VMCB state nor read the VMCB Clean field.

Older hypervisors that are not aware of VMCB state caching and obey the SBZ property of undefined
VMCB fields will not enable VMCB state caching.

15.15.2 Guidelines for Clearing VMCB Clean Bits

The hypervisor must clear specific bits in the VMCB Clean field every time it explicitly modifies the
associated guest state in the VMCB. The guest's execution can cause cached state to be updated, but
the hypervisor is not responsible for setting VMCB Clean bits corresponding to any state changes
caused by guest execution.

The hypervisor must clear the entire VMCB field to 0 for a guest, under the following circumstances:
• This is the first time a particular guest is run.
• The hypervisor executes the guest on a different CPU core than one used the last time that guest

was executed.
• The hypervisor has moved the guest's VMCB to a different physical page since the last time that

guest was executed.

Failure to clear the VMCB Clean bits to zero in these cases may result in undefined behavior.

The CPU automatically treats the VMCB Clean field as zero on the current VMRUN when the
hypervisor executes a guest that is not currently cached. The CPU compares the VMCB physical

474 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

address against all cached VMCB physical addresses and treats the VMCB Clean field as zero, if no
cached VMCB address matches.

SMM software (or any other agent external to the hypervisor that has access to VMCBs) that changes
the contents of a VMCB needs to comprehend the clean bits and adjust them accordingly; otherwise
the guest may not operate as intended.

15.15.3 VMCB Clean Field

The layout of the VMCB Clean field is illustrated in Figure 15-4 below.

Figure 15-4. Layout of VMCB Clean Field

Bits 31:12 are reserved for future implementations. For forward compatibility, if the hypervisor has
not modified the VMCB, the hypervisor may write FFFF_FFFFh to the VMCB Clean Field to indicate
that it has not changed any VMCB contents other than the fields described below as explicitly
uncached. The hypervisor should write 0h to indicate that the VMCB is new or potentially inconsistent
with the CPU's cached copy, as occurs when the hypervisor has allocated a new location for an existing
VMCB from a list of free pages and does not track whether that page had recently been used as a
VMCB for another guest. If any VMCB fields (excluding explicitly uncached fields) have been
modified, all clean bits that are undefined (within the scope of the hypervisor) must be cleared to zero.

The following are explicitly not cached and not represented by Clean bits:
• TLB_Control

31 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

A
V
I
C

L
B
R

C
R
2

S
E
G

DT
D
R
x

C
R
x

N
P

T
P
R

A
S
I
D

I
O
P
M

I

Bits Mnemonic Description
31:12 — Reserved

11 AVIC AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers

10 LBR DbgCtlMsr, br_from/to, lastint_from/to
9 CR2 CR2
8 SEG CS/DS/SS/ES Sel/Base/Limit/Attr, CPL
7 DT GDT/IDT Limit and Base
6 DRx DR6, DR7
5 CRx CR0, CR3, CR4, EFER
4 NP Nested Paging: NCR3, PAT, Nested_Paging_En

3 TPR V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
V_INTR_VECTOR (Offset 60h–67h)

2 ASID ASID
1 IOPM IOMSRPM: IOPM_BASE, MSRPM_BASE
0 I Intercepts: all the intercept vectors, TSC offset, Pause Filter Count

Secure Virtual Machine 475

24593—Rev. 3.30—September 2018 AMD64 Technology

• Interrupt shadow
• VMCB status fields (Exitcode, EXITINFO1, EXITINFO2, EXITINTINFO, Decode Assist, etc.)
• Event injection
• RFLAGS, RIP, RSP, RAX

15.16 TLB Control
TLB entries are tagged with Address Space Identifier (ASID) bits to distinguish different guest virtual
address spaces when shadow page tables are used, or different guest physical address spaces when
nested page tables are used.. The VMM can choose a software strategy in which it keeps multiple
shadow page tables, and/or multiple nested page tables in processors that support nested paging, up-to-
date; the VMM can allocate a different ASID for each shadow or nested page table. This allows
switching to a new process in a guest under shadow paging (changing CR3 contents), or to a new guest
under nested paging (changing nCR3 contents), without flushing the TLBs. (See Section 15.25,
“Nested Paging,” on page 493 for a complete explanation of nested paging operation.)

With shadow paging, the VMM is responsible for setting up a shadow page table for each guest linear
address space that maps it to system physical addresses. These are used as the active page tables in
place of the guest OS's page tables. The VMM sets the CR3 field in the guest VMCB to point to the
system physical address of the desired shadow page table. The VMM is responsible for updating the
shadow page table when the guest changes its page table or paging control state, and the VMM updates
the access and dirty bits of the guest page table.

The VMRUN instruction and #VMEXIT write the CR0, CR3, CR4 and EFER registers — these writes
do not flush the TLB. The VMM is responsible for explicitly invalidating any guest translations that
may be affected by its actions; there are two mechanisms available, as described in the next two
sections.

When running with SVM enabled, global page table entries (PTEs) are global only within an ASID,
not across ASIDs.

Software Rule. When the VMM changes a guest’s paging mode by changing entries in the guest’s
VMCB, the VMM must ensure that the guest’s TLB entries are flushed from the TLB. The relevant
VMCB state includes:
• CR0—PG, WP, CD, NW.
• CR3—Any bit.
• CR4—PGE, PAE, PSE.
• EFER—NXE, LMA, LME.

15.16.1 TLB Flush

TLB flush operations function identically whether or not SVM is enabled (e.g., MOV-TO-CR3 flushes
non-global mappings, whereas MOV-TO-CR4 flushes global and non-global mappings). TLB flush

476 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

operations must not be assumed to affect all ASIDs. If a VMM sets the intercept bit for any guest
action that would have flushed the TLB, the #VMEXIT intercept occurs and the TLB is not flushed; it
is the VMM's responsibility to flush the TLB appropriately. In implementations that do not provide a
way to selectively flush all translations of a single specified ASID, software may effectively flush the
guest's TLB entries by allocating a new ASID for the guest and not reusing the old ASID until the
entire TLB has been flushed at least once.

The TLB_CONTROL field in the VMCB provides the commands specified by the control byte
encodings shown in Table 15-9. The first two commands are available on all processors that support
SVM; support for the other commands is optional and is indicated by
CPUID Fn8000_000A_EDX[FlushByAsid] = 1.

When the VMM sets the TLB_CONTROL field to 1, the VMRUN instruction flushes the TLB for all
ASIDs, for both global and non-global pages. The VMRUN instruction reads, but does not change, the
value of the TLB_CONTROL field.

A MOV-to-CR3, a task switch that changes CR3, or clearing or setting CR0.PG or bits PGE, PAE, PSE
of CR4 affects only the TLB entries belonging to the current ASID, regardless of whether the
operation occurred in host or guest mode. The current ASID is 0 when the CPU is not inside a guest
context.

All TLB entries belonging to all ASIDs are flushed by SMI, RSM, MTRR modifications, IORR
modifications, and access to other system MSRs that affect address translation.

If a hypervisor modifies a nested page table by decreasing permission levels, clearing present bits, or
changing address translations and intends to return to the same ASID, it should use either TLB
command 011b or 001b.

15.16.2 Invalidate Page, Alternate ASID

The INVLPGA instruction allows the VMM to selectively invalidate the TLB mapping for a given
guest virtual page within a given ASID. The linear address is specified in the implicit register operand
rAX; the ASID is specified in ECX. The input address is always interpreted as a guest virtual address,

Table 15-9. TLB Control Byte Encodings

Encoding Function Definition

00h Do not flush

01h Flush entire TLB (Should be used only by legacy hypervisors.)

03h Flush this guest's TLB entries

07h Flush this guest's non-global TLB entries

Note: All encodings not defined in this table are reserved.

Secure Virtual Machine 477

24593—Rev. 3.30—September 2018 AMD64 Technology

so INVLPGA is typically meaningful only when used with shadow page tables; it does not provide a
means to invalidate a nested translation by guest physical address.

15.17 Global Interrupt Flag, STGI and CLGI Instructions
The global interrupt flag (GIF) is a bit that controls whether interrupts and other events can be taken by
the processor. The STGI and CLGI instructions set and clear, respectively, the GIF. Table 15-10 shows
how the value of the GIF affects how interrupts and exceptions are handled. Implementations may
provide hardware support for virtualizing the GIF in nested virtualization scenarios; see Section 15.33,
“Nested Virtualization,” on page 530, for details.

Table 15-10. Effect of the GIF on Interrupt Handling
Interrupt source GIF==0 GIF ==1

Debug exception or trap,
due to breakpoint register
match

Ignored and discarded Normal operation

Debug trace trap due to
EFLAGS.TF Normal operation Normal operation

RESET Normal operation Normal operation

INIT Held pending until GIF==1 Normal operation, see Table 15-12 on
page 483

NMI Held pending until GIF==1 Normal operation, see Table 15-13 on
page 483

External SMI Held pending until GIF==1 Normal operation, see Table 15-14 on
page 484

Internal SMI (I/O Trapping) Ignored and discarded Normal operation, see Table 15-14 on
page 484

INTR and vINTR Held pending until GIF==1 Normal operation

#SX (Security Exception) n/a1 Normal operation

Machine Check
If possible (implementation-
dependent), held pending until
GIF==1, otherwise shutdown.

Normal operation

DBREQ# (enter HDT)
Normal operation Normal operation

(VM_CR.DPD always controls DBREQ)

478 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.18 VMMCALL Instruction
This instruction is meant as a way for a guest to explicitly call the VMM. No CPL checks are
performed, so the VMM can decide whether to make this instruction legal at the user-level or not.

If VMMCALL instruction is not intercepted, the instruction raises a #UD exception.

15.19 Paged Real Mode
To facilitate virtualization of real mode, the VMRUN instruction may legally load a guest CR0 value
with PE = 0 but PG = 1. Likewise, the RSM instruction is permitted to return to paged real mode. This
processor mode behaves in every way like real mode, with the exception that paging is applied. The
intent is that the VMM run the guest in paged-real mode at CPL0, and with page faults intercepted.
The VMM is responsible for setting up a shadow page table that maps guest physical memory to the
appropriate system physical addresses.

The behavior of running a guest in paged real mode without intercepting page faults to the VMM is
undefined.

15.20 Event Injection
The VMM can inject exceptions or interrupts (collectively referred to as events) into the guest by
setting bits in the VMCB’s EVENTINJ field prior to executing the VMRUN instruction. The format of
the field is shown in Table 15-5 on page 479. The encoding matches that of the EXITINTINFO field.
When an event is injected by means of this mechanism, the VMRUN instruction causes the guest to
take the specified exception or interrupt unconditionally before executing the first guest instruction.

Injected events are treated in every way as though they had occurred normally in the guest (in
particular, they are recorded in EXITINTINFO) with the following exceptions:
• Injected events are not subject to intercept checks. (Note, however, that if secondary exceptions

occur during delivery of an injected event, those exceptions are subject to exception intercepts.)

A20M
Normal operation Normal operation

 (VM_CR.DIS_A20M controls A20 masking)
Other implementation-
specific but non-
architecturally-visible
interrupts (STPCLK,
IGNNE toggle, ECC scrub)

Normal operation Normal operation

Note:
1. #SX is caused only by an INIT signal that has been “redirected” (i.e., converted to an #SX; see Section 15.28 on

page 506); the conversion only happens when GIF==1, as the INIT is simply held pending otherwise.

Table 15-10. Effect of the GIF on Interrupt Handling (continued)
Interrupt source GIF==0 GIF ==1

Secure Virtual Machine 479

24593—Rev. 3.30—September 2018 AMD64 Technology

• An injected NMI does not block delivery of further NMIs.
• If the VMM attempts to inject an event that is impossible for the guest mode (e.g., a #BR exception

when the guest is in 64-bit mode), the event injection will fail and no guest state instructions will
be executed; VMRUN will immediately exit with an error code of VMEXIT_INVALID.

• Injecting an exception (TYPE = 3) with vectors 3 or 4 behaves like a trap raised by INT3 and INTO
instructions, respectively, in which case the processor checks the DPL of the IDT descriptor before
dispatching to the handler.

• Software interrupts cannot be properly injected if the processor does not support the NextRIP field.
Support is indicated by CPUID Fn8000_000A_EDX[NRIPS] = 1. Hypervisor software should
emulate the event injection of software interrupts if NextRIP is not supported.

• Event injection does not support injection of intercepted #DB faults that are the result of a guest
ICEBP instruction. ICEBP does not perform DPL checks, as does INTn injection. Hypervisor
software should emulate the injection of ICEBP.

Figure 15-5. EVENTINJ Field in the VMCB

The fields in EVENTINJ are as follows:
• VECTOR—Bits 7:0. The 8-bit IDT vector of the interrupt or exception. If TYPE is 2 (NMI), the

VECTOR field is ignored.
• TYPE—Bits 10:8. Qualifies the guest exception or interrupt to generate. Table 15-11 shows

possible values and their corresponding interrupt or exception types. Values not indicated are
unused and reserved.

• EV (Error Code Valid)—Bit 11. Set to 1 if the exception should push an error code onto the stack;
clear to 0 otherwise.

• V (Valid)—Bit 31. Set to 1 if an event is to be injected into the guest; clear to 0 otherwise.
• ERRORCODE—Bits 63:32. If EV is set to 1, the error code to be pushed onto the stack, ignored

otherwise.

63 32 31 12 11 10 8 7 0

ERRORCODE V Reserved, SBZ EV TYPE VECTOR

Table 15-11. Guest Exception or Interrupt Types
Value Type

0 External or virtual interrupt (INTR)
2 NMI
3 Exception (fault or trap)
4 Software interrupt (INTn instruction)

480 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

VMRUN exits with VMEXIT_INVALID if either:
• Reserved values of TYPE have been specified, or
• TYPE = 3 (exception) has been specified with a vector that does not correspond to an exception

(this includes vector 2, which is an NMI, not an exception).

15.21 Interrupt and Local APIC Support
SVM hardware support is designed to ensure efficient virtualization of interrupts.

15.21.1 Physical (INTR) Interrupt Masking in EFLAGS

To prevent the guest from blocking maskable interrupts (INTR), SVM provides a VMCB control bit,
V_INTR_MASKING, which changes the operation of EFLAGS.IF and accesses to the TPR by means
of the CR8 register. While running a guest with V_INTR_MASKING cleared to zero:
• EFLAGS.IF controls both virtual and physical interrupts.

While running a guest with V_INTR_MASKING set to 1:
• The host EFLAGS.IF at the time of the VMRUN is saved and controls physical interrupts while

the guest is running.
• The guest value of EFLAGS.IF controls virtual interrupts only.

15.21.2 Virtualizing APIC.TPR

SVM provides a virtual TPR register, V_TPR, for use by the guest; its value is loaded from the VMCB
by VMRUN and written back to the VMCB by #VMEXIT. The APIC's TPR always controls the task
priority for physical interrupts, and the V_TPR always controls virtual interrupts.

While running a guest with V_INTR_MASKING cleared to 0:
• Writes to CR8 affect both the APIC's TPR and the V_TPR register.
• Reads from CR8 operate as they would without SVM.

While running a guest with V_INTR_MASKING set to 1:
• Writes to CR8 affect only the V_TPR register.
• Reads from CR8 return V_TPR.

15.21.3 TPR Access in 32-Bit Mode

The mechanism for TPR virtualization described in section 15.21.2 applies only to accesses that are
performed using the CR8 register. However, in 32-bit mode, the TPR is traditionally accessible only
by using a memory-mapped register. Typically, a VMM virtualizes such TPR accesses by not mapping
the APIC page addresses in the guest. A guest access to that region then causes a #PF intercept to the
VMM, which inspects the guest page tables to determine the physical address and, after recognizing
the physical address as belonging to the APIC, finally invokes software emulation code.

Secure Virtual Machine 481

24593—Rev. 3.30—September 2018 AMD64 Technology

To improve the efficiency of TPR accesses in 32-bit mode, SVM makes CR8 available to 32-bit code
by means of an alternate encoding of MOV TO/FROM CR8 (namely, MOV TO/FROM CR0 with a
LOCK prefix). To achieve better performance, 32-bit guests should be modified to use this access
method, instead of the memory-mapped TPR. (For details, see “MOV CRn” on page 377 of the
AMD64 Programmer’s Reference Volume 3: General Purpose and System Instructions, order# 24594.)

The alternate encodings of the MOV TO/FROM CR8 instructions are available even if SVM is
disabled in EFER.SVME. They are available in both 64-bit and 32-bit mode.

15.21.4 Injecting Virtual (INTR) Interrupts

Virtual Interrupts allow the host to pass an interrupt (#INTR) to a guest. While inside a guest, the
virtual interrupt follows the same rules that a real interrupt follows (virtual #INTR is not taken until
EFLAGS.IF is 1, the guest's TPR has enabled interrupts at the same priority as that of the pending
virtual interrupt).

SVM provides an efficient mechanism by which the VMM can inject virtual interrupts into a guest:
• As described in Section 15.13.1, the VMM can intercept physical interrupts that arrive while a

guest is running, by activating the INTR intercept in the VMCB.
• As described in Section 15.21.4, the VMM can virtualize the interrupt masking logic by setting the

V_INTR_MASKING bit in the VMCB.
• The three VMCB fields V_IRQ, V_INTR_PRIO, and V_INTR_VECTOR indicate whether there

is a virtual interrupt pending, and, if so, what its vector number and priority are. The VMRUN
instruction loads this information into corresponding on-chip registers.

• The processor takes a virtual INTR interrupt if
- V_IRQ and V_INTR_PRIO indicate that there is a virtual interrupt pending whose priority is

greater than the value in V_TPR,
- interrupts are enabled in EFLAGS.IF,
- interrupts are enabled using GIF, and
- the processor is not in an interrupt shadow (see Section 15.21.5 on page 482).
The only other difference between virtual INTR handling and normal interrupt handling is that, in
the latter case, the interrupt vector is obtained from the V_INTR_VECTOR register (as opposed to
running an INTACK cycle to the local APIC).

• The V_IGN_TPR field in the VMCB can be set to indicate that the currently pending virtual
interrupt is not subject to masking by TPR. The priority comparison against V_TPR is omitted in
this case. This mechanism can be used to inject ExtINT-type interrupts into the guest.

• When the processor dispatches a virtual interrupt (through the IDT), V_IRQ is cleared after
checking for intercepts of virtual interrupts and before the IDT is accessed.

• On #VMEXIT, V_IRQ is written back to the VMCB, allowing the VMM to track whether a virtual
interrupt has been taken.

482 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• Physical interrupts take priority over virtual interrupts, whether they are taken directly or through a
#VMEXIT.

• On #VMEXIT, the processor clears its internal copies of V_IRQ and V_INTR_MASKING, so
virtual interrupts do not remain pending in the VMM, and interrupt control reverts to normal.

15.21.5 Interrupt Shadows

The x86 architecture defines the notion of an interrupt shadow—a single-instruction window during
which interrupts are not recognized. For example, the instruction after an STI instruction that sets
EFLAGS.IF (from zero to one) does not recognize interrupts or certain debug traps. The VMCB
INTERRUPT_SHADOW field indicates whether the guest is currently in an interrupt shadow. This
information is saved on #VMEXIT and loaded on VMRUN.

15.21.6 Virtual Interrupt Intercept

When virtualizing interrupt handling, a VMM typically needs only gain control when new interrupts
for a guest arrive or are generated, and when the guest issues an EOI (end-of-interrupt). In some
circumstances, it may also be necessary for the VMM to gain control at the moment interrupts become
enabled in the guest (i.e., just before the guest takes a virtual interrupt). The VMM can do so by
enabling the VINTR intercept.

15.21.7 Interrupt Masking in Local APIC

When guests have direct access to devices, interrupts arriving at the local APIC can usually be
dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from
blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

SVM introduces the following APIC features:
• A 256-bit IER (interrupt enable) register is added to the local APIC. This register resets to all ones

(enabling all 256 vectors). Software can read and write the IER by means of the memory-mapped
APIC page.

• Only vectors that are enabled in the IER participate in the APIC computation of the highest-
priority pending interrupt.

• The VMM can issue specific end-of-interrupt (EOI) commands to the local APIC, allowing the
VMM to clear pending interrupts in any order, rather than always targeting the interrupt with
highest-priority.

15.21.8 INIT Support

The INIT signal interrupts the processor at the next instruction boundary and causes an unconditional
control transfer. INIT reinitializes the control registers, segment registers and GP registers in a manner
similar to RESET, but does not alter the contents of most MSRs, caches or numeric coprocessor (x87
or SSE) state, and then transfers control to the same instruction address as RESET (physical address

Secure Virtual Machine 483

24593—Rev. 3.30—September 2018 AMD64 Technology

FFFFFFF0h). Unlike RESET, INIT is not expected to be visible to the memory controller, and hence
will not trigger automatic clearing of trusted memory pages by memory controller hardware.

To maintain the security of such pages, the VMM can request that INITs be redirected and turned into
#SX exceptions by setting the R_INIT bit in the VM_CR MSR (see Section 15.30.1, “VM_CR MSR
(C001_0114h),” on page 526). This allows the VMM to gain control when an INIT is requested. The
VMM may thus disable the redirection of INIT and then cause the platform to reassert INIT, at which
point the processor will respond in the normal manner. The actions initiated by the INIT pin may also
be initiated by an incoming APIC INIT interrupt; the mechanisms described here apply in either case.
Table 15-12 summarizes the handling of INITs.

15.21.9 NMI Support

The VMM can intercept non-maskable interrupts (NMI) using a VMCB control bit (see Table 15-13).
When intercepted, NMIs cause an exit from the guest and are held pending.

15.22 SMM Support
This section describes SVM support for virtualization of System Management Mode (SMM).

15.22.1 Sources of SMI

Various events can cause an assertion of a system management interrupt (SMI); these are classified
into three categories
• Internal, synchronous (also known as I/O Trapping)—implementation-specific IOIO or config

space trapping in the CPU itself; always synchronous in response to an IN or OUT instruction. I/O
Trapping is set up by means of MSRs and can be brought under the control of the VMM by
intercepting guest access to those MSRs.

Table 15-12. INIT Handling in Different Operating Modes
GIF INIT Intercept INIT Redirect Processor Response to INIT

0 x x Hold pending until GIF = 1.

1
1 x #VMEXIT(INIT), INIT is still pending.

0
0 Taken normally.
1 #SX, INIT is no longer pending.

Table 15-13. NMI Handling in Different Operating Modes
GIF NMI Intercept Processor Response to NMI
0 X Hold pending until GIF=1.

1
1 #VMEXIT(NMI), NMI is still pending.
0 Taken normally.

484 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• External, synchronous—IOIO trapping in response to (and synchronous with) IN or OUT
instructions, but generated by an external agent (typically the Southbridge).

• External, asynchronous—generated externally in response to an external, physical event, e.g.,
closing a laptop lid, temperature sensor triggering, etc.

15.22.2 Response to SMI

How hardware responds to SMIs is a function of whether SMM interrupts are being intercepted and
whether interrupts are enabled globally, as shown in Table 15-14.

By intercepting SMIs, the VMM can gain control before the processor enters SMM.

15.22.3 Containerizing Platform SMM

In some usage scenarios, the VMM may not trust the existing platform SMM code, or may otherwise
want to ensure that the SMM does not operate in the context of certain guests or the hypervisor. To
address these cases, SVM provides the ability to containerize SMM code, i.e., run it inside a guest,
with the full protection mechanisms of the VMM in place. In other scenarios, the VMM may not want
to exert control over SMM.

There are three solutions for the VMM to control SMM handlers:
• The simplest solution is to not intercept SMI signals. SMIs encountered while in a guest context

are taken from within the guest context. In this case, the SMM handler is not subject to any
intercepts set up by the VMM and consequently runs outside of the virtualization controls. The
state saved in the SMM State-Save area as seen by the SMM handler reflects the state of the guest
that had been running at the time the SMI was encountered. When the SMM handler executes the
RSM instruction, the processor returns to executing in the guest context, and any modifications to
the SMM State-Save area made by the SMM handler are reflected in the guest state.

• A hypervisor may want to emulate all SMI-based I/O interceptions for a guest and to take SMI
signals only in the hypervisor context. The hypervisor should set all IOIO intercept bits and the
SMI intercept bit for the guest to ensure that there is no possibility of encountering synchronous
(internal or external) SMI signals while running the guest. Any #VMEXIT(SMI) encountered is
then known to be due to an external, asynchronous SMI. The hypervisor may respond to the
#VMEXIT(SMI) by executing the STGI instruction, which causes the pending SMI to be taken
immediately. When an SMI due to an I/O instruction is pending, the effect of executing STGI in

Table 15-14. SMI Handling in Different Operating Modes

GIF Intercept
SMI Internal SMI External SMI

0 x Lost. Hold pending until GIF=1.

1
1 Exit guest,

code #VMEXIT(SMI), SMI is not pending. #VMEXIT(SMI), SMI is still pending.

0 Taken normally. Taken normally.

Secure Virtual Machine 485

24593—Rev. 3.30—September 2018 AMD64 Technology

the hypervisor is undefined. To handle a pending SMI due to an I/O instruction, the hypervisor
must either containerize SMM or not intercept SMI.

• The most involved solution is to containerize SMM by placing it in a guest. Containerizing gives
the VMM full control over the state that the SMM handler can access.

Containerizing Platform SMM. A VMM can containerize SMM by creating its own trusted SMM
hypervisor and use that handler to run the platform SMM code in a container. The SMM hypervisor
may be the same code as the VMM itself, or may be an entirely different set of code. The trusted SMM
hypervisor sets up a guest context to run the platform SMM as a guest. The guest context consists of a
VMCB and related state and the guest's (real or virtual) SMM save area. The SMM hypervisor
emulates SMM entry, including setup of the SMM save area, and emulates RSM at the end of SMM
operation. The guest executes the platform SMM code in paged real mode with appropriate SVM
intercepts in place, thus ensuring security.

For this approach to work, the VMM may need to write the SMM_BASE MSR, as well as related
SMM control registers. As part of the emulation of SMM entry and RSM, the VMM needs to access
the SMM_CTL MSR (see Section 15.30.3, “SMM_CTL MSR (C001_0116h),” on page 527).
However, these actions conflict with any platform firmware that locks SMM control registers.

A VMM can determine if it is running with a compatible firmware setup by checking the SMMLOCK
bit in the HWCR MSR (described in the BIOS and Kernel Developer’s Guide (BKDG) or Processor
Programming Reference Manual applicable to your product). If the bit is 1, firmware has locked the
SMM control registers and the VMM is unable to move them or insert its own SMM hypervisor.

As the processor physically enters SMM, the SMRAM regions are remapped. The VMM design must
ensure that none of its code or data disappears when the SMRAM areas are mapped or unmapped.
Also note that the ASEG region of the SMRAM overlaps with a portion of video memory, so the SMM
hypervisor should not attempt to write diagnostic messages to the screen. Any attempt by guests to
relocate any of the SMRAM areas (by means of certain MSR writes) must also be intercepted to
prevent malicious SMM code from interfering with VMM operation.

Writes to the SMM_CTL MSR cause a #GP if firmware has locked the SMM control registers.

15.23 Last Branch Record Virtualization
The debug control MSR (DebugCtl) provides control of control-transfer recording and other debug
facilities. (See Chapter 13, “Software Debug and Performance Resources,” on page 349, for more
information on using the debug control MSR.) Software sets the last-branch record (DebugCtl[LBR])
bit to 1 to cause the processor to record the source and target addresses of the last control transfer taken
before a debug exception. These control transfers include branch instructions, interrupts, and
exceptions. Recorded information is stored in four MSRs:
• LastBranchFromIP
• LastBranchToIP
• LastIntFromIP

486 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• LastIntToIP

Under SVM, to virtualize the function of these MSRs, the VMM must save the contents of the control-
transfer recording MSRs on #VMEXIT and restore them prior to the VMRUN for each guest. If
control-transfer recording is to be used in host state as well the values of these registers must be
exchanged between values tracked by host and guest.

15.23.1 Hardware Acceleration for LBR Virtualization

Processors optionally support hardware acceleration for LBR virtualization. The following fields are
allocated in the VMCB state save area to hold the contents of the DebugCTL and control-transfer
recording MSRs:
• DBGCTL—Holds the guest value of the DebugCTL MSR.
• BR_FROM—Holds the guest value of the LastBranchFromIP MSR.
• BR_TO—Holds the guest value of the LastBranchToIP MSR.
• LASTEXCPFROM—Holds the guest value of the LastIntFromIP MSR.
• LASTEXCPTO—Holds the guest value of the LastIntToIPLastIntToIP MSR.

When VMCB.LBR_VIRTUALIZATION_ENABLE is set, VMRUN saves all five host control-
transfer MSRs in the host save area, and then loads the same five MSRs for the guest from the VMCB
save area. Similarly, #VMEXIT saves the guest's MSRs and loads the host's MSRs to and from their
respective save areas.

15.23.2 LBR Virtualization CPUID Feature Detection

CPUID Fn8000_000A_EDX[LbrVirt] = 1 indicates support for the LBR virtualization acceleration
feature on AMD64 processors. See Section 3.3, “Processor Feature Identification,” on page 63 for
more information on using the CPUID instruction.

15.24 External Access Protection
By securing the virtual address translation mechanism, the VMM can restrict guest CPU accesses to
memory. However, should the guest have direct access to DMA-capable devices, an additional
protection mechanism is required. SVM provides multiple protection domains which can restrict
device access to physical memory on a per-page basis. This is accomplished via control logic in the
northbridge’s host bridge which governs any external access port (e.g., PCI or HyperTransport™
technology interfaces).

15.24.1 Device IDs and Protection Domains

The northbridge’s host bridge provides a number of protection domains. Each protection domain has
associated with it a device exclusion vector (DEV) that specifies the per-page access rights of devices
in that domain. Devices are identified by a HyperTransport™ bus/unitID (device ID) and the host
bridge contains a lookup table of fixed size that maps device IDs to a protection domain.

Secure Virtual Machine 487

24593—Rev. 3.30—September 2018 AMD64 Technology

15.24.2 Device Exclusion Vector (DEV)

A DEV is a contiguous array of bits in physical memory; each bit in the DEV (in little-endian order)
corresponds to one 4-Kbyte page in physical memory.

The physical address of the base of a DEV must be 4-Kbyte-aligned and stored in one of the
DEVBASE registers, which are accessed through an indirection mechanism in the DEVCTL PCI
Configuration Space function block in the host bridge (see “DEV Control and Status Registers” on
page 490). The DEV protection hardware is not operational until enabled by setting a control bit in the
DEV Control Register, also in the DEVCTL function block.

The DEV may have to cover part of MMIO space beyond the DRAM. Especially in 64-bit systems, the
operating system should map MMIO space starting immediately after the DRAM area and building
up, as opposed to starting down from the maximum physical address.

Host Bridge and Processor DEV Caching. For improved performance, the host bridge may cache
portions of the DEV. Any such cached information can be invalidated by setting the DEV_FLUSH flag
in the DEV control register to 1. Software must set this flag after modifying DEV contents to ensure
that the protection logic uses the updated values. The host bridge automatically clears this flag when
the flush operation completes. After setting this flag, software should monitor it until it has cleared, in
order to synchronize DEV updates with subsequent activity.

By default, the host bridge probes the processor caches for the latest data when it accesses the DEV in
DRAM. However, it is possible to disable probing by means of the DEV_CR register (see “DEV_CR
Register” on page 490); this is recommended in the case of unified memory architecture (UMA)
graphics systems. If cache probing is disabled, host bridge reads of the DEV will not check processor
caches for more recent copies. This requires software on the CPU to map the memory containing the
DEV as uncacheable (UC) or write-through (WT). Alternatively, software must perform a CLFLUSH
before it can expect a change to the DEV to be visible by the northbridge (and before software flushes
the DEV cache in the host controller).

Multiprocessor Issues. Device-originated memory requests are checked against the DEV at the
point of entry to the system—the northbridge to which the device is physically attached. Each
northbridge can have its own set of domains, device-to-domain mappings, and DEV tables (e.g.,
domain #2 on one node can encompass different devices, and can have different access rights than
domain #2 on another node). Thus, the number of protection domains available to software can scale
with the number of northbridges in the system.

15.24.3 Access Checking

Memory Space Accesses. When a memory-space read or write request is received on an external
host bridge port, the host bridge maps the HyperTransport bus device ID to a protection domain
number, which in turn selects the DEV defining the access permissions for the device (see
Figure 15-6 on page 488). The host bridge then checks the memory address against the DEV contents
by indexing into the DEV with the PFN portion of the address (bits 39:12). The PFN is used as a bit
index within the DEV. If the bit read from the DEV is set to 1, the host bridge inhibits the access by

488 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

returning all ones for the data for a read request, or suppressing the store operation on a write request.
A Master Abort error response will be returned to the requesting device.

Peer-to-peer memory accesses routed up to the host bridge are also subjected to checks against the
DEV. Peer-to-peer transfers that may be occurring behind bridges are not checked.

DEV checks are applied before addresses are translated by the GART. The DEV table is never
consulted by accesses originating in the CPU.

I/O Space Accesses. The host bridge can be configured to reject all I/O space accesses from
devices, by setting the IOSPE bit in the DEV_CR control register (see “DEV_CR Register” on
page 490). I/O space peer-to-peer transfers behind bridges are not checked.

Config Space Accesses. Major aspects of host bridge functionality are configured by means of
control registers that are accessed through PCI configuration space. Because this is potentially
accessible by means of device peer-to-peer transfers, the host bridge always blocks access to this space
from anything other than the CPU.

Figure 15-6. Host Bridge DMA Checking

DEV Cache

with
 Domain#

Tagged

DEV Table
Walker

HyperTransport

to
Domain#

(Zero if No Match)

Bus/Dev ID

Physical Address

DEV_BASE/LIMIT[0]

DEV_BASE/LIMIT[1]

DEV_BASE/LIMIT[2]

DEV_BASE/LIMIT[3]

Domain#Bus/Dev ID

TM

Secure Virtual Machine 489

24593—Rev. 3.30—September 2018 AMD64 Technology

15.24.4 DEV Capability Block

The presence of DEV support is indicated through a new PCI capability block. The capability block
also provides access to the registers that control operation of the DEV feature.

The DEV capability block in PCI space contains three 32-bit words: the capability header
(DEV_HDR), and two registers (DEV_OP and DEV_DATA) which serve as an indirection
mechanism for accessing the actual DEV control and status registers.

DEV Capability Header. The DEV capability header (DEV_HDR) is defined in Table 15-16.

15.24.5 DEV Register Access Mechanism

The northbridge’s DEV control and status registers are accessed through an indirection mechanism:
writing the DEV_OP register selects which internal register is to be accessed, and the DEV_DATA
register can be read or written to access the selected register.

Figure 15-7 shows the format of the DEV_OP register. The DEV_DATA register reflects the format of
the DEV register selected in DEV_OP.

Figure 15-7. Format of DEV_OP Register (in PCI Config Space)

Table 15-15. DEV Capability Block, Overall Layout
Byte Offset Register Comments

0 DEV_HDR Capability block header
4 DEV_OP Selects control/status register to access
8 DEV_DATA Read/write to access register selected in DEV_OP

Table 15-16. DEV Capability Header (DEV_HDR) (in PCI Config Space)
Bit(s) Definition
31:22 Reserved, MBZ

21 Interrupt Reporting Capability
20 Machine Check Exception Reporting Capability
19 Reserved, MBZ

18:16 DEV Capability Block Type; hardwired to 000b.
15:8 PCI Capability pointer; points to next capability in list
7:0 PCI Capability ID; hardwired to 0x0F

31 16 15 8 7 0

Reserved, MBZ FUNCTION INDEX

490 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

The FUNCTION field in the DEV_OP register selects the function/register to read or write according
to the encoding in Table 15-17; for blocks of registers that have multiple instances (e.g., multiple
DEV_BASE_HI/LO registers), the INDEX field selects the instance; otherwise it is ignored.

For example, to write the DEV_BASE_HI register for protection domain number 2, software sets
DEV_OP.FUNCTION to 1, and DEV_OP.INDEX to 2, and then writes the desired 32-bit value into
DEV_DATA. As the DEV_OP and DEV_DATA registers are accessed through PCI config space
(ports 0CF8h–0CFFh), they may be secured from unauthorized access by software executing on the
processor by appropriate settings in the SVM I/O protection bitmap. These registers are also protected
by the host bridge from external access as described in “Config Space Accesses” on page 488.

15.24.6 DEV Control and Status Registers

The DEV control and status registers are accessible by means of the indirection mechanism; these
registers are not directly visible in PCI config space.

DEV_CAP Register. Read-only register; holds implementation specific information: the number of
protection domains supported, the number of DEV_MAP registers (which map device/unit IDs to
domain numbers), and the revision ID.

Figure 15-8. Format of DEV_CAP Register (in PCI Config Space)

The initial implementation provide four domains and three map registers.

DEV_CR Register. This is the main control register for the DEV mechanism; it is cleared to zero by
RESET.

Table 15-17. Encoding of Function Field in DEV_OP Register
Function Code RegisterType Number of Instances

0 DEV_BASE_LO multiple
1 DEV_BASE_HI multiple
2 DEV_MAP multiple
3 DEV_CAP single
4 DEV_CR single
5 DEV_ERR_STATUS single
6 DEV_ERR_ADDR_LO single
7 DEV_ERR_ADDR_HI single

31 24 23 16 15 8 7 0

Reserved, RAZ N_MAPS N_DOMAINS REVISION

Secure Virtual Machine 491

24593—Rev. 3.30—September 2018 AMD64 Technology

DEV_BASE Address/Limit Registers. The DEV base address registers (one set per domain) each
point to the physical address of a DEV table corresponding to a protection domain. The address and
size are encoded in a pair (high/low) of 32-bit registers. The N_DOMAINS field in DEV_CAP
indicates how many (pairs of) DEV_BASE registers are implemented. The register format is as shown
in Figures 15-9 and 15-10.

Figure 15-9. Format of DEV_BASE_HI[n] Registers

Figure 15-10. Format of DEV_BASE_LO[n] Registers

Fields of the DEV_BASE_HI and DEV_BASE_LO registers are defined as follows:
• Valid (V)—Bit 0. Indicates whether a DEV table has been defined for the given protection domain;

if this bit is clear, software can leave the other fields undefined, and no protection checks are
performed for memory references in this domain.

Table 15-18. DEV_CR Control Register
Bit(s) Definition
31:7 Reserved, MBZ

6
DEV table walk probe disable.
0 = Use probe on DEV walk; 1 = Do not use probe

5 SL_DEV_EN. Enable bit for limited memory protection, see Section 15.24.8 on
page 492. Set to “1” by SKINIT instruction, can be cleared by software.

4 Invalidate DEV cache. Software must set this bit to 1 to invalidate the DEV
cache; cleared by hardware when invalidation is complete.

3
Enable MCE reporting.
0 = Do not generate MCE; 1 = Generate MCE on errors.

2
I/O space protection enable (IOSPEN)
0 = Allow upstream I/O cycles; 1 = Block.

1
Memory clear disable. If non-zero, memory-clearing on reset is disabled.
This bit is not writable until the memory is enabled.

0 DEV global enable bit. If zero, DEV protection is turned off.

31 8 7 0

Reserved, MBZ BASEADDRESS[39:32]

31 12 11 7 6 2 1 0

BASEADDRESS[31:12] Reserved, MBZ SIZE P V

492 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• Protect (P)—Bit 1. Indicates whether accesses to addresses beyond the address range covered by
the DEV are legal (P=0) or illegal (P=1).

• SIZE—Bits 6:2. Specifies how much memory the DEV covers, expressed increments of 4GB *
2size. In other words, a DEV table covers a minimum of 4GB, and can expand by powers of two.

DEV_MAP Registers. The DEV_MAP registers assign protection domain numbers to device-
originated requests by matching the device ID (HT bus and unit number) associated with the request
against bus and unit numbers in the registers. If no match is found in any of the registers, a domain
number of zero is returned. The number of DEV_MAP registers implemented by the chip is indicated
by the N_MAPS field in DEV_CAP.

The format of the DEV_MAP registers is shown in Figure 15-11.

Figure 15-11. Format of DEV_MAP[n] Registers

The fields of the DEV_MAP[n] registers are defined as follows:
• UNIT0—Bits 4:0. Specifies the first of two HyperTransport link unit numbers on the bus number

specified by the BUSNO field.
• V0—Bit 5. Indicates whether UNIT0 is valid (no matches occur on invalid entries).
• UNIT1—Bits 10:6. Specifies the second of two HyperTransport link unit numbers on the bus

number specified by the BUSNO field.
• V1—Bit 11. Indicates whether UNIT1 is valid (no matches occur on invalid entries).
• BUSNO—Bits 19:12. Specifies a HyperTransport link bus number.
• DOM0—Bits 25:20. Specifies the protection domain for the first HyperTransport link unit.
• DOM1—Bits 31:26. Specifies the protection domain for the second HyperTransport link unit.

15.24.7 Unauthorized Access Logging

Any attempted unauthorized access by devices to DEV-protected memory is logged by the host bridge
in the DEV_Error_Status and DEV_Error_Address registers for possible inspection by the VMM.

15.24.8 Secure Initialization Support

The host bridge contains additional logic that operates in conjunction with the SKINIT instruction to
provide a limited form of memory protection during the secure startup protocol. This provides
protection for a Secure Loader image in memory, allowing it to, among other things, set up full DEV
protection. (See “Secure Startup with SKINIT” on page 500 for detailed operation of SKINIT.)

31 26 25 20 19 12 11 10 6 5 4 0

DOM1 DOM0 BUSNO V1 UNIT1 V0 UNIT0

Secure Virtual Machine 493

24593—Rev. 3.30—September 2018 AMD64 Technology

The host bridge logic includes a hidden (not accessible to software) SL_DEV_BASE address register.
SL_DEV_BASE points to a 64KB-aligned 64KB region of physical memory. When SL_DEV_EN is
1, the 64KB region defined by SL_DEV_BASE is protected from external access (as if it were
protected by the DEV), as well as from any access (both CPU and external accesses) via GART-
translated addresses. Additionally, the SL_DEV mechanism, when enabled, blocks all device accesses
to PCI Configuration space.

15.25 Nested Paging
The optional SVM nested paging feature provides for two levels of address translation, thus
eliminating the need for the VMM to maintain shadow page tables.

15.25.1 Traditional Paging versus Nested Paging

Figure 15-12 on page 493 shows how a page in the linear address space is mapped to a page in the
physical address space in traditional (single-level) address translation. Control register CR3 contains
the physical address of the base of the page tables (PT, represented by the shaded box in the figure),
which governs the address translation.

Figure 15-12. Address Translation with Traditional Paging

With nested paging enabled, two levels of address translation are applied; refer to Figure 15-13 below.
• Both guest and host levels have their own copy of CR3, referred to as gCR3 and nCR3,

respectively.
• Guest page tables (gPT) map guest linear addresses to guest physical addresses. The guest page

tables are in guest physical memory, and are pointed to by gCR3.
• Nested page tables (nPT) map guest physical addresses to system physical addresses. The nested

page tables are in system physical memory, and are pointed to by nCR3.
• The most-recently used translations from guest linear to system physical address are cached in the

TLB and used on subsequent guest accesses.

Linear Space

PT

0

0

CR3

494 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

It is important to note that gCR3 and the guest page table entries contain guest physical addresses, not
system physical addresses. Hence, before accessing a guest page table entry, the table walker first
translates that entry’s guest physical address into a system physical address.

Figure 15-13. Address Translation with Nested Paging

The VMM can give each guest a different ASID, so that TLB entries from different guests can coexist
in the TLB. The ASID value of zero is reserved for the host; if the VMM attempts to execute VMRUN
with a guest ASID of zero, the result is #VMEXIT(VMEXIT_INVALID). Note that because an ASID
is associated with the guest's physical address space, it is common across all of the guest's virtual
address spaces within a processor. This differs from shadow page tables where ASIDs tag individual
guest virtual address spaces. Note also that the same ASID may or may not be associated with the
same address space across all processors in a multiprocessor system, for either nested tables or shadow
tables; this depends on how the VMM manages ASID assignment.

15.25.2 Replicated State

Most processor state affecting paging is replicated for host and guest. This includes the paging
registers CR0, CR3, CR4, EFER and PAT. CR2 is not replicated but is loaded by VMRUN. The
MTRRs are not replicated.

While nested paging is enabled, all (guest) references to the state of the paging registers by x86 code
(MOV to/from CRn, etc.) read and write the guest copy of the registers; the VMM's versions of the

Guest Linear

gPT

0

0

Host Linear

0

nPT

0

Guest Physical

pa
ge

d
by

gC
R3gCR3

nCR3

PT

CR3 (used by VMM)

System Physical

paged by

the VMM’s CR3

pa
ge

d
by

nC
R

3
TL

B
En

try VMM

gPT

pa
ge

d
by

nC
R3

Secure Virtual Machine 495

24593—Rev. 3.30—September 2018 AMD64 Technology

registers are untouched and continue to control the second level translations from guest physical to
system physical addresses. In contrast, when nested paging is disabled, the VMM's paging control
registers are stored in the host state save area and the paging control registers from the guest VMCB
are the only active versions of those registers.

15.25.3 Enabling Nested Paging

The VMRUN instruction enables nested paging when the NP_ENABLE bit in the VMCB is set to 1.
The VMCB contains the hCR3 value for the page tables for the extra translation. The extra translation
uses the same paging mode as the VMM used when it executed the most recent VMRUN.

Nested paging is automatically disabled by #VMEXIT.

Nested paging is allowed only if the host has paging enabled. Support for nested paging is indicated by
CPUID Fn8000_000A_EDX[NP] = 1. If VMRUN is executed with hCR0.PG cleared to zero and
NP_ENABLE set to 1, VMRUN terminates with #VMEXIT(VMEXIT_INVALID). See Section 3.3,
“Processor Feature Identification,” on page 63 for more information on using the CPUID instruction.

15.25.4 Nested Paging and VMRUN/#VMEXIT

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the paging registers are
affected as follows:
• VMRUN saves the VMM’s CR3 in the host save area.
• VMRUN loads the guest paging state from the guest VMCB into the guest registers (i.e., VMRUN

loads CR3 with the VMCB CR3 field, etc.). The guest PAT register is loaded from G_PAT field in
the VMCB.

• VMRUN loads nCR3, the version of CR3 to be used while the nested-paging guest is running,
from the N_CR3 field in the VMCB. The other host paging-control bits (hCR4.PAE, etc.) remain
the same as they were in the VMM at the time VMRUN was executed.

When VMRUN is executed with nested paging enabled (NP_ENABLE = 1), the following conditions
are considered illegal state combinations, in addition to those mentioned in “Canonicalization and
Consistency Checks” on page 453:
• Any MBZ bit of nCR3 is set.
• Any G_PAT.PA field has an unsupported type encoding or any reserved field in G_PAT has a non-

zero value. (See Section 7.8.1, “PAT Register,” on page 198.)

When #VMEXIT occurs with nested paging enabled:
• #VMEXIT writes the guest paging state (gCR3, gCR0, etc.) back into the VMCB. nCR3 is not

saved back into the VMCB.
• #VMEXIT need not reload any host paging state other than CR3 from the host save area, though an

implementation is free to do so.

496 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.25.5 Nested Table Walk

When the guest is running with nested paging enabled, a TLB miss causes several nested table walks:
• Guest Page Tables—the gCR3 register specifies a guest physical address, as do the entries in the

guest's page tables. These guest physical addresses must be translated to system physical addresses
using the nested page tables. Nested page table level faults can occur on these accesses, including
write faults due to setting of accessed and dirty bits in the guest page table.

• Final Guest-Physical Page—once a guest linear to guest physical mapping is known, guest
permissions can be checked. If the guest page tables allow the access, the guest physical address is
walked in the nested page tables to find the system physical address.

Table walks for guest page tables are always treated as user writes at the nested page table level. For
this reason,
• the page must be writable by user at the nested page table level, or else a #VMEXIT(NPF) is

raised, and
• the dirty and accessed bits are always set in the nested page table entries that were touched during

nested page table walks for guest page table entries.

A table walk for the guest page itself is always treated as a user access at the nested page table level,
but is treated as a data read, data write, or code read, depending on the guest access.

If the guest has paging disabled (gCR0.PG = 0), there are no guest page table entries to be translated in
the nested page tables. In this case, the final guest-physical address is equal to the guest-linear address,
and is still translated in the nested page tables.

15.25.6 Nested versus Guest Page Faults, Fault Ordering

In nested paging, page faults can be raised at either the guest or nested page table level. Nested walks
proceed in the following order; faults are generated in the same order:
1. Walk the guest page table entries in the nested page table. Dirty/Accessed bits are set as needed in

the nested page table. Any nested page table faults result in #VMEXIT(NPF).
2. As the guest page table walk proceeds from the top of the page table to the last entry, any not-

present entries or reserved bits in the guest page table entries at each level of the guest walk cause
#PF in the guest. Guest dirty and accessed bits are set as needed in the guest page tables during the
walk. Steps 1 and 2 are repeated for each level of the guest page table that is traversed.

3. Once the guest physical address for the guest access has been determined, check the guest
permissions; any fault at this point causes a #PF in the guest.

4. Perform the final translation from guest physical to system physical using the nested page table;
any fault during this translation results in a #VMEXIT(NPF).

Nested page faults are entirely a function of the nested page table and VMM processor mode. Nested
faults cause a #VMEXIT(NPF) to the VMM. The faulting guest physical address is saved in the
VMCB's EXITINFO2 field; EXITINFO1 delivers an error code similar to a #PF error code:

Secure Virtual Machine 497

24593—Rev. 3.30—September 2018 AMD64 Technology

• Bit 0 (P)—cleared to 0 if the nested page was not present, 1 otherwise
• Bit 1 (RW)—set to 1 if the nested page table level access was a write. Note that host table walks for

guest page tables are always treated as data writes.
• Bit 2 (US)—always 1, since all guest accesses are treated as user accesses at the nested level
• Bit 3 (RSV)—set to 1 if reserved bits were set in the corresponding nested page table entry
• Bit 4 (ID)—set to 1 if the nested page table level access was a code read. Note that nested table

walks for guest page tables are always treated as data writes, even if the access itself is a code read

In addition, the VMCB contents for nested page faults indicate whether the page fault was encountered
during the nested page table walk for a guest page TLB entry, or for the final nested walk for the guest
physical address, as indicated by EXITINFO1[33:32]:
• Bit 32—set to 1 if nested page fault occurred while translating the guest’s final physical address
• Bit 33—set to 1 if nested page fault occurred while translating the guest page tables

Guest faults are entirely a function of the guest page tables and processor mode; they are delivered to
the guest as normal #PF exceptions without any VMM intervention, unless the VMM is intercepting
guest #PF exceptions. Bits 32 and 33 of EXITINFO1 are written during nested page faults to indicate
whether the page fault was encountered during the nested page table walk for a guest page table's table
entries, or if the fault was encountered during the nested page table walk for the translation of the final
guest physical address.

The processor may provide additional instruction decode assist information. (See Section 15.10,
“IOIO Intercepts,” on page 463.)

15.25.7 Combining Nested and Guest Attributes

Any access to guest physical memory is subjected to a permission check by examining the mapping of
the guest physical address in the nested page table.

A page is considered writable by the guest only if it is marked writable at both the guest and nested
page table levels. Note that the guest’s gCR0.WP affects only the interpretation of the guest page table
entry; setting gCR0.WP cannot make a page writable at any CPL in the guest, if the page is marked
read-only in the nested page table. The host hCR0.WP bit is ignored under nested paging.

A page is considered executable by the guest only if it is marked executable at both the guest and
nested page table levels. If the EFER.NXE bit is cleared for the guest, all guest pages are executable at
the guest level. Similarly, if the EFER.NXE bit is cleared for the host, all nested page table mappings
are executable at the underlying nested level.

Some attributes are taken from the guest page tables and operating modes only. A page is considered
global within the guest only if is marked global in the guest page tables; the nested page table entry and
host hCR4.PGE are irrelevant. Global pages are only global within their ASID.

A page is considered user in the guest only if it is marked as user at the guest level. The page must be
marked user in the nested page table to allow any guest access at all.

498 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.25.8 Combining Memory Types, MTRRs

When nested paging is disabled, the processor behaves as though there is no gPAT register.

The host PAT MSR determines memory type attributes for the current VM, and guest writes to the PAT
MSR that aren't intercepted by the VMM will alter the host PAT MSR. The hypervisor is responsible
for context-switching the PAT MSR contents on world switches between VM's.

When nested paging is enabled, the processor combines guest and nested page table memory types.
Registers that affect memory types include:
• The PCD/PWT/PATi bits in the nested and guest page table entries.
• The PCD/PWT bits in the nested CR3 and guest CR3 registers.
• The guest PAT type (obtained by appropriately indexing the gPAT register).
• The host PAT type (obtained by appropriately indexing the host’s PAT register).
• The MTRRs (which are referenced based only on system physical address).
• gCR0.CD and hCR0.CD.

Note that there is no hardware support for guest MTRRs; the VMM can simulate their effect by
altering the memory types in the nested page tables. Note that the MTRRs are only applied to system
physical addresses.

The rules for combining memory types when constructing a guest TLB entry are:
• Nested and guest PAT types are combined according to Table 15-19 on page 499, producing a

“combined PAT type.”
• Combined PAT type is further combined with the MTRR type according to Table 15-20 on

page 499, where the relevant MTRRs are determined by the system physical address.
• Either gCR0.CD or hCR0.CD can disable caching.

Memory Consistency Issues. Because the guest uses extra fields to determine the memory type, the
VMM may use a different memory type to access a given piece of memory than does the guest. If one
access is cacheable and the other is not, the VMM and guest could observe different memory images,
which is undesirable. (MP systems are particularly sensitive to this problem when the VMM desires to
migrate a virtual processor from one physical processor to another.)

To address this issue, the following mechanisms are provided:
• VMRUN and #VMEXIT flush the write combiners. This ensures that all writes to WC memory by

the guest are visible to the host (or vice-versa) regardless of memory type. (It does not ensure that
cacheable writes by one agent are properly observed by WC reads or writes by the other agent.)

• A new memory type WC+ is introduced. WC+ is an uncacheable memory type, and combines
writes in write-combining buffers like WC. Unlike WC (but like the CD memory type), accesses to
WC+ memory also snoop the caches on all processors (including self-snooping the caches of the
processor issuing the request) to maintain coherency. This ensures that cacheable writes are
observed by WC+ accesses.

Secure Virtual Machine 499

24593—Rev. 3.30—September 2018 AMD64 Technology

• When combining nested and guest memory types that are incompatible with respect to caching, the
WC+ memory type is used instead of WC (and Table 15-20 on page 499 ensures that the snooping
behavior is retained regardless of the host MTRR settings). Refer to Table 15-19 on page 499 or
details.

Table 15-19 shows how guest and host PAT types are combined into an effective PAT type. When
interpreting this table, recall (a) that guest and host PAT types are not combined when nested paging is
disabled and (b) that the intent is for the VMM to use its PAT type to simulate guest MTRRs.

The existing AMD64 table that defines how PAT types are combined with the physical MTRRs is
extended to handle CD and WC+ PAT types as shown in Table 15-20.

15.25.9 Page Splintering

When an address is mapped by guest and nested page table entries with different page sizes, the TLB
entry that is created matches the size of the smaller page.

15.25.10 Legacy PAE Mode

The behavior of PAE mode in a nested-paging guest differs slightly from the behavior of (host-only)
legacy PAE mode, in that the guest’s four PDPEs are not loaded into the processor at the time CR3 is

Table 15-19. Combining Guest and Host PAT Types
Host PAT Type

UC UC– WC WP WT WB

G
ue

st
 P

AT
 T

yp
e UC UC UC UC UC UC UC

UC– UC UC– WC UC UC UC
WC WC WC WC WC+ WC+ WC+
WP UC UC UC WP UC WP
WT UC UC UC UC WT WT
WB UC UC WC WP WT WB

Table 15-20. Combining PAT and MTRR Types
MTRR Type

UC WC WP WT WB

Ef
fe

ct
iv

e
PA

T
Ty

pe

UC UC CD CD CD CD
UC– UC WC CD CD CD
WC WC WC WC WC WC

WC+ WC WC WC+ WC+ WC+
WP UC CD WP CD WP
WT UC CD CD WT WT
WB UC WC WP WT WB

500 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

written. Instead, the PDPEs are accessed on demand as part of a table walk. This has the side-effect
that illegal bit combinations in the PDPEs are not signaled at the time that CR3 is written, but instead
when the faulty PDPE is accessed as part of a table walk.

This means that an operating system cannot rely on the behavior when the in-memory PDPEs are
different than the in-processor copy.

15.25.11 A20 Masking

There is no provision for applying A20 masking to guest physical addresses; the VMM can emulate
A20 masking by changing the nested page mappings accordingly.

15.25.12 Detecting Nested Paging Support

Nested Paging is an optional feature of SVM and is not available in all implementations of SVM-
capable processors. The CPUID instruction should be used to detect nested paging support on a
particular processor. See Section 3.3, “Processor Feature Identification,” on page 63 for more
information on using the CPUID instruction.

15.26 Security
SVM provides additional hardware support that is designed to facilitate the construction of trusted
software systems. While the security features described in this section are orthogonal to SVM’s
virtualization support (and are not required for processor virtualization), the two form building blocks
for trusted systems.

SKINIT Instruction. The SKINIT instruction and associated system support (the Trusted Platform
Module or TPM) are designed to allow for verifiable startup of trusted software (such as a VMM),
based on secure hash comparison.

Security Exception. A security exception (#SX) is used to signal certain security-critical events.

15.27 Secure Startup with SKINIT
The SKINIT instruction is one of the keys to creating a “root of trust” starting with an initially
untrusted operating mode. SKINIT reinitializes the processor to establish a secure execution
environment for a software component called the secure loader (SL) and starts execution of the SL in a
way that cannot be tampered with. SKINIT also copies the secure loader executable image to an
external device, such as a Trusted Platform Module (TPM) for verification using unique bus
transactions that preclude SKINIT operation from being emulated by software in a way that the TPM
could not readily detect. (Detailed operation is described in Section 15.27.4.)

Secure Virtual Machine 501

24593—Rev. 3.30—September 2018 AMD64 Technology

15.27.1 Secure Loader

A secure loader (SL) typically initializes SVM hardware mechanisms and related data structures, and
initiates execution of a trusted piece of software such as a VMM (referred to as a Security Kernel, or
SK, in this document), after first having validated the identity of that software.

SKINIT allows SVM protections to be reliably enabled after the system is already up and running in a
non-trusted mode — there is no requirement to change the typical x86 platform boot process.

Exact details of the handoff from the SL to an SK are dependent on characteristics of the SL, SK and
the initial untrusted operating environment. However, there are specific requirements for the SL
image, as described in Section 15.27.2.

15.27.2 Secure Loader Image

The secure loader (SL) image contains all code and initialized data sections of a secure loader. This
code and initial data are used to initialize and start a security kernel in a completely safe manner,
including setting up DEV protection for memory allocated for use by SL and SK. The SL image is
loaded into a region of memory called the secure loader block (SLB) and can be no larger than
64Kbyte (see “Secure Loader Block” on page 501). The SL image is defined to start at byte offset 0 in
the SLB.

The first word (16 bits) of the SL image must specify the SL entry point as an unsigned offset into the
SL image. The second word must contain the length of the image in bytes; the maximum length
allowed is 65535 bytes. These two values are used by the SKINIT instruction. The layout of the rest of
the image is determined by software conventions. The image typically includes a digital signature for
validation purposes. The digital signature hash must include the entry point and length fields. SKINIT
transfers the SL image to the TPM for validation prior to starting SL execution (see “SKINIT
Operation” on page 503 for further details of this transfer). The SL image for which the hash is
computed must be ready to execute without prior manipulation.

15.27.3 Secure Loader Block

The secure loader block is a 64Kbyte range of physical memory which may be located at any 64Kbyte-
aligned address below 4Gbyte. The SL image must have been loaded into the SLB starting at offset 0
before executing SKINIT. The physical address of the SLB is provided as an input operand (in the
EAX register) to SKINIT, which sets up special protection for the SLB against device accesses (i.e.,
the DEV need not be activated yet).

The SL must be written to execute initially in flat 32-bit protected mode with paging disabled. A base
address can be derived from the value in EAX to access data areas within the SL image using
base+displacement addressing, to make the SL code position-independent.

Memory between the end of the SL image and the end of the SLB may be used immediately upon entry
by the SL as secure scratch space, such as for an initial stack, before DEV protections are set up for the
rest of memory. The amount of space required for this will limit the maximum size of the SL image,

502 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

and will depend on SL implementation. SKINIT sets the ESP register to the appropriate top-of-stack
value (EAX + 10000h).

Figure 15-14 on page 502 illustrates the layout of the SLB, showing where EAX and ESP point after
SKINIT execution. Labels in italics indicate suggested uses; other labels reflect required items.

Figure 15-14. SLB Example Layout

15.27.4 Trusted Platform Module

The trusted platform module, or TPM, is an essential part of full trusted system initialization. This
device is attached to an LPC link off the system I/O hub. It recognizes special SKINIT transactions,

SL Stack

SL Code
and

Static Data

SL Entry Point
SL Header

Length EP Offset

31 16 15 0

64 KB

SL Runtime
Data Area

SL Image
(Hash Area)

Post SKINIT ESP

Post SKINIT EAX

Secure Virtual Machine 503

24593—Rev. 3.30—September 2018 AMD64 Technology

receives the SL image sent by SKINIT and verifies the signature. Based on the outcome, the device
decides whether or not to cooperate with the SL or subsequent SK. The TPM typically contains sealed
storage containing cryptographic keys and other high-security information that may be specific to the
platform.

15.27.5 System Interface, Memory Controller and I/O Hub Logic

SKINIT uses special support logic in the processor’s system interface unit, the internal controller and
the I/O hub to which the TPM is attached. SKINIT uses special transactions that are unique to SKINIT,
along with this support logic, designed to securely transmit the SL Image to the TPM for validation.

The use of this special protocol is intended to allow the TPM to detect true execution, as opposed to
emulation, of a trusted Secure Loader, which in turn provides a means for verifying the subsequent
loading and startup of a trusted Security Kernel.

15.27.6 SKINIT Operation

The SKINIT instruction is intended to be used primarily in normal mode prior to the VMM taking
control.

SKINIT takes the physical base address of the SLB as its only input operand in EAX, and performs the
following steps:
1. Reinitialize processor state in the same manner as for the INIT signal, then enter flat 32-bit

protected mode with paging off. The CS selector is set to 8h and CS is read only. The SS selector
is set to 10h and SS is read/write and expand-up. The CS and SS bases are cleared to 0 and limits
are set to 4G. DS, ES, FS and GS are left as 16-bit real mode segments and the SL must reload
these with protected mode selectors having appropriate GDT entries before using them. Initialized
data in the SLB may be referenced using the SS segment override prefix until DS is reloaded. The
general purpose registers are cleared except for EAX, which points to the start of the secure
loader, EDX, which contains model, family and stepping information, and ESP, which contains
the initial stack pointer for the secure loader. Cache contents remain intact, as do the x87 and SSE
control registers. Most MSRs also retain their values, except those which might compromise
SVM protections. The EFER MSR, however, is cleared. The DPD, R_INIT and DIS_A20M flags
in the VM_CR register are unconditionally set to 1.

2. Form the SLB base address by clearing bits 15:0 of EAX (EAX is updated), and enable the
SL_DEV protection mechanism (see “Secure Initialization Support” on page 492) to protect the
64-Kbyte region of physical memory starting at the SLB base address from any device access.

3. In multiprocessor operation, perform an interprocessor handshake as described in Section 15.27.8
on page 504.

4. Read the SL image from memory and transmit it to the TPM in a manner that cannot be emulated
by software.

5. Signal the TPM to complete the hash and verify the signature. If any failures have occurred along
the way, the TPM will conclude that no valid SL was started.

504 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

6. Clear the Global Interrupt Flag. This disables all interrupts, including NMI, SMI and INIT and
ensures that the subsequent code can execute atomically. If the processor enters the shutdown
state (due to a triple fault for instance) while GIF is clear, it can only be restarted by means of a
RESET.

7. Update the ESP register to point to the first byte beyond the end of the SLB (SLB base + 65536),
so that the first item pushed onto the stack by the SL will be at the top of the SLB.

8. Add the unsigned 16-bit entry point offset value from the SLB to the SLB base address to form
the SL entry point address, and jump to it.

The validation of the SL image by the TPM is a one-way transaction as far as SKINIT is concerned. It
does not depend on any response from the TPM after transferring the SL image before jumping to the
SL entry point, and initiates execution of the Secure Loader unconditionally. Because of the processor
initialization performed, SKINIT does not honor instruction or data breakpoint traps, or trace traps due
to EFLAGS.TF.

Pending interrupts. Device interrupts that may be pending prior to SKINIT execution due to
EFLAGS.IF being clear, or that assert during the execution of SKINIT, will be held pending until
software subsequently sets GIF to 1. Similarly, SMI, INIT and NMI interrupts that assert after the start
of SKINIT execution will also be held pending until GIF is set to 1.

Debug Considerations. SKINIT automatically disables various implementation-specific hardware
debug features. A debug version of the SL can reenable those features by clearing the VM_CR.DPD
flag immediately upon entry.

15.27.7 SL Abort

If the SL determines that it cannot properly initialize a valid SK, it must cause GIF to be set to 1 and
clear the VM_CR MSR to re-enable normal processor operation.

15.27.8 Secure Multiprocessor Initialization

The following standard APIC features are used for secure MP initialization:
• The concept of a single Bootstrap Processor (BSP) and multiple Application Processors (APs).
• The INIT interprocessor interrupt (IPI), which puts the target processors into a halted state (INIT

state) which is responsive only to a subsequent Startup IPI.
• The Startup IPI causes target processors to begin execution at a location in memory that is

specified by the Boot Processor and conveyed along with the Startup IPI. The operation of the
processor in response to a Startup IPI is slightly modified to support secure initialization, as
described below.

A Startup IPI normally causes an AP to start execution at a location provided by the IPI. To support
secure MP startup, each AP responds to a startup IPI by additionally clearing its GIF and setting the
DPD, R_INIT and DIS_A20M flags in the VM_CR register if, and only if, the BSP has indicated that
it has executed an SKINIT. All other aspects of Startup IPI behavior remain unchanged.

Secure Virtual Machine 505

24593—Rev. 3.30—September 2018 AMD64 Technology

Software Requirements for Secure MP initialization. The driver that starts the SL must execute on
the BSP. Prior to executing the SKINIT instruction, the driver must save any processor-specific system
register contents to memory for restoration after reinitialization of the APs. The driver should also put
all APs in an idle state. The driver must first confirmed that all APs are idle and then it must issue an
INIT IPI to all APs and wait for its local APIC busy indication to clear. This places the APs into a
halted state which is responsive only to a subsequent Startup IPI. APs will still respond to snoops for
cache coherency. The driver may execute SKINIT at any time after this point. Depending on processor
implementation, a fixed delay of no more than 1000 processor cycles may be necessary before
executing SKINIT to ensure reliable sensing of APIC INIT state by the SKINIT.

AP Startup Sequence. While the SL starts executing on the BSP, the APs remain halted in APIC
INIT state. Either the SL or the SK may issue the Startup IPI for the APs at whatever point is deemed
appropriate. The Startup IPI conveys an 8-bit vector specified by the software that issues the IPI to the
APs. This vector provides the upper 8 bits of a 20-bit physical address. Therefore, the AP startup code
must reside in the lower 1Mbyte of physical memory—with the entry point at offset 0 on that
particular page.

In response to the Startup IPI, the APs start executing at the specified location in 16-bit real mode. This
AP startup code must set up protections on each processor as determined by the SL or SK. It must also
set GIF to re-enable interrupts, and restore the pre-SKINIT system context (as directed by the SL or
SK executing on the BSP), before resuming normal system operation.

The SL must guarantee the integrity of the AP startup sequence, for example by including the startup
code in the hashed SL image and setting up DEV protection for it before copying it to the desired area.
The AP startup code does not need to (and should not) execute SKINIT. Care must also be taken to
avoid issuing another INIT IPI from any processor after the BSP executes SKINIT and before all APs
have received a Startup IPI, as this could compromise the integrity of AP initialization.

Pending interrupts. Device interrupts that may be pending on an AP prior to the APIC INIT IPI due
to EFLAGS.IF being clear, or that assert any time after the processor has accepted the INIT IPI, will be
held pending through the subsequent Startup IPI, and remain pending until software sets GIF to 1 on
that AP. Similarly, SMI, INIT, and NMI interrupts that assert after the processor has accepted the INIT
IPI will also be held pending until GIF is set to 1.

Aborting MP initialization. In the event that the SL or SK on the BSP decides to abort SVM system
initialization for any reason, the following clean-up actions must be performed by SL code executing
on each processor before returning control to the original operating environment:
• The BSP and all APs that responded to the Startup IPI must restore GIF and clear VM_CR on each

processor for normal operation.
• For each processor that has a distinct memory controller associated with it, the SL_DEV_EN flag

in the DEV control register must be cleared in order to restore normal device accessibility to the
64KB SL memory range.

Any secure context created by the SL that should not be exposed to untrusted code should be cleaned
up as appropriate before these steps are taken.

506 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.28 Security Exception (#SX)
The Security Exception fault signals security-sensitive events that occur while executing the VMM, in
the form of an exception so that the VMM may take appropriate action. (A VMM would typically
intercept comparable sensitive events in the guest.) In the current implementation, the only use of the
#SX is to redirect external INITs into an exception so that the VMM may — among other possibilities
— destroy sensitive information before re-issuing the INIT, this time without redirection. The INIT
redirection is controlled by the VM_CR.R_INIT bit.

The #SX exception dispatches to vector 30, and behaves like other fault-class exceptions such as
General Protection Fault (#GP). The #SX exception pushes an error code. The only error code
currently defined is 1, and indicates redirection of INIT has occurred.

The #SX exception is a contributory fault.

15.29 Advanced Virtual Interrupt Controller
The AMD Advanced Virtual Interrupt Controller (AVIC) is an important enhancement to AMD
Virtualization™ Technology (AMD-V). In a virtualized environment, AVIC presents to each guest a
virtual interrupt controller that is compliant with the local Advanced Programmable Interrupt
Controller (APIC) architecture. See Chapter 16, “Advanced Programmable Interrupt Controller
(APIC),” on page 545 for a detailed description of APIC.

15.29.1 Introduction

In a virtualized computer system, each guest operating system needs access to an interrupt controller to
send and receive device and interprocessor interrupts. When there is no hardware acceleration, it falls
to the virtual machine monitor (VMM) to intercept guest-initiated attempts to access the interrupt
controller registers and provide direct emulation of the controller system programming interface
allowing the guest to initiate and process interrupts. The VMM uses the underlying physical and
virtual interrupt delivery mechanisms of the system to deliver interrupts from I/O devices and virtual
processors to the target guest virtual processor and to handle any required end of interrupt processing.

Given the high rate of device and interprocessor interrupt generation in modern computer systems, the
emulation of a local APIC is a significant burden for the VMM.

AVIC architecture addresses the overhead of guest interrupt processing in a virtualized environment
by applying hardware acceleration to the following components of interrupt processing:
• Providing a guest operating system access to performance-critical interrupt controller registers
• Initiating intra- and inter-processor interrupts (IPIs) in and between virtual processors in a guest

Acceleration of the delivery of virtual interrupts from I/O devices to virtual processors is not addressed
directly by AVIC hardware. This acceleration would be provided by an I/O memory management unit
(IOMMU). The AVIC architecture is compatible with the AMD I/O Memory Management Unit

Secure Virtual Machine 507

24593—Rev. 3.30—September 2018 AMD64 Technology

(IOMMU). For more information on the IOMMU architecture, see AMD I/O Virtualization
Technology (IOMMU) Specification (order #48882).

15.29.1.1 Local APIC Register Access
The system programming interface for the local APIC comprises a set of memory-mapped registers. In
a non-virtualized environment, system software directly reads and writes these registers to configure
the interrupt controller and initiate and process interrupts. In a virtualized environment, each guest
operating system still requires access to this system programming interface but does not own the
underlying interrupt processing hardware. To provide this facility to the guest operating system,
VMM-level software emulates the local APIC for each guest virtual processor.

The AVIC architecture provides an image of the local APIC called the guest virtual APIC (guest
vAPIC) in the guest physical address (GPA) space of each virtual processor when the virtual machine
for the guest is instantiated. This image is backed by a page in the system physical address (SPA) space
called a vAPIC backing page. The backing page remains pinned in system memory as long as the
virtual machine persists, even when the specific virtual processor associated with the backing page is
not running. Accesses to the memory-mapped register set by the guest are redirected by AVIC
hardware to this backing page.

The VMM reads configuration, control, and command information written by the guest from the
backing page and writes status information to this page for the guest to read. The guest is allowed to
read most registers directly without the need for VMM intervention. Most writes are intercepted
allowing the VMM to process and act on the configuration, control, and command data from the guest.
However, for certain frequently used command and control operations, specific hardware support
allows the guest to directly initiate interrupts and complete end of interrupt processing eliminating the
need for VMM intervention in the execution of performance-critical operations.

Software-initiated Interrupts. Modern operating systems use software interrupts (self-IPIs) to
implement software event signalling, inter-process communication and the scheduling of deferred
processing. System software sets up and initiates these interrupts by writing to control registers of the
local APIC. AVIC hardware reduces VMM overhead by providing hardware assist for many of these
operations.

Inter-processor Interrupts. Inter-processor interrupts (IPIs) are used extensively by modern
operating systems to handle communication between processor cores within a machine (or, in a
virtualized environment, between virtual processors within a virtual machine). IPIs are also employed
to provide signaling and synchronization for operations such as cross-processor TLB invalidations
(also known as TLB shootdowns). AVIC provides hardware mechanisms that deliver the interrupt to
the virtual interrupt controller of the target virtual processor without VMM intervention.

15.29.2 Architectural Definition

The following sections describe the AVIC architecture. Specific implementations of AVIC may
deviate from this description as long as the observed behavior of the hardware complies with this
description.

508 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.29.2.1 Virtualizing the Local APIC
The guest virtual processor accesses the facilities of its local APIC by reading and writing a set of
registers located in a 4-Kbyte page in its guest physical address space. AVIC hardware virtualizes this
access by redirecting attempted accesses by the guest to a vAPIC backing page located in system
physical address (SPA) space.

AVIC hardware detects attempted accesses by the guest to its local APIC register set and redirects
these accesses to the vAPIC backing page. This is illustrated in the figure below.

Figure 15-15. vAPIC Backing Page Access

To correctly redirect guest accesses of the guest vAPIC registers to the vAPIC backing page, the hard-
ware needs two addresses. These are:
• vAPIC backing page address in the SPA space
• Guest vAPIC base address (APIC BAR) in the GPA space

v2_AVIC_diagram2.eps

AVIC_BACKING_PAGE ptr

V_APIC_BAR

VMCB

System Physical
Address Space

Memory Mapped Image

Guest
vAPIC

Registers

vAPIC Backing Page

Emulated
vAPIC

Registers

GPA to SPA
Mapping

Register-level
Permissions Filter

Backing
Page SPA

Guest vAPIC
Page GPA

Guest vAPIC Page GPA Backing Page SPA

allow* trap

fault

Guest Physical
Address Space

AVIC Hardware

*Writes to specific registers can initiate AVIC hardware actions

Secure Virtual Machine 509

24593—Rev. 3.30—September 2018 AMD64 Technology

System software is responsible for setting up a translation in the nested page table granting guest read
and write permissions for accesses to the vAPIC Backing Page in SPA space. AVIC hardware walks
the nested page table to check permissions, but does not use the SPA address specified in the leaf page
table entry. Instead, AVIC hardware finds this address in the AVIC_BACKING_PAGE pointer field of
the VMCB.

The VMM initializes the backing page with appropriate default APIC register values including items
such as APIC version number. The vAPIC backing page address and the guest vAPIC base address are
stored in the VMCB fields AVIC_BACKING_PAGE pointer and V_APIC_BAR respectively.

System firmware initializes the value of guest vAPIC base address (and VMCB.V_APIC_BAR) to
FEE0_0000h. This is the address where the guest operating system expects to find the local APIC
register set when it boots. If the guest attempts to relocate the local APIC register base address in GPA
space by writing to the APIC Base Address Register (MSR 0000_001Bh), the VMM should intercept
the write to update the V_APIC_BAR field of the guest’s VMCB(s) and the GPA part of translation in
the virtual machine’s nested page tables.

The vAPIC backing page must be present in system physical memory for the life of the guest VM
because some fields are updated even when the guest is not running.

Virtual APIC Register Accesses. AVIC hardware detects attempted guest accesses to the vAPIC
registers in the backing page. These attempted accesses are handled by the register-level permissions
filter in one of three ways:
• Allow—The access to the backing page is allowed to complete. Writes update the backing page

value, while reads return the current value. In certain cases, a write results in specific hardware-
based acceleration actions (summarized in Table 15-21 and described below).

• Fault—The processor performs an SVM intercept before the access. Causes a #VMEXIT.
• Trap— The processor performs an SVM intercept immediately after the access completes. Causes

a #VMEXIT.

The details of this behavior for each of these registers are summarized in the following table:

Table 15-21. Guest vAPIC Register Access Behavior
Offset Register Name Result

20h APIC ID Register Read: Allowed
Write: #VMEXIT (trap)

30h APIC Version Register Read: Allowed
Write: #VMEXIT (fault)

80h Task Priority Register (TPR) Read: Allowed
Write: Accelerated by AVIC

90h Arbitration Priority Register (APR) Read: #VMEXIT (fault)
Write: #VMEXIT (fault)

A0h Processor Priority Register (PPR) Read: Allowed
Write: #VMEXIT (fault)

510 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

B0h End of Interrupt Register (EOI)

Read: Allowed
Write: Accelerated by AVIC for edge-triggered
interrupts or #VMEXIT (trap) for level triggered
interrupts

C0h Remote Read Register Read: Allowed
Write: #VMEXIT (trap)

D0h Logical Destination Register Read: Allowed
Write: #VMEXIT (trap)

E0h Destination Format Register Read: Allowed
Write: #VMEXIT (trap)

F0h Spurious Interrupt Vector Register Read: Allowed
Write: #VMEXIT (trap)

100h–
170h In-Service Register (ISR) Read: Allowed

Write: #VMEXIT (fault)
180h–
1F0h Trigger Mode Register (TMR) Read: Allowed

Write: #VMEXIT (fault)
200h–
270h Interrupt Request Register (IRR) Read: Allowed

Write: #VMEXIT (fault)

280h Error Status Register (ESR) Read: Allowed
Write: #VMEXIT (trap)

300h Interrupt Command Register Low
(bits 31:0)

Read: Allowed
Write: Accelerated by AVIC or #VMEXIT (trap) for
advanced functions.

310h Interrupt Command Register High
(bits 63:32)

Read: Allowed
Write: Allowed

320h Timer Local Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

330h Thermal Local Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

340h Performance Counter Local Vector
Table Entry

Read: Allowed
Write: #VMEXIT (trap)

350h Local Interrupt 0 Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

360h Local Interrupt 1 Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

370h Error Vector Table Entry Read: Allowed
Write: #VMEXIT (trap)

380h Timer Initial Count Register Read: Allowed
Write: #VMEXIT (trap)

Table 15-21. Guest vAPIC Register Access Behavior (continued)
Offset Register Name Result

Secure Virtual Machine 511

24593—Rev. 3.30—September 2018 AMD64 Technology

Accesses to any other register locations not explicitly defined in this table are allowed to read and
write the backing page.

All vAPIC registers are 32-bits wide and are located at 16-byte aligned offsets. The results of an
attempted read or write of any bytes in the range [register_offset + 4:register_offset + 15] are
undefined.

Guest writes to the Task Priority Register (TPR) and specific usage cases of writes to the End of
Interrupt (EOI) Register and the Interrupt Command Register Low (ICRL) cause specific hardware
actions. AVIC hardware allows guest writes to the Interrupt Command Register High (ICRH) since the
writing of this register has no immediate hardware side-effect. AVIC hardware maintains and uses the
value in the Processor Priority Register (PPR) to control the delivery of interrupts to guest virtual
processors. The following sections discuss the handling of accesses by the guest to these registers in
the vAPIC backing page.

Task Priority Register (TPR). When the guest operating system writes to the TPR, the value is
updated in the backing page and the upper 4 bits of the value are automatically copied by the hardware
to the V_TPR value in the VMCB. All reads from the TPR location return the value from the vAPIC
backing page. Also, any TPR accesses using the MOV CR8 semantics update the backing page and
V_TPR values.

The priority value stored in CR8 and V_TPR are not the same format as the APIC TPR register. Only
the Task Priority bits of are maintained in the lower 4 bits of CR8 and V_TPR. The Task Priority Sub-
class value is not stored. Writes to the memory-mapped TPR register update bits 0:3 of CR8 and
V_TPR and writes to CR8 update the TPR backing page value bits 7:4 while bits 3:0 are set to zero.

390h Timer Current Count Register Read: #VMEXIT (fault)
Write: #VMEXIT (fault)

3E0h Timer Divide Configuration Register Read: Allowed
Write: #VMEXIT (trap)

400h–
FFFh Extended Registers Read: #VMEXIT (fault)

Write: #VMEXIT (fault)

Table 15-21. Guest vAPIC Register Access Behavior (continued)
Offset Register Name Result

512 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 15-16. Virtual APIC Task Priority Register Synchronization

The synchronization between the Task Priority field of the TPR and the Task Priority field of CR8 is
normal local APIC behavior which is emulated by AVIC. For more information on the APIC, see
Chapter 16, “Advanced Programmable Interrupt Controller (APIC),” on page 545.

Processor Priority Register (PPR). Writes to the processor priority register by the guest cause a
#VMEXIT without updating the value in the backing page. AVIC hardware maintains the PPR value in
the backing page. AVIC hardware updates the PPR value in the backing page when either the TPR
value or the highest in-service interrupt changes. This value is used to control the delivery of virtual
interrupts to the guest. PPR reads by the guest are allowed.

End of Interrupt (EOI) Register. When the guest writes to the EOI register address, AVIC hardware
clears the highest priority in-service interrupt (ISR) bit in the backing page and re-evaluates the
interrupt state to determine if another pending interrupt should be delivered. If the highest priority in-
service interrupt is set to level mode (in the corresponding TMR bit), the EOI write causes a
#VMEXIT to allow the VMM to emulate the level-triggered behavior.

Interrupt Control Register Low (ICRL). Writes to the ICRL register have the side-effect of
initiating the generation of an interprocessor interrupt (IPI) based on the values written to the fields in
both the ICRL and ICRH registers. AVIC hardware handles the generation of IPIs when the specified
Message Type is Fixed (also known as fixed delivery mode) and the Trigger Mode is edge-triggered.
The hardware also supports self and broadcast delivery modes specified via the Destination Shorthand
(DSH) field of the ICRL. Logical and physical APIC ID formats are supported. All other IPI types
cause a #VMEXIT. For more information on AVIC’s handling of IPI commands, see “Inter-processor
Interrupts” on page 507.

15.29.2.2 VMCB Changes in Support of AVIC
The following paragraphs provide an overview of new VMCB fields defined as part of the AVIC
architecture.

VMCB Control Word. AVIC adds the AVIC Enable bit to the VMCB control word at offset 60h:

Task Priority
Task Priority

Subclass

Reserved Task Priority

TPR

CR8 / V_TPR

7 4 03

7 4 03

v2_TPR_figure.eps

Secure Virtual Machine 513

24593—Rev. 3.30—September 2018 AMD64 Technology

AVIC Enable—Virtual Interrupt Control, Bit 31. The AVIC hardware support may be enabled on
a per virtual processor basis. This bit determines whether or not AVIC is enabled for a particular virtual
processor. Any guest configured to use AVIC must also enable RVI (nested paging). Enabling AVIC
implicitly disables the V_IRQ, V_INTR_PRIO, V_IGN_TPR, and V_INTR_VECTOR fields in the
VMCB Control Word.

Newly Defined VMCB Fields. AVIC utilizes a number of formerly reserved locations in the
VMCB. Table 15-23 below lists the new fields defined by the architecture:

Table 15-22. Virtual Interrupt Control (VMCB offset 60h)
VMCB
offset Bit(s) Field Name Description

060h

7:0 V_TPR Virtual TPR for the guest 1 2

8 V_IRQ If nonzero; virtual INTR is pending 2 3

15:9 — Reserved, SBZ

19:16 V_INTR_PRIO Priority for virtual interrupt3

20 V_IGN_TPR If nonzero, the current virtual interrupt ignores the virtual TPR3

23:21 — Reserved, SBZ
24 V_INTR_MASKING Virtualized masking of INTR interrupts
:25 — Reserved, SBZ
31 AVIC Enable If set, enables AVIC

39:32 V_INTR_VECTOR Vector to use for this interrupt3

63:40 — Reserved, SBZ
Note(s):
1. Bits 3:0 are used for the 4-bit virtual TPR value; bits 7:4 are Reserved, SBZ.
2. This value is written back to the VMCB at #VMEXIT.
3. This field is ignored on VMRUN when AVIC is enabled.

Table 15-23. New VMCB Fields Defined by AVIC
VMCB
Offset Bit(s) Field Name Description

098h
63:52 Reserved, SBZ —
51:12 V_APIC_BAR Bits 51:12 of the GPA of the guest vAPIC register bank
11:0 Reserved, SBZ —

0E0h
63:52 Reserved, SBZ —
51:12 AVIC_BACKING_PAGE Pointer Bits 51:12 of HPA of the vAPIC backing page
11:0 Reserved, SBZ —

514 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

These fields are discussed further in the following paragraphs:

V_APIC_BAR—VMCB, Offset 098h. This entry is used to hold a copy of guest physical base
address of its local APIC register block. The guest can change the GPA of its local APIC register block
by writing to the guest version of the APIC Base Address Register (MSR 0000_001Bh). Writes to this
MSR are intercepted by the VMM and the value is used to update the GPA in the nested page table
entry for the vAPIC backing page and the value to be saved in this field of the VMCB.

APIC_BACKING_Page Pointer—VMCB, Offset 0E0h. This is a 52-bit HPA pointer to the vAPIC
backing page for this virtual processor. The vAPIC backing page is described in more detail in the
following section.

Logical APIC Table Pointer—VMCB, Offset 0F0h. This is a 52-bit HPA pointer to the Logical
APIC ID Table for the virtual machine containing this virtual processor. This table is described in more
detail in the following section.

Physical APIC Table Pointer—VMCB, Offset 0F8h. This is a 52-bit HPA pointer to the Physical
APIC ID Table for the virtual machine containing this virtual processor. This table is described in more
detail in the following section.

AVIC_PHYSICAL_MAX_INDEX—VMCB, Offset 0F8h. Bits [7:0]. This 8-bit value provides
the index of the last guest physical core ID for this guest.

Restrictions on Physical Address Pointers. All of the physical addresses in the previous
sections must point to legal, implementation-supported physical address ranges. These pointers are
evaluated on VMRUN and cause a #VMEXIT if they are outside of the legal range. These memory
ranges must be mapped as write-back cacheable memory type.

All the addresses point to 4-Kbyte aligned data structures. Bits 11:0 are reserved (except for offset
0F8h) and should be set to zero. The lower 8 bits of offset 0F8h are used for the field
AVIC_PHYSICAL_MAX_INDEX.

0F0h

63:52 Reserved, SBZ —

51:12 AVIC_LOGICAL_TABLE
Pointer Bits 51:12 of HPA of the Logical APIC Table

11:0 Reserved, SBZ —

0F8h

63:52 Reserved, SBZ —

51:12 AVIC_PHYSICAL_TABLE
Pointer Bits 51:12 of HPA for the Physical APIC Table

11:8 Reserved, SBZ —
7:0 AVIC_PHYSICAL_MAX_INDEX Index of the last guest physical core ID for this guest

Table 15-23. New VMCB Fields Defined by AVIC
VMCB
Offset Bit(s) Field Name Description

Secure Virtual Machine 515

24593—Rev. 3.30—September 2018 AMD64 Technology

Multiprocessor VM requirements. When running a VM which has multiple virtual CPUs, and the
VMM runs a virtual CPU on a core which had last run a different virtual CPU from the same VM,
regardless of the respective ASID values, care must be taken to flush the TLB on the VMRUN using a
TLB_CONTROL value of 3h. Failure to do so may result in stale mappings misdirecting virtual APIC
accesses to the previous virtual CPU's APIC backing page.

15.29.2.3 AVIC Memory Data Structures
The AVIC architecture defines three new memory-resident data structures. Each of these structures is
defined to fit exactly in one 4-Kbyte page. Future implementations may expand the size.

Virtual APIC Backing Page. Each virtual processor in the system is assigned a virtual APIC
backing page (vAPIC backing page). Accesses by the guest to the local APIC register block in the
guest physical address space are redirected to the vAPIC backing page in system memory. The vAPIC
backing page is used by AVIC hardware and the VMM to emulate the local APIC. See “Virtual APIC
Register Accesses” on page 509 for a detailed description.

Physical APIC ID Table. The physical APIC ID table is set up and maintained by the VMM and is
used by the hardware to locate the proper vAPIC backing page to be used to deliver interrupts based on
the guest physical APIC ID. One physical APIC ID table must be provided per virtual machine.

The guest physical APIC ID is used as an index into this table. Each entry contains a pointer to the
virtual processor’s vAPIC backing page, a bit to indicate whether the virtual processor is currently
scheduled on a physical core, and if so, the physical APIC ID of that core.

The length of this table is fixed at 4 Kbytes allowing a maximum of 512 virtual processors per virtual
machine. However, in this version of the architecture the maximum number of virtual processors per
guest is limited to 256. The physical ID table can be populated in a sparse manner using the valid bit to
indicate assigned IDs. The index of the last valid entry is stored in the VMCB
AVIC_PHYSICAL_MAX_INDEX field.

A pointer to this table is maintained in the VMCB. Because there is a single Physical APIC ID Table
per virtual machine, the value of this pointer is the same for every virtual processor within the virtual
machine.

Each entry in the table has the following format:

516 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 15-17. Physical APIC ID Table Entry

Note that the IR bit, when set, indicates that the VMM has assigned a physical core to host this virtual
processor. The bit does not differentiate between a physical processor running in guest mode (actively
executing guest software) or in hypervisor mode (having suspended the execution of guest software).

63 62 61 52 51 32

V I
R Reserved Backing Page Pointer[51:32]

31 12 11 8 7 0

Backing Page Pointer[31:12] Reserved Host Physical APIC ID

Table 15-24. Physical APIC ID Table Entry Fields
Bit(s) Field Name Description

63 V Valid bit. When set, indicates that this entry contains a valid vAPIC
backing page pointer. If cleared, this table entry contains no information.

62 IR IsRunning. This bit indicates that the corresponding guest virtual
processor is currently scheduled by the VMM to run on a physical core.

61:52 — Reserved, SBZ. Should always be set to zero.
51:12 Backing Page Pointer 4-Kbyte aligned HPA of the vAPIC backing page for this virtual processor.
11:8 — Reserved, SBZ. Should always be set to zero.

7:0 Host Physical APIC ID
Physical APIC ID of the physical core allocated by the VMM to host the
guest virtual processor. This field is not valid unless the IsRunning bit is
set.

Secure Virtual Machine 517

24593—Rev. 3.30—September 2018 AMD64 Technology

The Physical APIC ID Table occupies the lower half of a single 4-Kbyte memory page, formatted as
follows:

Figure 15-18. Physical APIC Table in Memory.

Since a destination of FFh is used to specify a broadcast, physical APIC ID FFh is reserved . The upper
2048 bytes of the table are reserved and should be set to zero.

Logical APIC ID Table. In addition to the Physical APIC ID Table, each guest VM is assigned a
Logical APIC ID Table. This table is used to lookup the guest physical APIC ID for logically
addressed interrupt requests. Each entry of this table provides the guest physical APIC ID
corresponding to a single logically addressed APIC. Note that this implies that the logical ID of each
vAPIC must be unique. The entries of this table are selected using the logical ID and interpreted
differently depending upon logical APIC addressing mode of the guest. logical destination modes are
supported: flat clustered.

If the guest attempts to change the logical ID of its APIC, the VMM must reflect this change in the
Logical APIC ID Table. AVIC hardware supports the fixed interrupt message type targeting one or
more logical destinations. The hardware also supports self and broadcast delivery modes specified via
the Destination Shorthand (DSH) field of the ICRL. Any other message types must be supported
through emulation by the VMM.

v2_PhysAPIC_diagram.eps

Physical APIC Entry 254

Physical APIC Entry 253

Physical APIC Entry 252

Physical APIC Entry 1

Physical APIC Entry 0 0

8

16

2032

2040

2048

4088

2024

2016

2008Physical APIC Entry 251

Physical APIC Entry 2

Reserved

Reserved

0

2

251

252

253

254

255

1

Guest
Physical
APIC ID

518 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

A pointer to this table is maintained in the VMCB. Because there is a single Logical APIC ID Table
per virtual machine, the value of this pointer is the same for every virtual processor within the virtual
machine.

For all logical destination modes, the table entries have the following format:

Figure 15-19. Logical APIC ID Table Entry

Logical APIC ID Table Format for Flat Mode. When running in flat mode, AVIC expects the
logical APIC ID table to be formatted as shown in Figure 15-20 below. This mode uses only the first 8
entries of the table. Although the logical APIC ID is an eight bit value, supported encodings must be of
the form 2i, where i = 0 to 7. In the figure the value i is used and represents the index into the table. The
actual byte offset into the table for a given logical APIC ID l_apic_id is 4 * log2(l_apic_id).

31 30 8 7 0

V Reserved Guest Physical APIC ID

Table 15-25. Logical APIC ID Table Entry Fields
Bit(s) Field Name Description

31 V Valid Bit. When set, indicates that this table entry contains a valid physical
APIC ID. If cleared, this table entry contains no information.

30:8 — Reserved, SBZ. Should always be set to zero.

7:0 Guest Physical APIC
ID

Guest physical APIC ID corresponding to the local APIC selected when
logically addressed.

Secure Virtual Machine 519

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 15-20. Logical APIC ID Table Format, Flat Mode.

Logical APIC ID Table Format for Cluster Mode. In cluster mode, bits [7:4] of the logical APIC
ID represent the cluster number and bits [3:0] represent the APIC index (bit encoded). The cluster
number Fh (15) is reserved. Since the APIC index field is four bits, four encodings are supported for
the APIC index value.

The actual byte offset into the table for a given cluster c and an APIC index apic_ix is (16 * c) + 4 *
log2(apic_ix)

When running in cluster mode, AVIC expects the logical APIC ID table to be formatted as shown in
Figure 15-21 below.

v2_LogicalAPIC_Table_x1_flat.eps

00

2
1 4

8
12
16
20
24
28

4092

Entry for Logical APIC 3
Entry for Logical APIC 2
Entry for Logical APIC 1
Entry for Logical APIC 0

Entry for Logical APIC 7
Entry for Logical APIC 6
Entry for Logical APIC 5
Entry for Logical APIC 4

Reserved

32

3
4
5
6
7

Logical
APIC ID
Index

520 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 15-21. Logical APIC ID Table Format, Cluster Mode.

15.29.2.4 Interrupt Delivery
There are two fundamental types of virtual interrupts—interprocessor interrupts (IPIs) and I/O device
interrupts (device interrupts). An IPI is initiated when guest system software writes the ICRL register.
A device interrupt is initiated by a I/O device that has been programmed by guest system software
(usually a device driver) to send a message signalling an event to a specific guest physical processor.
This message usually includes an interrupt vector number indicating the nature of the event.

The following sections discuss the actions taken by AVIC hardware when a virtual processor signals
an IPI and the actions taken by I/O virtualization hardware when a device signals a virtual interrupt.

Interprocessor Interrupts. To process an IPI, AVIC hardware executes the following steps:
1. If the destination-shorthand coded in the command is 01b (i.e. self), update the IRR in the backing

page, signal doorbell to self and skip remaining steps.
2. If destination-shorthand is non-zero, or if the destination field is FFh (i.e. broadcast), jump to

step 4.
3. If the destination(s) is (are) logically addressed, lookup the guest physical APIC IDs for each

logical ID using the Logical APIC ID table.
If the entry is not valid (V bit is cleared), cause a #VMEXIT.
If the entry is valid, but contains an invalid backing page pointer, cause a #VMEXIT.

v2_LogicalAPIC_Table_x1_cluster.eps

0
4
8

12
16
20
24
28

4092

Entry for Cluster 0, Logical APIC 3
Entry for Cluster 0, Logical APIC 2
Entry for Cluster 0, Logical APIC 1
Entry for Cluster 0, Logical APIC 0

Entry for Cluster 1, Logical APIC 3

Entry for Cluster 14, Logical APIC 1
Entry for Cluster 14, Logical APIC 0

Entry for Cluster 14, Logical APIC 2
Entry for Cluster 14, Logical APIC 3

Entry for Cluster 1, Logical APIC 2
Entry for Cluster 1, Logical APIC 1
Entry for Cluster 1, Logical APIC 0

224

236
240

Reserved

Secure Virtual Machine 521

24593—Rev. 3.30—September 2018 AMD64 Technology

4. Lookup the vAPIC backing page address in the Physical APIC table using the guest physical
APIC ID as an index into the table.
For directed interrupts, if the selected table entry is not valid, cause a #VMEXIT. For broadcast
IPIs, invalid entries are ignored.

5. For every valid destination:
- Atomically set the appropriate IRR bit in each of the destinations’ vAPIC backing page.
- Check the IsRunning status of each destination.
- If the destination IsRunning bit is set, send a doorbell message using the host physical core

number from the Physical APIC ID table.
6. If any destinations are identified as not currently scheduled on a physical core (i.e., the IsRunning

bit for that virtual processor is not set), cause a #VMEXIT.

Refer to Section on page 523 for new exitcodes associated with the #VMEXIT exceptions listed
above.

Device Interrupts. The delivery of a I/O device interrupt to a virtual processor is handled by an
IOMMU with virtual interrupt capability. To deliver a virtual interrupt, I/O virtualization hardware
executes the following steps:
1. An interrupt message arrives from the I/O device identifying the source device and interrupt

vector number.
2. I/O virtualization hardware uses the device ID to determine the guest physical APIC ID of the

core that is the target of the device interrupt.
3. I/O virtualization hardware uses the guest physical APID ID to index into the Physical APIC ID

Table to find the SPA of the vAPIC backing page. If the I/O virtualization hardware accesses an
entry in the Physical APIC ID Table that is not valid (V bit is cleared), the I/O virtualization
hardware aborts the virtual interrupt delivery and logs an error.

4. I/O virtualization hardware performs any required vector number translation.
5. I/O virtualization hardware atomically sets the bit in the IRR in the vAPIC backing page that

corresponds to the vector.
6. If the virtual processor that is the target of the interrupt is not currently running on its assigned

physical core, the virtual interrupt will be presented when the virtual processor is made active
again. I/O virtualization hardware may provide additional information to the VMM about the
device interrupt to aid in virtual processor scheduling decisions.
If the virtual processor that is the target of the interrupt is scheduled on a physical processor
(indicated by the IsRunning bit of the Physical APIC ID table entry being set), I/O virtualization
hardware uses the host physical APIC ID in the table entry to send a doorbell signal to the
corresponding processor core to signal that an interrupt needs to be processed.

522 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.29.2.5 CPUID Feature Bits
A CPUID feature bit is used indicate support for AVIC on a specific hardware implementation. CPUID
Fn8000_000A_EDX[AVIC] is designated for this purpose and is returned in bit 13 of EDX. If
EDX[13] is set, the AVIC architecture is supported on that hardware.

See Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the
CPUID instruction.

15.29.2.6 New Processor Mechanisms
In order to support the direct injection of interrupts into the guest and to accelerate critical vAPIC
functions, new hardware mechanisms are implemented in the processor.

Special Trap/Fault Handling for vAPIC Accesses. To virtualize the local APIC utilized by
the guest to generate and process interrupts, all read and write accesses by the guest virtual processor
to its local APIC registers are redirected to the vAPIC backing page. Most reads and many writes to
this guest physical address range read or write the contents of memory locations within the vAPIC
backing page at the corresponding offset.

To support proper handling and emulation of the guest local APIC, the processor provides permissions
filtering hardware (Refer to Figure 15-15 on page 508.) that detects and intercepts accesses to specific
offsets (representing APIC registers) within the vAPIC backing page. This hardware either allows the
access, blocks the access and causes a #VMEXIT (fault behavior), or allows the access and then causes
a #VMEXIT (trap behavior).

Hardware directly handles the side effects of guest writes to the TPR and EOI registers. Writes to the
ICRL register with simple functional side effects such as the generation of a directed IPI or a self-IPI
request are handled directly. Values written to the ICRL defined to initiate more complex behavior
cause a #VMEXIT to allow the VMM to emulate the function. A guest write to the ICRH register has
no immediate hardware side effect and is allowed.

Most other write access attempts within the vAPIC register bank address range cause a #VMEXIT
with trap or fault behavior allowing the VMM to emulate the function of that register. See Table 15-21
on page 509 for more detail.

Reads and writes to locations within the vAPIC backing page, but outside the offset range of defined
vAPIC registers are allowed to complete.

Doorbell Mechanism. Each core provides a doorbell mechanism that is used by other cores (for
IPIs) and the IOMMU (for device interrupts) to signal to the VMM of the target physical core that a
virtual interrupt requires processing. The exact mechanism is implementation-specific, but must be
protected from access from non-privileged software running on other cores and from direct access by
an external device.

When the doorbell is received in guest mode, hardware on the receiving core evaluates the vAPIC state
in the vAPIC backing page for the currently running virtual processor and injects the interrupt into the
guest as appropriate.

Secure Virtual Machine 523

24593—Rev. 3.30—September 2018 AMD64 Technology

Doorbell Register. The system programming interface to the doorbell mechanism is provided via an
MSR. Sending a doorbell signal to a another core is initiated by writing the physical APIC ID
corresponding to that core to the Doorbell Register (MSR C001_011Bh). The format of this register is
shown in Figure 15-22 below.

Figure 15-22. Doorbell Register, MSR C001_011Bh

Writing to this register causes a doorbell signal to be sent to the specified physical core. Any attempt to
read from this register results in a #GP.

Processing of Doorbell Signals. A doorbell signal delivered to a running guest is recognized by the
hardware regardless of whether it can be immediately injected into the guest as a virtual interrupt. On
the next VMRUN, the virtual interrupt delivery mechanism evaluates the state of the IRR register of
the guest’s vAPIC backing page to find the highest priority pending interrupt and injects it if interrupt
masking and priority allow.

Additional VMRUN Handling. In addition to the normal VMRUN operations, the core re-
evaluates the APIC state in the vAPIC backing page upon entry into the guest and processes pending
interrupts as necessary. Specifically:
• On VMRUN the interrupt state is evaluated and the highest priority pending interrupt indicated in

the IRR is delivered if interrupt masking and priority allow
• Any doorbell signals received during VMRUN processing are recognized immediately after

entering the guest
• When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO,

V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored.

15.29.2.7 New Exit Codes for AVIC
The AVIC architecture defines two new AVIC-related #VMEXIT events. These cases are described in
the following sections. Assigned EXITCODE values are given in Table C-1 on page 607.

AVIC IPI Delivery Not Completed. An IPI could not be delivered to all targeted guest virtual
processors because at least one guest virtual processor was not allocated to a physical core at the time.
This results in a #VMEXIT with an exit code of AVIC_INCOMPLETE_IPI. Additional data
associated with this #VMEXIT event is returned in the EXITINFO1 and EXITINFO2 fields.

EXITINFO1. This field contains the values written to the vAPIC ICRH and ICRL registers.

63 8 7 0

Reserved, MBZ Physical APIC ID

524 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 15-23. EXITINFO1

EXITINFO2. This field contains information describing the specific reason for the IPI delivery
failure.

Figure 15-24. EXITINFO2

The ID field identifies the reason for the IPI delivery failure:

63 32 31 0

ICRH ICRL

Table 15-26. EXTINFO1 Fields
Bit(s) Field Name Description
63:32 ICRH Value written to the vAPIC ICRH register.
31:0 ICRL Value written to the vAPIC ICRL register.

63 32 31 8 7 0

ID Reserved Index

Table 15-27. EXTINFO2 Fields
Bit(s) Field Name Description

63:32 ID Specific reason for the delivery failure. See Table 15-28 for defined
values.

31:8 — Reserved

7:0 Index For ID = 1 – 3, this field provides the index of a logical or physical table
entry. Reserved for all other ID values.

Secure Virtual Machine 525

24593—Rev. 3.30—September 2018 AMD64 Technology

AVIC Access to un-accelerated vAPIC register. A guest access to an APIC register that is not
accelerated by AVIC results in a #VMEXIT with the exit code of AVIC_NOACCEL. This fault is also
generated if an EOI is attempted when the highest priority in-service interrupt is set for level-triggered
mode. Additional data associated with this #VMEXIT event is returned in the EXITINFO1 and
EXITINFO2 fields.

EXITINFO1. This field contains the offset of the un-accelerated virtual APIC register and a bit
indicating whether a read or write operation was attempted.

Table 15-28. ID Field—IPI Delivery Failure Cause
ID Cause Description Index

0 Invalid Interrupt
type

The trigger mode for the specified IPI was set to
level or the destination type is unsupported. Reserved.

1 IPI Target Not
Running

IsRunning bit of the target for a
Singlecast/Broadcast/Multicast IPI is not set in
the physical APIC ID table.

Index of the physical or logical
APIC ID table entry for the target
virtual processor that was not
scheduled on a physical core.

2 Invalid Target in IPI

Target ID invalid. This is due to one the
following reasons:
• In logical mode:

cluster > max_cluster (64)
• In physical mode:

target > max_physical (512)
• address is not present in the physical or

logical ID tables

Index of the physical or logical
table entry for the invalid target.

3 Invalid Backing
Page Pointer

The vAPIC Backing Page Pointer field of the
Physical APIC ID Table contained an invalid
physical address.

For shorthand or broadcast
delivery modes, index of the
physical APIC ID Table containing
the invalid address. For directed
IPIs, index of the logical or
physical APIC ID table depending
on the destination mode.

> 3 Reserved — Reserved

63 33 32 31 12 11 4 3 0

Reserved
R
/

W
Reserved APIC Offset[11:4] Reserved

Table 15-29. EXTINFO1 Fields
Bit(s) Field Name Description
63:33 — Reserved.

32 R/W If set, write was attempted. If clear, read was attempted.

526 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

EXITINFO2. This field contains extra information for the un-accelerated operation. If the
EXITINFO1 fields indicate a write to the vAPIC EOI register (offset = B0h), bits 7:0 of this value
contain the number of the highest in-service vector found in the virtual APIC ISR.

15.30 SVM Related MSRs
SVM uses the following MSRs for various control purposes. These MSRs are available regardless of
whether SVM is enabled in EFER.SVME. For details on implementation-specific features, see the
BIOS and Kernel Developer’s Guide (BKDG) or Processor Programming Reference Manual
applicable to your product.

15.30.1 VM_CR MSR (C001_0114h)

The VM_CR MSR controls certain global aspects of SVM. The layout of the MSR is shown in
Figure 15-25.

Figure 15-25. Layout of VM_CR MSR (C001_0114h)

The individual fields are as follows:
• DPD—Bit 0. If set, disables HDT and certain internal debug features.
• R_INIT—Bit 1. If set, non-intercepted INIT signals are converted into an #SX exception.

31:12 — Reserved.

11:4 APIC_Offset[11:4]
Offset within virtual vAPIC backing page at which read or write was
attempted. APIC_Offset[3:0] = 0, since all registers are aligned on 16-byte
boundaries.

3:0 — Reserved.

63 8 7 0

Reserved Vector

Table 15-30. EXTINFO2 Fields
Bit(s) Field Name Description
63:8 — Reserved.
31:0 Vector Vector for attempted EOI; otherwise undefined.

63 5 4 3 2 1 0

Reserved, MBZ SVMDIS LOCK DIS_A20M R_INIT DPD

Table 15-29. EXTINFO1 Fields
Bit(s) Field Name Description

Secure Virtual Machine 527

24593—Rev. 3.30—September 2018 AMD64 Technology

• DIS_A20M—Bit 2. If set, disables A20 masking.
• LOCK—Bit 3. When this bit is set, writes to LOCK and SVMDIS are silently ignored. When this

bit is clear, VM_CR bits 3 and 4 can be written. Once set, LOCK can only be cleared using the
SVM_KEY MSR (See Section 15.31, “SVM-Lock,” on page 529.) This bit is not affected by INIT
or SKINIT.

• SVMDIS—Bit 4. When this bit is set, writes to EFER treat the SVME bit as MBZ. When this bit is
clear, EFER.SVME can be written normally. This bit does not prevent CPUID from reporting that
SVM is available. Setting SVMDIS while EFER.SVME is 1 generates a #GP fault, regardless of
the current state of VM_CR.LOCK. This bit is not affected by SKINIT. It is cleared by INIT when
LOCK is cleared to 0; otherwise, it is not affected.

15.30.2 IGNNE MSR (C001_0115h)

The read/write IGNNE MSR is used to set the state of the processor-internal IGNNE signal directly.
This is only useful if IGNNE emulation has been enabled in the HW_CR MSR (and thus the external
signal is being ignored). Bit 0 specifies the current value of IGNNE; all other bits are MBZ.

15.30.3 SMM_CTL MSR (C001_0116h)

The write-only SMM_CTL MSR provides software control over SMM signals.

Figure 15-26. Layout of SMM_CTL MSR (C001_0116h)

Writing individual bits causes the following actions:
• DISMISS—Bit 0. Clear the processor-internal “SMI pending” flag.
• ENTER—Bit 1. Enter SMM: map the SMRAM memory areas, record whether NMI was currently

blocked and block further NMI and SMI interrupts.
• SMI_CYCLE—Bit 2. Send SMI special cycle.
• EXIT—Bit 3. Exit SMM: unmap the SMRAM memory areas, restore the previous masking status

of NMI and unconditionally reenable SMI.
• RSM_CYCLE—Bit 4. Send RSM special cycle.

Writes to the SMM_CTL MSR cause a #GP if platform firmware has locked the SMM control
registers by setting HWCR[SMMLOCK].

Conceptually, the bits are processed in the order of ENTER, SMI_CYCLE, DISMISS, RSM_CYCLE,
EXIT, though only the following bit combinations may be set together in a single write (for all other
combinations of more than one bit, behavior is undefined):
• ENTER + SMI_CYCLE

63 5 4 3 2 1 0

Reserved, MBZ RSM_CYCLE EXIT SMI_CYCLE ENTER DISMISS

528 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

• DISMISS + ENTER
• DISMISS + ENTER + SMI_CYCLE
• EXIT + RSM_CYCLE

The VMM must ensure that ENTER and EXIT operations are properly matched, and not nested,
otherwise processor behavior is undefined. Also undefined are ENTER when the processor is already
in SMM, and EXIT when the processor is not in SMM.

15.30.4 VM_HSAVE_PA MSR (C001_0117h)

The 64-bit read/write VM_HSAVE_PA MSR holds the physical address of a 4KB block of memory
where VMRUN saves host state, and from which #VMEXIT reloads host state. The VMM software is
expected to set up this register before issuing the first VMRUN instruction. Software must not attempt
to read or write the host save-state area directly.

Writing this MSR causes a #GP if:
• any of the low 12 bits of the address written are nonzero, or
• the address written is greater than or equal to the maximum supported physical address for this

implementation.

15.30.5 TSC Ratio MSR (C000_0104h)

Writing to the TSC Ratio MSR allows the hypervisor to control the guest's view of the Time Stamp
Counter. The contents of TSC Ratio MSR sets the value of the TSCRatio. This constant scales the
timestamp value returned when the TSC is read by a guest via the RDTSC or RDTSCP instructions or
when the TSC, MPERF, or MPerfReadOnly MSRs are read via the RDMSR instruction by a guest
running under virtualization.

This facility allows the hypervisor to provide a consistent TSC, MPERF, and MPerfReadOnly rate for
a guest process when moving that process between cores that have a differing P0 rate. The TSCRatio
does not affect the value read from the TSC, MPERF, and MPerfReadOnly MSRs when in host mode
or when virtualization is disabled. System Management Mode (SMM) code sees unscaled TSC,
MPERF and MPerfReadOnly values unless the SMM code is executed within a guest container. The
TSCRatio value does not affect the rate of the underlying TSC, MPERF, and MPerfReadOnly
counters, nor the value that gets written to the TSC, MPERF, and MPerfReadOnly MSRs counters on a
write by either the host or the guest.

The TSC Ratio MSR specifies the TSCRatio value as a fixed-point binary number in 8.32 format,
which is composed of 8 bits of integer and 32 bits of fraction. This number is the ratio of the desired P0
frequency to be presented to the guest relative to the P0 frequency of the core (See Section 17.1, “P-
State Control,” on page 573). The reset value of the TSCRatio is 1.0, which sets the guest P0 frequency
to match the core P0 frequency.

Note that:
TSCFreq = Core P0 frequency * TSCRatio, so TSCRatio = (Desired TSCFreq) / Core P0 frequency.

Secure Virtual Machine 529

24593—Rev. 3.30—September 2018 AMD64 Technology

The TSC value read by the guest is computed using the TSC Ratio MSR along with the TSC_OFFSET
field from the VMCB so that the actual value returned is:

TSC Value (in guest) = (P0 frequency * TSCRatio * t) + VMCB.TSC_OFFSET + (Last Value Written to TSC) * TSCRatio
Where t is time since the TSC was last written via the TSC MSR (or since reset if not written)

The layout of the TSC Ratio MSR is illustrated in figure below.

Figure 15-27. TSC Ratio MSR (C000_0104h)

INT. Integer Part. Bits 39:32. Integer part of TSCRatio.

FRAC. Fractional Part. Bits 39:32. Fractional part of TSCRatio.

TSCRatio = INT + FRAC × 2-32

CPUID Fn8000_000A_EDX[TscRateMsr] =1 indicates support for the TSC Ratio MSR. See
Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the CPUID
instruction.

15.31 SVM-Lock
The SVM-Lock feature allows software to prevent EFER.SVME from being set, either
unconditionally or with a 64-bit key to re-enable SVM functionality.

Support for SVM-Lock is indicated by CPUID Fn8000_000A_EDX[SVML] = 1. On processors that
support the SVM-Lock feature, SKINIT and STGI can be executed even if EFER.SVME=0. See
descriptions of LOCK and SVMDIS bits in Section 15.30.1, “VM_CR MSR (C001_0114h),” on
page 526. When the SVM-Lock feature is not available, hypervisors can use the read-only
VM_CR.SVMDIS bit to detect SVM (see Section 15.4, “Enabling SVM,” on page 449).

15.31.1 SVM_KEY MSR (C001_0118h)

The write-only SVM_KEY MSR is used to create a password-protected mechanism to clear
VM_CR.LOCK.

When VM_CR.LOCK is zero, writes to SVM_KEY MSR set the 64-bit SVM Key value.

63 40 39 32 31 0

Reserved, MBZ INT FRAC

Bits Mnemonic Description Access Type
63:40 — Reserved Reserved, MBZ
39:32 INT Integer Part R/W
31:0 FRAC Fractional Part R/W

530 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

When VM_CR.LOCK is one, writes to SVM_KEY MSR compare the written value to the SVM Key
value; if the values match and are non-zero, the VM_CR.LOCK bit is cleared. If the values mismatch
or the SVM Key value is zero, the write to SVM_KEY is ignored, and VM_CR.LOCK is unmodified.
Software should read VM_CR.LOCK after writing SVM_KEY to determine whether the unlock
succeeded.

If SVM Key is zero when VM_CR.LOCK is one, VM_CR.LOCK can only be cleared by a processor
reset.

To preserve the security of the SVM key, reading the SVM_KEY MSR always returns zero.

15.32 SMM-Lock
The SMM-Lock feature allows software to prevent System Management Interrupts (SMI) from being
intercepted in SVM. The SmmLock bit is located in the HWCR MSR register.

15.32.1 SmmLock Bit — HWCR[0]

The SmmLock bit (bit 0) is located in the HWCR MSR (C001_0015h). When SmmLock is clear, it can
be set to one. Once set, the bit cannot be cleared by software and writes to it are ignored. SmmLock can
only be cleared using the SMM_KEY MSR (see section 15.32.2), or by a processor reset. This bit is
not affected by INIT or SKINIT. When SmmLock is set, other SMM configuration registers cannot be
written. For complete information on the HWCR register, see the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual applicable to your product.

15.32.2 SMM_KEY MSR (C001_0119h)

The write-only SMM_KEY MSR is used to create a password-protected mechanism to clear
SmmLock.

When SmmLock is zero, writes to SMM_KEY MSR set the 64-bit SMM Key value.

When SmmLock is one, writes to SMM_KEY MSR compare the written value to the SMM Key value;
if the values match and are non-zero, the SmmLock bit is cleared. If the values mismatch or the SMM
Key value is zero, the write to SMM_KEY is ignored, and SmmLock is unmodified. Software should
read SmmLock after writing SMM_KEY to determine whether the unlock succeeded.

If SMM_Key MSR is equal to zero when SmmLock is one, SmmLock can only be cleared by a
processor reset.

To preserve the security of the SMM key, reading SMM_KEY MSR always returns zero.

15.33 Nested Virtualization
Hardware support for improved performance of nested virtualization -- the act of running a hypervisor
as a guest under a higher-level hypervisor -- is provided through the features described here. These

Secure Virtual Machine 531

24593—Rev. 3.30—September 2018 AMD64 Technology

relieve the top-level hypervisor from performing certain common, high-overhead operations that can
occur with nested virtualization.

15.33.1 VMSAVE and VMLOAD Virtualization

This feature allows the VMSAVE and VMLOAD instructions to execute in Guest mode and not
require a VMEXIT. The value in RAX for the VMSAVE or VMLOAD is treated as a guest physical
address and is translated to the host physical address and then the instruction does its normal operation.

Presence

The presence of the virtualized VMSAVE and VMLOAD feature is indicated by CPUID 8000_000A,
EDX, bit 15.

Enablement

A new bit is added to the VMCB field at offset B8h.

Usage

Virtualized VMSAVE/VMLOAD is enabled through a VMRUN with bit 1 set in offset B8 of the
VMCB. It is only allowed when the hypervisor is in 64 bit mode and nested paging is enabled. This is
not enforced on the execution VMRUN but is checked on execution of a VMSAVE/VMLOAD
instruction with the virtualization feature enabled. If the host is not in the proper mode, a VMEXIT
occurs with the VMSAVE/VMLOAD exit code. If it is in the proper mode the processor will translate
the RAX as a guest physical address to a host physical address. Any page faults in attempting that
translation will result in a normal VMEXIT with a nested page fault exit code. If the processor
succeeds in translating the address, it will then finish the instruction with the normal loading or saving
of register state.

15.33.2 Virtual GIF

This feature allows STGI and CLGI to execute in Guest mode and control virtual interrupts in guest
mode while still allowing physical interrupts to be intercepted by the hypervisor.

Presence

The presence of the VGIF feature is indicated by CPUID 8000_000A, EDX, bit 16.

Enablement and Usage

Offset Bit(s) Description
B8h 1 Virtualized VMSAVE/VMLOAD (0 –Disabled, 1- Enabled)
B8h 63:2 Reserved

532 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

In order to provide this ability, two new bits are added to the VMCB field at offset 60h.

When a VMRUN is executed and VGIF is enabled, the processor uses bit 9 as the starting value of the
virtual GIF. It then provides masking capability for when virtual interrupts are taken. STGI executed in
the guest sets bit 9 of the VMCB offset 60h and allows a virtual interrupt to be taken. CLGI executed in
the guest clears bit 9 of the VMCB offset 60h and causes the virtual interrupt to be masked. Bit 9 in the
VMCB is also writeable by the hypervisor and loaded on VMRUN and saved on VMEXIT.

The hypervisor can still use the STGI/SLGI intercept control in the VMCB.

15.34 Secure Encrypted Virtualization
Secure Encrypted Virtualization (SEV) is available when the CPU is running in guest mode utilizing
AMD-V virtualization features. SEV enables running encrypted virtual machines (VMs) in which the
code and data of the virtual machine are secured so that the decrypted version is available only within
the VM itself. Each virtual machine may be associated with a unique encryption key so if data is
accessed by a different entity using a different key, the SEV encrypted VM's data will be decrypted
with an incorrect key, leading to unintelligible data.

It is important to note that SEV mode therefore represents a departure from the standard x86
virtualization security model as the hypervisor is no longer able to inspect or alter all guest code
or data. The guest page tables, managed by the guest, may mark data memory pages as either private
or shared, thus allowing selected pages to be shared outside the guest. Private memory is encrypted
using a guest-specific key, while shared memory is accessible to the hypervisor.

15.34.1 Determining Support for SEV

Support for memory encryption features is reported in CPUID 8000_001F[EAX] as described in
Section 7.10.1, “Determining Support for Secure Memory Encryption,” on page 208. Bit 1 indicates
support for Secure Encrypted Virtualization.

When memory encryption features are present, CPUID 8000_001F[EBX] and 8000_001F[ECX]
supply additional information regarding the use of memory encryption, such as the number of keys
supported simultaneously and which page table bit is used to mark pages as encrypted. Additionally,
in some implementations, the physical address size of the processor may be reduced when memory
encryption features are enabled, for example from 48 to 43 bits. In this example, physical address bits
47:43 would be treated as reserved except where otherwise indicated. When memory encryption is
supported in an implementation, CPUID 8000_001F[EBX] reports any physical address size reduction

Offset Bit(s) Description

60h 9 VGIF value (0 – Virtual interrupts are masked, 1 – Virtual Interrupts are
unmasked)

60h 25 AMD Virtual GIF enabled for this guest (0 - Disabled, 1 - Enabled)

Secure Virtual Machine 533

24593—Rev. 3.30—September 2018 AMD64 Technology

present. Bits reserved in this mode are treated the same as other page table reserved bits, and will
generate a page fault if found to be non-zero when used for address translation.

Full CPUID details for memory encryption features may be found in Volume 3, section E.4.17.

15.34.2 Key Management

Under the memory encryption extensions defined here, each SEV-enabled guest virtual machine is
associated with a memory encryption key, and the SME mode (if used, see Section 7.10 on page 208)
is associated with a separate key. Key management for the SEV feature is not handled by the CPU but
rather by a separate processor known as the AMD Secure Processor (AMD-SP) which is present on
AMD SOCs. A detailed discussion of AMD-SP operation is beyond the scope of this manual.

CPU software is not aware of the values of these keys but the hypervisor should coordinate the loading
of virtual machine keys through the AMD-SP driver. This coordination will also determine which
ASID the hypervisor should use for a particular guest. Under SEV, the ASID is used as the key index
that identifies which encryption key is used to encrypt/decrypt memory traffic associated with that
SEV-enabled guest. Encryption keys themselves are never visible to CPU software and are never
stored off-chip in the clear.

15.34.3 Enabling SEV

Prior to starting an encrypted VM, software must enable MemEncryptionModEn through MSR
C001_0010 (SYSCFG) as described in Section 7.10.2, “Enabling Memory Encryption Extensions,”
on page 209. SEV may then be enabled on a specific virtual machine during the VMRUN instruction
if the hypervisor sets the SEV enable bit in VMCB offset 090h.

When SEV is enabled in a guest, the following additional consistency checks are performed during
VMRUN:
• Nested paging (VMCB offset 090h, bit 0) must be enabled
• MSR C001_0015 (HWCR) [SmmLock] must be set
• ASID (VMCB offset 058h) must be within the allowed range for SEV

 The allowed ASIDs for SEV operation may be a subset of the overall number of hardware supported
ASIDs. In this scenario, SEV-enabled guests must use ASIDs in the defined subset, while non-SEV
enabled guests can use the remaining ASID range. The range of ASIDs allowed for SEV-enabled
guests is from 1 to a maximum value defined via CPUID 8000_001F[ECX].

Byte Offset Bit[s] Description

090h

0 Enable nested paging
1 Enable Secure Encrypted Virtualization
2 Enable Encrypted State for Secure Encrypted Virtualization
63-3 Reserved, SBZ

534 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

If any of these bits are not configured properly when SEV is enabled on a guest, the VMRUN
instruction will terminate with VMEXIT_INVALID. If MemEncryptionModEn is 0, SEV cannot be
enabled and the VMCB control bit for SEV is ignored.

15.34.4 Supported Operating Modes

Secure Encrypted Virtualization may be enabled on guests running in any operating mode. However
the guest is only able to control memory encryption when operating in long mode or legacy PAE mode.
In all other modes, all guest memory accesses are unconditionally considered private and are
encrypted with the guest-specific key.

15.34.5 SEV Encryption Behavior

When a guest is executed with SEV enabled, the guest page tables are used to determine the C-bit for a
memory page and hence the encryption status of that memory page. This allows a guest to determine
which pages are private or shared, but this control is available only for data pages. Memory accesses
on behalf of instruction fetches and guest page table walks are always treated as private, regardless of
the software value of the C-bit. This behavior ensures non-guest entities (such as the hypervisor)
cannot inject their own code or data into an SEV-enabled guest. If a guest does wish to make data in
instruction pages or page tables accessible to code outside of the guest, this data must be explicitly
copied into a shared data page.

Note that while the guest may choose to set the C-bit explicitly on instruction pages and page table
addresses, the value of this bit is a don't-care in such situations as hardware always performs these as
private accesses.

15.34.6 Page Table Support

An SEV-enabled guest controls encryption in its own guest page tables using the C-bit defined by
CPUID 8000_001F[EBX]. This location is the same C-bit location as defined under SME
(Section 7.10, “Secure Memory Encryption,” on page 208) in non-virtualized mode. If the C-bit is an
address bit, this bit is masked from the guest physical address when it is translated through the nested
page tables. Consequently, the hypervisor does not need to be aware of which pages the guest has
chosen to mark private.

For example if the C-bit is address bit 47, when a guest accesses virtual address 0x54321, it might be
translated to guest physical address 0x8000_00AB_C321, indicating the page should be encrypted
with the private guest key. When this guest physical address is translated through the nested page
tables, host virtual address 0xAB_C321 is used for translation. The C-bit value from the guest
physical address is saved and used on the final system physical address after the nested table
translation as shown in Figure 15-28.

Note that because guest physical addresses are always translated through the nested page tables, the
size of the guest physical address space is not impacted by any physical address space reduction
indicated in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however, the guest
physical address space is effectively reduced by 1 bit.

Secure Virtual Machine 535

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 15-28. Guest Data Request

15.34.7 Restrictions

As with SME, hardware does not enforce coherency between mappings of the same physical page with
different encryption enablement or keys. When the encryption enablement or key for a particular
memory page is to be changed, software must first ensure the page is flushed from all CPU caches.
Certain conventional cache flushing techniques may not work however; see Section 15.34.9, “Page
Flush MSR,” on page 537 for further details on this.

15.34.8 SEV Interaction with SME

SEV may be used in conjunction with SME mode. In this scenario, the guest page tables control
encryption for guest memory, and the host (nested) page tables control encryption for shared memory.
This behavior is summarized in Table 15-31. SEV is considered active when the CPU is in guest mode
and the guest has SEV enabled in the VMCB.

Table 15-31. Encryption Control

Type of
Access

MemEncryp
tionModEn

Guest
Mode

SEV
Mode
Active

Encrypted Encryption
Key Notes

Legacy Mode (memory encryption disabled)
All 0 X X No N/A

Secure Memory Encryption Mode

Guest Page Tables
Address

Nested Page Tables
Address

Guest Physical AddressC-bit

System Physical AddressC-bit

Guest Data Request

536 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

Note that during a nested page table walk, it is possible for both the guest page tables to be encrypted
and the nested page tables to be encrypted. In this scenario, the guest page tables are decrypted using
the guest private encryption key, and the nested page tables are decrypted using the host (SME)
encryption key.

Guest data accesses that are marked shared (C=0) by the guest may still be optionally encrypted using
the host (SME) key if the pages are marked encrypted in the nested tables. If a page is marked
encrypted in both the guest and nested tables, the guest tables have priority and the page will be
encrypted using the guest key. This behavior is summarized in Table 15-32.

All 1 0 X Optional Host Key Determined by page tables (CR3)

All 1 1 0 Optional Host Key Determined by nested page tables
(hCR3)

Secure Encrypted Virtualization Mode
Instruction

Fetch 1 1 1 Yes Guest Key

Guest
Page Table

Access
1 1 1 Yes Guest Key

Nested
Page Table

Access
1 1 1 Optional Host Key Determined by nested page tables

(hCR3)

Data
Access 1 1 1 Optional1

See Table
15-32:

SEV/SME
Interaction

Determined by guest page tables
(gCR3) and nested page tables
(hCR3)

Note:
1. Encryption is guest-controlled in long mode and legacy PAE mode only. In all other modes, these accesses are

always considered private and are encrypted with the guest key

Table 15-32. SEV/SME Interaction
Nested Page Table

C=0 C=1

Guest
Page
Table

C=0 Unencrypted Encrypted with host key

C=1 Encrypted with
guest key Encrypted with guest key

Table 15-31. Encryption Control (continued)

Type of
Access

MemEncryp
tionModEn

Guest
Mode

SEV
Mode
Active

Encrypted Encryption
Key Notes

Secure Virtual Machine 537

24593—Rev. 3.30—September 2018 AMD64 Technology

15.34.9 Page Flush MSR

In the event the hypervisor wishes to read an encrypted page, it must first flush the guest view of that
page from all CPU caches to ensure it is able to view the most recent copy of that data. This may be
accomplished by issuing a WBINVD instruction, or by using the VMPAGE_FLUSH MSR
(C001_011E). Either operation must be performed on all cores on which the guest has run. Support
for the VMPAGE_FLUSH MSR is indicated in CPUID 8000_001F[EAX] bit 2.

The VMPAGE_FLUSH MSR is a write-only register that may be used to flush 4KB of data on behalf
of a guest. The hypervisor writes the host linear address of the page and guest ASID to the MSR, and
hardware will then perform a write-back invalidation of the page causing any dirty data to be
encrypted and written to DRAM. Note that the VMPAGE_FLUSH MSR uses the standard host page
tables to perform the page translation. The Page Flush MSR operation will hit on and evict guest-
cached instances of the memory, whereas CLFLUSH instructions using this same translation will not.

The VMPAGE_FLUSH MSR will only flush memory pages marked private by the guest. If the
hypervisor does not know if the memory page was marked private but wishes to evict the page from
the cache, it should perform a standard CLFLUSH in addition to using the VMPAGE_FLUSH MSR.

Attempts to flush a host virtual address that is not mapped into a physical address or use of an ASID=0
will cause a #GP(0) fault.

15.34.10 SEV_STATUS MSR

Guests can determine what SEV features are currently active by reading the SEV_STATUS MSR
(C001_0131). This MSR indicates which SEV features (if any) were enabled by the hypervisor in the
last VMRUN for that guest. The SEV_STATUS MSR can only be read in guest context and is read-
only. Additionally, accesses to the SEV_STATUS MSR cannot be intercepted by the hypervisor. The
SEV_STATUS MSR is available on all platforms that support SEV.

15.35 Encrypted State (SEV-ES)
Encrypted VMs that use the SEV feature described in section 15.34 may additionally use the SEV-ES
feature to protect guest register state from the hypervisor. An SEV-ES VM's CPU register state is

Bit[s] Description
63:12 VirtualAddr: Write-only. Host virtual address of page to flush
11:0 ASID: Write-only. Guest ASID to use for the flush

Bit[s] Description
63:2 Reserved
1 SEV_ES_Enabled: The guest was run with the SEV-ES feature enabled in VMCB offset 90h
0 SEV_Enabled: The guest was run with the SEV feature enabled in VMCB offset 90h

538 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

encrypted during world switches and cannot be directly accessed or modified by the hypervisor. This
is designed to protect against attacks such as exfiltration (unauthorized reading of VM state) and
control flow attacks (modifying VM state) including rollback attacks (restoring an earlier VM register
state).

SEV-ES includes architectural support for notifying a VM's operating system when certain types of
world switches are about to occur, allowing the VM to selectively share information with the
hypervisor when needed for functionality.

15.35.1 Determining Support for SEV-ES

SEV-ES support can be determined by reading CPUID Fn8000_001F[EAX] as described in
Section 15.34.1 on page 532. Bit 3 of EAX indicates support for SEV-ES.

15.35.2 Enabling SEV-ES

SEV-ES may be enabled on a per-VM basis by setting bit 2 in offset 90h of the VMCB. When
enabling SEV-ES, the hypervisor must also enable SEV (offset 90h bit 1) and enable
LBR_VIRTUALIZATION_ENABLE (offset B8h bit 0). Additionally, all other programming
requirements related to enabling SEV (see section 15.34.3) must be satisfied when running an SEV-ES
guest.

On some systems, there is a limitation on which ASID values can be used on SEV guests that are run
with SEV-ES disabled. While SEV-ES may be enabled on any valid SEV ASID (as defined by CPUID
Fn8000_001F[ECX]), there are restrictions on which ASIDs may be used for SEV guests with SEV-
ES disabled. CPUID Fn8000_001F[EDX] indicates the minimum ASID value that must be used for
an SEV-enabled, SEV-ES-disabled guest. For example, if CPUID Fn8000_001F[EDX] returns the
value 5, then any VMs which use ASIDs 1-4 and which enable SEV must also enable SEV-ES.

Note that prior to running an SEV-ES VM for the first time, the hypervisor must coordinate with the
AMD Secure Processor to create the initial encrypted state image for the guest VM.

15.35.3 SEV-ES Overview

The SEV-ES architecture is designed to protect guest VM register state by default, and only allow the
guest VM itself to grant selective access as required. This additional security protection functionality
is accomplished in two ways. First, all VM register state is saved and encrypted when a VM exit event
(VMEXIT) occurs. This state is decrypted and restored on a VMRUN only. Second, certain types of
VMEXIT events cause a new exception to be taken within the guest VM. This new exception (#VC,
see section 15.35.5) indicates that the guest VM performed some action which requires hypervisor
involvement, an example of which would be an IO access by the VM. The guest #VC handler is
responsible for determining what register state is necessary to expose to the hypervisor for the purpose
of emulating this operation. The #VC handler also inspects the returned values from the hypervisor
and updates the guest state if the output is deemed acceptable.

Register state that needs to be exposed utilizes a new structure called the Guest-Hypervisor
Communication Block (GHCB). The GHCB location is chosen by the guest who maps the page as a

Secure Virtual Machine 539

24593—Rev. 3.30—September 2018 AMD64 Technology

shared memory page, thus allowing direct hypervisor access. Only state located in the GHCB can be
read by the hypervisor as all state stored in the traditional VMCB save state structure is encrypted
using the guest memory encryption key and integrity protected.

In the #VC handler, the guest may utilize a new instruction (VMGEXIT, section 15.35.6) to perform a
world switch and invoke the hypervisor. In response to this, the hypervisor can inspect the GHCB and
determine the services requested by the guest.

15.35.4 Types of Exits

When SEV-ES is enabled, all VMEXIT events are classified as either Automatic Exits (AE) or Non-
Automatic Exits (NAE). AE events are generally events that occur asynchronously with respect to the
guest execution (e.g. interrupts) or events that need not involve exposing any guest register state. All
other VMEXIT events are classified as NAE events, and with NAE events the guest is allowed to
determine what register state (if any) to expose in the GHCB. During guest execution, VMEXIT
events (both AE and NAE) are only taken if the corresponding intercept bit in the VMCB control area
is set.

The hypervisor is informed of specific AE events exclusively via the VMEXIT codes within the
EXITCODE field of the VMCB control area. NAE events result in a #VC exception which is handled
by the guest. Table 15-33 lists the possible AE events, all other events are considered NAE events.

In the case of exits due to specific instructions, the CPU will automatically advance the guest RIP in
response to the AE so that execution will resume at the next instruction on a subsequent VMRUN.

Table 15-33. AE Exitcodes
Code Name Notes HW Advances RIP
52h VMEXIT_MC Machine check exception No
60h VMEXIT_INTR Physical INTR No
61h VMEXIT_NMI Physical NMI No
63h VMEXIT_INIT Physical INIT No
64h VMEXIT_VINTR Virtual INTR No
77h VMEXIT_PAUSE PAUSE instruction Yes
78h VMEXIT_HLT HLT instruction Yes
7Fh VMEXIT_SHUTDOWN Shutdown No
8Fh VMEXIT_EFER_WRITE_TRAP See section 15.35.10 Yes

90h -9Fh VMEXIT_CR[0-15]_WRITE_TRAP See section 15.35.10 Yes

400h VMEXIT_NPF Only if PFCODE[3]=0 (no reserved
bit error) No

403h VMEXIT_VMGEXIT VMGEXIT instruction Yes
–1 VMEXIT_INVALID Invalid guest state –

540 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

In the case of nested page faults, these are treated as AEs only if there was no reserved bit error. This
is intended to be used to help distinguish nested page faults due to demand misses (hypervisor needs to
allocate a page) vs MMIO emulation (hypervisor needs to emulate a device). Consequently, the
hypervisor should set a reserved page table bit, such as a reserved address bit, on all MMIO pages that
it intends to emulate. (This can include address bits that may become reserved when SEV is enabled;
see Section 15.34.1 on page 532.) This will ensure that MMIO page faults become NAE events,
which is critical so the guest #VC handler can be invoked to assist in the MMIO emulation. Nested
page faults that are AE events do not invoke any guest handler and the hypervisor is intended to
allocate memory as needed and then resume the guest.

Note that when a guest is running with SEV-ES enabled, instruction bytes (VMCB offset D0h) are
never saved to the VMCB on a nested page fault.

15.35.5 #VC Exception

The VMM Communication Exception (#VC) is always thrown by hardware when an SEV-ES enabled
guest is running and an NAE event occurs. The #VC exception is a precise, contributory, fault-type
exception utilizing exception vector 29. This exception cannot be masked. The error code of the #VC
exception is equal to the VMEXIT code (see Appendix C) of the event that caused the NAE.

In response to a #VC exception, a typical flow would involve the guest handler inspecting the error
code to determine the cause of the exception and deciding what register state must be copied to the
GHCB for the event to be handled. The handler should then execute the VMGEXIT instruction to
create an AE and invoke the hypervisor. After a later VMRUN, guest execution will resume after the
VMGEXIT instruction where the handler can view the results from the hypervisor and copy state from
the GHCB back to its internal state as needed. This flow is shown in Figure 15-29 on page 541.

Note that it is inadvisable for the hypervisor to set the VMCB intercept bit for the #VC exception as
this would prevent proper handling of NAEs by the guest. Similarly, the hypervisor should avoid
setting intercept bits for events that would occur in the #VC handler (such as IRET).

Secure Virtual Machine 541

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 15-29. EXAMPLE #VC FLOW

Guest triggers
VMEXIT condition

Send #VC exception
to the guest

Hypervisor handles
exit

#VC handler copies
state to GHCB as

needed

VMGEXIT

Save guest state to
protected memory
and load HV state

VMRUN

Load guest state
from protected

memory

Returns to #VC
handler

Handler modifies
state as needed

IRET

Guest AMD64 Hardware Hypervisor

542 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.35.6 VMGExit

The VMGEXIT instruction creates an AE and is intended to allow a guest #VC handler to invoke the
hypervisor when needed. The opcode for VMGEXIT is the same as VMMCALL (0F 01 D9) but with
a REP prefix (F3/F2). VMGEXIT causes an AE with the VMEXIT_VMGEXIT code and behaves like
a trap so that upon a subsequent VMRUN, execution resumes following the VMGEXIT. There is no
hypervisor intercept bit for VMGEXIT as the instruction unconditionally causes an AE when executed
in an SEV-ES guest.

The VMGEXIT opcode is only valid within a guest when run with SEV-ES mode active. If the guest
is not run with SEV-ES mode active, the VMGEXIT opcode will be treated as a VMMCALL opcode
and will behave exactly like a VMMCALL.

15.35.7 GHCB

The GHCB is an unencrypted memory page used to communicate register state between the SEV-ES
guest and the hypervisor. The guest VM is able to set the location of the GHCB via the GHCB MSR
(C001_0130). This value is also included in the VMCB and is saved/restored on VMRUN/VMEXIT
respectively.

The GHCB MSR is used to set up the location of the GHCB memory page. The format of this MSR is
defined below:

The value of this MSR is saved/restored from the VMCB offset 0A0h. It is recommended software
write this MSR with a page-aligned address. The GHCB MSR can be read/written only in guest mode,
attempts to access this MSR in hypervisor mode will result in a #GP.

Hardware never accesses the GHCB directly, and as a result the format of the GHCB is not fixed.
However a recommendation is to use a format similar to the VMCB structure described in Appendix
B.

15.35.8 VMRUN

When SEV-ES is enabled, the VMCB save state area does not reside at offset 400h in the VMCB page.
Instead it resides starting at offset 0h in a separate page as indicated by the VMCB Save State Pointer
at offset 108h. The VMCB Save State Pointer value is stored as a host physical address. Hardware
always accesses the VMCB save state area using encrypted memory accesses utilizing the guest's
memory encryption key.

When hardware executes a VMRUN instruction and the VMCB indicates SEV-ES is enabled for the
guest, the hardware loads guest state from the encrypted save state area indicated by the VMCB Save
State Pointer. Also, the VMRUN instruction will perform the following actions in addition to the
standard VMRUN behavior:

Bit Function
63:0 Guest physical address of GHCB

Secure Virtual Machine 543

24593—Rev. 3.30—September 2018 AMD64 Technology

• Calculate a checksum over guest state to verify integrity
• Perform a VMLOAD to load additional guest register state
• Load guest GPR state
• Load guest FPU state

When a guest has SEV-ES enabled, the encrypted VMCB state save area definition is expanded to
include all GPR and FPU state (see Appendix B). If any part of the VMRUN flow faults or if the
integrity checksum fails to match, a VMEXIT(INVALID) event is generated.

Note that if SEV-ES is enabled, the VMRUN instruction ignores bits 10:5 of the VMCB clean bits and
always reloads the full guest state.

Also note that for SEV-ES guests, while the full guest state is loaded on VMRUN only the minimal
hypervisor state defined by the legacy VMRUN instruction (section 15.5.1) is saved to the
VM_HSAVE_PA page. The hypervisor itself should save its desired additional segment state and
GPR values to the VMCB at VM_HSAVE_PA since these values will be restored by hardware on a
subsequent VMEXIT. Hardware does not automatically save host state such as FS, STAR, or GPR
values from the hypervisor on a VMRUN. See Appendix B for a detailed breakdown of each piece of
VMCB state.

Finally, note that event injection for SEV-ES guests is restricted. Software interrupts and exception
vectors 3 and 4 may not be injected. If this is attempted, the VMRUN will fail with
VMEXIT(INVALID).

15.35.9 Automatic Exits

When an automatic exit event occurs while an SEV-ES enabled guest is executing, hardware
automatically saves guest state to the encrypted save state area and restores hypervisor state from
VM_HSAVE_PA. Specifically, in addition to the standard state saved/restored by the VMEXIT flow,
hardware will also perform the following steps:
• Perform a VMSAVE to save additional guest register state
• Save guest GPR state
• Save guest FPU state
• Calculate and store a checksum over the guest state for use in a subsequent VMRUN
• Perform a VMLOAD to load additional host register state
• Load host GPR state
• Re-initialize FPU state to their reset values

The loading of host GPR state from the VM_HSAVE_PA is done using the format of the expanded
VMCB described in Appendix B. All register state is either loaded from this location or re-initialized
to default values so no guest register state is visible to the hypervisor.

544 Secure Virtual Machine

AMD64 Technology 24593—Rev. 3.30—September 2018

15.35.10 Control Register Write Traps

The use of CR[0-15]_WRITE intercepts are discouraged for guests that are run with SEV-ES. These
intercepts occur prior to the control register being modified, and the hypervisor is not able to modify
the control register itself since the register is located in the encrypted state image. Hypervisors are
encouraged to use the new CR[0-15]_WRITE_TRAP and EFER_WRITE_TRAP intercept bits
instead which cause an AE after a control register has been modified. These intercepts enable the
hypervisor to track the guest mode and verify if desired features are being enabled. When these traps
are taken, the new value of the control register is saved in EXITINFO1. CR write traps are only
supported for SEV-ES guests.

Note that writes by SEV-ES guests to EFER.SVME are always ignored by hardware.

Advanced Programmable Interrupt Controller (APIC) 545

24593—Rev. 3.30—September 2018 AMD64 Technology

16 Advanced Programmable Interrupt
Controller (APIC)

The Advanced Programmable Interrupt Controller (APIC) provides interrupt support on AMD64
architecture processors. The local APIC accepts interrupts from the system and delivers them to the
local CPU core interrupt handler.

Support for APIC is indicated by CPUID Fn0000_0001_EDX[APIC] = 1. For information on using
the CPUID instruction to obtain processor implementation information, see Section 3.3, “Processor
Feature Identification,” on page 63.

The APIC block diagram is provided in Figure 16-1.

Figure 16-1. Block Diagram of a Typical APIC Implementation

Local
APIC

Local
APIC

Local
APIC

CPU#1

Interrupt
Handler

CPU#2
CPU
Core

CPU#N

 Interrupt Messages

IOAPIC PICI/O Interrupts

 Interrupt Messages

Legacy
Interrupts

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

Signalled
Message

Interrupts

APIC Error

CPU
Core

CPU
Core

Interrupt
Handler

Interrupt
Handler

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

ThermalSensor

Extended Intr

APIC Error

APIC Timer

PerfMonCntr

Extended Intr

APIC Error

546 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

16.1 Sources of Interrupts to the Local APIC
Each CPU core has an associated local APIC which receives interrupts from the following sources:
• I/O interrupts from the IOAPIC interrupt controller (including LINT0 and LINT1)
• Legacy interrupts (INTR and NMI) from the legacy interrupt controller
• Message Signalled Interrupts
• Interprocessor Interrupts (IPIs) from other local APICs. Interprocessor Interrupts are used to send

interrupts or to execute system wide functions between CPU cores in the system, including the
originating CPU core (self-interrupt).

• Locally generated interrupts within the local APIC. The local APIC receives local interrupts from
the APIC timer, Performance Monitor Counters, thermal sensors, APIC errors and extended
interrupts from implementation specific sources.

The sources of interrupts for the local APIC are provided in Table 16-1.

Table 16-1. Interrupt Sources for Local APIC
Source Description Message Type to

Local APIC

I/O interrupts

System interrupts from I/O devices or system hardware
received through the I/O APIC and sent to the local
APIC as interrupt messages. They may be edge-
triggered or level-sensitive.

Fixed, Lowest Priority, SMI,
NMI, INIT, Restart, External

interrupt, LINT0, LINT1

Legacy Interrupts Legacy interrupts (INT and NMI) from the PIC and sent
to the local APIC as interrupt messages. NMI, INT

Interprocessor (IPI) Interprocessor interrupts. Used for interrupt forwarding,
system-wide functions, or software self-interrupts.

Fixed, lowest priority, SMI,
read request, NMI, INIT,

Restart, External interrupt

APIC Timer Local interrupt from the programmed APIC timer
reaches zero, under control of TIMER_LVT. Fixed

Performance Monitor
Counter

Local interrupt from the performance monitoring counter
when it overflows, under control of PERF_CNT_LVT. Fixed, SMI, or NMI

Thermal Sensor Local interrupt from internal thermal sensors when it has
tripped, under control of THERMAL_LVT. Fixed, SMI, or NMI

Extended
Interrupt[3:0]

Local Interrupts from programmable internal CPU core
sources, under the control of the
EXTENDED_INTERRUPT[3:0]_LVT.

Fixed, SMI, NMI, or
External interrupt

APIC Internal Error Local interrupt when an error is detected within the local
APIC, under control of ERROR_LVT. Fixed, SMI, or NMI

Advanced Programmable Interrupt Controller (APIC) 547

24593—Rev. 3.30—September 2018 AMD64 Technology

16.2 Interrupt Control
I/O, legacy, and interprocessor interrupts are sent via interrupt messages. The interrupt messages
contain the following information:
• Destination address of the local APIC.
• VECTOR[7:0] indicating interrupt priority of up to 256 interrupt vectors. This information is

captured in the IRR register for Fixed and Lowest Priority interrupt message types.
• Trigger Mode indicating edge triggered or level-sensitive (which requires and EOI response to the

source).
• Message Type[3:0] indicating the type of interrupt to be presented to the local APIC. For Fixed and

Lowest Priority message types, the interrupt is processed through the target local APIC. For all
other message types, the interrupt is sent directly to the destination CPU core. There is a 5-line
interrupt interface to the CPU core for INTR, SMI, NMI, INIT and STARTUP interrupts. For
locally-generated interrupts, control is provided by local vector tables or LVTs. Separate LVTs are
provided for each interrupt source, allowing for unique entry point for each source. The LVT
contains the VECTOR[7:0], trigger mode and message type as well as other fields associated with
the specific interrupt. The message type may be Fixed, SMI, NMI, or External interrupt. A Mask
bit is also provided to mask the interrupt.

16.3 Local APIC
16.3.1 Local APIC Enable

The local APIC is controlled by the APIC enable bit (AE) in the APIC Base Address Register
(MSR 0000_001Bh). See Figure 16-2 on page 548.

When AE is set to 1, the local APIC is enabled and all interrupt types are accepted. When AE is cleared
to 0, the local APIC is disabled, including all local vector table interrupts.

Software can disable the local APIC, using the APIC_SW_EN bit in the Spurious Interrupt Vector
Register (APIC_F0). When this bit is cleared to zero, the local APIC is temporarily disabled:
• SMI, NMI, INIT, Startup, and Remote Read interrupts may be accepted.
• Pending interrupts in the ISR and IRR are held.
• Further fixed, lowest-priority, and ExtInt interrupts are not accepted.
• All LVT entry mask bits are set and cannot be cleared.

548 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 16-2. APIC Base Address Register (MSR 0000_001Bh)

The fields within the APIC Base Address register are as follows:
• Boot Strap CPU Core (BSC)—Bit 8. The BSC bit indicates that this CPU core is the boot core of

the BSP. Each CPU core that is not the boot core of the boot processor is an AP (Application
Processor).

• APIC Enable (AE)—Bit 11. This is the APIC enable bit. The local APIC is enabled and all
interruption types are accepted when AE is set to 1. Clearing AE to 0 disables the local APIC, and
no local vector table interrupts are supported.

• APIC Base Address (ABA)—Bits 51:12. Specifies the base physical address for the APIC register
set. The address is extended by 12 bits at the least-significant end to form the 52-bit physical base
address. The reset value of the APIC base address is 0_0000_FEE0_0000h.

Note that a given processor may implement a physical address less than 52 bits in length.

16.3.2 APIC Registers

The system programming interface of the local APIC is made up of the registers listed in Table 16-2
below. All APIC registers are memory-mapped into the 4-Kbyte APIC register space, and are accessed
with memory reads and writes. The memory address is indicated as:

APIC Register address = APIC Base Address + Offset

where the APIC Base Address must point to an uncacheable memory region, and is located in APIC
Base Address Register, MSR 0000_001Bh. See Figure 16-2.

APIC registers are aligned to 16-byte offsets and must be accessed using naturally-aligned DWORD
size read and writes. All other accesses cause undefined behavior.

The table includes the value of each register after reset.

63 52 51 32

Reserved, MBZ ABA[51:32]

31 12 11 10 9 8 7 0

ABA[31:12] A
E

Res.
MBZ

B
S
C

Reserved, MBZ

Bits Mnemonic Description Access Type
63:52 — Reserved, MBZ
51:12 ABA APIC Base Address R/W
11 AE APIC Enable R/W
8 BSC Boot Strap CPU Core RO
7:0 Reserved Reserved, Must be Zero

Advanced Programmable Interrupt Controller (APIC) 549

24593—Rev. 3.30—September 2018 AMD64 Technology

16.3.3 Local APIC ID

Unique local APIC IDs are assigned to each CPU core in the system. The value is determined by
hardware, based on the number of CPU cores on the processor and the node ID of the processor.

Table 16-2. APIC Registers
Offset Name Reset

20h APIC ID Register ??000000h
30h APIC Version Register 80??0010h
80h Task Priority Register (TPR) 00000000h
90h Arbitration Priority Register (APR) 00000000h
A0h Processor Priority Register (PPR) 00000000h
B0h End of Interrupt Register (EOI) –
C0h Remote Read Register 00000000h
D0h Logical Destination Register (LDR) 00000000h
E0h Destination Format Register (DFR) FFFFFFFF
F0h Spurious Interrupt Vector Register 000000FFh
100-170h In-Service Register (ISR) 00000000h
180-1F0h Trigger Mode Register (TMR) 00000000h
200-270h Interrupt Request Register (IRR) 00000000h
280h Error Status Register (ESR) 00000000h
300h Interrupt Command Register Low (bits 31:0) 00000000h
310h Interrupt Command Register High (bits 63:32) 00000000h
320h Timer Local Vector Table Entry 00010000h
330h Thermal Local Vector Table Entry 00010000h
340h Performance Counter Local Vector Table Entry 00010000h
350h Local Interrupt 0 Vector Table Entry 00010000h
360h Local Interrupt 1 Vector Table Entry 00010000h
370h Error Vector Table Entry 00010000h
380h Timer Initial Count Register 00000000h
390h Timer Current Count Register 00000000h
3E0h Timer Divide Configuration Register 00000000h
400h Extended APIC Feature Register 00040007h
410h Extended APIC Control Register 00000000h
420h Specific End of Interrupt Register (SEOI) –
480-4F0h Interrupt Enable Registers (IER) FFFFFFFFh
500-530h Extended Interrupt [3:0] Local Vector Table Registers 00000000h

550 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

The APIC ID is located in the APIC ID register at APIC offset 20h. See Figure 16-3. It is model
dependent, whether software can modify the APIC ID Register. The initial value of the APIC ID (after
a reset) is the value returned in CPUID function 0000_0001h_EBX[31:24].

Figure 16-3. APIC ID Register (APIC Offset 20h)

• APIC ID (AID)—Bits 31:24. The APIC ID field contains the unique APIC ID value assigned to
this specific CPU core. A given implementation may use some bits to represent the CPU core and
other bits represent the processor.

16.3.4 APIC Version Register

A version register is provided to allow software to identify which APIC version is used. Bits 7:0 of the
APIC Version Register indicate the version number of the APIC implementation.

The number of entries in the local vector table are specified in bits 23:16 of the register as the
maximum number minus one.

Bit 31 indicates the presence of extended APIC registers which have an offset starting at 400h.

Figure 16-4. APIC Version Register (APIC Offset 30h)

The fields within the APIC Version register are as follows:

31 24 23 0

AID Reserved, MBZ

Bits Mnemonic Description R/W
31:24 AID APIC ID R/W
23:0 — Reserved, MBZ

31 30 24 23 16 15 8 7 0
E
A
S

Reserved, MBZ MLE Reserved, MBZ VER

Bits Mnemonic Description R/W
31 EAS Extended APIC Register Space Present RO
30:24 — Reserved, MBZ
23:16 MLE Max LVT Entries RO
15:8 — Reserved, MBZ
7:0 VER Version RO

Advanced Programmable Interrupt Controller (APIC) 551

24593—Rev. 3.30—September 2018 AMD64 Technology

• Version (VER)—Bits 7:0. The VER field indicates the version number of the APIC
implementation. The local APIC implementation is identified with a value=1Xh (20h-FFh are
reserved).

• Max LVT Entries (MLE)—Bits 23:16. The MLE field specifies the number of entries in the local
vector table minus one.

• Extended APIC Register Space Present (EAS)—Bit 31. The EAS bit when set to 1 indicates the
presence of an extended APIC register space, starting at offset 400h.

16.3.5 Extended APIC Feature Register

The Extended APIC Feature Register indicates the number of extended Local Vector Table registers in
the local APIC, whether the Interrupt Enable Registers are present, and whether the 8-bit Extended
APIC ID and Specific End Of Interrupt (SEOI) Register are supported.

Figure 16-5. Extended APIC Feature Register (APIC Offset 400h)

• Extended LVT Count (XLC)—(Bits 23:16) Specifies the number of extended local vector table
registers in the local APIC.

• Extended APIC ID Capability (XAIDC)—(Bit 2) Indicates that the processor is capable of
supporting an 8-bit APIC ID.

• Specific End of Interrupt Capable—(Bit 1) Indicates that the Specific End Of Interrupt Register is
present.

• Interrupt Enable Register Capable—(Bit 0) Read-only. Indicates that the Interrupt Enable
Registers are present.

16.3.6 Extended APIC Control Register

This bit enables writes to the interrupt enable registers.

31 24 23 16 15 3 0

Reserved, MBZ XLC Reserved, MBZ

X
A
I
D
C

S
N
I
C

I
N
C

Bits Mnemonic Description R/W
31:24 Reserved Reserved, Must be Zero
23:16 XLC Extended LVT Count RO
15:3 Reserved Reserved, Must be Zero
2 XAIDC Extended APIC ID Capable RO
1 SNIC Specific End of Interrupt Capable RO
0 INC Interrupt Enable Register Capable RO

552 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 16-6. Extended APIC Control Register (APIC Offset 410h)

• Extended APIC ID Enable (XAIDN)—Bit 2. Setting XAIDN to 1 enables the upper four bits of the
APIC ID field described in “APIC ID Register (APIC Offset 20h)” on page 550. Clearing this bit,
specifies a 4-bit APIC ID using only the lower four bits of the APIC ID field of the APIC ID
register.

• Enable SEOI Generation (SN)—Bit 1. Read-write. This bit enables Specific End of Interrupt
(SEOI) generation when a write to the specific end of interrupt register is received.

• Enable Interrupt Enable Registers (IERN)—Bit 0. This bit enables writes to the interrupt enable
registers.

16.4 Local Interrupts
The local APIC handles the following local interrupts:
• APIC Timer
• Local Interrupt 0 (LINT0)
• Local Interrupt 1 (LINT1)
• Performance Monitor Counters
• Thermal Sensors
• APIC internal error
• Extended (Implementation dependent)

A separate entry in the local vector table is provided for each interrupt to allow software to specify:
• Whether the interrupt is masked or not.
• The delivery status of the interrupt.
• The message type.
• The unique address vector.
• For LINT0 and LINT1 interrupts, the trigger mode, remote IRR, and input pin polarity.

31 3 2 1 0

Reserved, MBZ

X
A
I
D
N

S
N

I
E
R
N

Bits Mnemonic Description R/W
31:3 — Reserved, MBZ
2 XAIDN Extended APIC ID Enable. R/W
1 SN Enable SEOI Generation R/W
0 IERN Enable Interrupt Enable Registers R/W

Advanced Programmable Interrupt Controller (APIC) 553

24593—Rev. 3.30—September 2018 AMD64 Technology

• For the APIC timer interrupt, the timer mode.

The general format of a Local Vector Table Register is shown in Figure 16-7.

Figure 16-7. General Local Vector Table Register Format

The fields within the General Local Vector Table register are as follows:
• Vector (VEC)—Bits 7:0. The VEC field contains the vector that is sent for this interrupt source

when the message type is fixed. It is ignored when the message type is NMI and is set to 00h when
the message type is SMI. Valid values for the vector field are from 16 to 255. A value of 0 to 15
when the message type is fixed results in an illegal vector APIC error.

• Message Type (MT)—Bits 10:8. The MT field specifies the delivery mode sent to the CPU core
interrupt handler. The legal values are:
- 000b = Fixed - The vector field specifies the interrupt delivered.
- 010b = SMI - An SMI interrupt is delivered. In this case, the vector field should be set to 00h.
- 100b = NMI - A NMI interrupt is delivered with the vector field being ignored.
- 111b = External interrupt is delivered.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the interrupt is pending at the CPU core interrupt handler. After a successful delivery of the
interrupt, the associated bit in the IRR is set and this bit is cleared to zero. See Section 16.6.2,
“Lowest Priority Messages and Arbitration,” on page 564 for details. The bit is cleared to 0 when
the interrupt is idle.

• Remote IRR (RIR)—Bit 14. The RIR bit is set to 1 when the local APIC accepts an LINT0 or
LINT1 interrupt with the trigger mode=1 (level sensitive). The bit is cleared to 0 when the interrupt
completes, as indicated when an EOI is received.

31 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ
T
M
M

M
T
G
M

R
I
R

R
e
s

D
S

R
e
s

MT VEC

Bits Mnemonic Description R/W
31:18 — Reserved, MBZ
17 TMM Timer Mode R/W
16 M Mask R/W
15 TGM Trigger Mode R/W
14 RIR Remote IRR RO
13 — Reserved, MBZ
12 DS Delivery Status RO
11 — Reserved, MBZ
10:8 MT Message Type R/W
7:0 VEC Vector R/W

554 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

• Trigger Mode (TGM)—Bit 15. Specifies how interrupts to the local APIC are triggered. The TGM
bit is set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-
triggered. When the message type is SMI or NMI, the trigger mode is edge triggered.

• Mask (M)—Bit 16. When the M bit is set to 1, reception of the interrupt is disabled. When the M
bit is cleared to 0, reception of the interrupt is enabled.

• Timer Mode (TMM)—Bit 17. Specifies the timer mode for the APIC Timer interrupt. The TMM bit
set to 1 indicates periodic timer interrupts. The TMM bit cleared to 0 indicates one-shot operation.

16.4.1 APIC Timer Interrupt

The APIC timer is a programmable 32-bit counter used by software to time operations or events. The
timer can operate in two modes, periodic and one-shot, under the control of bit 17 (Timer Mode) in
APIC Timer Local Vector Table Register (see Figure 16-8). In one-shot mode, the APIC timer is set to
a programmable initial value and decrements at a programmable clock rate. When the timer value
reaches zero, an APIC timer interrupt is generated under the control of bit 16 (Mask) in the APIC
Timer Local Vector Table Register. In periodic mode, the APIC timer is initialized again when it
reaches zero, and it starts to decrement again. Another APIC timer interrupt is generated when the
timer value reaches zero.

Figure 16-8. APIC Timer Local Vector Table Register (APIC Offset 320h)

Three APIC registers are defined for the APIC timer function:
• Current Count Register (CCR) is the actual APIC timer. It is initialized to a start count loaded from

the ICR and then decrements. The APIC timer interrupt is generated when the CCR value reaches
zero. The counting rate is controlled by the DCR. See Figure 16-9.

• Initial Count Register (ICR) contains the start count value for the APIC timer. See Table 16-10.
• Divide Configuration Register (DCR) controls the counting rate of the APIC timer by dividing the

CPU core clock by a programmable amount. See Figure 16-11. For the specific details on the
implementation of the APIC timer base clock rate, see the BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference Manual applicable to your product.

31 18 17 16 15 13 12 11 8 7 0

Reserved, MBZ
T
M
M

M Res
D
S

Res VEC

Advanced Programmable Interrupt Controller (APIC) 555

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 16-9. Timer Current Count Register (APIC Offset 390h)

• APIC Timer Current Count (APICTCC)—Bits 31:0. The APICTCC field contains the current
value of the APIC timer.

Figure 16-10. Timer Initial Count Register (APIC Offset 380h)

• APIC Timer Initial Count (APICTIC)—Bits 31:0. The APICTIC field contains the value that is
loaded into the APIC Timer Current Count Register when the APIC timer is initialized.

Figure 16-11. Divide Configuration Register (APIC Offset 3E0h)

• Divide Value (DV)—Bits 3, 1:0. The DV field specifies the value of the CPU core clock divisor.
Table 16-3 lists the allowable values.

Table 16-3. Divide Values

31 0

APICTCC

Bits Mnemonic Description R/W
31:0 APICTCC APIC Timer Current Count RO

31 0

APICTIC

Bits Mnemonic Description R/W
31:0 APICTIC APIC Timer Initial Count R/W

31 4 3 2 1 0

Reserved, MBZ D
V DV[1:0]

Bits Mnemonic Description R/W
31:4 — Reserved, MBZ
3 DV[2] Divide Value[2] R/W
2 — Reserved, MBZ
1:0 DV[1:0] Divide Value[1:0] R/W

Bits 3, 1:0 Resulting Timer Divide
000b Divide by 2
001b Divide by 4
010b Divide by 8
011b Divide by 16

556 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

16.4.2 Local Interrupts LINT0 and LINT1

When the target local APIC receives an interrupt message from an IOAPIC with the LINT0 or LINT1
message type, the appropriate local interrupt is generated under the control of bit 16 (Mask) in the
APIC LINT0 or LINT1 Local Vector Table Register. See Figure 16-12.

Figure 16-12. Local Interrupt 0/1 (LINT0/1) Local Vector Table Register
(APIC Offset 350h/360h)

In addition to the normal LVT control bits (mask, delivery status and vector offset), the LINT0/LINT1
interrupts provide the following controls:
• Trigger Mode - indicates whether the interrupt pin is edge triggered or level sensitive when the

message type is fixed.
• Remote IRR - When the trigger mode indicates level, this flag is set when the local APIC accepts

the interrupt, and is reset when the local APIC receives an EOI. When the flag is set, no additional
local interrupt requests are sent to the local APIC, and they remain pending.

16.4.3 Performance Monitor Counter Interrupts

When a performance monitor counter overflows, an APIC interrupt is generated under the control of
bit 16 (Mask) in the APIC Performance Monitor Counter Local Vector Table Register. See
Figure 16-13 on page 556.

Figure 16-13. Performance Monitor Counter Local Vector Table Register
(APIC Offset 340h)

100b Divide by 32
101b Divide by 64
110b Divide by 128
111b Divide by 1

31 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ M
T
G
M

R
I
R

R
e
s

D
S

R
e
s

MT VEC

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

Bits 3, 1:0 Resulting Timer Divide

Advanced Programmable Interrupt Controller (APIC) 557

24593—Rev. 3.30—September 2018 AMD64 Technology

16.4.4 Thermal Sensor Interrupts

When a thermal event occurs, an APIC interrupt is generated under the control of bit 16 (Mask) in the
APIC Thermal Sensor Local Vector Table Register. See Figure 16-14. See the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your product
for more information on thermal events. This interrupt may not be supported in all implementations.

Figure 16-14. Thermal Sensor Local Vector Table Register (APIC Offset 330h)

16.4.5 Extended Interrupts

The local interrupts are extended to include more LVT registers, to allow additional interrupt sources.
The additional sources are model dependent and can include:
• Counter overflow from the Machine Check Miscellaneous Threshold Register. See “Machine-

Check Miscellaneous-Error Information Register 0(MCi_MISC0)” on page 276 for details.
• ECC Error Count Threshold in memory system.
• Instruction Sampling.

The LVT register used for each interrupt source is specified by the control register associated with the
source.

The Extended LVT Count field (bits 23:16) of the Extended APIC Feature Register specifies the
number of extended LVT registers. Currently there are four additional LVT registers defined,
Extended Interrupt [3:0], Local Vector Table Register, located at APIC offsets 500h–530h. (See
Section 16.7.1, “Specific End of Interrupt Register,” on page 570 and Figure 16-5 on page 551.)

16.4.6 APIC Error Interrupts

Errors that are detected while handling interrupts cause an APIC error interrupt to be generated under
the control of bit 16 (Mask) in the APIC Error Local Vector Table Register. See Figure 16-15 on
page 557.

Figure 16-15. APIC Error Local Vector Table Register (APIC Offset 370h)

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

31 17 16 15 13 12 11 10 8 7 0

Reserved, MBZ M Res
D
S

R
e
s

MT VEC

558 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

The error information is recorded in the APIC Error Status Registers. The APIC Error Status Register
is a read-write register. Writes to the register cause the internal error state to be recorded in the register,
clearing the original error. See Figure 16-16.

Figure 16-16. APIC Error Status Register (APIC Offset 280h)

The fields within the APIC Error Status register are as follows:
• Sent Accept Error (SAE)—Bit 2. The SAE bit when set to 1 indicates that a message sent by the

local APIC was not accepted by any other APIC.
• Receive Accept Error (RAE)—Bit 3. The RAE bit when set to 1 indicates that a message received

by the local APIC was not accepted by this or any other APIC
• Sent Illegal Vector (SIV)—Bit 5. The SIV bit when set to 1 indicates that the local APIC attempted

to send a message with an illegal vector value.
• Receive Illegal Vector (RIV)—Bit 6. The RIV bit when set to 1 indicates that the local APIC has

received a message with an illegal vector value.
• Illegal Register Address (IRA)—Bit 7. The IRA bit when set to 1 indicates that an access to an

unimplemented register location within the local APIC register range (APIC Base Address + 4
Kbytes) was attempted.

31 8 7 6 5 4 3 2 1 0

Reserved, MBZ
I
R
A

R
I
V

S
I
V

R
e
s

R
A
E

S
A
E

Res,
MBZ

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7 IRA Illegal Register Address R/W
6 RIV Received Illegal Vector R/W
5 SIV Sent Illegal Vector R/W
4 — Reserved, MBZ
3 RAE Receive Accept Error R/W
2 SAE Sent Accept Error R/W
1:0 — Reserved, MBZ

Advanced Programmable Interrupt Controller (APIC) 559

24593—Rev. 3.30—September 2018 AMD64 Technology

16.4.7 Spurious Interrupts

A timing issue exists between software and hardware that, though rare, results in spurious interrupts.
In the event that the task priority is set to or above the level of the interrupt to be serviced while the
interrupt is being acknowledged, the local APIC delivers a spurious interrupt to the CPU core instead,
with the vector number specified by the Vector field of the Spurious Interrupt Register. The ISR is
unaffected by the spurious interrupt, so the interrupt handler completes without sending an EOI back
to the issuing local APIC.

Figure 16-17. Spurious Interrupt Register (APIC Offset F0h)

The fields within the Spurious Interrupt register are as follows:
• Vector (VEC)—Bits 7:0. The VEC field contains the vector that is sent to the CPU core in the event

of a spurious interrupt.
• APIC Software Enable (ASE)—Bit 8. The ASE bit when set to 0 disables the local APIC

temporarily. When the local APIC is disabled, SMI, NMI, INIT, Startup, Remote Read, and LINT
interrupts may be accepted; pending interrupts in the ISR and IRR are held, but further fixed,
lowest-priority, and ExtInt interrupts are not accepted. All LVT entry mask bits are set and cannot
be cleared. Setting the ASE bit to 1, enables the local APIC.

• Focus CPU Core Checking (FCC)—Bit 9. The FCC bit when set to 1 disables focus CPU core
checking when the lowest-priority message type is used. A CPU core is the focus of an interrupt if
it is already servicing that interrupt (ISR=1) or if it has a pending request for that interrupt
(IRR=1). Clearing the FCC bit to 0 disables focus CPU core checking.

16.5 Interprocessor Interrupts (IPI)
A local APIC can send interrupts to other local APICs (or itself) using software-initiated
Interprocessor Interrupts (IPIs) using the Interrupt Command Register (ICR). Writing into the low
order doubleword of the ICR causes the IPI to be sent.

The ICR can issue the following types of interrupt messages:

31 10 9 8 7 0

Reserved, MBZ
F
C
C

A
S
E

VEC

Bits Mnemonic Description R/W
31:10 Reserved Reserved, Must be Zero
9 FCC Focus CPU Core Checking R/W
8 ASE APIC Software Enable R/W
7:0 VEC Vector R/W

560 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

• basic interrupt message to another local APIC, including forwarding an interrupt that was received
but not serviced

• basic interrupt message to the same local APIC (self-interrupt)
• system management interrupt (SMI)
• remote read message to another local APIC to read one of its APIC registers.
• non-maskable interrupt (NMI) delivered to another local APIC
• initialization message (INIT) to a target local APIC to be reset to their INIT state and await a

STARTUP IPI.
• startup message (SIPI) to the target local APICs, pointing to a start-up routine.

The format of the Interrupt Command Register is shown in Figure 16-18.

Figure 16-18. Interrupt Command Register (APIC Offset 300h–3010h)

The fields within the Interrupt Command register are as follows:
• Vector (VEC)—Bits 7:0. The function of this field varies with the Message Type field. The VEC

field contains the vector that is sent for this interrupt source for fixed and lowest priority message
types.

• Message Type (MT)—Bits 10:8. The MT field specifies the message type sent to the CPU core
interrupt handler. The legal values are:
- 000b = Fixed - The IPI delivers an interrupt to the target local APIC specified in Destination

field.

63 56 55 32

DES Reserved, MBZ

31 20 19 18 17 16 15 14 13 12 11 10 8 7 0

Reserved, MBZ DSH RRS
T
G
M

L
R
e
s

D
S

D
M MT VEC

Bits Mnemonic Description R/W
63:56 DES Destination R/W
55:20 — Reserved, MBZ
19:18 DSH Destination Shorthand R/W
17:16 RRS Remote Read Status RO
15 TGM Trigger Mode R/W
14 L Level R/W
13 — Reserved, MBZ
12 DS Delivery Status RO
11 DM Destination Mode R/W
10:8 MT Message Type R/W
7:0 VEC Vector R/W

Advanced Programmable Interrupt Controller (APIC) 561

24593—Rev. 3.30—September 2018 AMD64 Technology

- 001b = Lowest Priority - The IPI delivers an interrupt to the local APIC executing at the lowest
priority of all local APICs that match the destination logical ID specified in the Destination
field. See Section 16.6.1, “Receiving System and IPI Interrupts,” on page 563.

- 010b = SMI - The IPI delivers an SMI interrupt to target local APIC(s). The trigger mode is
edge-triggered and the Vector field must = 00h.

- 011b = Remote read - The IPI delivers a read request to read an APIC register in the target local
APIC specified in Destination field. The trigger mode is edge triggered and the Vector field
specifies the APIC offset of the APIC register to be read. The Remote Status field provides the
current status of the remote read access after it has been issued. Data is returned from the target
local APIC and captured in the Remote Read Register of the issuing local APIC. See
Figure 16-19 on page 562.

- 100b = NMI - The IPI delivers a non-maskable interrupt to the target local APIC specified in
the Destination field. The Vector field is ignored.

- 101b = INIT - The IPI delivers an INIT request to the target local APIC(s) specified in the
Destination field, causing the CPU core to assume the INIT state. The trigger mode is edge-
triggered, and the Vector field must =00h. In the INIT state, the target APIC is responsive only
to the STARTUP IPI. All other interrupts (including SMI and NMI) are held pending until the
STARTUP IPI has been accepted.

- 110b = STARTUP - The IPI delivers a start-up request (SIPI) to the target local APIC(s)
specified in Destination field, causing the CPU core to start processing the platform firmware
boot-strap routine whose address is specified by the Vector field.

- 111b = External interrupt - The IPI delivers an external interrupt to the target local APIC
specified in Destination field. The interrupt can be delivered even if the APIC is disabled.

• Destination Mode (DM)—Bit 11. The DM bit when set to 1 specifies a logical destination which
may be one or more local APICs with a common destination logical ID. When cleared to 0, the DM
bit specifies a physical destination which indicates a single local APIC ID.

• Delivery Status (DS)—Bit 12. The DS bit indicates the interrupt delivery status. The DS bit is set to
1 when the local APIC has sent the IPI and is waiting for it to be accepted by another local APIC
(the ICR is not idle). Clearing the DS bit indicates that the target local APIC is idle. Code may
repeatedly write ICRL without polling the DS bit; all requested IPIs will be delivered.

• Level (L)—Bit 14. The L bit when set to 1 indicates assert. Clearing the L bit to 0 indicates
deassert.

• Trigger Mode (TGM)—Bit 15. Specifies how IPIs to the local APIC are triggered. The TGM bit is
set to 1 when the interrupt is level-sensitive. It is cleared to 0 when the interrupt is edge-triggered.

• Remote Read Status (RRS)—Bits 17:16. The RRS field indicates the current read status of a
Remote Read from another local APIC. The encoding for this field is as follows:
- 00b = Read was invalid
- 01b = Delivery pending
- 10b = Delivery done and access was valid. Data available in Remote Read Register.

562 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

- 11b = Reserved
• Destination Shorthand (DSH)—Bits 19:18. The DSH field indicates whether a shorthand notation

is used, and provides a quick way to specify a destination for a message. It replaces the Destination
field, when the destination field is not required (DSH > 00b), allowing software to use a single
write to the low order ICR. The encoding are as follows:
- 00b = Destination - The Destination field is required to specify the destination.
- 01b = Self - The issuing APIC is the only destination.
- 10b = All including self - The IPI is sent to all local APICs including itself (destination

field=FFh).
- 11b = All excluding self - The IPI is sent to all local APICs except itself (destination

field=FFh).
Note that if the lowest priority is used, the message could end up being reflected back to this
local APIC. If DS=1xb, the destination mode is ignored and physical is automatically used.

• Destination (DES)—Bits 63:56. The DES field identifies the target local APIC(s) for the IPI and
contains the destination encoding used when the Destination Shorthand field=00b. The field
indicates the target local APIC when the destination mode=0 (physical), and the destination logical
ID (as indicated by LDR and DFR) when the destination mode=1 (logical).

Figure 16-19. Remote Read Register (APIC Offset C0h)

• Remote Read Data (RRD)—Bits 31:0. The RRD field contains the data resulting from a valid
completion of a remote read interprocessor interrupt.

Not all combinations of ICR fields are valid. Only the combinations indicated in Table 16-4 are valid.

Table 16-4. Valid ICR Field Combinations

31 0

RRD

Bits Mnemonic Description R/W
31:0 RRD Remote Read Data RO

Message Type Trigger Mode Level Destination Shorthand

Fixed
Edge x x
Level Assert x

Lowest Priority, SMI, NMI, INIT
Edge x Destination or all excluding self.
Level Assert Destination or all excluding self

Startup x x Destination or all excluding self
Note: x indicates a don’t care.

Advanced Programmable Interrupt Controller (APIC) 563

24593—Rev. 3.30—September 2018 AMD64 Technology

16.6 Local APIC Handling of Interrupts
16.6.1 Receiving System and IPI Interrupts

Each local APIC verifies the destination ID, the destination mode and the message type of an APIC
interrupt to determine if it is the target of the interrupt.

The destination mode is either physical or logical. In physical destination mode, the value of the
interrupt message destination field is compared with the unique APIC ID value of each local APIC to
select the target local APIC. If the destination field of the Interrupt Command Register is set to FFh,
the interrupt is broadcasted and accepted by all local APICs. In physical destination mode, the lowest
priority message type is not supported.

In logical destination mode, all local APICs use the Logical Destination Register and the Destination
Format Register to determine if the interrupt is directed to them. The value of the interrupt message
destination field is compared with the value in the Logical Destination Register (see Figure 16-20) of
all local APICs.

The logical APIC ID must be unique. Since the comparison with the interrupt message destination
field is on a bit-basis, there are only 8 unique logical IDs (01h, 02h, 04h, 08h, 10h, 20h, 40h, and 80h).
For flat mode, the logical ID must be one of these values (for a total of eight local APICs supported). In
cluster mode, the value of the logical ID is constrained to be xyh, where 0 ≤ x ≤ Eh and y = either 1,2,4,
or 8, for a total of (15 × 4) possible unique logical IDs.

Figure 16-20. Logical Destination Register (APIC Offset D0h)

• Destination Logical ID (DLID)—Bits 31:24. The DLID field contains the logical APIC ID
assigned to this specific CPU core. The logical APIC ID must be unique.

Two interrupt models are defined for the logical destination mode, the flat model and the cluster
model, under the control of the Destination Format Register. See Figure 16-21.

31 24 23 0

DLID Reserved, MBZ

Bits Mnemonic Description R/W
31:24 DLID Destination Logical ID R/W
23:0 — Reserved, MBZ

564 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 16-21. Destination Format Register (APIC Offset E0h)

• Model (MOD)—Bits 31:28. The MOD field controls which format to use when accepting
interrupts in logical destination mode. The allowable values are 0h = cluster model and
Fh = flat model.

With the flat model, up to eight unique logical APIC ID values can be provided by software by setting
a different bit in the LDR. When the logical ID of the destination is compared with the LDR, if any bit
position is set in both fields, this local APIC is a valid destination. A broadcast to all local APICs
occurs when the LDR is set to all ones.

In the cluster model, bits 31:28 of the logical ID of the destination are compared with bits 31:28 of the
LDR. If there is a match, then bits 27:24 are tested for matching ones, similar to the flat model. If bits
31:28 match, and any of bits 27:24 are set in both fields, this local APIC is a valid destination. The
cluster model allows for 15 unique clusters to be defined, with each cluster having four unique logical
APIC values to be addressed. In cluster logical destination mode, lowest priority message type is not
supported.

In both the flat model and the cluster model, if the destination field = FFh, the interrupt is accepted by
all local APICs.

16.6.2 Lowest Priority Messages and Arbitration

In the case where the interrupt is valid for several local APICs in logical destination mode with a
lowest priority message type, the interrupt is accepted by the local APIC with the lowest arbitration
priority, as indicated by the Arbitration Priority field in the Arbitration Priority Register (APR). The
value in the Arbitration Priority field indicates the current priority for a pending interrupt or task, or an
interrupt being serviced by the CPU core. See Figure 16-22.

31 28 27 0

MOD Reserved, MBZ

Bits Mnemonic Description R/W
31:28 MOD Model R/W
27:0 — Reserved, MBZ

Advanced Programmable Interrupt Controller (APIC) 565

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 16-22. Arbitration Priority Register (APIC Offset 90h)

The fields within the Arbitration Priority register are as follows:
• Arbitration Priority Sub-class (APS)—Bits 3:0. The APS field indicates the current sub-priority to

handle arbitrated interrupts to be serviced by the CPU core.
• Arbitration Priority (AP)—Bits 7:4. The AP field indicates the current priority to handle arbitrated

interrupts to be serviced by the CPU core. The priority is used to arbitrate between CPU cores to
determine which core accepts a lowest-priority interrupt request.

The value in the Arbitration Priority field is equal to the highest priority of the Task Priority field of the
Task Priority Register (TPR), the highest bit set in the In-Service Register (ISR) vector, or the highest
bit set in the Interrupt Request Register (IRR) vector. The value in the Arbitration Priority Sub-class
field is equal to the Task Priority Sub-class if the APR is equal to the TPR, and zero otherwise.

If focus CPU core checking is enabled (Spurious Interrupt Register bit 9=0), the focus CPU core for an
interrupt can always accept the interrupt. A CPU core is the focus of an interrupt if it is already
servicing that interrupt (corresponding ISR bit is set) or if it already has a pending request for that
interrupt (corresponding IRR bit is set). If there is no focus CPU core for an interrupt or if focus CPU
core checking is disabled (Spurious Interrupt Register bit 9=1), all target local APICs identified as
candidates for the interrupt arbitrate to determine which is executing with the lowest arbitration
priority. If there is a tie for lowest priority, the local APIC with the highest APIC ID is selected.

16.6.3 Accepting System and IPI Interrupts

If the local APIC accepting the interrupt determines that the message type for the interrupt request
indicates SMI, NMI, INIT, STARTUP or ExtINT, it sends the interrupt directly to the CPU core for
handling. If the message type is fixed or lowest priority, the accepting local APIC places the interrupt
into an open slot in either the IRR or ISR registers. If there is no free slot, the interrupt is rejected and
sent back to the sender with a retry request.

Three 256-bit acceptance registers support interrupts accepted by the local APIC. Bits 255:16
correspond to interrupt vectors 255:16 with 255 being the highest priority; bits 15:0 are reserved.
• Interrupt Request Register (IRR), which contains interrupt requests that have been accepted but

have not been sent to the CPU core for interrupt handling. When a system interrupt is accepted, the
associated bit corresponding to the interrupt vector is set in the IRR. When the CPU core requests a

31 8 7 4 3 0

Reserved, MBZ AP APS

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:4 AP Arbitration Priority RO
3:0 APS Arbitration Priority Sub-class RO

566 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

new interrupt, the local APIC selects the highest priority IRR interrupt and sends it to the CPU
core. The local APIC then sets the corresponding bit in the ISR and resets the associated IRR bit.
See Figure 16-23 on page 566.

• In-Service Register (ISR) contains the bit map of the interrupts that have been sent to the CPU core
and are still being serviced. When the CPU core writes to the EOI register indicating completion of
the interrupt processing, the associated ISR bit is reset and a new interrupt is selected from the IRR
register. If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing
another interrupt, the higher priority interrupt is sent directly to the CPU core (before the current
interrupt finishes processing) and the associated IRR bit is set. The CPU core interrupts the current
interrupt handler to service the higher priority interrupt. When the interrupt handler for the higher
priority interrupt completes, the associated IRR bit is reset and the interrupt handler returns to
complete the previous interrupt handler routine. If a second interrupt with the same interrupt vector
number is received by the local APIC while the ISR bit is set, the local APIC sets the IRR bit. No
more than two interrupts can be pending for the same interrupt vector number. Subsequent
interrupt requests to the same interrupt vector number will be rejected. See Figure 16-24 on
page 567.

• Trigger Mode Register (TMR) indicates the trigger mode of the interrupt and determines whether
an EOI message is sent to the I/O APIC for level-sensitive interrupts. When the interrupt is
accepted by the local APIC and the IRR bit is set, the associated TMR bit is set for level-sensitive
interrupts or reset for edge-triggered interrupts. At the end of the interrupt handler routine, when
the EOI is received at the local APIC, an EOI message is sent to the I/O APIC if the associated
TMR bit is set for a system interrupt. See Figure 16-25 on page 567.

Figure 16-23. Interrupt Request Register (APIC Offset 200h–270h)

• Interrupt Request bits (IR)—Bits 255:16. The corresponding request bit is set when an interrupt is
accepted by the local APIC. The interrupt request registers provide a bit per interrupt to indicate
that the corresponding interrupt has been accepted by the local APIC. Interrupts are mapped as
follows:

255 16 15 0

IR Res, MBZ

Bits Mnemonic Description R/W
255:16 IR Interrupt Request bits RO
15:0 — Reserved, MBZ

Register Interrupt Number
IRR (APIC offset 200h) 31–16
IRR (APIC offset 210h) 63–32
IRR (APIC offset 220h) 95–64

Advanced Programmable Interrupt Controller (APIC) 567

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 16-24. In Service Register (APIC Offset 100h–170h)

• In Service bits (IS)—Bits 255:16. These bits are set when the corresponding interrupt is being
serviced by the CPU core. The in-service registers provide a bit per interrupt to indicate that the
corresponding interrupt is being serviced by the CPU core. Interrupts are mapped as follows:

Figure 16-25. Trigger Mode Register (APIC Offset 180h–1F0h)

IRR (APIC offset 230h) 127–96
IRR (APIC offset 240h) 159–128
IRR (APIC offset 250h) 191–160
IRR (APIC offset 260h) 223–192
IRR (APIC offset 270h) 255–224

255 16 15 0

IS Res, MBZ

Bits Mnemonic Description R/W
255:16 IS In Service bits RO
15:0 — Reserved, MBZ

Register Interrupt Number
ISR (APIC offset 100h) 31–16
ISR (APIC offset 110h) 63–32
ISR (APIC offset 120h) 95–64
ISR (APIC offset 130h) 127–96
ISR (APIC offset 140h) 159–128
ISR (APIC offset 150h) 191–160
ISR (APIC offset 160h) 223–192
ISR (APIC offset 170h) 255–224

255 16 15 0

TM Res, MBZ

Bits Mnemonic Description R/W
255:16 TM Trigger Mode bits RO
15:0 — Reserved, MBZ

Register Interrupt Number

568 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

• Trigger Mode bits (TM)—Bits 255:16. These bits provide a bit per interrupt to indicate the
assertion mode of each interrupt. Interrupts are mapped as follows:

16.6.4 Selecting and Handling Interrupts

Interrupts are selected by the local APIC for delivery to the CPU core interrupt handler on a priority
determined by the interrupt vector number. Of the 15 priority levels, 15 is the highest and 1 is the
lowest. The priority level for an interrupt is equal to the interrupt vector number divided by 16,
rounded down to the nearest integer, with vectors 0Fh–00h reserved. Therefore, interrupt vectors 79h
and 70h have the same priority level. The high-order hex digit indicates the priority level while the
low-order hex digit indicates the priority within the same priority level.

Two registers are used to determine the priority threshold for selecting interrupts to be delivered to the
CPU core, the Task Priority Register (TPR) and the Processor Priority Register (PPR). Software uses
the TPR to set a priority threshold for interrupts to the CPU core, allowing the OS to block specific
interrupts. See Figure 16-26 on page 568 for more details on the TPR.

The value in the Task Priority field is set by software to set a threshold priority at which the processor
is to be interrupted. The value varies from 0 (all interrupts are allowed) to 15 (all interrupts with fixed
delivery mode are inhibited). See Figure 16-26.

Figure 16-26. Task Priority Register (APIC Offset 80h)

The fields within the Task Priority register are as follows:

Register Interrupt Number
TMR (APIC offset 180h) 31–16
TMR (APIC offset 190h) 63–32
TMR (APIC offset 1A0h) 95–64
TMR (APIC offset 1B0h) 127–96
TMR (APIC offset 1C0h) 159–128
TMR (APIC offset 1D0h) 191–160
TMR (APIC offset 1E0h) 223–192
TMR (APIC offset 1F0h) 255–224

31 8 7 4 3 0

Reserved, MBZ TP TPS

Bits Mnemonic Description R/W
31:8 — Reserved, Must be Zero
7:4 TP Task Priority R/W
3:0 TPS Task Priority Sub-class R/W

Advanced Programmable Interrupt Controller (APIC) 569

24593—Rev. 3.30—September 2018 AMD64 Technology

• Task Priority Sub-class (TPS)—Bits 3:0. The TPS field indicates the current sub-priority to be used
when arbitrating lowest-priority messages. This field is written with zero when TPR is written
using the architectural CR8 register.

• Task Priority (TP)—Bits 7:4. The TP field indicates the current priority to be used when a core is
deciding when to handle interrupts. A value of zero allows all interrupts; a value of Fh disables all
interrupts. TP is also used to arbitrate between CPU cores to determine which core accepts a
lowest-priority interrupt request. This field can also be written using the architectural CR8 register.

The PPR is set by the CPU core and represents the current priority level at which the CPU core is
executing. The PPR determines whether a pending interrupt in the local APIC can be selected for
interrupt handling in the CPU core. The value set by hardware is either the interrupt priority level of
the highest priority ISR bit set or the value in the TPR, whichever is higher. The PPR is equal to the
TPR when the CPU core is not servicing a higher priority interrupt. See Figure 16-27 on page 569.

Figure 16-27. Processor Priority Register (APIC Offset A0h)

The fields within the Processor Priority register are as follows:
• Processor Priority Sub-class (PPS)—Bits 3:0. The PPS field is set to the Task Priority sub-class

field of the Task Priority Register (TPR) if the PP field is equal to the Task Priority field of the
TPR.

• Processor Priority (PP)—Bits 7:4. The PP field indicates the CPU core’s current priority for
servicing a task or interrupt, and is used to determine if any pending interrupts should be serviced.
It is the higher value of either the interrupt priority level of the highest priority ISR bit set or the
value in the TPR.

Pending interrupts must have a higher priority level than the value in the PPR to be selected by the
local APIC for interrupt handling in the core; otherwise, they remain pending in the IRR until the PPR
is lowered below the pending interrupt priority level. No pending interrupts are selected by the local
APIC when the TPR=15.

The local APIC selects the highest priority pending interrupt (highest priority IRR) when the CPU core
is ready, and sends the interrupt (with the IRR vector) to the CPU core. The local APIC resets the
highest priority IRR bit and sets the associated ISR bit.

31 8 7 4 3 0

Reserved, MBZ PP PPS

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:4 PP Processor Priority RO
3:0 PPS Processor Priority Sub-class RO

570 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

As part of the completion of the interrupt handling routine, software writes a value of zero to the End-
of-Interrupt Register (EOI) in the local APIC, which causes the local APIC to reset the associated ISR
bit. The EOI register is a write-only register.

If a higher priority interrupt is accepted by the local APIC while the CPU core is servicing another
interrupt, the higher priority interrupt is sent directly to the CPU core (before the current interrupt
finishes processing) and the associated ISR bit is set. The CPU core interrupts the current interrupt
handler to service the higher priority interrupt. When the interrupt handler for the higher priority
interrupt completes, the associated ISR bit is reset and the interrupt handler returns to complete the
previous interrupt handler routine.

Figure 16-28. End of Interrupt (APIC Offset B0h)

• End of Interrupt (EOI)—Bits 31:0. Write-only operation signals end of interrupt processing to
source of interrupt.

16.7 SVM Support for Interrupts and the Local APIC
The SVM hypervisor uses the Extended APIC Feature Register, Extended APIC Control Register,
Specific End of Interrupt Register (SEOI), and Interrupt Enable Register (IER) to control virtualized
interrupts. When guests have direct access to devices, interrupts arriving at the local APIC can usually
be dismissed only by the guest that owns the device causing the interrupt. To prevent one guest from
blocking other guests’ interrupts (by never processing their own), the VMM can mask pending
interrupts in the local APIC, so they do not participate in the prioritization of other interrupts.

16.7.1 Specific End of Interrupt Register

Software issues a specific EOI (SEOI) by writing the vector number of the interrupt to the SEOI
register in the local APIC. The SEOI register is located at offset 420h in the APIC space. The SEOI
register format is shown in Figure 16-29.

31 0

EOI

Bits Mnemonic Description R/W
31:0 EOI End of Interrupt WO

Advanced Programmable Interrupt Controller (APIC) 571

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 16-29. Specific End of Interrupt (APIC Offset 420h)

16.7.2 Interrupt Enable Register

The IER is made available to software by means of eight 32-bit registers in the local APIC; bit i of the
256-bit IER is located at bit position (i mod 32) in the local APIC register IER[i / 32]. The eight IER
registers are located at offsets 480h, 490h, ...,4F0h in APIC space. The IER format is shown in Figure
16-30.

Figure 16-30. Interrupt Enable Register (APIC Offset 480h–4F0h)

• Interrupt Enable (IE)—Bits 255:16. Interrupts are mapped as follows:

The IER and SEOI registers are located in the APIC Extended Space area. The presence of the APIC
Extended Space area is indicated by bit 31 of the APIC Version Register (at offset 30h in APIC space).

31 8 7 0

Reserved, MBZ VECTOR

Bits Mnemonic Description R/W
31:8 — Reserved, MBZ
7:0 VECTOR Vector Number of Interrupt R/W

255 16 15 0

IE Res, MBZ

Bits Mnemonic Description R/W
255:16 IE Interrupt Enable R/W
15:0 — Reserved, MBZ

Register Interrupt Number
IER (APIC offset 480h) 31–16
IER (APIC offset 490h) 63–32
IER (APIC offset 4A0h) 95–64
IER (APIC offset 4B0h) 127–96
IER (APIC offset 4C0h) 159–128
IER (APIC offset 4D0h) 191–160
IER (APIC offset 4E0h) 223–192
IER (APIC offset 4F0h) 255–224

572 Advanced Programmable Interrupt Controller (APIC)

AMD64 Technology 24593—Rev. 3.30—September 2018

The presence of the IER and SEOI functionality is identified by bits 0 and 1, respectively, of the APIC
Extended Feature Register (located at offset 400h in APIC space). IER and SEOI are enabled by
setting bits 0 and 1, respectively, of the APIC Extended Control Register (located at offset 410h).

Only vectors that are enabled in IER participate in APIC's computation of the highest-priority pending
interrupt. The reset value of IER is all ones.

Hardware Performance Monitoring and Control 573

24593—Rev. 3.30—September 2018 AMD64 Technology

17 Hardware Performance Monitoring and
Control

The AMD64 architecture provides several mechanisms by which software can monitor and control
processor performance to optimize power use. The following lists the facilities that are described in the
sections that follow:
• The P-state control interface allows dynamic control of performance states. See Section 17.1

which follows immediately below.
• Core performance boost (CPB) dynamically increases core clock rate beyond that defined for the

P0 power state to achieve higher performance while maintaining power consumption below a
preset level. See Section 17.2 on page 575.

• The effective frequency interface provides a measure of the actual core clock rate over a specified
period of time. See Section 17.3 on page 576.

• The processor power reporting interface allows system software to measure average processor
core power over a given time period. See Section 17.5 on page 578.

17.1 P-State Control
P-states are operational performance states (states in which the processor is executing instructions, that
is, running software) characterized by a unique frequency of operation for a CPU core. The P-state
control interface supports dynamic P-state changes in up to 16 P-states called P-states 0 through 15 or
P0 though P15. P0 is the highest power, highest performance P-state; each ascending P-state number
represents a lower-power, lower-performance state.

Core P-states are controlled by software. Each CPU core contains one set of P-state control registers.
Software controls the P-states of each CPU core independently; however, hardware may include
interdependencies that affect the P-state achieved by each core.

Hardware provides the highest P-state value in the PstateMaxVal field of the P-State Current Limit
Register. P-states may be limited to a lower performance value under certain conditions. The current
P-state limit is dynamic and is specified in the CurPstateLimit field of the P-State Current Limit
Register.

Software requests a core P-state change by writing a 4-bit index corresponding to the desired core P-
state number to the P-State Control Register of the appropriate core. For example, to request the P3
state for core 0, software writes 3h to the core 0’s PstateCmd field in MSR C001_0062h. If the P-state
value is greater than the value in PstateMaxVal, the value written is clipped to that value.

As the current P-state limit changes, the P-state for the CPU core is either set to the software-requested
P-state value or the new current P-state limit, whichever is the higher P-state value.

574 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.30—September 2018

The current P-state value can be read using the P-State Status Register. The P-State Current Limit
Register and the P-State Status Register are read-only registers. Writes to these registers cause a #GP
exception. Support for hardware P-state control is indicated by
CPUID Fn8000_0007_EDX[HwPstate] = 1. Figure 17-1 below shows the format of the P-State
Current Limit register.

Figure 17-1. P-State Current Limit Register (MSR C001_0061h)

The fields within the P-State Current Limit register are:
• Current P-State Limit (CurPstateLimit)—Bits 3:0. Provides the current P-state limit, which is the

lowest P-state value (highest-performance state) that is currently supported by the hardware. This
is a dynamic value controlled by hardware. Reset value is implementation specific.

• P-State Maximum Value (PstateMaxVal)—Bits 7:4. Specifies the highest P-state value (lowest
performance state) supported by the hardware. Attempts to change the current P-state number to a
higher value by writes to the P-State Control Register are clipped to the value of this field. Reset
value is implementation specific.

Figure 17-2. P-State Control Register (MSR C001_0062h)

P-State Change Command (PstateCmd)—Bits 3:0. Writes to this field cause the CPU core to change
to the indicated P-state number, which may be clipped by the PstateMaxVal field of the P-State Cur-
rent Limit Register. Reset value is implementation specific.

63 8 7 4 3 0

Reserved, MBZ PstateMaxVal CurPstateLimit

Bits Mnemonic Description R/W
63:8 — Reserved, MBZ
7:4 PstateMaxVal P-state maximum value R
3:0 CurPstateLimit Current P-state limit R

63 4 3 0

Reserved, MBZ PstateCmd

Bits Mnemonic Description R/W
63:4 — Reserved, MBZ
3:0 PstateCmd P-state change command R/W

Hardware Performance Monitoring and Control 575

24593—Rev. 3.30—September 2018 AMD64 Technology

Figure 17-3. P-State Status Register (MSR C001_0063h)

Current P-State (CurPstate)—Bits 3:0. This field provides the current P-state of the CPU core regard-
less of the source of the P-state change, including writes to the P-State Control Register: 0 = P-state 0,
1 = P-state 1, etc. The value of this field is updated when the frequency transitions to a new value
associated with the P-state. Reset value is implementation specific.

17.2 Core Performance Boost
Core performance boost (CPB) dynamically monitors processor activity to create an estimate of power
consumption. If the estimated processor consumption is below an internally defined power limit and
software has requested P0 on a given core, hardware may transition the core to a frequency and voltage
beyond those defined for P0. If the estimated power consumption exceeds the defined power limit,
some or all cores are limited to the frequency and voltage defined by P0. CPB ensures that average
power consumption over a thermally significant time period remains at or below the defined power
limit.

CPB can be disabled using the CPBDis field of the Hardware Configuration Register (HWCR MSR)
on the appropriate core. When CPB is disabled, hardware limits the frequency and voltage of the core
to those defined by P0.

Support for core performance boost is indicated by CPUID Fn8000_0007_EDX[CPB] = 1. See
Section 3.3, “Processor Feature Identification,” on page 63 for more information on using the CPUID
instruction.

63 4 3 0

Reserved, MBZ CurPstate

Bits Mnemonic Description R/W
63:4 — Reserved, MBZ
3:0 CurPstate Current P-state R

576 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.30—September 2018

Figure 17-4. Core Performance Boost (MSRC001_0015h)

Core Performance Boost Disable (CpbDis)—Bit 25. Specifies whether core performance boost is
enabled or disabled. 0 = Enabled. 1 = Disabled.

17.3 Determining Processor Effective Frequency
The Max Performance Frequency Clock Count (MPERF) and the Actual Performance Frequency
Clock Count (APERF) registers constitute the effective frequency interface. This interface provides a
means for software to calculate an average, or effective, frequency of a core over a known window of
time. This provides software a measure of actual performance rather than forcing software to assume
that the current frequency of the core is the frequency of the last P-state requested.

To calculate an effective clock frequency of a given processor core, on that processor do the following:
1. Read both MPERF and APERF and save their initial values.

- MPERF_INIT = MPERF and APERF_INIT = APERF
2. Wait an appropriate amount of time.
3. Read both MPERF and APERF again.
4. Effective frequency = {(APERF − APERF_INIT) / (MPERF − MPERF_INIT)} * P0 frequency.

The amount of time that elapses between steps 1 and 3 is determined by software. This allows software
to define the time window over which the processor frequency is averaged. Software should disable
interrupts or any other events that may occur between the read of MPERF and the read of APERF in
step 1 and again when the two MSRs are read in step 3. Step 4 provides the equation for the calculation
of the effective frequency value. Software determines the P0 frequency using ACPI defined data
structures.

The effective frequency interface only counts clock cycles while the core is in the ACPI defined C0
state.

Only the ratio between MPERF and APERF is architecturally defined. Software should not assume
any specific definition of the MPERF or APERF registers. If an overflow of either the MPERF or

63 25 0

Reserved, MBZ Reserved

Bits Mnemonic Description R/W
63:26 — Reserved

25 CPBDis Core Performance Boost Disable R/W

24:0 — Reserved

Hardware Performance Monitoring and Control 577

24593—Rev. 3.30—September 2018 AMD64 Technology

APERF register occurs between the read of MPERF in step 1 and the read of APERF in step 3, the
effective frequency calculated in step 4 is invalid.

Hardware support for the effective frequency interface is indicated by
CPUID Fn0000_0006_ECX[EffFreq]. See Section 3.3, “Processor Feature Identification,” on page 63
for more information on using the CPUID instruction.

17.3.1 Actual Performance Frequency Clock Count (APERF)
Specifies the numerator of the effective frequency ratio.

Figure 17-5. Actual Performance Frequency Count (MSR0000_00E8h)

17.3.2 Maximum Performance Frequency Clock Count (MPERF)
Specifies the denominator of the effective frequency ratio. The value read is scaled by the TSCRatio
value (MSR C000_0104h) for guest reads, but the underlying counters are not affected. Reads in host
mode or writes to MPERF are not affected.

Figure 17-6. Max Performance Frequency Count (MSR0000_00E7h)

63 0

APERF

Bits Mnemonic Description Access
Type

63:0 APERF Actual Performance Frequency Clock Count R/W

63 0

MPERF

Bits Mnemonic Description Access
Type

63:0 MPERF Max Performance Frequency Clock Count R/W

578 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.30—September 2018

17.3.3 MPERF Read-only (MperfReadOnly)
Read-only version of MPERF. The value read is scaled by the TSCRatio value (MSR C000_0104h)
for guest reads.

Figure 17-7. MPERF Read Only (MSR C000_00E7h)

17.4 Processor Feedback Interface
The Processor Feedback Interface is deprecated. Some processor products may support this feature. To
determine support on a given processor, software can test the feature bit CPUID
Fn8000_0007_EDX[ProcFeedbackInterface]. For more information, consult the BIOS and Kernel
Developer’s Guide (BKDG) or Processor Programming Reference Manual applicable to your
product.

17.5 Processor Core Power Reporting
The processor power reporting interface allows system software to estimate the average power
consumed by a processor core over a software-determined time period. Computing the average power
involves reading a “core power accumulator” register at the beginning and end of the measurement
interval, taking the difference and then dividing by the length of the time interval.

Support for the processor power reporting interface is indicated by
CPUID Fn8000_0007_EDX[ProcPowerReporting] = 1.

17.5.1 Processor Facilities
Estimating core average power involves the use of several processor facilities. Processors that support
the processor power reporting interface define the following three facilities:
• CpuSwPwrAcc MSR
• MaxCpuSwPwrAcc MSR
• CpuPwrSampleTimeRatio (CPUID Fn8000_0007_ECX)

63 0

MPERF_RD_ONLY

Bits Mnemonic Description Access
Type

63:0 MPERF_RD_ONLY MPERF Read Only RO

Hardware Performance Monitoring and Control 579

24593—Rev. 3.30—September 2018 AMD64 Technology

A fourth facility, available on all processors, is the time-stamp counter (TSC). The TSC is a free-
running counter that increments on every processor clock cycle. The current value o f this counter is
read using the RDTSC instruction.

The contents of the CpuSwPwrAcc register represents the cumulative energy consumed by the core.
Each hardware-determined sample period (Tsample) a value that represents the energy consumed
since the previous sample is added to the contents of this register. Tsample is on the order of a few
microseconds. The exact value is immaterial because the CpuPwrSampleTimeRatio register provides
the ratio of Tsample to the TSC period.

CpuSwPwrAcc is cleared to zero at power-on and is never reset. Therefore, it is possible for this
counter to overflow and roll over to zero. To account for this, the interface provides the
MaxCpuSwPwrAcc register. When read, this register provides a value that represents the maximum
energy that the CpuSwPwrAcc register can report.

17.5.2 Software Algorithm
The following algorithm should be used to calculate the average power consumed by a processor core
during the measurement interval TM. To obtain a stable average power value, TM should be on the
order of several milliseconds.
• Determine the value of the ratio of Tsample to the TSC period (CpuPwrSampleTimeRatio) by

executing CPUID Fn8000_0007. Call this value N.
N = CPUID Fn8000_0007_ECX[31:0].

• Read the full range of the cumulative energy value from the register MaxCpuSwPwrAcc.
Jmax = value returned from RDMSR MaxCpuSwPwrAcc.

• At time x, read CpuSwPwrAcc and the TSC
Jx = value returned by RDMSR CpuSwPwrAcc
Tx = value returned by RDTSC

• At time y, read CpuSwPwrAcc and the TSC again
Jy = value returned by RDMSR CpuSwPwrAcc
Ty = value returned by RDTSC

Calculate the average power consumption for the processor core over the measurement interval TM =
(Ty – Tx).
• If (Jy < Jx), rollover has occurred; set Jdelta = (Jy + Jmax) – Jx

else Jdelta = Jy – Jx
• PwrCPUave = N * Jdelta / (Ty - Tx)

Units of result is milliwatts.

580 Hardware Performance Monitoring and Control

AMD64 Technology 24593—Rev. 3.30—September 2018

MSR Cross-Reference 581

24593—Rev. 3.30—September 2018 AMD64 Technology

Appendix A MSR Cross-Reference

This appendix lists the MSRs that are defined in the AMD64 architecture. The AMD64 architecture
supports some of the same MSRs as previous versions of the x86 architecture and implementations
thereof. Where possible, the AMD64 architecture supports the same MSRs, for the same functions, as
these previous architectures and implementations.

The first section lists the MSRs according to their MSR address, and it gives a cross reference for
additional information. The remaining sections list the MSRs by their functional group. Those sections
also give a brief description of the register and specify the register reset value.

Some MSRs are implementation-specific For information about these MSRs, see the documentation
for specific implementations of the AMD64 architecture.

A.1 MSR Cross-Reference by MSR Address
Table A-1 lists the MSRs in the AMD64 architecture in order of MSR address.

Table A-1. MSRs of the AMD64 Architecture
MSR

Address MSR Name Functional
Group Cross-Reference

0010h TSC Performance “Time-Stamp Counter” on page 371

001Bh APIC_BASE System
Software “Local APIC Enable” on page 547

00E7h MPERF Performance “Determining Processor Effective Frequency” on
page 576

00E8h APERF Performance “Determining Processor Effective Frequency” on
page 576

00FEh MTRRcap Memory Typing “Identifying MTRR Features” on page 195
0174h SYSENTER_CS

System
Software “SYSENTER and SYSEXIT MSRs” on page 1540175h SYSENTER_ESP

0176h SYSENTER_EIP

0179h MCG_CAP

Machine Check

“Machine-Check Global-Capabilities Register” on
page 268

017Ah MCG_STATUS “Machine-Check Global-Status Register” on
page 269

017Bh MCG_CTL “Machine-Check Global-Control Register” on
page 270

01D9h DebugCtl Software Debug “Debug-Control MSR (DebugCtl)” on page 355

582 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

01DBh LastBranchFromIP

Software Debug “Control-Transfer Recording MSRs” on page 357
01DCh LastBranchToIP
01DDh LastIntFromIP
01DEh LastIntToIP
0200h MTRRphysBase0

Memory Typing “Variable-Range MTRRs” on page 192

0201h MTRRphysMask0
0202h MTRRphysBase1
0203h MTRRphysMask1
0204h MTRRphysBase2
0205h MTRRphysMask2
0206h MTRRphysBase3
0207h MTRRphysMask3
0208h MTRRphysBase4
0209h MTRRphysMask4
020Ah MTRRphysBase5
020Bh MTRRphysMask5
020Ch MTRRphysBase6
020Dh MTRRphysMask6
020Eh MTRRphysBase7
020Fh MTRRphysMask7
0250h MTRRfix64K_00000

Memory Typing “Fixed-Range MTRRs” on page 190

0258h MTRRfix16K_80000
0259h MTRRfix16K_A0000
0268h MTRRfix4K_C0000
0269h MTRRfix4K_C8000
026Ah MTRRfix4K_D0000
026Bh MTRRfix4K_D8000
026Ch MTRRfix4K_E0000
026Dh MTRRfix4K_E8000
026Eh MTRRfix4K_F0000
026Fh MTRRfix4K_F8000
0277h PAT

Memory Typing
“PAT Register” on page 198

02FFh MTRRdefType “Default-Range MTRRs” on page 194

Table A-1. MSRs of the AMD64 Architecture (continued)
MSR

Address MSR Name Functional
Group Cross-Reference

MSR Cross-Reference 583

24593—Rev. 3.30—September 2018 AMD64 Technology

0400h MC0_CTL

Machine Check See the documentation for particular
implementations of the architecture.

0404h MC1_CTL
0408h MC2_CTL
040Ch MC3_CTL
0410h MC4_CTL
0414h MC5_CTL
0401h MC0_STATUS

Machine Check “Machine-Check Status Registers” on page 273

0405h MC1_STATUS
0409h MC2_STATUS
040Dh MC3_STATUS
0411h MC4_STATUS
0415h MC5_STATUS
0402h MC0_ADDR

Machine Check “Machine-Check Address Registers” on page 276

0406h MC1_ADDR
040Ah MC2_ADDR
040Eh MC3_ADDR
0412h MC4_ADDR
0416h MC5_ADDR
0403h MC0_MISC

Machine Check “Machine-Check Miscellaneous-Error Information
Register 0(MCi_MISC0)” on page 276

0407h MC1_MISC
040Bh MC2_MISC
040Fh MC3_MISC
0413h MC4_MISC
0417h MC5_MISC

C000_0080h EFER System
Software

“Extended Feature Enable Register (EFER)” on
page 55

C000_0081h STAR

System
Software “SYSCALL and SYSRET MSRs” on page 153

C000_0082h LSTAR
C000_0083h CSTAR
C000_0084h SF_MASK
C000_0100h FS.Base System

Software “FS and GS Registers in 64-Bit Mode” on page 72
C000_0101h GS.Base

C000_0102h KernelGSbase System
Software “SWAPGS Instruction” on page 155

C000_0103h TSC_AUX System
Software “RDTSCP Instruction” on page 157

Table A-1. MSRs of the AMD64 Architecture (continued)
MSR

Address MSR Name Functional
Group Cross-Reference

584 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

C000_0408h MC4_MISC1
Machine Check “Machine-Check Miscellaneous-Error Information

Register 0(MCi_MISC0)” on page 276C000_0409h MC4_MISC2
C000_040Ah MC4_MISC3
C001_0000h PerfEvtSel0

Performance “Core Performance Event-Select Registers” on
page 366

C001_0001h PerfEvtSel1
C001_0002h PerfEvtSel2
C001_0003h PerfEvtSel3
C001_0004h PerfCtr0

Performance “Performance Counter MSRs” on page 364
C001_0005h PerfCtr1
C001_0006h PerfCtr2
C001_0007h PerfCtr3

C001_0010h SYSCFG Memory Typing “System Configuration Register (SYSCFG)” on
page 59

C001_0016h IORRBase0

Memory Typing “IORRs” on page 204
C001_0017h IORRMask0
C001_0018h IORRBase1
C001_0019h IORRMask1
C001_001Ah TOP_MEM

Memory Typing “Top of Memory” on page 206
C001_001Dh TOP_MEM2
C001_0030h

Processor_Name_String CPUID Name
See appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming
Reference Manual for details.

C001_0031h
C001_0032h
C001_0033h
C001_0034h
C001_0035h

C001_0056h SMI_Trigger_IO_Cycle SMM
See appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming
Reference Manual for details.

C001_0061h P-State Current Limit
SMM “Hardware Performance Monitoring and Control”

on page 573C001_0062h P-State Control
C001_0063h P-State Status
C001_0074h CPU_Watchdog_Timer Machine Check “CPU Watchdog Timer Register” on page 270
C001_0104h TSC Ratio SVM “TSC Ratio MSR (C000_0104h)” on page 528
C001_0111h SMBASE

SMM
“SMBASE Register” on page 287

C001_0112h SMM_ADDR
“SMRAM Protected Areas” on page 293

C001_0113h SMM_MASK

Table A-1. MSRs of the AMD64 Architecture (continued)
MSR

Address MSR Name Functional
Group Cross-Reference

MSR Cross-Reference 585

24593—Rev. 3.30—September 2018 AMD64 Technology

A.2 System-Software MSRs
Table A-2 lists the MSRs defined for general use by system software in controlling long mode and in
allowing fast control transfers between applications and the operating system.

C001_0114h VM_CR SVM “SVM Related MSRs” on page 526
C001_0115h IGNNE SVM “SVM Related MSRs” on page 526
C001_0116h SMM_CTL SVM “SVM Related MSRs” on page 526
C001_0117h VM_HSAVE_PA SVM “SVM Related MSRs” on page 526
C001_0118h SVM_KEY_MSR SVM “SVM-Lock” on page 529
C001_0119h SMM_KEY_MSR SMM “SMM-Lock” on page 530

C001_011Ah Local_SMI_Status SMM
See appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor Programming
Reference Manual for details.

C001_011Bh Doorbell Register SVM “Doorbell Register” on page 523
C001_011E VMPAGE_FLUSH SVM “Secure Encrypted Virtualization” on page 532
C001_0140h OSVW_ID_Length

OSVW “OS-Visible Workarounds” on page 617
C001_0141h OSVW Status

Table A-2. System-Software MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0000_001Bh APIC_BASE
See appropriate BIOS and Kernel
Developer’s Guide (BKDG) or Processor
Programming Reference Manual for details.

0000_0000_FEE0_0x00h

C000_0080h EFER
Contains control bits that enable extended
features supported by the processor,
including long mode.

0000_0000_0000_0000h

C000_0081h STAR

In legacy mode, used to specify the target
address of a SYSCALL instruction, as well as
the CS and SS selectors of the called and
returned procedures.

undefined

C000_0082h LSTAR In 64-bit mode, used to specify the target RIP
of a SYSCALL instruction. undefined

C000_0083h CSTAR In compatibility mode, used to specify the
target RIP of a SYSCALL instruction. undefined

C000_0084h SF_MASK SYSCALL Flags Mask undefined

Table A-1. MSRs of the AMD64 Architecture (continued)
MSR

Address MSR Name Functional
Group Cross-Reference

586 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

A.3 Memory-Typing MSRs
Table A-3 lists the MSRs used to control memory-typing and the page-attribute-table mechanism.

C000_0100h FS.Base
Contains the 64-bit base address in the
hidden portion of the FS register (the base
address from the FS descriptor).

0000_0000_0000_0000h

C000_0101h GS.Base
Contains the 64-bit base address in the
hidden portion of the GS register (the base
address from the GS descriptor).

0000_0000_0000_0000h

C000_0102h KernelGSbase

The SWAPGS instruction exchanges the
value in KernelGSbase with the value in
GS.base, providing a fast method for system
software to load a pointer to system data-
structures.

undefined

C000_0103h TSC_AUX The RDTSCP instruction copies the value of
this MSR into the ECX register. 0000_0000_0000_0000h

C000_0104h TSC_RATIO Specifies the TSCRatio value which is used
to scale the TSC value read by a Guest. 0000_0001_0000_0000h

0174h SYSENTER_CS
In legacy mode, used to specify the CS
selector of the procedure called by
SYSENTER.

undefined

0175h SYSENTER_ESP
In legacy mode, used to specify the stack
pointer for the procedure called by
SYSENTER.

undefined

0176h SYSENTER_EIP In legacy mode, used to specify the EIP of the
procedure called by SYSENTER. undefined

Table A-3. Memory-Typing MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

00FEh MTRRcap
A read-only register containing information
describing the level of MTRR support
provided by the processor.

0000_0000_0000_0508h

Table A-2. System-Software MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

MSR Cross-Reference 587

24593—Rev. 3.30—September 2018 AMD64 Technology

0200h MTRRphysBase0

Specifies the memory-range base address
in physical-address space of a variable-
range memory region. These registers
also specify the memory type used for the
memory region.

undefined

0202h MTRRphysBase1
0204h MTRRphysBase2
0206h MTRRphysBase3
0208h MTRRphysBase4
020Ah MTRRphysBase5
020Ch MTRRphysBase6
020Eh MTRRphysBase7
0201h MTRRphysMask0

Specifies the size of a variable-range
memory region.

Valid (bit 11) = 0
All Other Bits Undefined

0203h MTRRphysMask1
0205h MTRRphysMask2
0207h MTRRphysMask3
0209h MTRRphysMask4
020Bh MTRRphysMask5
020Dh MTRRphysMask6
020Fh MTRRphysMask7
0250h MTRRfix64K_00000

Fixed-range MTRRs used to characterize
the first 1 Mbyte of physical memory. Each
64-bit register contains eight type fields for
characterizing a total of eight memory
ranges.
• MTRRfix64K_n characterizes 64 Kbyte

ranges.
• MTRRfix16K_n characterizes 16 Kbyte

ranges.
• MTRRfix4K_n characterizes 4 Kbyte

ranges.

undefined

0258h MTRRfix16K_80000
0259h MTRRfix16K_A0000
0268h MTRRfix4K_C0000
0269h MTRRfix4K_C8000
026Ah MTRRfix4K_D0000
026Bh MTRRfix4K_D8000
026Ch MTRRfix4K_E0000
026Dh MTRRfix4K_E8000
026Eh MTRRfix4K_F0000
026Fh MTRRfix4K_F8000

0277h PAT
Used to extend the page-table entry
format, allowing memory-type
characterization on a physical-page basis.

0007_0406_0007_0406h

02FFh MTRRdefType
Sets the default memory-type for physical
addresses not within ranges established
by fixed-range and variable-range MTRRs.

0000_0000_0000_0000h

C001_0010h SYSCFG Contains control bits for enabling and
configuring system bus features. 0000_0000_0002_0601h

Table A-3. Memory-Typing MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

588 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

C001_0016h IORRBase0 Specifies the memory-range base address
in physical-address space of a variable-
range I/O region.

undefined
C001_0018h IORRBase1

C001_0017h IORRMask0 Specifies the size of a variable-range I/O
region.

Valid (bit 11) = 0
All Other Bits UndefinedC001_0019h IORRMask1

C001_001Ah TOP_MEM
Sets the boundary between system
memory and memory-mapped I/O for
addresses below 4 Gbytes.

0000_0000_0400_0000h

C001_001Dh TOP_MEM2
Sets the boundary between system
memory and memory-mapped I/O for
addresses above 4 Gbytes.

undefined

Table A-3. Memory-Typing MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

MSR Cross-Reference 589

24593—Rev. 3.30—September 2018 AMD64 Technology

A.4 Machine-Check MSRs
Table A-4 lists the MSRs used in support of the machine-check mechanism.

Table A-4. Machine-Check MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0179h MCG_CAP
A read-only register that specifies the
machine-check mechanism capabilities
supported by the processor.

0000_0000_0000_010xh

017Ah MCG_STATUS
Provides basic information about the
processor state immediately after the
occurrence of a machine-check error.

undefined

017Bh MCG_CTL Controls global reporting of machine-
check errors from various sources. 0000_0000_0000_0000h

0400h MC0_CTL Controls error reporting for the data-
cache-unit register bank. 0000_0000_0000_0000h

0404h MC1_CTL Controls error reporting for the instruction-
cache-unit register bank. 0000_0000_0000_0000h

0408h MC2_CTL Controls error reporting for the bus-unit
register bank. 0000_0000_0000_0000h

040Ch MC3_CTL Controls error reporting for the load/store-
unit register bank. 0000_0000_0000_0000h

0410h MC4_CTL Controls error reporting for the
northbridge register bank. 0000_0000_0000_0000h

0414h MC5_CTL Controls error reporting for the execution
unit register bank. 0000_0000_0000_0000h

0400h + 4i MCi_CTL Control for additional error reporting
banks, per implementation. See BKDG/PPR

0401h MC0_STATUS

Status registers for each error-reporting
register bank, used to report machine-
check error information for the specified
register bank.

undefined

0405h MC1_STATUS
0409h MC2_STATUS
040Dh MC3_STATUS
0411h MC4_STATUS
0415h MC5_STATUS
0402h MC0_ADDR

Reports the instruction memory-address
or data memory-address responsible for
the machine-check error for the specified
register bank.

undefined

0406h MC1_ADDR
040Ah MC2_ADDR
040Eh MC3_ADDR
0412h MC4_ADDR
0416h MC5_ADDR

590 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

A.5 Software-Debug MSRs
Table A-5 lists the MSRs used in support of the software-debug architecture.

0403h MC0_MISC

Reports miscellaneous information about
the machine-check error for the specified
register bank.

c00x_xxxx_xx00_0000

0407h MC1_MISC
040Bh MC2_MISC
040Fh MC3_MISC
0413h MC4_MISC
0417h MC5_MISC

C000_0408h MC4_MISC1
c00x_xxxx_0000_0000C000_0409h MC4_MISC2

C000_040Ah MC4_MISC3

C001_0074h CPU_Watchdog_Timer
Timer that can cause a machine check
error if no operation completes after a
specified time period.

0000_0000_0000_0000h

Table A-5. Software-Debug MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

01D9h DebugCtl

Provides debug controls for control-transfer
recording and control-transfer single
stepping, and external-breakpoint reporting
and trace messages.

0000_0000_0000_0000h

01DBh LastBranchFromIP
During control-transfer recording, this
register is loaded with the segment offset of
the control-transfer source.

undefined

01DCh LastBranchToIP
During control-transfer recording, this
register is loaded with the segment offset of
the control-transfer target.

undefined

01DDh LastIntFromIP

When an interrupt occurs during control-
transfer recording, this register is loaded
with LastBranchFromIP before
LastBranchFromIP is updated.

undefined

01DEh LastIntToIP

When an interrupt occurs during control-
transfer recording, this register is loaded
with LastBranchToIP before LastBranchToIP
is updated.

undefined

Table A-4. Machine-Check MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

MSR Cross-Reference 591

24593—Rev. 3.30—September 2018 AMD64 Technology

A.6 Performance-Monitoring MSRs
Table A-6 lists the MSRs used in support of performance monitoring, including the time-stamp
counter.

Table A-6. Performance-Monitoring MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

0010h TSC Counts processor-clock cycles. It is incre-
mented once for each processor-clock cycle. 0000_0000_0000_0000h

C001_0000h PerfEvtSel0
For the corresponding performance counter,

this register specifies the events counted, and
controls other aspects of counter operation.

0000_0000_0000_0000h
C001_0001h PerfEvtSel1
C001_0002h PerfEvtSel2
C001_0003h PerfEvtSel3
C001_0004h PerfCtr0

Used to count specific processor events, or
the duration of events, as specified by the cor-

responding PerfEvtSeln register.
undefined

C001_0005h PerfCtr1
C001_0006h PerfCtr2
C001_0007h PerfCtr3
C001_0200h PerfEvtSel0

These MSR addresses are aliases for the
base set of performance event-select regis-

ters PerfEvtSel[3:0]. 0000_0000_0000_0000h

C001_0202h PerfEvtSel1
C001_0204h PerfEvtSel2
C001_0206h PerfEvtSel3
C001_0208h PerfEvtSel4 Extended core performance event-select registers.

Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1.C001_020Ah PerfEvtSel5

C001_0201h PerfCtr0
These MSR addresses are aliases for the

base set of performance-monitoring counter
registers PerfCtr[3:0]. undefined

C001_0203h PerfCtr1
C001_0205h PerfCtr2
C001_0207h PerfCtr3
C001_0209h PerfCtr4 Extended core performance counter registers. Sup-

port for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtCore] = 1.C001_020Bh PerfCtr5

C001_0230h L2I_PerfEvtSel0
Specifies the L2 cache events to be counted and

controls other aspects of counter operation.
Support for these MSRs is indicated by CPUID

Fn8000_0001_ECX[PerfCtrExtL2I] = 1.
0000_0000_0000_0000h

C001_0232h L2I_PerfEvtSel1
C001_0234h L2I_PerfEvtSel2
C001_0236h L2I_PerfEvtSel3
C001_0231h L2I_PerfCtr0

Counts specific L2 cache events as specified by the
corresponding L2I_PerfEvtSeln Register.

Support for these MSRs is indicated by CPUID
Fn8000_0001_ECX[PerfCtrExtL2I] = 1.

undefined
C001_0233h L2I_PerfCtr1
C001_0235h L2I_PerfCtr2
C001_0237h L2I_PerfCtr3

592 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

A.7 Secure Virtual Machine MSRs
Table A-7 lists the MSRs used in support of SVM functions.

C001_0240h NB_PerfEvtSel0 Specifies northbridge events to be counted
and controls other aspects of counter
operation.
Support for these MSRs is indicated by
CPUID Fn8000_0001_ECX[PerfCtrExtNB] =
1.

0000_0000_0000_0000h

C001_0242h NB_PerfEvtSel1
C001_0244h NB_PerfEvtSel2

C001_0246h NB_PerfEvtSel3

C001_0241h NB_PerfCtr0 Counts specific northbridge events as
specified by the corresponding
NB_PerfEvtSeln Register.
Support for these MSRs is indicated by
CPUID Fn8000_0001_ECX[PerfCtrExtNB] =
1.

undefined
C001_0243h NB_PerfCtr1
C001_0245h NB_PerfCtr2

C001_0247h NB_PerfCtr3

Table A-6. Performance-Monitoring MSR Cross-Reference (continued)
MSR

Address
MSR
Name Description Reset Value

MSR Cross-Reference 593

24593—Rev. 3.30—September 2018 AMD64 Technology

Table A-7. Secure Virtual Machine MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

C001_0114h VM_CR Controls certain global aspects of
SVM.

undefined

C001_0115h IGNNE Sets the state of the processor-
internal IGNNE signal.

C001_0116h SMM_CTL Provides software control over SMM
signals.

C001_0117h VM_HSAVE_PA

Holds the physical address of a block
of memory where VMRUN saves host
state, and from which #VMEXIT
reloads host state.

C001_0118h SVM_KEY Creates a password-protected
mechanism to clear VM_CR.LOCK.

C001_0119h SMM_KEY Creates a password-protected
mechanism to clear SmmLock.

C001_011Bh Doorbell Register Sends a doorbell signal to the
specified physical APIC.

C001_011E VMPAGE_FLUSH “Secure Encrypted Virtualization” on
page 532

C001_0130 GHCB Guest-HV Communication Block
address (see section 15.35.7)

C001_0131 SEV_STATUS SEV active features indication (see
section 15.35.10)

594 MSR Cross-Reference

AMD64 Technology 24593—Rev. 3.30—September 2018

A.8 System Management Mode MSRs
Table A-8 lists the MSRs used in support of SMM functions.

A.9 CPUID Name MSR Cross-Reference
Table A-9 lists the MSRs used to support CPUID namestring.

Table A-8. System Management Mode MSR Cross-Reference
MSR

Address
MSR
Name Description Reset Value

C001_0111h SMBASE Contains the SMRAM base address. 0000_0000_0003_0000h

C001_0112h SMM_ADDR Contains the base address of protected
memory for the SMM Handler. 0000_0000_0000_0000h

C001_0113h SMM_MASK
Contains a mask which determines the
size of the protected area for the SMM
handler.

0000_0000_0000_0000h

C001_011Ah Local_SMI_Status

Contains status associated with SMI
sources local to the CPU core. See the
appropriate BIOS and Kernel Developer’s
Guide (BKDG) or Processor
Programming Reference Manual for
details.

0000_0000_0000_0000h

C001_0056h SMI_Trigger_IO_Cycle

Specifies an IO cycle that may be
generated when a local SMI trigger event
occurs. See the appropriate BIOS and
Kernel Developer’s Guide (BKDG) or
Processor Programming Reference
Manual for details.

0000_0000_0000_0000h

Table A-9. CPUID Namestring MSRs
MSR

Address
MSR
Name Description Reset

Value
C001_0030h

Processor_Name_String
See appropriate BIOS and Kernel Developer’s Guide
(BKDG) or Processor Programming Reference
Manual and Processor Revision Guide.

C001_0031h
C001_0032h
C001_0033h
C001_0034h
C001_0035h

Layout of VMCB 595

24593—Rev. 3.30—September 2018 AMD64 Technology

Appendix B Layout of VMCB

The VMCB is divided into two areas—the first one contains various control bits including the
intercept vector and the second one contains saved guest state.

Table B-1 describes the layout of the control area of the VMCB, which starts at offset zero within the
VMCB page. The control area is padded to a size of 1024 bytes. All unused bytes must be zero, as they
are reserved for future expansion. It is recommended that software zero out any newly allocated
VMCB.

Table B-1. VMCB Layout, Control Area
Byte Offset Bit(s) Function

000h
15:0 Intercept reads of CR0–15, respectively.
31:16 Intercept writes of CR0–15, respectively.

004h
15:0 Intercept reads of DR0–15, respectively.
31:16 Intercept writes of DR0–15, respectively.

008h 31:0 Intercept exception vectors 0–31, respectively.

00Ch

0 Intercept INTR (physical maskable interrupt).
1 Intercept NMI.
2 Intercept SMI.
3 Intercept INIT.
4 Intercept VINTR (virtual maskable interrupt).

5 Intercept CR0 writes that change bits other than
CR0.TS or CR0.MP.

6 Intercept reads of IDTR.
7 Intercept reads of GDTR.
8 Intercept reads of LDTR.
9 Intercept reads of TR.
10 Intercept writes of IDTR.
11 Intercept writes of GDTR.
12 Intercept writes of LDTR.
13 Intercept writes of TR.
14 Intercept RDTSC instruction.
15 Intercept RDPMC instruction.

596 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

00Ch (continued)

16 Intercept PUSHF instruction.
17 Intercept POPF instruction.
18 Intercept CPUID instruction.
19 Intercept RSM instruction.
20 Intercept IRET instruction.
21 Intercept INTn instruction.
22 Intercept INVD instruction.
23 Intercept PAUSE instruction.
24 Intercept HLT instruction.
25 Intercept INVLPG instruction.
26 Intercept INVLPGA instruction.

27 IOIO_PROT—Intercept IN/OUT accesses to selected
ports.

28 MSR_PROT—intercept RDMSR or WRMSR accesses
to selected MSRs.

29 Intercept task switches.

30 FERR_FREEZE: intercept processor “freezing” during
legacy FERR handling.

31 Intercept shutdown events.

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

Layout of VMCB 597

24593—Rev. 3.30—September 2018 AMD64 Technology

010h

0 Intercept VMRUN instruction.
1 Intercept VMMCALL instruction.
2 Intercept VMLOAD instruction.
3 Intercept VMSAVE instruction.
4 Intercept STGI instruction.
5 Intercept CLGI instruction.
6 Intercept SKINIT instruction.
7 Intercept RDTSCP instruction.
8 Intercept ICEBP instruction.
9 Intercept WBINVD instruction.
10 Intercept MONITOR/MONITORX instruction.
11 Intercept MWAIT/MWAITX instruction unconditionally.

12 Intercept MWAIT/MWAITX instruction if monitor
hardware is armed.

13 Intercept XSETBV instruction.
14 RESERVED, SBZ

15 Intercept writes of EFER (occurs after guest instruction
finishes)

16-31 Intercept writes of CR0-15 (occurs after guest
instruction finishes)

014h–03Bh RESERVED, SBZ
03Ch 15:0 PAUSE Filter Threshold
03Eh 15:0 PAUSE Filter Count

040h 63:0 IOPM_BASE_PA—Physical base address of IOPM (bits
11:0 are ignored.)

048h 63:0 MSRPM_BASE_PA—Physical base address of
MSRPM (bits 11:0 are ignored.)

050h 63:0 TSC_OFFSET—To be added in RDTSC and RDTSCP

058h

31:0 Guest ASID

39:32

TLB_CONTROL
00h—Do nothing.
01h—Flush entire TLB (all entries, all ASIDs) on
VMRUN. Should only be used by legacy hypervisors.
03h—Flush this guest’s TLB entries.
07h—Flush this guest’s non-global TLB entries.

NOTE: All other encodings are reserved.

63:40 RESERVED, SBZ

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

598 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

060h

7:0
V_TPR—The virtual TPR for the guest. Bits 3:0 are
used for a 4-bit virtual TPR value; bits 7:4 are SBZ.

NOTE: This value is written back to the VMCB at #VMEXIT.

8
V_IRQ—If nonzero, virtual INTR is pending.

NOTE: This value is written back to the VMCB at #VMEXIT.
This field is ignored on VMRUN when AVIC is
enabled.

9 VGIF value (0 – Virtual interrupts are masked, 1 –
Virtual Interrupts are unmasked)

15:10 RESERVED, SBZ

19:16
V_INTR_PRIO—Priority for virtual interrupt

NOTE: This field is ignored on VMRUN when AVIC is
enabled.

20
V_IGN_TPR—If nonzero, the current virtual interrupt
ignores the (virtual) TPR.

NOTE: This field is ignored on VMRUN when AVIC is
enabled.

23:21 RESERVED, SBZ

24 V_INTR_MASKING—Virtualize masking of INTR
interrupts (see “Virtualizing APIC.TPR” on page 480).

25 AMD Virtual GIF enabled for this guest (0 - Disabled, 1
- Enabled)

30:26 Reserved, SBZ
31 AVIC Enable

39:32
V_INTR_VECTOR—Vector to use for this interrupt.

NOTE: This field is ignored on VMRUN when AVIC is
enabled.

63:40 RESERVED, SBZ

068h

0 INTERRUPT_SHADOW - Guest is in an interrupt
shadow

1
GUEST_INTERRUPT_MASK - Value of the RFLAGS.IF
bit for the guest.

Note: This value is written back to the VMCB on #VMEXIT. It
is not used during VMRUN

63:2 RESERVED, SBZ
070h 63:0 EXITCODE
078h 63:0 EXITINFO1
080h 63:0 EXITINFO2
088h 63:0 EXITINTINFO

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

Layout of VMCB 599

24593—Rev. 3.30—September 2018 AMD64 Technology

090h

0 NP_ENABLE—Enable nested paging.
1 Enable Secure Encrypted Virtualization

2 Enable Encrypted State for Secure Encrypted
Virtualization

63:3 RESERVED, SBZ

098h
63:52 RESERVED, SBZ

51:0 AVIC APIC_BAR
NOTE: Address must be 4-Kbyte aligned.

0A0h 63:0 Guest physical address of GHCB

0A8h 63:0 EVENTINJ—Event injection (see “Event Injection” on
page 478 for details.)

0B0h 63:0
N_CR3—Nested page table CR3 to use for nested
paging

0B8h

0
LBR_VIRTUALIZATION_ENABLE
0—Do nothing.
1—Enable LBR virtualization hardware acceleration.

1 Virtualized VMSAVE/VMLOAD (0 –Disabled, 1-
Enabled)

63:2 RESERVED, SBZ

0C0h
31:0 VMCB Clean Bits
63:32 RESERVED, SBZ

0C8h 63:0 nRIP—Next sequential instruction pointer

0D0h
7:0 Number of bytes fetched
127:8 Guest instruction bytes

0E0h
63:52 RESERVED, SBZ

51:0 AVIC APIC_BACKING_PAGE Pointer
NOTE: Address must be 4-Kbyte aligned.

0E8h–0EFh Reserved, SBZ

0F0h
63:52 RESERVED, SBZ

51:12 AVIC LOGICAL_TABLE Pointer
NOTE: Address must be 4-Kbyte aligned.

0F8h

63:52 RESERVED, SBZ

51:12 AVIC PHYSICAL_TABLE Pointer[51:12]
NOTE: Address must be 4-Kbyte aligned.

11:8 RESERVED, SBZ
7:0 AVIC_PHYSICAL_MAX_INDEX

100h – 107h RESERVED, SBZ

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

600 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

When SEV-ES is not enabled, the state-save area within the VMCB starts at offset 400h into the
VMCB page; Table B-2 describes the fields within the state-save area; note that the table lists offsets
relative to the state-save area (not the VMCB as a whole).

108h

63:52 RESERVED, SBZ

51:12 VMCB Save State Pointer[51:12]
Note: Address must be 4-Kbyte aligned

11:0 RESERVED, SBZ
All other fields up to 3FFh RESERVED, SBZ

Table B-2. VMCB Layout, State Save Area
Offset Size Contents Notes

000h word

ES

selector
002h word attrib
004h dword limit
008h qword base Only lower 32 bits are implemented.
010h word

CS

selector
012h word attrib
014h dword limit
018h qword base Only lower 32 bits are implemented.
020h word

SS

selector
022h word attrib
024h dword limit
028h qword base Only lower 32 bits are implemented.
030h word

DS

selector
032h word attrib
034h dword limit
038h qword base Only lower 32 bits are implemented.
040h word

FS

selector
042h word attrib
044h dword limit
048h qword base
050h word

GS

selector
052h word attrib
054h dword limit
058h qword base

Table B-1. VMCB Layout, Control Area (continued)
Byte Offset Bit(s) Function

Layout of VMCB 601

24593—Rev. 3.30—September 2018 AMD64 Technology

060h word

GDTR

selector reserved
062h word attrib reserved
064h dword limit Only lower 16 bits are implemented.
068h qword base
070h word

LDTR

selector
072h word attrib
074h dword limit
078h qword base
080h word

IDTR

selector reserved
082h word attrib reserved
084h dword limit Only lower 16 bits are implemented.
088h qword base
090h word

TR

selector
092h word attrib
094h dword limit
098h qword base
0A0h–0CAh RESERVED

0CBh byte CPL
If the guest is real-mode then the CPL is
forced to 0; if the guest is virtual-mode then
the CPL is forced to 3.

0CCh dword RESERVED
0D0h qword EFER
0D8h–147h RESERVED
148h qword CR4
150h qword CR3
158h qword CR0
160h qword DR7
168h qword DR6
170h qword RFLAGS
178h qword RIP
180h–1D7h RESERVED
1D8h qword RSP
1E0h–1F7h RESERVED
1F8h qword RAX
200h qword STAR
208h qword LSTAR
210h qword CSTAR

Table B-2. VMCB Layout, State Save Area (continued)
Offset Size Contents Notes

602 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

When SEV-ES is enabled (see Section 15.35 see “Encrypted State (SEV-ES)” on page 537), the
VMCB save state structure starts at offset 0h in the page indicated by the VMCB Save State Pointer.
The format of the VMCB save state structure for SEV-ES guests is described in the table below.

The SW_EXITCODE/SW_EXITINFO1/SW_EXITINFO2/SW_SCRATCH/VALID_BITMAP fields
listed below are not used by hardware and are intended for use only in the GHCB if the GHCB follows
the format of the VMCB. These fields provide a location for the #VC handler to communicate exit
code information with the hypervisor. The VALID_BITMAP field is provided to allow software to
indicate which qwords in the GHCB are considered valid.

All state is categorized into 3 swap types based on how it is handled by hardware during a world
switch:

218h qword SFMASK
220h qword KernelGsBase
228h qword SYSENTER_CS
230h qword SYSENTER_ESP
238h qword SYSENTER_EIP
240h qword CR2
248h–267h RESERVED

268h qword G_PAT Guest PAT—only used if nested paging
enabled.

270h qword DBGCTL

Guest DebugCtl MSR—only used if
hardware acceleration of LBR virtualization
is supported and enabled by setting the
LBR_VIRTUALIZATION_ENABLE bit of the
VMCB control area.

278h qword BR_FROM
Guest LastBranchFromIP MSR—only used
if hardware acceleration of LBR
virtualization is supported and enabled.

280h qword BR_TO
Guest LastBranchToIP MSR—only used if
hardware acceleration of LBR virtualization
is supported and enabled.

288h qword LASTEXCPFROM
Guest LastIntFromIP MSR—Only used if
hardware acceleration of LBR virtualization
is supported and enabled.

290h qword LASTEXCPTO
Guest LastIntToIP MSR—Only used if
hardware acceleration of LBR virtualization
is supported and enabled.

298h to end of VMCB RESERVED

Table B-2. VMCB Layout, State Save Area (continued)
Offset Size Contents Notes

Layout of VMCB 603

24593—Rev. 3.30—September 2018 AMD64 Technology

The format of the host save area is identical to the guest save area described in the table below, except
that it begins at offset 400h in the host save page (e.g., the host TR value is stored at offset 490h
relative to the start of the host save page).

Table B-3. Swap Types
Swap Type Behavior in VMRUN Behavior in AE VMEXIT

A
Host state saved to host save area
Guest state loaded from VMCB

Guest state saved to VMCB
Host state loaded from host save area

B
Guest state loaded from VMCB
(Host state not saved to host save area)

Guest state saved to VMCB
Host state loaded from host save area

C
Guest state loaded from VMCB
(Host state not saved to host save area)

Guest state saved to VMCB
Host state initialized to default (reset) values

Table B-4. VMCB Layout, State Save Area for SEV-ES
Offset Size Content Swap Type Notes

000h 16 bytes ES A
010h 16 bytes CS A
020h 16 bytes SS A
030h 16 bytes DS A
040h 16 bytes FS B
050h 16 bytes GS B
060h 16 bytes GDTR A
070h 16 bytes LDTR B
080h 16 bytes IDTR A
090h 16 bytes TR B
0A0h-0CAh 43 bytes Reserved
0CBh byte CPL A
0CCh dword Reserved
0D0h qword EFER A
0D8h-147h 112 bytes Reserved
148h qword CR4 A
150h qword CR3 A
158h qword CR0 A
160h qword DR7 A
168h qword DR6 A
170h qword RFLAGS A
178h qword RIP A

604 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

180h-1D7h 88 bytes Reserved
1D8h qword RSP A
1E0h-1F7h 24 bytes Reserved
1F8h qword RAX A
200h qword STAR B
208h qword LSTAR B
210h qword CSTAR B
218h qword SFMASK B
220h qword KernelGsBase B
228h qword SYSENTER_CS B
230h qword SYSENTER_ESP B
238h qword SYSENTER_EIP B
240h qword CR2 C
248h-267h 32 bytes Reserved

268h qword G_PAT – Swapped for guest, not used in
host mode

270h qword DBGCTL A
278h qword BR_FROM A
280h qword BR_TO A
288h qword LASTEXCPFROM A
290h qword LASTEXCPTO A
298h-2FFh 104 bytes Reserved

300h qword Reserved RAX already stored at offset
1F8h

308h qword RCX B
310h qword RDX B
318h qword RBX B

320h qword Reserved RSP already stored at offset
1D8h

328h qword RBP B
330h qword RSI B
338h qword RDI B
340h qword R8 B
348h qword R9 B
350h qword R10 B
358h qword R11 B
360h qword R12 B

Table B-4. VMCB Layout, State Save Area for SEV-ES
Offset Size Content Swap Type Notes

Layout of VMCB 605

24593—Rev. 3.30—September 2018 AMD64 Technology

368h qword R13 B
370h qword R14 B
378h qword R15 B

380h 16 bytes Reserved Used for hardware integrity
check

390h qword SW_EXITCODE – Guest controlled exit code

398h qword SW_EXITINFO1 – Guest controlled exit
information 1

3A0h qword SW_EXITINFO2 – Guest controlled exit
information 2

3A8h qword SW_SCRATCH – Guest controlled additional
information

3B0h-3E7h 56 bytes Reserved
3E8h qword XCR0 B

3F0h-3FFh 16 bytes VALID-BITMAP –
Bit-vector indicates valid
qwords in the save state
structure

400h qword X87_DP C FP x87 data pointer
408h dword MXCSR C FP MXCSR
40Ch word X87_FTW C FP x87 tag word
40Eh word X87_FSW C FP x87 status word
410h word X87_FCW C FP control word
412h word X87_FOP C FP x87 opcode
414h word X87_DS C FP x87 DS
416h word X87_CS C FP x87 CS
418h qword X87_RIP C FP x87 RIP
420h-46Fh 80 bytes FPREG_X87 C X87 register state (stack order)
470h-56Fh 256 bytes FPREG_XMM C XMM register state
570h-66Fh 256 bytes FPREG_YMM C YMM_HI register state

Table B-4. VMCB Layout, State Save Area for SEV-ES
Offset Size Content Swap Type Notes

606 Layout of VMCB

AMD64 Technology 24593—Rev. 3.30—September 2018

SVM Intercept Exit Codes 607

24593—Rev. 3.30—September 2018 AMD64 Technology

Appendix C SVM Intercept Exit Codes
When the VMRUN instruction exits (back to the host), an exit/reason code is stored in the EXIT-
CODE field in the VMCB. The exit codes are defined in Table C-1. Intercept exit codes 0h–8Dh
equal the bit position of the corresponding flag in the VMCB’s intercept vector.

Table C-1. SVM Intercept Codes
Code Name Cause

0h–Fh VMEXIT_CR[0–15]_READ read of CR 0 through 15, respectively
10h–1Fh VMEXIT_CR[0–15]_WRITE write of CR 0 through 15, respectively
20h–2Fh VMEXIT_DR[0–15]_READ read of DR 0 through 15, respectively
30h–3Fh VMEXIT_DR[0–15]_WRITE write of DR 0 through 15, respectively
40h–5Fh VMEXIT_EXCP[0–31] exception vector 0–31, respectively
60h VMEXIT_INTR physical INTR (maskable interrupt)
61h VMEXIT_NMI physical NMI

62h VMEXIT_SMI physical SMI (the EXITINFO1 field provides more
information)

63h VMEXIT_INIT physical INIT
64h VMEXIT_VINTR virtual INTR

65h VMEXIT_CR0_SEL_WRITE write of CR0 that changed any bits other than CR0.TS
or CR0.MP

66h VMEXIT_IDTR_READ read of IDTR
67h VMEXIT_GDTR_READ read of GDTR
68h VMEXIT_LDTR_READ read of LDTR
69h VMEXIT_TR_READ read of TR
6Ah VMEXIT_IDTR_WRITE write of IDTR
6Bh VMEXIT_GDTR_WRITE write of GDTR
6Ch VMEXIT_LDTR_WRITE write of LDTR
6Dh VMEXIT_TR_WRITE write of TR
6Eh VMEXIT_RDTSC RDTSC instruction
6Fh VMEXIT_RDPMC RDPMC instruction
70h VMEXIT_PUSHF PUSHF instruction
71h VMEXIT_POPF POPF instruction
72h VMEXIT_CPUID CPUID instruction
73h VMEXIT_RSM RSM instruction
74h VMEXIT_IRET IRET instruction
75h VMEXIT_SWINT software interrupt (INTn instructions)
76h VMEXIT_INVD INVD instruction
77h VMEXIT_PAUSE PAUSE instruction
78h VMEXIT_HLT HLT instruction

608 SVM Intercept Exit Codes

AMD64 Technology 24593—Rev. 3.30—September 2018

79h VMEXIT_INVLPG INVLPG instructions
7Ah VMEXIT_INVLPGA INVLPGA instruction

7Bh VMEXIT_IOIO IN or OUT accessing protected port (the EXITINFO1
field provides more information)

7Ch VMEXIT_MSR RDMSR or WRMSR access to protected MSR
7Dh VMEXIT_TASK_SWITCH task switch

7Eh VMEXIT_FERR_FREEZE FP legacy handling enabled, and processor is frozen in
an x87/mmx instruction waiting for an interrupt

7Fh VMEXIT_SHUTDOWN Shutdown
80h VMEXIT_VMRUN VMRUN instruction
81h VMEXIT_VMMCALL VMMCALL instruction
82h VMEXIT_VMLOAD VMLOAD instruction
83h VMEXIT_VMSAVE VMSAVE instruction
84h VMEXIT_STGI STGI instruction
85h VMEXIT_CLGI CLGI instruction
86h VMEXIT_SKINIT SKINIT instruction
87h VMEXIT_RDTSCP RDTSCP instruction
88h VMEXIT_ICEBP ICEBP instruction
89h VMEXIT_WBINVD WBINVD instruction
8Ah VMEXIT_MONITOR MONITOR or MONITORX instruction
8Bh VMEXIT_MWAIT MWAIT or MWAITX instruction

8Ch VMEXIT_MWAIT_CONDITIONAL MWAIT or MWAITX instruction, if monitor hardware is
armed.

8Dh VMEXIT_XSETBV XSETBV instruction

8Fh VMEXIT_EFER_WRITE_TRAP Write of EFER MSR (occurs after guest instruction
finishes)

90h-9Fh VMEXIT_CR[0-15]_WRITE_TRAP Write of CR0-15, respectively (occurs after guest
instruction finishes)

400h VMEXIT_NPF
Nested paging: host-level page fault occurred
(EXITINFO1 contains fault error code; EXITINFO2
contains the guest physical address causing the fault.)

401h AVIC_INCOMPLETE_IPI
AVIC—Virtual IPI delivery not completed. See "AVIC
IPI Delivery Not Completed" for EXITINFO1–2
definitions.

Table C-1. SVM Intercept Codes (continued)
Code Name Cause

SVM Intercept Exit Codes 609

24593—Rev. 3.30—September 2018 AMD64 Technology

402h AVIC_NOACCEL

AVIC—Attemped access by guest to vAPIC register
not handled by AVIC hardware. See "AVIC Access to
un-accelerated vAPIC register" for EXITINFO1–2
definitions.

403h VMEXIT_VMGEXIT VMGEXIT instruction
–1 VMEXIT_INVALID Invalid guest state in VMCB

Table C-1. SVM Intercept Codes (continued)
Code Name Cause

610 SVM Intercept Exit Codes

AMD64 Technology 24593—Rev. 3.30—September 2018

SMM Containerization 611

24593—Rev. 3.30—September 2018 AMD64 Technology

Appendix D SMM Containerization

To minimally participate in SMM activity, the VMM can implement simple containerization. This
appendix provides example pseudocode to perform this simple containerization. VMMs that do not
trust SMM code should implement secure containerization, which requires further extension of the
code provided here.

D.1 SMM Containerization Pseudocode
This code emulates transitions to and from SMM:
• The process of entering SMM mode as a result of a system management interrupt (SMI)
• The RSM instruction, which returns the processor from SMM.

A hypervisor that containerizes SMM must set the SMM intercept bit in all guest VMCBs. When the
hypervisor encounters a #VMEXIT(SMI), it should then emulate SMM entry and execute the SMM
handler by means of VMRUN with the RSM intercept bit set. When the RSM instruction is
intercepted, the hypervisor should emulate the RSM instruction and then resume normal execution.

In this code, the hypervisor sets up the smm_vmcb from scratch and assigns it the supplied address
space identifier (ASID).

This example code sets up a container VMCB for the SMM handler and copies appropriate state
information into the SMM save area. After calling emulate_smm(), the hypervisor should repeatedly
VMRUN the SMM handler VMCB until the hypervisor encounters a #VMEXIT(RSM). Finally, the
hypervisor should call emulate_rsm().

//emulate_smm():
// Inputs:
// smm_vmcb: the _virtual address_ of a VMCB that will be configured
// as an SMM container
// asid: the asid to use for the SMM handler; the hypervisor should
// ensure that no TLB entries for this ASID are present in the TLB
// smm_regs: an array of 64-bit values that will be filled with the
// GPRs (except RSP and RAX) for the SMM handler
// guest_vmcb: the _virtual address_ of the VMCB of the guest
// that was running when the intercepted SMI occurred
// guest_regs: an array of 64-bit values that contains the GPRs (except RSP
// and RAX) for the guest that was running when the intercepted
// SMI occurred

void
emulate_smm(VMCB *smm_vmcb, uint32 asid, uint64 smm_regs[16],

 VMCB *guest_vmcb, uint64 guest_regs[16])
{

setup_smm_container(*smm_vmcb, asid, smm_regs, *guest_vmcb, guest_regs)

612 SMM Containerization

AMD64 Technology 24593—Rev. 3.30—September 2018

//Enter SMM mode:
wrmsr(SMM_CTL_MSR, ENTER+DISMISS+SMI_CYCLE)
setup_smm_save_state(*guest_vmcb, guest_regs)

do { VMRUN(smm_vmcb) } until we see #VMEXIT(RSM).
 Shadow EFER reads and writes to protect the SVME bit.

 //Emulate RSM:

copy_smm_save_to_guest_vmcb(guest_vmcb, guest_regs)
//Leave SMM mode:
wrmsr(SMM_CTL_MSR, EXIT+RSM_CYCLE)

}

void
setup_smm_container(VMCB &smm_vmcb, uint32 asid, uint64 smm_regs[16],

 VMCB &g_vmcb, uint64 guest_regs[16])
{

clear smm_vmcb to all zeros
set intercepts in smm_vmcb:

RSM
VMRUN
MSR

smm_vmcb.msrpm = (physical address of msr protection map with
 efer read and efer write set)

// Note that the hypervisor should shadow the SVME bit of EFER and
 // return EFER.SVME=0 on reads of EFER.

//
// Note also that the IOPM (unused in this example code) and MSRPM for the SMM
// container can be statically set up and reused on subsequent SMM entries,
// and can be shared between multiple cores' SMM container VMCBs. Each core
// must have a separate VMCB for the SMM container, but those cores’ VMCBs may
// be statically or dynamically allocated.

smm_vmcb.asid = asid

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value

Set up the smm handler's segment information: {Selector, Attrib, Limit, Base}

smm_vmcb.CS = {(smmbase & 0x00ffff00) >> 4, 0x089B, 0xffff_ffff, smmbase}
smm_vmcb.{ES, SS, DS, FS, GS} = {0x0000, 0x0893, 0xffff_ffff, 0x0000_0000}
smm_vmcb.GDTR = {unused, unused, g_vmcb.gdtr_limit, g_vmcb.gdtr_base}
smm_vmcb.LDTR = (copy all from g_vmcb.LDTR)
smm_vmcb.IDTR = {unused, unused, g_vmcb.idtr_limit, g_vmcb.idtr_base}
smm_vmcb.TR = (copy all from g_vmcb.TR)

smm_vmcb.CPL = 0
smm_vmcb.EFER = 0x1000 (SVME = 1)

SMM Containerization 613

24593—Rev. 3.30—September 2018 AMD64 Technology

smm_vmcb.CR4 = 0
smm_vmcb.DR7 = 0x0000_0400
smm_vmcb.RFLAGS = 0x0000_0002
smm_vmcb.RIP = 0x0000_8000

Copy the following values from g_vmcb to smm_vmcb
CR3
DR6
RSP
RAX
STAR
LSTAR
CSTAR
SFMASK
KERNELGSBASE
SYSENTER_CS
SYSENTER_ESP
SYSENTER_EIP
CR2
CR0: clear bits 0, 2, 3, 31

copy 14 guest GPRs from guest_regs (all except RAX, RSP) to smm_regs
}

void
setup_smm_save_state(struct VMCB &g_vmcb, uint64 guest_regs[16])
{

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value
 smmsave_physical_addr = smmbase + 0xfe00

// smmsave is the physical address of the SMM save area;
 // the hypervisor will need to map this into its virtual memory space.

smmsave = virtual_to_physical_map(smmsave_physical_addr)

Copy the following values from g_vmcb to smmsave:
all defined portions of ES, CS, SS, DS, FS, GS, GDTR, LDTR, IDTR, TR

 (all bytes of each 16-byte segment save area)
CPL
EFER
CR4
CR3
CR0
DR7
DR6
RFLAGS
RIP
RSP
RAX

copy 14 guest GPRs (other than RAX and RSP) from guest_regs

614 SMM Containerization

AMD64 Technology 24593—Rev. 3.30—September 2018

 to GPR entries in smmsave

iorestart_dword[31:0] = g_vmcb.exitinfo1[63:32]
if ((iorestart_dword & IO_RESTART_VALID) != 0)
{

Copy iorestart_dword to smmsave.iorestart_dword,
 masking out address size bits

Copy g_vmcb.exitinfo2 to smmsave.iorestart_rip

uint64 *guest_indexreg // Point to the index register in the guest context
 // that is changed by the string instruction...

uint64 *smm_indexreg // ...similarly, for the smm save area
if (iorestart_dword & IO_RESTART_IN != 0) {

guest_indexreg = &guest_regs[RDI] // type=IN, indexreg=RDI
smm_indexreg = &smmsave.iorestart_rdi
smmsave.iorestart_rsi = guest_regs[RSI]

} else {
guest_indexreg = &guest_regs[RSI] // type=OUT, indexreg=RSI
smm_indexreg = &smmsave.iorestart_rsi
smmsave.iorestart_rdi = guest_regs[RDI]

}

// Reconstruct the IORestart values
if (iorstart_dword & IO_RESTART_STR != 0)
{
 uint64 mask
 uint64 ecxfix

 operand_size = (iorestart_dword >> 4) & 0x7)

 address_size = (iorestart_dword >> 7) & 0x7)
 if (address_size == 0) // Some SVM implementations do not provide

 // these bits; we must decode on those CPUs
 address_size = decode_io_size(guest_vmcb)

 mask = (1<<address_size) - 1
 if (g->RFLAGS D-bit is set)

 operand_size = -operand_size

 if (iorestart_dword & IO_RESTART_RIP != 0)
 ecxfix = 1

 else ecxfix = 0

 *smm_indexreg = *guest_indexreg & ~mask | (*guest_indexreg -
 operand_size) & mask

 smmsave.iorestart_rcx = mask & (guest_regs[RCX] + ecxfix)
} else { // not string
 *smm_indexreg = *guest_indexreg
 smmsave.iorestart_rcx = guest_regs[RCX]
}

} else { // iorestart isn't valid: Put the same values into the restart values.

SMM Containerization 615

24593—Rev. 3.30—September 2018 AMD64 Technology

smmsave.iorestart_dword = 0
smmsave.iorestart_rip = g.rip
smmsave.iorestart_rcx = guest_regs[RCX]
smmsave.iorestart_rsi = guest_regs[RSI]
smmsave.iorestart_rdi= guest_regs[RDI]

}

smmsave.iorestart = 0
smmsave.hltrestart = 0
smmsave.nmimask = 0
smmsave.smm_revision = 0x30064
smmsave.smm_base = smmbase

}

void
copy_smm_save_to_guest_vmcb(struct VMCB &g_vmcb, uint64 guest_regs[16])
{

smmbase = rdmsr(smmbase_msr) // Note: smmbase is a 32 bit value
 smmsave_physical_addr = smmbase + 0xfe00

// smmsave is the physical address of the SMM save area;
 // the hypervisor will need to map this into its virtual memory space.

smmsave = virtual_to_physical_map(smmsave_physical_addr)

Copy the following values from smmsave to g_vmcb
all defined portions of ES, CS, SS, DS, FS, GS, GDTR, LDTR, IDTR, TR
CPL
EFER
CR4
CR3
CR0
DR7
DR6
RFLAGS
RSP
RAX

Copy the other 14 GPRs from smmsave into guest_regs.

 If smmsave.iorestart is set, copy RDI,

RSI, RCX from the smmsave.iorestart_{RDI, RSI, RCX} fields
 instead of the regular {RDI, RSI, RCX} fields.

if (smmsave.iorestart is zero and smmsave.iorestart_dword is valid)
{

modify g_vmcb.DR6:
clear g_vmcb.DR6[3:0] and copy BRP bits from

 smmsave.iorestart_dword[15:12] into g_vmcb.DR6[3:0]
// this preserves AMD's behavior that dr6[3:0] is not sticky,

 // but the other bits are sticky
g_vmcb.DR6.BS |= smmsave.iorestart_dword.TF

if any bit of smmsave.iorestart_dword.{BRP[3:0], TF} is nonzero,

616 SMM Containerization

AMD64 Technology 24593—Rev. 3.30—September 2018

 we have a pending #DB exception,
 so set up a #DB event injection for the guest.

}

if (smmsave.iorestart is set) {
set g_vmcb.RIP = smmsave.iorestart_rip

} else if (smmsave.hltrestart is set) {
// (In the event that the guest is allowed to execute HLT and

 // the SMM code wants to use the auto-halt restart function,
 // we need to re-execute the HLT instruction in the guest context.
 // Even if the HLT has prefixes (all of which would be ignored),
 // we know that RIP-1 is the F4 opcode itself.)

Subtract 1 from the guest RIP under a mask that masks out bits
 above the current default address size:

mask = (1 << current_address_size) - 1
g_vmcb.RIP = mask & (g_vmcb.RIP-1)

} else {
set g_vmcb.RIP = smmsave.RIP

}
// Note that it is undefined to have both iorestart and hltrestart set at
// the same time.

// Perform the RSM consistency checks listed in volume 3 of the
// AMD64 Architecture Programmer's manual, except the check that
// disallows CR0.PG = 1 when CR0.PE = 0. Note that the expected
// value for the SMM revision field is 0x0003_0064. If any of the
// checks fail, the native RSM instruction would have caused a
// processor shutdown (which commonly results in a reboot
// triggered by the chipset). The hypervisor may wish to destroy
// the guest or cause its own shutdown.
}

D.1.1 Converting Simple Containerization into Secure Containerization

To convert this simple containerization example into secure containerization, the hypervisor must limit
the SMM handler's access to I/O ports, MSRs, and memory. Based on security policy decisions, the
hypervisor should set appropriate bits in the I/O Protection Map and the MSR Protection map and
emulate any accesses the SMM handler makes to those protected resources. The hypervisor should
run the SMM handler in paged real mode, with a page table that appropriately limits memory
accessible to SMM code. Additionally, the hypervisor may wish to conceal some or all of the contents
of a guest's general purpose and floating-point registers from the SMM handler.

OS-Visible Workarounds 617

24593—Rev. 3.30—September 2018 AMD64 Technology

Appendix E OS-Visible Workarounds

Operating system software may provide a workaround for a hardware erratum. These operating
system-visible workarounds are provisional and should be removed or disabled when the erratum is
corrected in a subsequent hardware release.

The OS-Visible Workaround (OSVW) architecture provides a means by which operating system
software may determining the status of a known erratum for the hardware on which the software is
running. Support for the OSVW mechanism is indicated by CPUID Fn8000_0001_ECX[OSVW] = 1.

See Section 3.3, "Processor Feature Identification," on page 63 for information on using the CPUID
instruction.

Each hardware erratum is assigned a unique OSVW ID number. OSVW ID numbers start at 0 and are
assigned sequentially up to the most recently identified erratum which is assigned the number m−1.
The OSVW mechanism encodes the status of each erratum for a given hardware system in a bit vector
of length m accessed through OSVM MSRs 1–N. The state of bit n of the vector indicates the status of
the erratum with the OSVW ID number n. The OSVW ID number for the erratum and the bit position
within the erratum status bit vector, once assigned, are global across all AMD processors; the OSVW
ID and bit position will not be re-used.

The OSVW MSRs are defined as follows:
• OSVW MSR0 contains the OSVW_ID_Length field, used to indicate the total number of valid

OSVW ID bits (m). The format of this MSR is shown in Figure E-1 below.
• OSVW MSR 1 and following contain the erratum status bit vector of length m. Each bit n of this

vector encodes the status of erratum n (OSVW ID = n). The format of these MSRs is shown in
Figure E-2 on page 618.

The bank of OSVW MSRs is located at address C001_0140h, starting with OSVW MSR0.

The OSVW MSRs should be treated as read-only registers for the OS. The OS should never write into
these registers. Hardware allows platform firmware writes to these registers.

Figure E-1. OSVW MSR0: OSVW_ID_Length

63 16 15 0

Reserved OSVW_ID_Length

Bits Mnemonic Description R/W1

63:16 Reserved
15:0 OSVW_ID_Length Total length of the status vector OSVW_E in bits. R/W
Note 1: MSR should be treated as read-only by operating system software.

618 OS-Visible Workarounds

AMD64 Technology 24593—Rev. 3.30—September 2018

OSVW_ID_Length—Bits [15:0]. The number of valid bits in the OSVW erratum status vector
OSVW_E. If a specific erratum has an OSVW ID that is greater than or equal to the
OSVW_ID_Length, the erratum is unknown to the latest release. Otherwise, the erratum status bit in
the appropriate OSVW MSR can be checked to see if a workaround is required.

The erratum status bit vector (OSVW_E) is accessed through OSVW MSR 1 and following. For MSR
N, the 64-bit MSR holds erratum status bits (N−1)*64+63:(N−1)*64. To access the erratum status for
OSVW ID number n (E[n] in the diagram), read MSR N, where N = n/64 + 1, and test bit i, where i = n
modulo 64.

Figure E-2 below gives the format of the OSVW MSRs 1–N.

Figure E-2. OSVW MSRs 1–N: OSVW Erratum Status Registers

OS-Visible Workaround Erratum Status (OSVW_E[n])—Bits 63:0. Each bit indicates whether
platform hardware is affected by OS-visible erratum n and whether the OS needs to apply a
workaround.

For the status bit:

1 = Hardware contains the erratum; an OS software workaround is required.

0 = Hardware has corrected the erratum; an OS software workaround is unnecessary. If one is
installed, it must be disabled.

The location of an OSVW ID status bit within a bank of OSVW MSRs is determined as follows:
• MSR address = OSVW_MSR0 + 1 + floor (OSVW_ID /64)
• Bit offset in MSR = OSVW_ID modulo 64

If a specific erratum has an OSVW_ID that is greater than or equal to the OSVW_ID_LENGTH,
hardware does not know about the erratum and the processor model must be used to determine
whether the workaround must be applied.

OSVW MSR bits beyond the end of the OSVW_E bit vector are reserved.

63 62 1 0

E[n] E[n] ... E[n] E[n]

Bit Mnemonic Description R/W1

i OSVW_E[n] OS-visible workaround status bit n R/W
Note 1: MSR should be treated as read-only by operating system software.

OS-Visible Workarounds 619

24593—Rev. 3.30—September 2018 AMD64 Technology

E.1 Erratum Process Overview
Following is an overview of the AMD erratum process:
1. When an OS-visible erratum is discovered, AMD assigns a unique OSVW ID to the erratum and

publishes to OS vendors the starting range of affected processor models and suggested
workarounds.

2. AMD works with platform firmware vendors and OEMs in parallel to develop a firmware update
to add the new erratum status bit to the OSVW_E erratum status bit vector for affected silicon
revisions to report the new OSVW ID as requiring a workaround. The OSVW_ID_Length field in
OSVW MSR0 is incremented by one.

3. OS vendors schedule the workaround into their release schedules and eventually release it.
4. The OS detection logic for the workaround first checks whether the processor OSVW MSRs 1–N

record the erratum by comparing the OSVW ID of the erratum with the OSVW_ID_Length field
in OSVW MSR0.

5. If the erratum OSVW ID is greater than or equal to the OSVW_ID_Length, the current firmware
does not know about this erratum. In this case, the OS software compares the processor model ID
with the starting model ID that AMD supplied with the erratum to determine if the workaround
should be applied.

6. If the erratum OSVW ID is less than the OSVW_ID_Length, the firmare is aware of the erratum.
In this case, the OS uses the state of the associated OSVW_E status bit to conditionally apply the
workaround. If the associated status bit is set, the workaround is applied.

7. Once AMD fixes the erratum in a future release, updated firmware ensures that the OSVW_E
status bit associated with the erratum is cleared. When OS workaround detection logic runs on the
new hardware, it will see that the bit corresponding to the OSVW ID is cleared and not apply the
OS workaround for that erratum.

620 OS-Visible Workarounds

AMD64 Technology 24593—Rev. 3.30—September 2018

Index 621

24593—Rev. 3.30—September 2018 AMD64 Technology

Symbols
#AC.. 229
#BP .. 220
#BR.. 221
#D ... 228, 231
#DB.. 219
#DE.. 219
#DF .. 222
#GP .. 226
#I... 228, 231
#IA... 228
#IS.. 228
#MC ... 230
#MF ... 228
#NM... 222
#NP .. 225
#O ... 228, 231
#OF .. 221
#P.. 228, 231
#PF... 227
#SS... 225
#SX .. 506
#TS .. 224
#U ... 228, 231
#UD ... 221
#VMEXIT.. 450, 451
#XF .. 230
#Z.. 228, 231

Numerics
16-bit mode.. xl
1-Gbyte page... 135
32-bit mode.. xl
64-bit media instructions

causing #MF exception 308
initializing... 434, 435
MMX registers ... 307
saving state .. 310

64-bit mode.. xl, 13

A
A bit .. 82, 84, 139
A20 Masking... 500
abort ... 214
AC bit... 54
access checking ... 487
accessed (A)

code segment ... 82

data segment .. 84
page-translation tables... 139

address space identifier (ASID)............................... 475
address-breakpoint registers (DR0-DR3).................. 351
addressing

RIP-relative.. xliv
address-size prefix ... 31
ADDRV bit ... 275
Advanced Programmable Interrupt Controller (APIC)......

 545
alignment check (rFLAGS.AC)......................... 54, 229
alignment mask (CR0.AM)............................... 45, 229
alignment-check exception (#AC) 45, 54, 229
AM bit .. 45
AP startup sequence ... 505
APIC... 545

base address ... 548
enable .. 548
error interrupts.. 557
internal error .. 546
registers ... 548
timer interrupt .. 554
version register ... 550

APIC.TPR... 480
APIC.TPR virtualization... 449
Application Processors (APs).................................. 504
Arbitration... 564
architecture differences... 23
ARPL instruction ... 159
ASID .. 475
attributes ... 78
available to software (AVL)

descriptor ... 81
page-translation tables... 140

AVL bit ... 81, 140

B
base address........................... 75, 78, 80, 123, 131, 138
benign exception.. 222
BIST ... 429
bootstrap CPU core (BSC) 548
bootstrap processor (BSP)............................... 432, 504
BOUND instruction ... 221
bound-range exception (#BR) 221
BR_FROM.. 486
BR_TO ... 486
branches.. 32
breakpoint

determining cause ... 359

Index

622 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

on address match ... 350, 360
on any instruction ... 350
on I/O.. 360
on instruction ... 359
on task switch ... 350, 362
setting address.. 357
specifying address-match length 357

breakpoint exception (#BP) 220
breakpoints.. 357
built-in self test (BIST) .. 429

C
C bit ... 82
cache

control mechanisms .. 182
control precedence.. 184
enabling... 433
index ... 181
invalidate ... 185
line.. 163
offset ... 181
organization ... 179
self-modifying code.. 181
set ... 180
tag... 181
way ... 180
writeback and invalidate...................................... 185

cache disable (CD) bit 45, 183
cache disable (CD), memory type............................ 172
cache-coherency protocol 169

losing coherency... 171
CALL

See call gate and control transfer.
call gate ... 86, 104

count field.. 88
count field, long mode .. 94
descriptor, long mode.. 32
jump through.. 106
parameters ... 108
privilege checks.. 105
stack switch ... 108
stack switch, long mode 33, 109

canonical address form....................................... 4, 130
CD bit.. 45, 183
CD memory type ... 172
CLFLUSH ... 185, 487
CLGI ... 463, 477
CLI instruction .. 156
clock multiplier ... 430
CLTS ... 156, 461
code segment.. 26, 71, 82

64-bit mode.. 72
accessed (A)... 82
conforming (C)... 82

default-operand size (D) .. 83
ignored fields in 64-bit mode 88
long bit (L)... 26, 89
long mode .. 88
readable (R) ... 82
type field.. 82

coherency, cache .. 163
Combining Memory Types and MTRRs................... 498
commit... xl
commit, instruction results 164
compatibility mode ... xl, 13
config space accesses ... 488
conforming (C), code segment 82
consistency checks, long mode................................ 440
containerized SMM code .. 484
contributory exception.. 222
control registers ... 29, 41
control transfer .. 100

See also call gate and interrupt.
call gate ... 104
direct ... 100
far, conforming code segment 102
far, nonconforming code segment......................... 100
interrupt to higher privilege 242
interrupt to same privilege 241
parameters.. 108
stack switch.. 108

control-transfer recording MSRs 357
coprocessor-segment-overrun exception................... 223
count field ... 94
CPL .. 96, 451

definition ... 96
in call gate protection .. 105
in data segment protection 97, 280
in interrupt to higher privilege 243
in protecting conforming CS................................ 102
in protecting nonconforming CS 101
in stack segment protection.................................... 99
privileged instructions... 149
SYSCALL, SYSRET assumptions 153

CPU watchdog timer register 270
CPUID... 55, 63, 155, 462

nested paging ... 500
CR0 .. 42, 451

alignment mask (AM) 45, 229
cache disable (CD).. 45, 183
emulate coprocessor (EM) 44
emulate coprocessor (EM) bit 305
extension type (ET)... 44
monitor coprocessor (MP) 43
not write-through (NW)................................. 45, 183
numeric error (NE) 44, 229
paging enable (PG) 45, 120
protection enable (PE)............................... 43, 66, 73

Index 623

24593—Rev. 3.30—September 2018 AMD64 Technology

task switched (TS) ... 44, 156
write protect (WP) .. 44

CR1.. 51
CR2... 45, 227, 451
CR3....................... 25, 45, 46, 123, 130, 337, 451, 493

non-PAE paging ... 123
PAE paging ... 46, 123
PAE paging, long mode....................................... 130
page-level cache disable (PCD) 123, 131
page-level write-through (PWT) 123, 131
table-base address.. 123, 131

CR4... 47, 451
debugging extensions (DE) 48
machine-check enable (MCE)......................... 49, 230
OS #XF support (OSXMMEXCPT)...... 230, 305, 306
OS FXSAVE/FXRSTOR support (OSFXSR)........ 305
page-global enable (PGE) 49, 142
page-size extensions (PSE)..................... 49, 121, 125
performance counter enable (PCE).......... 49, 156, 365
physical-address extensions (PAE) 49, 121, 130
protected-mode virtual interrupts (PVI) 48
time-stamp disable (TSD) 48, 157, 372
virtual-8086 mode extensions (VME).............. 48, 256

CR5–CR7 ... 51
CR8... 51, 236
CR9–CR15.. 51
CS register ... 71, 451

selector .. 450
CSTAR register 153, 583, 585

D
D bit .. 83, 89, 139
D/B bit.. 81, 85
Data Limit Checks ... 114
Data limit checks ... 114
data prefetch, cache.. 185
data segment .. 26, 71, 83

64-bit mode.. 72
accessed (A)... 84
default operand size (D) .. 85
expand down (E) .. 84
FS and GS.. 27, 72
ignored fields in 64-bit mode................................. 89
long mode.. 89
privilege checks.. 97
type field ... 84
writable (W)... 84

DAZ bit .. 325
DBGCTL .. 486
DE bit ... 48
DE exception.. 228, 231
debug... 21, 504

See breakpoint and single-step.
debug exception (#DB) 219, 359

debug registers... 29, 350
address-breakpoint registers (DR0-DR3) 351
control-transfer recording MSRs 357
debug-control MSR (DebugCtl) 355
debug-control register (DR7) 353
reserved (DR4, DR5) .. 351

debug-control MSR (DebugCtl) 355
debug-control register (DR7) 353
DebugCtl register ... 581, 590
debugging extensions (CR4.DE) 48
DEC instruction ... 34
default operand size

B bit, stack segment .. 85
D bit, code segment .. 83
D bit, data segment 85, 112
D/B bit, descriptor .. 81
with expand down... 113

denormalized-operand exception (DE)............. 228, 231
denormals-are-zeros (DAZ) mode 325
descriptor .. 67, 80

available to software (AVL)................................... 81
code segment.. 26
data segment .. 26
default operand size (D/B)..................................... 81
DPL.. 81, 97, 342
gate ... 27
granularity (G).. 81
long mode .. 88
present (P).. 81, 342
S field .. 81, 342
segment base .. 80
segment limit.. 80
system segment .. 27
TSS ... 332
type field.. 81, 342

descriptor table .. 67, 73
global-descriptor table (GDT)................................ 69
interrupt-descriptor table (IDT).............................. 37
local-descriptor table (LDT) 69

descriptor-table registers..................................... 26, 68
64-bit mode.. 94
GDTR.. 74
IDTR ... 79
LDTR .. 76

DEV base address registers 491
DEV caching ... 487
DEV capability block ... 489
DEV register access ... 489
DEV_BASE_HI/LO registers 490
DEV_CAP register... 490
DEV_CR register ... 490
DEV_DATA .. 489
DEV_HDR.. 489
DEV_MAP Registers ... 492

624 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

DEV_OP... 489
DEVBASE registers... 487
device exclusion vector (DEV) 486, 487
device ID .. 486
device-not-available exception (#NM).......... 43, 44, 222
differences (architectural) ... 23
direct referencing.. xl
dirty (D), page-translation tables 139
displacement ... 31
displacements .. xli
divide-by-zero-error exception (#DE)...................... 219
double quadword ... xli
double-fault exception (#DF) 222
doubleword ... xli
DP field .. 325
DPL.. 97

data segment, 64-bit mode..................................... 90
definition ... 97
in call gate protection.. 105
in data segment protection.............................. 97, 280
in interrupt stack switch 242
in interrupt to higher privilege 243
in protecting conforming CS................................ 102
in protecting nonconforming CS 101
in stack segment protection 99
in stack switching ... 108

DPL field ... 81, 342
DR0-DR3 registers .. 351
DR4, DR5 registers.. 351
DR6 register ... 352, 451
DR7 register .. 451
DS field .. 325
DS register ... 71, 72, 451
DS.SEL... 451

E
E bit.. 84
eAX–eSP register .. xlvi
EFER register.............................. 29, 55, 451, 583, 585

fast FXSAVE/FXRSTOR (FFXSR)........................ 57
long mode active (LMA)................................ 56, 438
long mode enable (LME) 56, 438
no-execute enable (NXE) 57
system-call extension (SCE).................................. 56

EFER.SVME... 449
effective address .. 2, 25
effective address size.. xli
effective memory type.. 196
effective operand size... xli
EFLAGS

See rFLAGS.
eFLAGS register... xlvii
EIP

See rIP.
eIP register ... xlvii
EIPV bit .. 269
EM bit... 44, 434
emulate coprocessor (CR0.EM)................................. 44
EN bit ... 275
enabling SVM ... 449
endian byte-ordering .. xlix
End-of-Interrupt Register (EOI) 570
environment .. 311
error code

page fault ... 233
selector .. 232

ES register... 72, 451
ES.SEL ... 451
ESP

See rSP.
ET bit.. 44
event handler, definition ... 213
event injection ... 478
EVENTINJ.. 478
exception handler, definition 213
exception intercept

#AC... 469
#BP ... 467
#BR... 467
#DB... 467
#DE... 467
#DF ... 468
#GP ... 468
#MC .. 469
#MF .. 468
#NM.. 467
#NP ... 468
#OF ... 467
#PF.. 468
#SS.. 468
#TS ... 468
#UD .. 467
#XF ... 469
vector 2.. 467
vector 9.. 468

Exception Intercepts... 466
exceptions ... xli

abort .. 214
benign.. 222
contributory.. 222
definition of ... 213
definition of vector ... 216
differences in long mode 36
error code, page fault .. 233
error code, selector.. 232
fault ... 214
floating-point priorities 235

Index 625

24593—Rev. 3.30—September 2018 AMD64 Technology

imprecise ... 214
maskable SSE floating point................................ 215
maskable x87 floating point................................. 215
masking during stack switches............................. 215
precise ... 213
priorities .. 234
trap.. 214
while in SMM .. 296

exclusive state, MOESI .. 169
EXITINFO1 .. 464
expand down (E)

data segment .. 84
stack segment.. 84, 113

extended family field ... 433
Extended Interrupts.. 557
extended model field.. 433
extended save area ... 318
extended state management 317
extensible state management................................... 317
extension type (CR0.ET) .. 44

F
family field ... 433
far control transfer ... 100
far return .. 33, 111
fast FXSAVE/FXRSTOR ... 57
fault .. 214
FCW register .. 309, 311, 324
feature identification .. 63
FENCE ... 166
FFXSR bit... 57
fill, cache-line.. 163
first instruction .. 432
flat segmentation ... 6, 9, 67
FLDENV, FSTENV instructions 315
floating-point exception pending (#MF) 228

caused by 64-bit media instructions...................... 308
floating-point exception priorities 235
flush ... xli
FOP register .. 324
FPR registers .. 309, 311
FS and GS... 27, 72
FS register... 72
FS.Base register.. 583, 586
FSAVE, FRSTOR instructions 311
FSW register 307, 309, 311, 324
FTW register 308, 309, 311, 324
FXSAVE, FXRSTOR instructions................ 36, 50, 315

32-bit memory image.. 324
64-bit memory image.. 323
x87 tag word format ... 325

G
G bit ... 81, 140
gate descriptors .. 27

call gate ... 86
DPL... 97
ignored fields in long mode 92
illegal types in long mode...................................... 92
interrupt gate .. 86
long mode .. 92, 94
redefined types in long mode 92
target-segment offset ... 87
target-segment selector.. 87
task gate... 86
trap gate ... 86

GDT ... 73
GDTR.. 74, 451, 461
general detect fault ... 219, 361
general-protection exception (#GP) 226
general-purpose registers (GPRs) 28
GIF ... 477
global descriptor table (GDT) 69, 73

base address, 64-bit mode...................................... 75
first entry ... 74
limit check, long mode .. 75

global descriptor-table register (GDTR) 74
base address ... 75
limit... 75
loading... 158
storing ... 158

global interrupt flag (GIF)....................................... 477
global page (G), page-translation tables 140
global pages... 49, 142
granularity (G), descriptor................................. 81, 112
GS register .. 72
GS.Base register .. 583, 586
guest mode .. 447
Guest page tables (gPT).. 493

H
halt ... 159
Hardware errata ... 617
HLT .. 159, 462
host... 447
hypervisor ... 447

I
I/O interrupts ... 546
I/O Permissions Map.. 463
I/O privilege level field (rFLAGS.IOPL) 53
I/O space accesses.. 488
I/O, memory-mapped ... 202
I/O-permission bitmap

626 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

in 32-bit TSS.. 337
in 64-bit TSS.. 340

I/O-permission bitmap (IOPB) 338
ICEBP .. 463
ID bit .. 55
IDT... 78
IDTR ... 79, 451, 461
IE exception ... 228, 231
IF bit.. 53, 260
IGN ... xlii
illegal state .. 450
immediate operand... 31
imprecise exceptions and interrupts 214
IN/OUT .. 464
INC instruction.. 34
indirect .. xlii
inexact-result exception................................... 228, 231
INIT ... 482
initialization .. 429
initialization (INIT)

processor state.. 430
In-Service Register .. 566
instructions (system-management) 149
INT3 instruction ... 220, 362
integer bit.. 326
intercept.. 449

Ferr_Freeze... 470, 471
shutdown ... 471
task switch ... 470

Intercept Exit Codes... 607
Interprocessor interrupt (IPI)............................ 504, 559

INIT .. 504
Startup... 504

Interrupt Control.. 547
interrupt descriptor table (IDT) 78

limit check, long mode.. 79
interrupt descriptor-table register (IDTR)................... 79

loading .. 158
storing ... 158

interrupt flag (rFLAGS.IF) 53, 156
interrupt gate .. 86, 249

IST field .. 93
interrupt handler, definition 213
interrupt intercept .. 469

INIT .. 470
INTR... 469
NMI .. 469
SMI... 469
virtual.. 470

interrupt redirection .. 247, 258
Interrupt Request Register 565
interrupt shadows... 482

INTERRUPT_SHADOW 451
interrupt-descriptor table (IDT)

index .. 213, 240, 250
protected mode ... 239
real-address mode ... 237

interrupt-redirection bitmap 338
interrupts

definition of external... 213
definition of software .. 213
definition of vector ... 216
differences in long mode 36
external.. 231
external maskable ... 215
external nonmaskable.. 215
external-interrupt priorities 236
imprecise ... 214
long mode summary.. 249
precise ... 213
priorities .. 234
returning from 64-bit mode.................................. 254
returns ... 246
software ... 231
stack alignment, long mode 252
stack pointer push, long mode.............................. 251
stack switch, long mode 37, 252
to higher privilege... 242
to same privilege .. 241
while in SMM .. 296

interrupt-stack table (IST)............................ 37, 93, 253
in 64-bit TSS .. 340

interrupt-vector table .. 237
INTn ... 462
INTn instruction .. 231, 362
INTO instruction.. 221
invalid arithmetic-operand exception 228
invalid state, MOESI .. 169
invalidate page... 476
invalid-opcode exception (#UD)........................ 34, 221
invalid-operation exception (IE) 228, 231
invalid-TSS exception (#TS)................................... 224
INVD... 160, 185, 462
INVLPG ... 462
INVLPG instruction 142, 160
INVLPGA... 462, 476
IOPB... 337, 338
IOPL... 464
IOPL field ... 53, 247
IOPL-sensitive instruction 256
IOPM.. 463
IOPM_BASE_PA .. 463
IORRBasen registers 205, 584, 588
IORRMaskn registers 205, 588
IORRs, variable-range.. 204

Index 627

24593—Rev. 3.30—September 2018 AMD64 Technology

IOSPE .. 488
IRET .. 462

less privilege .. 246
long mode... 37, 254
same privilege .. 246

IST field.. 93

J
J bit .. 327
jump

See call gate and control transfer.
K
KernelGSbase register............................. 155, 583, 586

L
L bit.. 89
L1 data cache .. 163
L1 instruction cache... 163
L2 cache ... 163
L2I_PerfEvtSel registers .. 370
LAR instruction... 158
last branch record virtualization 485
LastBranchFromIP... 485
LastBranchFromIP register.............................. 582, 590
LastBranchToIP... 485
LastBranchToIP register 582, 590
LASTEXCPFROM.. 486
LASTEXCPTO ... 486
LastIntFromIP ... 485
LastIntFromIP register 582, 590
LastIntToIP ... 486
LastIntToIP register .. 582, 590
LDT ... 75

selector field .. 337
LDTR .. 76, 461
Legacy Interrupts... 546
legacy mode .. xlii, 14, 23
legacy PAE mode... 499
legacy x86.. xlii
LFENCE... 166
LFENCE instruction .. 185
LGDT.. 158, 461
LIDT ... 158, 461
limit... 75, 78, 80, 332
linear address .. 3
Link field .. 337
LINT0 .. 556
LINT1 .. 556
LLDT .. 158, 461
LMA bit.. 56
LME bit .. 56

LMSLE... 57
LMSW.. 156, 461
load ordering ... 185
Local APIC ... 547

ID.. 549
interrupt masking.. 482, 570

local descriptor table (LDT)................................ 69, 75
base address, 64-bit mode...................................... 78
limit check, long mode .. 78

local descriptor-table register (LDTR) 76
attributes .. 78
base address ... 78
hidden portion .. 76
LDT selector .. 77
limit... 78
loading... 158
storing ... 158

Local Interrupts ... 552
locality .. 141
logging

unauthorized access .. 492
logical address ... 2
long attribute (L)

code segment.. 89
effect on D bit .. 89

long mode .. xlii, 12, 23
activating ... 439
consistency checks.. 440
differences from legacy mode 39
enabling ... 438
enabling versus activating.................................... 438
GDT requirements .. 437
IDT requirements.. 437
leaving... 441
page translation-table requirements 438
relocating descriptor tables 440
relocating page tables.. 441
TSS requirements ... 438
use of CS.L and CS.D ... 439

long mode active (EFER.LMA)......................... 56, 438
long mode enable (EFER.LME) 56, 438
LSB .. xliii
lsb... xliii
LSTAR register....................................... 153, 583, 585
LTR .. 158, 461

M
M bit ... 327
machine check

error codes ... 276
error-reporting address register (MCi_ADDR) 276
error-reporting control register (MCi_CTL) 273
error-reporting miscellaneous register (MCi_MISC)

 276

628 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

error-reporting register banks............................... 271
error-reporting status register (MCi_STATUS)...... 273
global-capabilities register (MCG_CAP) 268
global-control register (MCG_CTL)..................... 270
global-status register (MCG_STATUS) 269
initialization... 279

machine check registers.. 267
machine-check enable (CR4.MCE) 49, 230
machine-check exception (#MC)............................. 230
mask... xliii
masking

definition of interrupt.. 213
MBZ... xliii
MCA error code field ... 274
MCE bit .. 49
MCG_CAP register................................. 268, 581, 589
MCG_CTL register................................. 270, 581, 589
MCG_CTL Register Present bit 269
MCG_STATUS register........................... 269, 581, 589
MCi Bank Count field .. 269
MCi_ADDR registers.............................. 276, 583, 589
MCi_CTL registers 273, 583, 589
MCi_MISC registers 583, 590
MCi_STATUS registers........................... 273, 583, 589
MCIP bit ... 269
Media Extension Control and Status Register (MXCSR)...

 306
memory .. 161
memory addressing

canonical address form.. 4
effective address... 2
linear address ... 3
logical address.. 2
near pointers .. 2
physical address ... 3
real address .. 10
RIP-relative address.. 31
segment offset .. 2
virtual address .. 3

memory consistency... 498
memory management ... 5
memory serialization.. 185
memory system ... 161
memory type ... 172

determining effective .. 196
uncacheable (UC) ... 172
write-combining (WC).. 173
write-combining plus (WC+)............................... 173
write-protect (WP).. 173

memory-access ordering
description ... 164
read ordering.. 164
write ordering... 165

memory-mapped I/O
directing reads and writes to 203, 206

memory-type range register (MTRR)......................... 29
combined with PAT... 201
effect of paging cache controls............................. 196
effects with large page sizes................................. 197
fixed range ... 190
identifying features ... 195
initial value .. 433
IORRBase.. 205
IORRMask... 205
MTRRcap .. 195
MTRRdefType ... 195
MTRRfix16K... 191
MTRRfix4K... 191
MTRRfix64K... 191
MTRRphysBase ... 192
MTRRphysMask .. 193
overlapping ranges.. 197
type field, default.. 188
type field, extended... 203
variable range... 192
variable range size and alignment......................... 194

MFENCE instruction.. 185
MISCV bit... 275
MMX registers .. 307
model field .. 433
model-specific error code field................................ 274
model-specific registers (MSRs)................... 29, 58, 156

control-transfer recording 357
debug extensions .. 62
debug-control MSR (DebugCtl) 355
initializing.. 435
machine check.. 63, 267
memory typing ... 61, 189
PAT ... 198
performance monitoring 62, 365
SYSCFG.. 59
system linkage.. 61, 153
time-stamp counter 62, 371
TOP_MEM .. 206
TOP_MEM2 .. 206

modes ... 11
64-bit ... 13
compatibility ... xl, 13
legacy ... xlii, 14
long .. xlii, 12
protected .. xliv, 14
real .. xliv, 4, 14
virtual-8086.. xlvi, 14

modified state, MOESI ... 169
MOESI ... 169
moffset.. xliii
monitor coprocessor (CR0.MP)................................. 43
MOV CRn instruction .. 155

Index 629

24593—Rev. 3.30—September 2018 AMD64 Technology

MOV DRn instruction.. 156
MOV TO CR0... 461
MOV TO/FROM CR0 ... 461
MOV TO/FROM CRn ... 461
MOV TO/FROM DRn ... 461
MOVSXD instruction .. 34
MP bit.. 43, 434
MSB... xliii
msb .. xliii
MSR.. xlvii
MSR permissions map (MSRPM) 465
MSR_PROT.. 466
MSRs ... 58
MTRRcap register 195, 581, 586
MTRRdefType register............................ 195, 582, 587
MTRRfix16K_n registers 191
MTRRfix4K_n registers ... 191
MTRRfix64K_n registers 191, 582, 587
MtrrFixDramEn bit ... 60, 203
MtrrFixDramModEn bit 60, 203
MTRRphysBasen registers 192, 582, 587
MTRRphysMaskn registers 193, 587
MTRRs.. 189, 498
MtrrTom2En bit.. 60, 208
MtrrVarDramEn bit... 60, 208
multiprocessor issues ... 487
MXCSR register .. 307

field... 325
MXCSR_MASK field... 325

N
NB_PerfEvtSel registers... 369
NE bit .. 44, 434
near branch

operand size, 64-bit mode 32
near control transfer ... 100
near pointers.. 2
near return... 111
Nested page tables (hPT).. 493
nested paging .. 493
nested task (rFLAGS.NT).................................. 53, 347
nestedtable walk .. 496
NEXT_RIP ... 450
NMI ... 220
NMI support.. 483
no-execute (NX)

page-translation tables, bit in 140
nonmaskable interrupt exception (NMI) 220

while in SMM .. 296
non-PAE paging... 122

CR3 format .. 123
NOP instruction... 34

not write-through (CR0.NW) 45, 183
NP_ENABLE .. 495
NT bit ... 53
null selector ... 70

64-bit mode far return ... 112
interrupt return from 64-bit mode......................... 255
long mode interrupts 252, 254
long mode stack switch 110

numeric error (CR0.NE) 44, 229
NW bit .. 45
NX bit... 140
NXE bit... 57

O
octword... xliii
OE exception ... 228, 231
offset... xliii, 87
operand-size prefix... 30
operating modes... 11
OS FXSAVE/FXRSTOR support (CR4.OSFXSR).... 305
OS unmasked exception support (CR4.OSXMMEXCPT)

 230, 305, 306
OSFXSR bit .. 50
OS-visible workarounds (OSVW) 617

OSVW ID .. 617
OSVW status.. 619
OSVW_ID_Length ... 619

OSXMMEXCPT bit... 50
OVER bit .. 275
overflow.. xliii
overflow exception (#OF)....................................... 221
overflow exception (OE) 228, 231
owned state, MOESI .. 169

P
P bit ... 81, 138, 342
packed... xliv
PAE .. 451
PAE bit.. 49, 121
PAE paging ... 25, 122

CR3 format .. 46, 123
CR3 format, long mode 130
legacy mode ... 126
long mode .. 131

page directory .. 122
page size (PS)...................................... 122, 125, 127

page directory pointer..................................... 122, 127
page faults

guest level .. 496
page size (PS), page-translation tables 139
page splintering ... 499
page table .. 122

630 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

page translation ... 117
page-attribute table (PAT)....................................... 198

combined with MTRR .. 201
effect on memory access 200
identifying support ... 200
indexing... 199
page-translation tables, bit in 140

Paged Real Mode... 478
page-fault exception (#PF)............................... 138, 227
page-fault virtual address.. 227
page-global enable (CR4.PGE) 49, 142
page-level cache disable (PCD)............................... 183

CR3, bit in ... 123
page-translation tables, bit in 139

page-level write-through (PWT) 184
CR3, bit in ... 123
page-translation tables, bit in 139

page-map level-4 ... 130
page-size extensions (CR4.PSE) 25, 26, 49, 121, 125

40-bit physical address support 121, 126
unsupported in long mode 121

page-translation cache .. 141
page-translation tables.. 25

accessed (A)... 139
available to software (AVL)................................. 140
dirty (D) .. 139
global page (G) .. 140
hierarchy.. 119
no-execute ... 140
page directory entry (PDE).................................. 122
page size (PS) .. 139
page table entry (PTE) .. 122
page-attribute table (PAT).................................... 140
page-directory pointer entry (PDPE) 25, 122, 127
page-level cache disable (PCD) 139
page-level write-through (PWT) 139
page-map level-4 entry (PML4E).................... 25, 130
physical-page base address 138
present (P) ... 138
read/write (R/W) .. 139
translation-table base address 138
user/supervisor (U/S) .. 139

paging.. 7, 25, 117
See also PAE paging and non-PAE paging.
effect of segment protection 148
protection across translation hierarchy.................. 147
protection checks.. 145
supported translations ... 120

paging enable (CR0.PG).................................... 45, 120
activating long mode.................................... 120, 440

parameter count field ... 88
PAT .. 499

See page-attribute table (PAT).
PAT bit.. 140

PAT register.. 198, 582, 587
PAUSE.. 462
PCC bit ... 275
PCD bit .. 123, 131, 139
PCE bit ... 49
PDE.. 122
PDPE... 122, 451, 499
PE bit.. 43
PE exception.. 228, 231
PerfCtr registers............................... 364, 584, 591, 592
PerfEvtSel registers................................. 364, 584, 591
performance counter... 156
performance counter enable (CR4.PCE)...... 49, 156, 365
Performance Monitor Counter Interrupts.................. 556
performance optimization 22, 364
performance-monitoring counters

L2I_PerfEvtSeln... 370
NB_PerfEvtSeln ... 369
overflow .. 371
PerfCtrn ... 365
PerfEvtSeln .. 366
starting and stopping ... 371

PG bit ... 45, 120
PGE bit ... 49
physical address... 3, 24

as index into cache.. 181
physical memory.. 4
physical-address extensions (CR4.PAE) 25, 49, 121, 130

activating long mode................................... 121, 440
See also PAE paging.

POP instruction.. 156
POPF .. 462
precise exceptions and interrupts 213
precision exception (PE)................................. 228, 231
PREFETCH instruction .. 185
present (P)

descriptor ... 81, 342
page-translation tables... 138

principle of locality .. 141
priorities, interrupt ... 234
privilege level .. 96
probe, cache .. 163, 170

during cache disable.. 183
processor feature identification (rFLAGS.ID)............. 55
processor halt .. 159
processor modes

16-bit .. xl
32-bit .. xl
64-bit .. xl

processor state ... 430
processor states .. 317
protected mode ... xliv, 14, 450

Index 631

24593—Rev. 3.30—September 2018 AMD64 Technology

initial operating environment............................... 436
protected-mode virtual interrupts (CR4.PVI).............. 48
protection checks

adjusting RPL .. 159
call gate ... 105
checking access rights... 158
data segment .. 97
direct call, conforming .. 102
direct call, nonconforming................................... 100
enabling... 66
far return.. 111
interrupt return ... 246
interrupt to higher privilege 243
limit check, 64-bit mode...................................... 112
long mode changes ... 27
long mode interrupt .. 252
long mode interrupt return................................... 254
stack segment... 98
type check.. 114
verifying read/write access 158

protection domains... 486
protection enable (CR0.PE) 43, 66, 73
PS bit... 122, 139
PSE bit.. 49
PSE paging ... 25
P-State .. 573

control ... 573
current limit register ... 574
status register ... 575

PTE .. 122
PUSH instruction... 156
PUSHF ... 462
PVI bit .. 48
PWT bit ... 123, 131, 139

Q
quadword .. xliv

R
R bit ... 82
R/W bit ... 139
r8–r15.. xlvii
RAX.. 450, 451
rAX–rSP .. xlvii
RAZ ... xliv
RdMem, MTRR type field................................. 60, 203
RDMSR... 58, 156, 465
RDP field .. 325
RDPMC... 49, 462
RDPMC instruction ... 156
RDTSC....................................... 48, 62, 157, 372, 462
RDTSCP..................................... 48, 62, 157, 372, 463
read hit.. 163

read miss ... 163
read ordering ... 185
read/write (R/W)

page-translation tables, bit in 139
readable (R), code segment 82
real address.. 10
real address mode. See real mode
real mode .. xliv, 4, 14

initial operating environment 436
registers

See also entries for individual registers.
address-breakpoint registers (DR0-DR3) 351
control registers .. 29, 41
control-transfer recording MSRs 357
CR0... 42
CR2... 227
CR3.. 25, 46, 123, 130
CR4... 47
CSTAR .. 153
debug registers ... 29, 350
debug-control MSR (DebugCtl) 355
debug-control register (DR7) 353
debug-extension MSRs ... 62
descriptor-table registers.................................. 26, 68
eAX–eSP ... xlvi
EFER... 29, 55
eFLAGS ... xlvii
eIP.. xlvii
FPR .. 309, 311
FS and GS.. 72
GDTR.. 74
GPRs ... 28
IDTR ... 79
IORRBase.. 205
IORRMask... 205
L2I_PerfEvtSeln... 370
last x87 data pointer 309, 311, 325
last x87 instruction pointer 309, 311, 324
LDTR .. 76
LSTAR .. 153
machine-check MSRs ... 63
MCG_CAP .. 268
MCG_CTL... 270
MCG_STATUS .. 269
MCi_ADDR... 276
MCi_CTL .. 273
MCi_MISC .. 276
MCi_STATUS .. 273
memory-type range register (MTRR) 29, 61, 189
MMX .. 307
model-specific registers (MSRs) 29
MTRR, fixed range ... 190
MTRR, variable range... 192
MTRRcap .. 195
MTRRdefType ... 195

632 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

MTRRfix16K... 191
MTRRfix4K .. 191
MTRRfix64K... 191
MTRRphysBase ... 192
MTRRphysMask .. 193
MXCSR... 307
NB_PerfEvtSeln... 369
PAT ... 198
PerfCtrn... 365
PerfEvtSeln.. 366
performance-monitoring MSRs.............................. 62
r8–r15... xlvii
rAX–rSP... xlvii
rFLAGS.. xlviii, 28, 51
rIP... xlviii
rSP .. 28
segment registers .. 70
SSE registers.. 28
STAR .. 153
SYSCFG.. 59
SYSENTER_CS... 154
SYSENTER_EIP.. 154
SYSENTER_ESP... 154
system-linkage MSRs ... 61
task-priority register (CR8) 38, 51, 236
time-stamp counter .. 62, 371
TOP_MEM... 60, 206
TOP_MEM2 ... 60, 206
x87 FCW .. 309, 311, 324
x87 floating-point processor state 308
x87 FSW 307, 309, 311, 324
x87 FTW 308, 309, 311, 324
x87 opcode ... 309, 311, 324
XMM registers ... 306

relative.. xliv
replacement, cache-line .. 163
replicated state... 494
reserved .. xliv
reset.. 429

processor state.. 430
RESET# signal .. 429
resume flag (rFLAGS.RF) 53, 219, 362
RET instruction ... 111

from 64-bit mode.. 112
long mode... 33, 111
popping null selector, 64-bit mode 112
stack switch ... 111

retire, instruction ... 164
revision history... xxix
REX prefix.. 29
RF bit ... 53
RFLAGS.. 450, 451
rFLAGS.. 28, 51

alignment check (AC) 54, 229

I/O privilege level field (IOPL).............................. 53
interrupt flag (IF).. 53, 156
nested task (NT) ... 53, 347
processor feature identification (ID) 55
resume flag (RF).................................... 53, 219, 362
trap flag (TF).. 52
virtual interrupt (VIF) 54, 257
virtual interrupt pending (VIP)....................... 54, 257
virtual-8086 mode (VM) 54

rFLAGS register .. xlviii
RIP ... 451
rIP .. 28
rIP register... xlviii
RIP-relative address ... 31
RIP-relative addressing... xliv
RIPV bit.. 269
RPL ... 70, 97, 332

adjusting .. 159
definition ... 97
in call gate protection .. 106
in data segment protection 97, 280
in far return .. 111
in IRET instruction ... 246
in protecting conforming CS................................ 103
in protecting nonconforming CS 101
in stack segment protection.................................... 99

RSM .. 285, 300, 462
RSP .. 450, 451
rSP.. 28

call gate stack switch... 108
implicit reference.. 31

S
S bit .. 81, 342
SBZ ... xlv
SCE bit ... 56
secure initialization .. 492
secure loader (SL) .. 500
secure loader (SL) image .. 501
secure loader block... 501
secure MP initialization 504, 505
security exception (#SX) 500, 506
segment base ... 80
segment limit ... 80
segment offset.. 2
segment registers ... 68, 70

64-bit mode.. 72
accessing.. 157
hidden portion .. 71
initializing unused registers 70

segmentation ... 5, 26
64-bit mode.. 67
combining with paging.. 8

Index 633

24593—Rev. 3.30—September 2018 AMD64 Technology

flat segmentation .. 6, 9, 67
multi-segmented model... 66

segment-not-present exception (#NP) 225
segment-override prefix ... 30
selector 68, 69, 70, 77, 87, 332
selector index .. 70
self-modifying code ... 181
SEOI Register .. 551, 571
serializing instructions.. 186
set.. xlv
SF exception ... 228
SFENCE ... 166
SFENCE instruction... 185
SGDT .. 158, 461
shadow page tables (SPTs)...................................... 475
shared state, MOESI .. 169
shut down.. 223
SIDT ... 158, 461
SIMD floating-point exception (#XF).. 50, 230, 305, 306
single-step

all instructions... 350, 362
control-transfers .. 350, 363

SKINIT.. 463, 492, 500
SL abort .. 504
SLDT .. 158, 461
SMBASE register .. 287
SMI .. 285

external, synchronous ... 484
internal, synchronous .. 483
xternal, asynchronous ... 484

SMM .. 285
SMM interrupts ... 296
SMM revision identifier ... 292
SMM state-save area.. 288
SMM_CTL MSR... 527
SMRAM ... 286
SMRAM state-save area... 288
SMSW.. 461
SMSW instruction ... 156
specific EOI (SEOI) ... 570
speculative execution ... 164
Spurious Interrupts... 559
SS register.. 72, 451
SS.SEL ... 450
SSE Instructions

subset support .. 303
SSE instructions

enabling... 305
saving state .. 310
YMM/XMM registers 28, 306

SSM Containerization .. 611
stack exception (#SS)... 225

stack pointers
in 32-bit TSS .. 337
in 64-bit TSS .. 339

stack segment .. 71, 83
64-bit mode.. 72
default operand size (D) .. 85
expand down (E) .. 84
privilege checks.. 98

stack switch
call gate ... 108
call gate, long mode 33, 109
far return .. 111
interrupt ... 242
interrupt return ... 246
interrupt, long mode.. 37

stack-fault exception (SF) 228
STAR register ... 153, 583, 585
state switch.. 448
status word .. 156
stepping ID field .. 433
STGI... 463, 477
STI instruction... 156
sticky bits ... xlv
store ordering .. 185
STR .. 461
STR instruction.. 158
SVM support ... 483
SWAPGS instruction .. 155
SYSCALL Flag Mask register 153
SYSCALL, SYSRET instructions 56, 152
SYSCFG register 59, 584, 587

MtrrFixDramEn.. 60, 203
MtrrFixDramModEn..................................... 60, 203
MtrrTom2En .. 208
MtrrVarDramEn ... 60, 208

SYSENTER_CS register 154, 581, 586
SYSENTER_EIP register 154, 581, 586
SYSENTER_ESP register........................ 154, 581, 586
SYSENTER, SYSEXIT instructions........................ 154

illegal in long mode .. 154
system call and return... 152
system data structures... 17
system management interrupt (SMI) 285, 295, 483

while in SMM .. 296
system management mode (SMM) 15, 24, 483

leaving... 300
long mode differences ... 285
operating environment .. 295
revision identifier.. 292
saving processor state.. 297
SMBASE register ... 287
SMRAM .. 286
state-save area, AMD64 architecture 288

634 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

state-save area, legacy... 291
system registers ... 15
system segment .. 27, 80, 85

ignored fields in 64-bit mode................................. 91
illegal types in long mode 90
long mode.. 90
type field ... 85

system-call extension (EFER.SCE) 56
system-linkage MSRs.. 61, 153

T
T bit.. 337
table indicator, selector... 70
tagged TLB ... 448
task gate.. 86

in task switching... 345
long mode.. 94

Task Register (TR)... 68
task register (TR) ... 333

loading .. 158
selector .. 332
storing ... 158

task switch ... 329, 343
disabled in long mode ... 38
lazy context switch .. 44, 327
nesting tasks... 347
preventing recursion ... 347

task switched (CR0.TS)..................................... 44, 156
task, execution space.. 329
task-priority register (CR8).......................... 38, 51, 236
task-state segment (TSS)

descriptor... 332
dynamic fields.. 337
I/O-permission bitmap 337, 340
interrupt-redirection bitmap................................. 338
interrupt-stack table .. 340
legacy 32-bit .. 335
link field .. 347
software-defined fields.. 337
stack pointers .. 337, 339
static fields... 337

TF bit.. 52
Thermal Sensor ... 546
Thermal Sensor Interrupts 557
TI bit ... 70, 332
time-stamp counter ... 157, 371
time-stamp disable (CR4.TSD) 48, 157, 372
TLB.. 140, 141, 450, 451

explicit invalidation 142, 160
implicit invalidation.. 143

TLB Control.. 475
TLB entry upgrades ... 143
TLB flush.. 475

TLB_CONTROL... 476
top of memory ... 206
TOP_MEM register........................... 60, 206, 584, 588
TOP_MEM2 register......................... 60, 206, 584, 588
TPM ... 502
TPR register ... 38, 51, 236
TR register ... 330, 333, 461
translation lookaside buffer (TLB)........................... 141
trap ... 214
trap flag (rFLAGS.TF) ... 52
trap gate .. 86, 249
Trigger Mode Register.. 566
Trusted Platform Module (TPM) 500
trusted software ... 500
TS bit.. 44
TSC register ... 371, 581, 591
TSD bit ... 48
TSS... xlv, 330, 335
TSS descriptor ... 330
TSS selector .. 87, 330
type check ... 114
Type field ... 81, 333, 342

U
U/S bit .. 139
UC bit ... 275
UC memory type.. 172
UD2 instruction ... 221
UE exception ... 228, 231
uncacheable (UC-), memory type 199
underflow... xlv
underflow exception (UE)............................... 228, 231
user segment.. 80
user/supervisor (U/S)

page-translation tables, bit in 139

V
V_IGN_TPR ... 481
V_INTR_MASKING ... 480
V_INTR_PRIO.. 481
V_INTR_VECTOR.. 481
V_IRQ .. 451, 481
V_TPR... 451, 480, 481
VAL bit ... 276
Variable-range IORRs .. 204
vector... xlv
vector, interrupt.. 216
VERR instruction... 158
VERW instruction.. 158
VIF bit .. 54
VIP bit .. 54

Index 635

24593—Rev. 3.30—September 2018 AMD64 Technology

virtual #INTR.. 481
virtual address ... 3, 24
virtual interrupt (rFLAGS.VIF).......................... 54, 257
virtual interrupt pending (rFLAGS.VIP) 54, 257
virtual interrupts 53, 54, 255, 257, 448
virtual interrupts, protected mode............................ 259
virtual machine control block (VMCB).................... 449
virtual machine monitor ... 447
virtual memory .. 3
virtual-8086 mode.. xlvi, 14

interrupt to protected mode.................................. 247
interrupts ... 246

virtual-8086 mode (rFLAGS.VM)............................. 54
virtual-8086 mode extensions (CR4.VME) 48, 256
VM bit .. 54
VM_HSAVE_AREA ... 451
VM_SAVE_PA MSR ... 528
VMCB.. 450
VME .. 256
VME bit... 48, 247
VMLOAD.. 450, 462, 472
VMM ... 447
VMMCALL... 463, 478
VMRUN ... 447, 449, 450, 462
VMSAVE... 450, 462, 472

W
W bit .. 84
WAIT/FWAIT instruction... 43
WB memory type .. 173
WBINVD... 159, 185, 463
WC memory type .. 173
WC+... 498
world switch.. 447
WP bit .. 44
WP memory type ... 173
writable (W), data segment 84
write buffer .. 163, 177

emptying.. 177
write hit .. 163
write miss.. 163
write ordering... 165, 185
write protect (CR0.WP).. 44
write-back (WB), memory type............................... 173
writeback, cache line.. 163
write-combining buffer.................................... 163, 178

emptying.. 178
write-combining plus memory type 173
write-though (WT)

memory type .. 173
WrMem, MTRR type field 60, 203
WRMSR .. 58, 156, 465

WT memory type ... 173

X
x87 control word..................................... 309, 311, 324
x87 data pointer register 309, 311, 325
x87 environment .. 311
x87 floating-point instructions

initializing.. 433
processor state .. 308
saving state .. 310

x87 floating-point state, initialization....................... 431
x87 instruction pointer register................. 309, 311, 324
x87 opcode register 309, 311, 324
x87 status word................................ 307, 309, 311, 324
x87 tag word.................................... 308, 309, 311, 324

FXSAVE format ... 325
XMM registers .. 306

Y
YMM states... 319

Z
ZE exception ... 228, 231
zero extension.. 30, 31
zero-divide exception (ZE) 228, 231

636 Index

AMD64 Technology 24593—Rev. 3.30—September 2018

	AMD64 Architecture Programmer’s Manual Volume 2: System Programming
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 System-Programming Overview
	1.1 Memory Model
	1.1.1 Memory Addressing
	1.1.2 Memory Organization
	1.1.3 Canonical Address Form

	1.2 Memory Management
	1.2.1 Segmentation
	1.2.2 Paging
	1.2.3 Mixing Segmentation and Paging
	1.2.4 Real Addressing

	1.3 Operating Modes
	1.3.1 Long Mode
	1.3.2 64-Bit Mode
	1.3.3 Compatibility Mode
	1.3.4 Legacy Modes
	1.3.5 System Management Mode (SMM)

	1.4 System Registers
	1.5 System-Data Structures
	1.6 Interrupts
	1.7 Additional System-Programming Facilities
	1.7.1 Hardware Multitasking
	1.7.2 Machine Check
	1.7.3 Software Debugging
	1.7.4 Performance Monitoring

	2 x86 and AMD64 Architecture Differences
	2.1 Operating Modes
	2.1.1 Long Mode
	2.1.2 Legacy Mode
	2.1.3 System-Management Mode

	2.2 Memory Model
	2.2.1 Memory Addressing
	2.2.2 Page Translation
	2.2.3 Segmentation

	2.3 Protection Checks
	2.4 Registers
	2.4.1 General-Purpose Registers
	2.4.2 YMM/XMM Registers
	2.4.3 Flags Register
	2.4.4 Instruction Pointer
	2.4.5 Stack Pointer
	2.4.6 Control Registers
	2.4.7 Debug Registers
	2.4.8 Extended Feature Register (EFER)
	2.4.9 Memory Type Range Registers (MTRRs)
	2.4.10 Other Model-Specific Registers (MSRs)

	2.5 Instruction Set
	2.5.1 REX Prefixes
	2.5.2 Segment-Override Prefixes in 64-Bit Mode
	2.5.3 Operands and Results
	2.5.4 Address Calculations
	2.5.5 Instructions that Reference RSP
	2.5.6 Branches
	2.5.7 NOP Instruction
	2.5.8 Single-Byte INC and DEC Instructions
	2.5.9 MOVSXD Instruction
	2.5.10 Invalid Instructions
	2.5.11 Reassigned Opcodes
	2.5.12 FXSAVE and FXRSTOR Instructions

	2.6 Interrupts and Exceptions
	2.6.1 Interrupt Descriptor Table
	2.6.2 Stack Frame Pushes
	2.6.3 Stack Switching
	2.6.4 IRET Instruction
	2.6.5 Task-Priority Register (CR8)
	2.6.6 New Exception Conditions

	2.7 Hardware Task Switching
	2.8 Long-Mode vs. Legacy-Mode Differences

	3 System Resources
	3.1 System-Control Registers
	3.1.1 CR0 Register
	3.1.2 CR2 and CR3 Registers
	3.1.3 CR4 Register
	3.1.4 Additional Control Registers in 64-Bit-Mode
	3.1.5 CR8 (Task Priority Register, TPR)
	3.1.6 RFLAGS Register
	3.1.7 Extended Feature Enable Register (EFER)
	3.1.8 Extended Control Registers (XCRn)

	3.2 Model-Specific Registers (MSRs)
	3.2.1 System Configuration Register (SYSCFG)
	3.2.2 System-Linkage Registers
	3.2.3 Memory-Typing Registers
	3.2.4 Debug-Extension Registers
	3.2.5 Performance-Monitoring Registers
	3.2.6 Machine-Check Registers

	3.3 Processor Feature Identification

	4 Segmented Virtual Memory
	4.1 Real Mode Segmentation
	4.2 Virtual-8086 Mode Segmentation
	4.3 Protected Mode Segmented-Memory Models
	4.3.1 Multi-Segmented Model
	4.3.2 Flat-Memory Model
	4.3.3 Segmentation in 64-Bit Mode

	4.4 Segmentation Data Structures and Registers
	4.5 Segment Selectors and Registers
	4.5.1 Segment Selectors
	4.5.2 Segment Registers
	4.5.3 Segment Registers in 64-Bit Mode

	4.6 Descriptor Tables
	4.6.1 Global Descriptor Table
	4.6.2 Global Descriptor-Table Register
	4.6.3 Local Descriptor Table
	4.6.4 Local Descriptor-Table Register
	4.6.5 Interrupt Descriptor Table
	4.6.6 Interrupt Descriptor-Table Register

	4.7 Legacy Segment Descriptors
	4.7.1 Descriptor Format
	4.7.2 Code-Segment Descriptors
	4.7.3 Data-Segment Descriptors
	4.7.4 System Descriptors
	4.7.5 Gate Descriptors

	4.8 Long-Mode Segment Descriptors
	4.8.1 Code-Segment Descriptors
	4.8.2 Data-Segment Descriptors
	4.8.3 System Descriptors
	4.8.4 Gate Descriptors
	4.8.5 Long Mode Descriptor Summary

	4.9 Segment-Protection Overview
	4.9.1 Privilege-Level Concept
	4.9.2 Privilege-Level Types

	4.10 Data-Access Privilege Checks
	4.10.1 Accessing Data Segments
	4.10.2 Accessing Stack Segments

	4.11 Control-Transfer Privilege Checks
	4.11.1 Direct Control Transfers
	4.11.2 Control Transfers Through Call Gates
	4.11.3 Return Control Transfers

	4.12 Limit Checks
	4.12.1 Determining Limit Violations
	4.12.2 Data Limit Checks in 64-bit Mode

	4.13 Type Checks
	4.13.1 Type Checks in Legacy and Compatibility Modes
	4.13.2 Long Mode Type Check Differences

	5 Page Translation and Protection
	5.1 Page Translation Overview
	5.1.1 Page-Translation Options
	5.1.2 Page-Translation Enable (PG) Bit
	5.1.3 Physical-Address Extensions (PAE) Bit
	5.1.4 Page-Size Extensions (PSE) Bit
	5.1.5 Page-Directory Page Size (PS) Bit

	5.2 Legacy-Mode Page Translation
	5.2.1 CR3 Register
	5.2.2 Normal (Non-PAE) Paging
	5.2.3 PAE Paging

	5.3 Long-Mode Page Translation
	5.3.1 Canonical Address Form
	5.3.2 CR3
	5.3.3 4-Kbyte Page Translation
	5.3.4 2-Mbyte Page Translation
	5.3.5 1-Gbyte Page Translation

	5.4 Page-Translation-Table Entry Fields
	5.4.1 Field Definitions
	5.4.2 Notes on Accessed and Dirty Bits

	5.5 Translation-Lookaside Buffer (TLB)
	5.5.1 Global Pages
	5.5.2 TLB Management

	5.6 Page-Protection Checks
	5.6.1 User/Supervisor (U/S) Bit
	5.6.2 Read/Write (R/W) Bit
	5.6.3 No Execute (NX) Bit
	5.6.4 Write Protect (CR0.WP) Bit
	5.6.5 Supervisor-Mode Execution Prevention (CR4.SMEP) Bit

	5.7 Protection Across Paging Hierarchy
	5.7.1 Access to User Pages when CR0.WP=1

	5.8 Effects of Segment Protection

	6 System-Management Instructions
	6.1 Fast System Call and Return
	6.1.1 SYSCALL and SYSRET
	6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)
	6.1.3 SWAPGS Instruction

	6.2 System Status and Control
	6.2.1 Processor Feature Identification (CPUID)
	6.2.2 Accessing Control Registers
	6.2.3 Accessing the RFLAGS Register
	6.2.4 Accessing Debug Registers
	6.2.5 Accessing Model-Specific Registers

	6.3 Segment Register and Descriptor Register Access
	6.3.1 Accessing Segment Registers
	6.3.2 Accessing Segment Register Hidden State
	6.3.3 Accessing Descriptor-Table Registers

	6.4 Protection Checking
	6.4.1 Checking Access Rights
	6.4.2 Checking Segment Limits
	6.4.3 Checking Read/Write Rights
	6.4.4 Adjusting Access Rights

	6.5 Processor Halt
	6.6 Cache and TLB Management
	6.6.1 Cache Management
	6.6.2 TLB Invalidation

	7 Memory System
	7.1 Single-Processor Memory Access Ordering
	7.1.1 Read Ordering
	7.1.2 Write Ordering
	7.1.3 Read/Write Barriers

	7.2 Multiprocessor Memory Access Ordering
	7.3 Memory Coherency and Protocol
	7.3.1 Special Coherency Considerations
	7.3.2 Access Atomicity

	7.4 Memory Types
	7.4.1 Instruction Fetching from Uncacheable Memory
	7.4.2 Memory Barrier Interaction with Memory Types

	7.5 Buffering and Combining Memory Writes
	7.5.1 Write Buffering
	7.5.2 Write Combining

	7.6 Memory Caches
	7.6.1 Cache Organization and Operation
	7.6.2 Cache Control Mechanisms
	7.6.3 Cache and Memory Management Instructions
	7.6.4 Serializing Instructions
	7.6.5 Cache and Processor Topology

	7.7 Memory-Type Range Registers
	7.7.1 MTRR Type Fields
	7.7.2 MTRRs
	7.7.3 Using MTRRs
	7.7.4 MTRRs and Page Cache Controls
	7.7.5 MTRRs in Multi-Processing Environments

	7.8 Page-Attribute Table Mechanism
	7.8.1 PAT Register
	7.8.2 PAT Indexing
	7.8.3 Identifying PAT Support
	7.8.4 PAT Accesses
	7.8.5 Combined Effect of MTRRs and PAT
	7.8.6 PATs in Multi-Processing Environments
	7.8.7 Changing Memory Type

	7.9 Memory-Mapped I/O
	7.9.1 Extended Fixed-Range MTRR Type-Field Encodings
	7.9.2 IORRs
	7.9.3 IORR Overlapping
	7.9.4 Top of Memory

	7.10 Secure Memory Encryption
	7.10.1 Determining Support for Secure Memory Encryption
	7.10.2 Enabling Memory Encryption Extensions
	7.10.3 Supported Operating Modes
	7.10.4 Page Table Support
	7.10.5 I/O Accesses
	7.10.6 Restrictions
	7.10.7 SMM Interaction
	7.10.8 Encrypt-in-Place

	8 Exceptions and Interrupts
	8.1 General Characteristics
	8.1.1 Precision
	8.1.2 Instruction Restart
	8.1.3 Types of Exceptions
	8.1.4 Masking External Interrupts
	8.1.5 Masking Floating-Point and Media Instructions
	8.1.6 Disabling Exceptions

	8.2 Vectors
	8.2.1 #DE—Divide-by-Zero-Error Exception (Vector 0)
	8.2.2 #DB—Debug Exception (Vector 1)
	8.2.3 NMI—Non-Maskable-Interrupt Exception (Vector 2)
	8.2.4 #BP—Breakpoint Exception (Vector 3)
	8.2.5 #OF—Overflow Exception (Vector 4)
	8.2.6 #BR—Bound-Range Exception (Vector 5)
	8.2.7 #UD—Invalid-Opcode Exception (Vector 6)
	8.2.8 #NM—Device-Not-Available Exception (Vector 7)
	8.2.9 #DF—Double-Fault Exception (Vector 8)
	8.2.10 Coprocessor-Segment-Overrun Exception (Vector 9)
	8.2.11 #TS—Invalid-TSS Exception (Vector 10)
	8.2.12 #NP—Segment-Not-Present Exception (Vector 11)
	8.2.13 #SS—Stack Exception (Vector 12)
	8.2.14 #GP—General-Protection Exception (Vector 13)
	8.2.15 #PF—Page-Fault Exception (Vector 14)
	8.2.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)
	8.2.17 #AC—Alignment-Check Exception (Vector 17)
	8.2.18 #MC—Machine-Check Exception (Vector 18)
	8.2.19 #XF—SIMD Floating-Point Exception (Vector 19)
	8.2.20 #VC -- VMM Communication Exception (Vector 29)
	8.2.21 #SX—Security Exception (Vector 30)
	8.2.22 User-Defined Interrupts (Vectors 32–255)

	8.3 Exceptions During a Task Switch
	8.4 Error Codes
	8.4.1 Selector-Error Code
	8.4.2 Page-Fault Error Code

	8.5 Priorities
	8.5.1 Floating-Point Exception Priorities
	8.5.2 External Interrupt Priorities

	8.6 Real-Mode Interrupt Control Transfers
	8.7 Legacy Protected-Mode Interrupt Control Transfers
	8.7.1 Locating the Interrupt Handler
	8.7.2 Interrupt To Same Privilege
	8.7.3 Interrupt To Higher Privilege
	8.7.4 Privilege Checks
	8.7.5 Returning From Interrupt Procedures

	8.8 Virtual-8086 Mode Interrupt Control Transfers
	8.8.1 Protected-Mode Handler Control Transfer
	8.8.2 Virtual-8086 Handler Control Transfer

	8.9 Long-Mode Interrupt Control Transfers
	8.9.1 Interrupt Gates and Trap Gates
	8.9.2 Locating the Interrupt Handler
	8.9.3 Interrupt Stack Frame
	8.9.4 Interrupt-Stack Table
	8.9.5 Returning From Interrupt Procedures

	8.10 Virtual Interrupts
	8.10.1 Virtual-8086 Mode Extensions
	8.10.2 Protected Mode Virtual Interrupts
	8.10.3 Effect of Instructions that Modify EFLAGS.IF

	9 Machine Check Architecture
	9.1 Introduction
	9.1.1 Reliability, Availability, and Serviceability
	9.1.2 Error Detection, Logging, and Reporting
	9.1.3 Error Recovery

	9.2 Determining Machine-Check Architecture Support
	9.3 Machine Check Architecture MSRs
	9.3.1 Global Status and Control Registers
	9.3.2 Error-Reporting Register Banks

	9.4 Initializing the Machine-Check Mechanism
	9.5 Using MCA Features
	9.5.1 Determining the Scope of Detected Errors
	9.5.2 Handling Machine Check Exceptions
	9.5.3 Reporting Corrected Errors

	10 System-Management Mode
	10.1 SMM Differences
	10.2 SMM Resources
	10.2.1 SMRAM
	10.2.2 SMBASE Register
	10.2.3 SMRAM State-Save Area
	10.2.4 SMM-Revision Identifier
	10.2.5 SMRAM Protected Areas

	10.3 Using SMM
	10.3.1 System-Management Interrupt (SMI)
	10.3.2 SMM Operating-Environment
	10.3.3 Exceptions and Interrupts
	10.3.4 Invalidating the Caches
	10.3.5 Saving Additional Processor State
	10.3.6 Operating in Protected Mode and Long Mode
	10.3.7 Auto-Halt Restart
	10.3.8 I/O Instruction Restart

	10.4 Leaving SMM
	10.5 Multiprocessor Considerations

	11 SSE, MMX, and x87 Programming
	11.1 Overview of System-Software Considerations
	11.2 Determining Media and x87 Feature Support
	11.3 Enabling SSE Instructions
	11.3.1 Enabling Legacy SSE Instruction Execution
	11.3.2 Enabling Extended SSE Instruction Execution
	11.3.3 SIMD Floating-Point Exception Handling

	11.4 Media and x87 Processor State
	11.4.1 SSE Execution Unit State
	11.4.2 MMX Execution Unit State
	11.4.3 x87 Execution Unit State
	11.4.4 Saving Media and x87 Execution Unit State

	11.5 XSAVE/XRSTOR Instructions
	11.5.1 CPUID Enhancements
	11.5.2 XFEATURE_ENABLED_MASK
	11.5.3 Extended Save Area
	11.5.4 Instruction Functions
	11.5.5 YMM States and Supported Operating Modes
	11.5.6 Extended SSE Execution State Management
	11.5.7 Saving Processor State
	11.5.8 Restoring Processor State
	11.5.9 MXCSR State Management
	11.5.10 Mode-Specific XSAVE/XRSTOR State Management

	12 Task Management
	12.1 Hardware Multitasking Overview
	12.2 Task-Management Resources
	12.2.1 TSS Selector
	12.2.2 TSS Descriptor
	12.2.3 Task Register
	12.2.4 Legacy Task-State Segment
	12.2.5 64-Bit Task State Segment
	12.2.6 Task Gate Descriptor (Legacy Mode Only)

	12.3 Hardware Task-Management in Legacy Mode
	12.3.1 Task Memory-Mapping
	12.3.2 Switching Tasks
	12.3.3 Task Switches Using Task Gates
	12.3.4 Nesting Tasks

	13 Software Debug and Performance Resources
	13.1 Software-Debug Resources
	13.1.1 Debug Registers
	13.1.2 Setting Breakpoints
	13.1.3 Using Breakpoints
	13.1.4 Single Stepping
	13.1.5 Breakpoint Instruction (INT3)
	13.1.6 Control-Transfer Breakpoint Features

	13.2 Performance Monitoring Counters
	13.2.1 Performance Counter MSRs
	13.2.2 Detecting Hardware Support for Performance Counters
	13.2.3 Using Performance Counters
	13.2.4 Time-Stamp Counter

	13.3 Instruction-Based Sampling
	13.3.1 IBS Fetch Sampling
	13.3.2 IBS Fetch Sampling Registers
	13.3.3 IBS Execution Sampling
	13.3.4 IBS Execution Sampling Registers

	13.4 Lightweight Profiling
	13.4.1 Overview
	13.4.2 Events and Event Records
	13.4.3 Detecting LWP
	13.4.4 LWP Registers
	13.4.5 LWP Instructions
	13.4.6 LWP Control Block
	13.4.7 XSAVE/XRSTOR
	13.4.8 Implementation Notes

	14 Processor Initialization and Long Mode Activation
	14.1 Processor Initialization
	14.1.1 Built-In Self Test (BIST)
	14.1.2 Clock Multiplier Selection
	14.1.3 Processor Initialization State
	14.1.4 Multiple Processor Initialization
	14.1.5 Fetching the First Instruction

	14.2 Hardware Configuration
	14.2.1 Processor Implementation Information
	14.2.2 Enabling Internal Caches
	14.2.3 Initializing Media and x87 Processor State
	14.2.4 Model-Specific Initialization

	14.3 Initializing Real Mode
	14.4 Initializing Protected Mode
	14.5 Initializing Long Mode
	14.6 Enabling and Activating Long Mode
	14.6.1 Activating Long Mode
	14.6.2 Consistency Checks
	14.6.3 Updating System Descriptor Table References
	14.6.4 Relocating Page-Translation Tables

	14.7 Leaving Long Mode
	14.8 Long-Mode Initialization Example

	15 Secure Virtual Machine
	15.1 The Virtual Machine Monitor
	15.2 SVM Hardware Overview
	15.2.1 Virtualization Support
	15.2.2 Guest Mode
	15.2.3 External Access Protection
	15.2.4 Interrupt Support
	15.2.5 Restartable Instructions
	15.2.6 Security Support

	15.3 SVM Processor and Platform Extensions
	15.4 Enabling SVM
	15.5 VMRUN Instruction
	15.5.1 Basic Operation

	15.6 #VMEXIT
	15.7 Intercept Operation
	15.7.1 State Saved on Exit
	15.7.2 Intercepts During IDT Interrupt Delivery
	15.7.3 EXITINTINFO Pseudo-Code

	15.8 Decode Assists
	15.8.1 MOV CRx/DRx Intercepts
	15.8.2 INTn Intercepts
	15.8.3 INVLPG and INVLPGA Intercepts
	15.8.4 Nested and intercepted #PF

	15.9 Instruction Intercepts
	15.10 IOIO Intercepts
	15.10.1 I/O Permissions Map
	15.10.2 IN and OUT Behavior
	15.10.3 (REP) OUTS and INS

	15.11 MSR Intercepts
	15.12 Exception Intercepts
	15.12.1 #DE (Divide By Zero)
	15.12.2 #DB (Debug)
	15.12.3 Vector 2 (Reserved)
	15.12.4 #BP (Breakpoint)
	15.12.5 #OF (Overflow)
	15.12.6 #BR (Bound-Range)
	15.12.7 #UD (Invalid Opcode)
	15.12.8 #NM (Device-Not-Available)
	15.12.9 #DF (Double Fault)
	15.12.10 Vector 9 (Reserved)
	15.12.11 #TS (Invalid TSS)
	15.12.12 #NP (Segment Not Present)
	15.12.13 #SS (Stack Fault)
	15.12.14 #GP (General Protection)
	15.12.15 #PF (Page Fault)
	15.12.16 #MF (X87 Floating Point)
	15.12.17 #AC (Alignment Check)
	15.12.18 #MC (Machine Check)
	15.12.19 #XF (SIMD Floating Point)

	15.13 Interrupt Intercepts
	15.13.1 INTR Intercept
	15.13.2 NMI Intercept
	15.13.3 SMI Intercept
	15.13.4 INIT Intercept
	15.13.5 Virtual Interrupt Intercept

	15.14 Miscellaneous Intercepts
	15.14.1 Task Switch Intercept
	15.14.2 Ferr_Freeze Intercept
	15.14.3 Shutdown Intercept
	15.14.4 Pause Intercept Filtering

	15.15 VMCB State Caching
	15.15.1 VMCB Clean Bits
	15.15.2 Guidelines for Clearing VMCB Clean Bits
	15.15.3 VMCB Clean Field

	15.16 TLB Control
	15.16.1 TLB Flush
	15.16.2 Invalidate Page, Alternate ASID

	15.17 Global Interrupt Flag, STGI and CLGI Instructions
	15.18 VMMCALL Instruction
	15.19 Paged Real Mode
	15.20 Event Injection
	15.21 Interrupt and Local APIC Support
	15.21.1 Physical (INTR) Interrupt Masking in EFLAGS
	15.21.2 Virtualizing APIC.TPR
	15.21.3 TPR Access in 32-Bit Mode
	15.21.4 Injecting Virtual (INTR) Interrupts
	15.21.5 Interrupt Shadows
	15.21.6 Virtual Interrupt Intercept
	15.21.7 Interrupt Masking in Local APIC
	15.21.8 INIT Support
	15.21.9 NMI Support

	15.22 SMM Support
	15.22.1 Sources of SMI
	15.22.2 Response to SMI
	15.22.3 Containerizing Platform SMM

	15.23 Last Branch Record Virtualization
	15.23.1 Hardware Acceleration for LBR Virtualization
	15.23.2 LBR Virtualization CPUID Feature Detection

	15.24 External Access Protection
	15.24.1 Device IDs and Protection Domains
	15.24.2 Device Exclusion Vector (DEV)
	15.24.3 Access Checking
	15.24.4 DEV Capability Block
	15.24.5 DEV Register Access Mechanism
	15.24.6 DEV Control and Status Registers
	15.24.7 Unauthorized Access Logging
	15.24.8 Secure Initialization Support

	15.25 Nested Paging
	15.25.1 Traditional Paging versus Nested Paging
	15.25.2 Replicated State
	15.25.3 Enabling Nested Paging
	15.25.4 Nested Paging and VMRUN/#VMEXIT
	15.25.5 Nested Table Walk
	15.25.6 Nested versus Guest Page Faults, Fault Ordering
	15.25.7 Combining Nested and Guest Attributes
	15.25.8 Combining Memory Types, MTRRs
	15.25.9 Page Splintering
	15.25.10 Legacy PAE Mode
	15.25.11 A20 Masking
	15.25.12 Detecting Nested Paging Support

	15.26 Security
	15.27 Secure Startup with SKINIT
	15.27.1 Secure Loader
	15.27.2 Secure Loader Image
	15.27.3 Secure Loader Block
	15.27.4 Trusted Platform Module
	15.27.5 System Interface, Memory Controller and I/O Hub Logic
	15.27.6 SKINIT Operation
	15.27.7 SL Abort
	15.27.8 Secure Multiprocessor Initialization

	15.28 Security Exception (#SX)
	15.29 Advanced Virtual Interrupt Controller
	15.29.1 Introduction
	15.29.2 Architectural Definition

	15.30 SVM Related MSRs
	15.30.1 VM_CR MSR (C001_0114h)
	15.30.2 IGNNE MSR (C001_0115h)
	15.30.3 SMM_CTL MSR (C001_0116h)
	15.30.4 VM_HSAVE_PA MSR (C001_0117h)
	15.30.5 TSC Ratio MSR (C000_0104h)

	15.31 SVM-Lock
	15.31.1 SVM_KEY MSR (C001_0118h)

	15.32 SMM-Lock
	15.32.1 SmmLock Bit — HWCR[0]
	15.32.2 SMM_KEY MSR (C001_0119h)

	15.33 Nested Virtualization
	15.33.1 VMSAVE and VMLOAD Virtualization
	15.33.2 Virtual GIF

	15.34 Secure Encrypted Virtualization
	15.34.1 Determining Support for SEV
	15.34.2 Key Management
	15.34.3 Enabling SEV
	15.34.4 Supported Operating Modes
	15.34.5 SEV Encryption Behavior
	15.34.6 Page Table Support
	15.34.7 Restrictions
	15.34.8 SEV Interaction with SME
	15.34.9 Page Flush MSR
	15.34.10 SEV_STATUS MSR

	15.35 Encrypted State (SEV-ES)
	15.35.1 Determining Support for SEV-ES
	15.35.2 Enabling SEV-ES
	15.35.3 SEV-ES Overview
	15.35.4 Types of Exits
	15.35.5 #VC Exception
	15.35.6 VMGExit
	15.35.7 GHCB
	15.35.8 VMRUN
	15.35.9 Automatic Exits
	15.35.10 Control Register Write Traps

	16 Advanced Programmable Interrupt Controller (APIC)
	16.1 Sources of Interrupts to the Local APIC
	16.2 Interrupt Control
	16.3 Local APIC
	16.3.1 Local APIC Enable
	16.3.2 APIC Registers
	16.3.3 Local APIC ID
	16.3.4 APIC Version Register
	16.3.5 Extended APIC Feature Register
	16.3.6 Extended APIC Control Register

	16.4 Local Interrupts
	16.4.1 APIC Timer Interrupt
	16.4.2 Local Interrupts LINT0 and LINT1
	16.4.3 Performance Monitor Counter Interrupts
	16.4.4 Thermal Sensor Interrupts
	16.4.5 Extended Interrupts
	16.4.6 APIC Error Interrupts
	16.4.7 Spurious Interrupts

	16.5 Interprocessor Interrupts (IPI)
	16.6 Local APIC Handling of Interrupts
	16.6.1 Receiving System and IPI Interrupts
	16.6.2 Lowest Priority Messages and Arbitration
	16.6.3 Accepting System and IPI Interrupts
	16.6.4 Selecting and Handling Interrupts

	16.7 SVM Support for Interrupts and the Local APIC
	16.7.1 Specific End of Interrupt Register
	16.7.2 Interrupt Enable Register

	17 Hardware Performance Monitoring and Control
	17.1 P-State Control
	17.2 Core Performance Boost
	17.3 Determining Processor Effective Frequency
	17.3.1 Actual Performance Frequency Clock Count (APERF)
	17.3.2 Maximum Performance Frequency Clock Count (MPERF)
	17.3.3 MPERF Read-only (MperfReadOnly)

	17.4 Processor Feedback Interface
	17.5 Processor Core Power Reporting
	17.5.1 Processor Facilities
	17.5.2 Software Algorithm

	Appendix A MSR Cross-Reference
	A.1 MSR Cross-Reference by MSR Address
	A.2 System-Software MSRs
	A.3 Memory-Typing MSRs
	A.4 Machine-Check MSRs
	A.5 Software-Debug MSRs
	A.6 Performance-Monitoring MSRs
	A.7 Secure Virtual Machine MSRs
	A.8 System Management Mode MSRs
	A.9 CPUID Name MSR Cross-Reference

	Appendix B Layout of VMCB
	Appendix C SVM Intercept Exit Codes
	Appendix D SMM Containerization
	D.1 SMM Containerization Pseudocode

	Appendix E OS-Visible Workarounds
	E.1 Erratum Process Overview

	Index

