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Abstract—State-machine replication protocols represent the
foundation of many fault-tolerant services. Unfortunately, their
inherent complexity makes existing implementations notoriously
difficult to debug and test. To address this problem, we propose
a novel design approach, micro replication, whose main goal is
to reduce bugs and enable replication protocols with improved
debuggability properties. At its core, our concept consists of a
set of principles that, if followed during protocol design, later
significantly facilitate crucial tasks such as bug-source isolation,
state-information retrieval, as well as root-cause identification.
To achieve this, micro replication organizes a protocol as a
composition of specialized modules (“micro replicas”) that each
encapsulate a particular protocol phase or mechanism, and there-
fore are easier to test and monitor than traditional monolithic
replicas. Besides discussing the underlying ideas of our approach,
to show its feasibility we also present and evaluate MIRADOR,
the first micro-replicated Byzantine fault-tolerant protocol.

Index Terms—Replication, debuggability, fault tolerance.

I. INTRODUCTION

State-machine replication [1] is an essential building block
of a variety of today’s distributed systems, including coordina-
tion services [2]–[4], blockchains [5]–[7], firewalls [8]–[10],
and file storage [11], [12]. Unfortunately, keeping a replicated
service correct and available in the presence of server and
network failures in itself is a difficult problem, causing repli-
cation protocols to be inherently complex. This is already
true for crash fault tolerance (CFT), but even more so for
Byzantine fault tolerance (BFT), and it makes debugging of
such replication protocols a notoriously difficult task [13].

While debugging itself is a far-reaching area of research, in
this paper we focus on three specific challenges that usually
sooner or later arise when analyzing why a replication-protocol
implementation does not behave according to specification:
(1) As one of the first steps, it is typically crucial to be
able to quickly limit the search space by isolating the area
in which the bug is located. However, with traditional pro-
tocols implementing the entire protocol logic inside a set of
monolithic replicas [11], [14], [15], this step in general is not
straightforward since failures often affect an entire replica.
(2) For a comprehensive analysis it is essential to retrieve
information about the protocol’s current state in order to
precisely determine anomalous behavior. Log files can provide
valuable insights in this regard, especially in the context of
offline debugging, but they do not always accurately reflect a
replica’s actual runtime state. Dynamically inspecting replica
state commonly requires additional instrumentation and is
usually not integrated into replication libraries [11], [15]–[17].
(3) Having gained a deeper understanding of the problem, a
third important aspect of debugging is to pinpoint the root

cause of a bug. Even when knowing the general area in which
to look, this step in practice is often times complicated by the
fact that existing replica implementations are multi-threaded
and thus represent a complex combination of heterogeneous
mechanisms (e.g., consensus, checkpointing, leader election).

To address these challenges we propose micro replication,
a novel approach that aims at improving the debuggability
of state-machine replication protocols, ideally avoiding bugs
in the first place. In a nutshell, the main idea behind micro
replication is to design a protocol as a collection of clusters
that each are responsible for a different protocol task and for
this purpose comprise tiny modules, the micro replicas. As a
key benefit of such a system design, the blast radius [18] of a
failure in many cases is limited to the affected micro replica,
thereby reducing the search space. In contrast to replicas in
traditional protocols, micro replicas communicate by issuing
queries to each other. This pull-based interaction makes it
straightforward to retrieve up-to-date state information for
specific protocol steps by building debuggers that use the exact
same queries and interfaces as regular replicas. Furthermore,
root-cause identification is simplified by the fact that all micro
replicas are single-threaded and share a common architecture.

Please note that in this paper we do not address the problem
of how to run effective message-replay or fault-injection
campaigns. Being able to reproduce a failure and to reveal
previously undiscovered issues are both crucial parts in the
development process, which is why several tools [19]–[27]
exist that can be used in such campaigns. Our work, on
the other hand, approaches debuggability from the protocol
perspective, focusing on how to design a replication protocol
in such a way that with the help of these kinds of tools it
becomes easier to isolate and identify the source of a bug.

In particular, this paper makes the following contributions:
(1) It introduces micro replication as an approach to design
replication protocols with improved debuggability properties.
(2) It presents MIRADOR, the first state-machine replication
protocol that incorporates the micro-replication principles.
(3) It evaluates MIRADOR in comparison to BFT-SMaRt [16].

II. BACKGROUND AND SYSTEM MODEL

State-machine replication protocols offer clients access to
a service that for robustness is distributed across multiple
replicas, each hosting an instance of the application state [1].
To ensure consistency, replicas run an agreement protocol that
assigns unique sequence numbers to the commands issued by
clients. The specifics of the agreement protocol vary between
systems. A common approach is to model the agreement



process as a series of views, and for each view elect a leader
replica to make proposals that are then accepted by the other
replicas [11], [28]. Having reached consensus, replicas use
the sequence numbers to all execute the commands in the
same order. To support the dynamic replacement of replicas
and allow trailing replicas to catch up, most protocols enable
replicas to checkpoint their copy of the application state and
transfer such a snapshot to another replica on demand.

Nodes (i.e., clients and replicas) interact with each other by
sending messages over an unreliable, asynchronous network.
Transient network failures may temporarily prevent nodes
from communicating with each other, but if a node repeatedly
sends a message, it will eventually arrive at the receiver. Some
protocols require messages to be authenticated in order to
allow a receiver to unequivocally identify a message’s sender.

For these circumstances, CFT protocols are designed to
tolerate a configurable maximum number of crashed replicas
and an unbounded number of client crashes [14], [15]. BFT
protocols, on the other hand, are resilient against arbitrary
behavior of faulty/malicious replicas or clients [11], [29].

III. PROBLEM STATEMENT

In this section, we discuss three key challenges that typically
arise during the debugging of replicated systems and analyze
them in the context of state-of-the-art replication protocols.
For comparison, we also provide an intuition of how we tackle
each of these challenges with our micro-replication approach.

Challenge #1: Limiting the Search Space

One of the first major steps after observing faulty system
behavior is to locate and isolate the source of the problem. In
complex software architectures such as state-machine repli-
cation protocols, this narrowing down of the search space is
crucial since a thorough analysis of the entire replicated system
is usually time-consuming, sometimes even unfeasible.
State of the Art. Unfortunately, existing state-machine replica-
tion protocols [11], [14], [15] make it often difficult to pinpoint
the location of a bug due to their designs commonly being
based on a small set of versatile replicas [30]. Specifically,
to participate in a traditional protocol each replica typically
needs to handle a variety of tasks such as communicating with
clients, electing a leader for the agreement process, proposing
sequence numbers for commands, committing commands,
executing commands, and checkpointing the application state;
note that this list is not exhaustive. As illustrated in Figure 1,
this plethora of responsibilities in general results in systems
with complex interaction patterns among a small number of
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Figure 1. Traditional approach to state-machine replication

monolithic replicas in which especially the associated interfer-
ence between different protocol parts is a common source of
bugs (see Section VI-A). Not surprisingly, in such architectures
it is often times not straightforward to precisely identify the
particular protocol phase or mechanism that causes an issue.
This problem is complicated by the fact that in monolithic
replica implementations different protocol parts commonly
share the same data structures for efficiency reasons [11], [16],
thereby increasing the probability that a failure observed in one
part is actually the result of a bug located elsewhere.
Our Approach. To avoid the problems associated with the
traditional monolithic-replica designs, we separate a replica-
tion protocol into tiny single-purpose modules called micro
replicas. Since each type of micro replica represents only a
particular task of the overall protocol, and with micro replicas
running in isolation of each other, interference-related bugs are
eliminated and determining the source of other bugs generally
becomes easier than in state-of-the-art protocol architectures.
Of course, even with our approach it is still possible for a
bug in one phase to manifest in another (e.g., a faulty leader
output may be observed by other replicas), however the
modularization by definition rules out many forms of hard-to-
detect propagation issues due to micro replicas not sharing any
data structures. Thanks to the inherent isolation between micro
replicas, compared with traditional protocols our approach is
able to significantly reduce the blast radius of a failure, and
thereby often decisively limits the debugging search space.

Challenge #2: Facilitating Information Retrieval

Knowing the general area in which to look for a bug in
many cases is not sufficient to exactly locate it, let alone to
fix it. For these steps, it is typically necessary to obtain and
analyze information about protocol state related to the prob-
lem, including for example the values of a replica’s internal
data structures or the contents of transmitted messages.
State of the Art. A common way to retrieve such knowledge
in existing replicated systems is the use of log files that are
kept by each replica and represent a transcript of important
events, state changes, and network interactions. Despite overall
being a powerful means for debugging, in the context of
replicated systems log files have two important limitations:
(1) A replica’s log file does not necessarily represent the
current state of the replica. This is due to the fact that the
update of a state variable and the addition of a corresponding
entry to the log in most implementations are two independent
procedures. For example, if as result of a programming error
the logged information does not represent the actual state
change, or if a variable is updated without the change being
logged at all, then the resulting log file no longer matches the
replica state. Similar observations can be made with regard to
discrepancies between the content of a message that is sent to
another replica and the message content that appears in the log.
(2) Although primarily effective as a means to analyze a
problem after a failure has occurred, logs are not ideal when
it comes to debugging a system while it is still running. Thus,
the retrieval of online information typically requires additional



debugging interfaces and thus in general is not supported in
existing replication protocol implementations [11], [15]–[17].
Our Approach. Micro replicas interact by directly querying
each other for their current states. In contrast to the push-based
patterns applied in traditional replication protocols, in which
replicas propagate state changes by unilaterally distributing
messages, the pull-based interaction in our approach makes it
straightforward to retrieve up-to-date replica-state information
at runtime. All an external debugger1 needs to do is to send the
same queries as regular replicas. Without the need for addi-
tional interfaces, this makes it possible for a debugger to limit
the examination to individual micro replicas of interest and
perform it in a way that does not affect the micro-replicated
system outside of the debugging process. As a result, the
offline analysis based on log files (which of course remains
invaluable) can be complemented with an online component.

Challenge #3: Simplifying Root-Cause Identification

Determining a problem’s actual cause within a failing proto-
col part often requires deeper insights into the implementation
and the possibility to repeatedly trigger the failure.
State of the Art. Today’s replicated systems commonly repre-
sent heterogeneous compositions of tailored software compo-
nents in which the replication logic is distributed across multi-
ple threads [3], [15], [16]. While highly efficient, with respect
to debuggability such an internal structure has drawbacks,
especially when it comes to the time it takes to examine third-
party code and the reproducibility of concurrency bugs.
Our Approach. Independent of the specific tasks they are
responsible for, all micro replicas implement the same work
flow and internal replica architecture. The execution of a
micro replica is strictly single-threaded, thereby avoiding many
concurrency-related issues in the first place. Altogether, the
standardized structure and behavior of micro replicas not only
enables systematic debugging strategies but also makes it
easier to write unit tests for each individual micro replica.

IV. MICRO REPLICATION

To address the challenges discussed in Section III we pro-
pose micro replication, a new paradigm for the specification
and implementation of state-machine replication protocols that
primarily aims at improving their debuggability. Given this
focus, efficiency and high performance are only secondary
concerns, although based on our experiments (see Section VI)
we are confident that it is possible to develop micro-replicated
protocols which are also competitive in these categories.

As illustrated in Figure 2, to circumvent the drawbacks
associated with monolithic replicas, our approach designs a
system as a composition of specialized services that each
represent an atomic task required for state-machine replica-
tion (e.g., communicating with clients, starting the agreement
process, determining whether a checkpoint is stable). For fault
tolerance, each of the services is provided by a dedicated
cluster of micro replicas that all concentrate on the same task.

1In this paper, we use “debugger” as generic term for an external (software
and/or hardware) tool that may be used to assist in the debugging process.
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Figure 2. Composition of micro-replica clusters

A. Principles

Micro replication is guided by three principles whose main
purpose is to make the inherent complexity of state-machine
replication manageable by designing protocols in a standard-
ized manner. The three micro-replication principles are:

Limited Replica Functionality. To minimize the blast radius
of failures, each micro replica should only provide the func-
tionality required for the task the replica is responsible for.
In similar form, this idea can be found in traditional modu-
larization concepts such as service-oriented architectures [31]
or microservices [32], however to the extent we envision it,
the concept so far has not been applied to structure state-
machine replication protocols. In particular, we aim at a degree
of modularization that is significantly more fine-grained than,
for example, the proposer/acceptor/learner scheme used in
many existing replication protocols such as Paxos [33].

With each micro replica implementing a single task and
being directly accessible over the network, it is straightforward
to first test and later monitor specific protocol steps in isola-
tion. Furthermore, in addition to facilitating debugging, the
separation of individual protocol steps into dedicated modules
is also already beneficial during the design process of a
protocol. Specifically, it forces protocol designers to identify
and externalize the dependencies between different isolated
protocol mechanisms, and thereby makes it easier to reason
about the correctness of a protocol while developing it.

Loosely Coupled Clusters. For resilience, micro replication
handles each protocol step on a cluster of micro replicas
that are all dedicated to the same task. Overall, the clusters
are loosely coupled and may comprise different numbers of
micro replicas. Technically, it is even possible to build micro-
replicated protocols in which different clusters offer different
fault-tolerance guarantees (e.g., protecting crucial protocol
steps against Byzantine faults while tolerating crashes in
others), however exploring such opportunities is future work.

As a general rule, micro replicas only communicate with
replicas of clusters that are responsible for tasks they depend
on. That is, it is sufficient for each replica to know its immedi-
ate neighbors handling the previous, (in some cases) the same,
as well as the next protocol step. In contrast to replicas in many
traditional protocols, in particular from the BFT domain [8],
[11], [34], [35], micro replicas do not directly forward or
include messages that they themselves have received from
others. Instead, when providing input for the next protocol
step, a micro replica always does this by creating and sending



a new message with the relevant values. This has the key
advantage of acting as an additional barrier against the prop-
agation of faults, thereby further reducing the blast radius.

To withstand server failures, replicas of the same cluster
must not be hosted by the same machine. Apart from that,
there are no restrictions on replica placement. For example, all
replicas of a system may be distributed across a large number
of servers to spread out the load, or they can run on a small
set of machines to save resources. Micro replicas assigned
to the same machine may be executed in separate processes,
dedicated threads, or share the same thread, depending on the
degree of fault isolation targeted for a particular use case.
Standardized Replica Work Flow. To further improve debug-
gability, as third principle micro replication demands replicas
to all follow the same work flow. Specifically, a replica must
(1) periodically query its counterparts of an upstream cluster
for opinions on the outcome of the previous protocol step,
(2) process the collected opinions according to a set of task-
specific rules, thereby determining and storing the result of its
own protocol step, and (3) provide this result to downstream
replicas on request. That is, unlike replicas in traditional
protocols [11], [15], [28], which must actively take care of
distributing their outputs in each protocol phase, micro replicas
fetch their inputs and store the corresponding outputs locally,
to be delivered later when another replica asks for them.

Specifying replica interactions in a standardized and pull-
based manner has several advantages. First, as further detailed
in Section IV-B, the standardized approach enables micro
replicas of all protocol stages to share a common basic
architecture, which significantly simplifies orientation during
the search for bugs as well as the implementation of testing,
debugging, and monitoring tools. Furthermore, the pull-based
communication makes it straightforward to precisely select a
group of target replicas to examine, and to dynamically retrieve
relevant information about their states without requiring addi-
tional instrumentation or debug interfaces. While the system is
running and without further replica-code modifications, an ex-
ternal debugger for example can directly investigate the states
of specific replicas by sending the same regular requests as the
replicas’ downstream neighbors. Once the debugging process
is complete, the debugger discontinues its queries, resulting
in no further runtime overhead outside of debugging sessions.

B. Micro Replicas

Independent of their individual responsibilities, to ease
orientation and improve implementability all micro replicas
share the same internal structure sketched in Figure 3.
Basic Architecture. Representing a certain step in a replica-
tion protocol, a micro replica’s task is to obtain a set of opin-
ions on the outcome of the previous protocol step (inputs)
and based on them reach a decision on the outcome of its
own protocol step (outputs). At all times, a micro replica
keeps input and output information for a limited window of
sequence numbers (see Lines 1–2). Each window has a lower
bound (min), an upper bound (max), as well as a position
attribute pos marking the sequence number of the lowest

Micro-Replica State

1 WINDOW<INPUTVALUE>[] inputs; // Array of arrays
2 WINDOW<OUTPUTVALUE> outputs; // Array

Periodic Queries at Upstream Replicas

3 Periodically:
4 For each upstream replica u:
5 if(inputs[u] is full) continue;
6 Query u for RANGE r := [ inputs[u].pos, inputs[u].max ];

Responses from Upstream Replicas

7 On receiving SEQUENCE<INPUTVALUE> s from upstream replica u:
8 // Check and store input
9 if(s cannot be appended to inputs[u]) return;

10 inputs[u].append(s);
11
12 // Determine output and invalidate the corresponding input slots
13 for(SEQNR s in [ outputs.pos, outputs.max ]:
14 OUTPUTVALUE decision := Process values inputs[*][s];
15 if(decision == nil) break;
16 outputs[s] := decision;
17 For each upstream replica x: inputs[x][s] := ♣;

Requests from Downstream Replicas

18 On receiving RANGE r from downstream replica d:
19 Send SEQUENCE<OUTPUTVALUE> s := outputs.seq(r) to d;

Events
20 On learning garbage-collection threshold g:
21 Move lower window bounds in inputs and outputs to g;

Figure 3. Basic internal architecture of a micro replica

empty slot. Micro replicas always fill their windows from
bottom to top, without leaving sequence-number gaps. The ra-
tionale behind this design decision is to reduce complexity by
eliminating corner cases such as out-of-order commits which
tend to make protocol implementations more difficult [15].

To acquire new inputs, a micro replica periodically sends
requests to its upstream replicas (L. 3–6). In this context, the
replica only queries another replica u for the range of sequence
numbers that are still undecided and for which replica u
has not yet provided inputs. If there are no such window
slots, there is no need to send a request. Upstream replicas
respond to queries with a sequence of values (L. 7–17), of
which the replica appends those that fit into the window and
do not conflict with the no-gap rule. If a response does not
include such values, for example due to having been delayed
and carrying old state, a replica simply ignores the message.
Whenever storing new input values, a replica checks whether
it is now able to decide on the outcome of the next pending
sequence-number slot (L. 13–17). The specifics of this step
depend on the replica’s overall task and usually involve the
collection of a predefined number of matching input values
from different upstream replicas. If a decision is reached, the
replica accepts the value and inserts it to its output window.
Furthermore, it invalidates all corresponding input slots of the
affected sequence number by inserting a special ♣ value to
exclude the slot from upcoming periodic input queries.

Once values are part of the output window, downstream
replicas can fetch them via range queries (L. 18–19). If its out-
put window is full, a replica waits until receiving permission
to shift its windows to higher sequence numbers (L. 20–21),
relying on some form of garbage-collection mechanism, which
typically involves the creation of checkpoints. Such procedure
is omitted in Figure 3 but described in detail in Section V-B.



Variants. Starting from the basic architecture described above,
micro replicas can be tailored to fit the needs of the particular
protocol step they represent. In some cases, this means to
add further input and/or output windows, while in others
it is sufficient for a replica to manage a single, sequence-
number-independent output value (see Section V-B). Apart
from that, a micro replica may be specified to switch between
different modes that influence the replica’s objectives and
behavior. While in normal mode, an agreement micro replica
for example aims at handling the leader’s proposals, whereas
in view-change mode the replica should focus on switching to
the new leader before resuming the normal mode again.

Accelerators. The requirement to periodically query its up-
stream replicas for input values does not prohibit a micro
replica from additionally engaging in other forms of interac-
tion. In particular, this makes it possible to optimize protocol
latency by introducing push-based mechanisms we refer to as
accelerators. Using an accelerator, whenever a replica accepts
a new output value, it proactively forwards this value to
its downstream replicas by sending the response the replica
would have provided if it had received a corresponding query.
The downstream replica stores the value if it fits into the
input window, otherwise the replica ignores the message. In
contrast to the regular pull-based interaction, accelerators are
a best-effort mechanism that attempts to transmit each value
only once and without guaranteeing eventual delivery at the
receiving replica. Hence, accelerators allow micro replicas to
poll their upstream neighbors less frequently, but they cannot
(and should not) replace pull-based queries as the main mech-
anism ensuring the liveness of a micro-replicated protocol.

C. Architectural Building Blocks

Analyzing existing protocols with respect to a possible
micro-replication-compliant decomposition, we identified sev-
eral architectural patterns that each span multiple micro-replica
clusters and can be reused across different protocols or even at
different locations within the same protocol. Like the standard-
ized internal replica architecture presented in Section IV-B,
such multi-cluster building blocks have the benefit of reducing
complexity, simplifying the debugging process, and making it
easier to implement tooling support. To illustrate the basic
concept, in the following we provide details on two important
architectural patterns used in MIRADOR, our first micro-
replicated protocol which is further described in Section V.
Both patterns were designed for application in a Byzantine
fault-tolerant context where up to f replicas per cluster
may fail in an arbitrary way. The first pattern targets safety,
whereas the second pattern primarily addresses liveness.

Reliable Distribution Pattern. This architectural pattern
ensures that information provided by a single, potentially
unreliable source (e.g., a leader replica) is distributed across
a sufficiently large number of correct replicas in order to
not get lost. Consequently, it serves the same purpose as
reliable broadcast mechanisms in traditional replication pro-
tocols (cf. PBFT’s pre-prepare and prepare phase [11]).

Source Witnesses Reporters

(a) Reliable distribution pattern

Sources Relays Sinks

...

(b) Relay pattern
Figure 4. Examples of multi-cluster building blocks

As shown in Figure 4a, the pattern includes two clusters
comprising 3f + 1 micro replicas each. Members of the first
cluster (“witnesses”) are responsible for querying the source
for a value for each window slot. If the source behaves
correctly, all witnesses will (1) eventually receive a value for
each slot and (2) all observe the same values for the same slots.
In contrast, a faulty source may provide different replicas with
different values or no values at all, thereby possibly causing
inconsistent opinions on the values put out by the source.
This problem is addressed by the second cluster (“reporters”).
Reporters periodically collect the opinions of witnesses and ac-
cept a value as soon as 2f+1 different witnesses have reported
identical values for the same sequence number. This rule en-
sures that two correct reporters cannot accept different values,
as their quorums of witnesses intersect in at least one correct
witness, which supplies all reporters with the same value.

If the source is correct, the reliable distribution pattern
ensures that all correct reporters will eventually accept the
same value even if up to f witnesses are arbitrarily faulty.
On the other hand, a faulty source in combination with
faulty witnesses may cause some correct reporters to obtain
2f + 1 matching opinions and reach a decision for a window
slot, while other correct reporters in the cluster might not. If
such behavior is not acceptable for a protocol part, the reliable
distribution pattern can be combined with the relay pattern.

Relay Pattern. As shown in Figure 4b, this pattern targets
scenarios with multiple sources of which up to f may be faulty
and distribute arbitrary values. The other sources are correct
and either put out the correct values or (if they do not know
the correct values) do not respond to queries. Besides, there
are multiple micro replicas (“sinks”) which rely on the source
values as inputs. Given these circumstances, the purpose of the
pattern is to ensure that (1) a correct sink only accepts a value
provided by a correct source and (2) if a correct sink accepts a
value, then all correct sinks eventually accept the same value.

To meet this requirement, the relay pattern relies on a cluster
of 3f + 1 replicas (“relays”) that seek to learn a new value
via two different ways. On the one hand, they periodically
query the sources for input and accept a value after having
obtained 2f + 1 matching opinions, thereby guaranteeing the
value to be correct. On the other hand, in parallel they ask
other relays for their decisions and accept a value as soon as
it is supported by f +1 relays, which means that at least one
correct relay has previously obtained and accepted the same
value directly from the sources. Correct sinks accept a value



after having learned it from 2f+1 relays. Apart from ensuring
the correctness of the value, this also guarantees the existence
of at least f + 1 correct relays that have already accepted
the value and are consequently able to assist other relays in
learning it. As a result, there will eventually be 2f +1 correct
relays enabling each correct sink to obtain the correct value.

Out of itself, the relay pattern does not guarantee that
correct sinks are actually able to reach a decision. Whether
this is in fact possible depends on the behavior of the sources.
The relay pattern only ensures that once a correct sink accepts
a value, eventually all other correct sinks will do the same.

V. MIRADOR

This section presents MIRADOR, the first state-machine
replication protocol that follows the micro replication prin-
ciples. MIRADOR tolerates up to f Byzantine faults in each
cluster and relies on cluster sizes of at most 3f + 1 micro
replicas. We opted for a BFT protocol because (1) recent years
have brought a variety of industrial use cases such as permis-
sioned blockchains [5]–[7] or SCADA systems [36]–[38] and
(2) the increased complexity of BFT protocols makes good
debuggability an even higher concern than in CFT protocols.

Designing MIRADOR, our goal was to build on established
BFT concepts to be able to study how they integrate with
micro replication. For this reason, for consensus MIRADOR for
example relies on the traditional three-phase algorithm intro-
duced by PBFT [11]. Leveraging this and other existing ideas
enabled us to focus on the main contribution of this section,
which is the decomposition of the entire state-machine repli-
cation protocol into micro-replica clusters, thereby reaching a
degree of modularization that is much more fine-grained than
in any state-of-the-art protocol. In total, MIRADOR consists
of 14 clusters (including the client; 6 of the clusters are on
the critical path), which is why for clarity in the following
we focus our discussion on the most important parts. For the
MIRADOR specification and source code please refer to [39].

A. Command Handling

As illustrated in Figure 5, MIRADOR is organized into three
main stages that each consist of micro-replica clusters with
different responsibilities. The front-end stage acts as contact
cluster for clients and receives incoming commands. Next,
the agreement stage then establishes a stable total order on
these commands by assigning unique sequence numbers to
them. Finally, the execution stage processes the sequence of
agreed commands and produces the corresponding results. In
the following, we discuss each of the stages in more detail.

Front-End Stage. To invoke an operation o in MIRADOR, a
client c creates a command m = ⟨c, t, o⟩ using a command
sequence number t that is generated from a client-specific and
monotonically increasing counter. To submit a command to
the replication protocol, the client sends it to a cluster of
2f+1 front-end micro replicas. For this step, MIRADOR offers
two different methods: a pull-based mechanism that enables
front-end replicas to query clients for new commands, and an
accelerator-based mechanism that allows clients to push new

Front-End Stage Agreement Stage Execution StageClient

Command Command Command Result

Micro
Replica
Cluster

Front End Proposer Preparer Committer Executor

Figure 5. MIRADOR clusters involved in handling commands

commands once they become available. The latter is useful
to support push-based legacy clients and has the additional
advantage of freeing front-end micro replicas from the need to
query (a potentially large number of) clients at high frequency.

Front ends check the validity of each incoming command by
verifying that the command is well-formed and that the client
has the necessary privileges to invoke the corresponding oper-
ation. If all of these checks are successful, a front-end replica
accepts the command and stores it as one of its own output
values. For this purpose, a front end maintains multiple win-
dows, one for each client, in which the incoming commands
are kept in increasing order of command sequence numbers.
Through these windows, the commands are made available to
the rest of the system (e.g., the agreement stage) on request.

Besides communicating with clients, micro replicas of the
front-end cluster also periodically query each other for new
commands. This is to ensure that if a valid command for
a number t reaches at least one correct front end, then all
correct front ends will eventually learn of a command being
available for t, even if the client crashes in the meantime or
refuses to upload its command to all correct front-end replicas.
If a faulty client submits diverging commands for the same t,
correct front ends may end up storing different versions, but
only one of them will be considered by the agreement stage.

Agreement Stage. MIRADOR’s agreement stage defines a
stable total order on commands by relying on the three-step al-
gorithm that previously served as basis for a multitude of BFT
protocols [8], [11], [34]. Translated into a micro-replicated
protocol element, it implements the reliable distribution pattern
from Section IV-C and operates as follows. The agreement
process is initiated by a dedicated leader micro replica of
the proposer cluster; the specific replica to act as reigning
proposer is determined by the current view (see Section V-C).
To obtain new commands, the proposer repeatedly queries all
front ends. Whenever the proposer learns of a new and valid
command, it appends the command to its local output win-
dow, thereby assigning a unique agreement sequence number.

From there, micro replicas of the subsequent preparer clus-
ter fetch the commands and verify the proposer’s decisions by
checking that the proposed commands (1) are valid (according
to the same criteria as used by front-end and proposer replicas)
and (2) have not already been proposed before. Only if both
of these requirements are satisfied, a correct preparer accepts
a proposal and stores the command in its own output window.

On request, preparers send their outputs to the next cluster:
the committers. Each committer compares the obtained pre-
parer outputs for each agreement sequence number and accepts
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a command after it has received 2f + 1 matching opinions
for the same view from different preparer replicas. This
ensures that within a view correct committers will never accept
diverging proposals for the same agreement sequence number.

Execution Stage. MIRADOR’s execution stage consists of a
cluster of executors that are responsible for processing com-
mitted commands in the order of their associated agreement
sequence numbers. To learn of the outcome of the agreement
process, an executor repeatedly queries the committer replicas
for their outputs and considers a command committed once at
least 2f + 1 different committer replicas in a view reported
the same value for a particular agreement sequence number.

If a client has a pending command, it periodically queries
the executors for the result and accepts the result once f + 1
different executors returned the same value; alternatively, for
legacy clients MIRADOR also offers a mechanism to push
results from executors to clients. In contrast to existing state-
machine replication protocols [11], [35], clients in MIRADOR
do not need to protect their commands with timeouts and in
particular are not required to rebroadcast pending commands
when the timeout expires in order to assist the server side in
triggering a view change. Instead, MIRADOR’s front-end stage
ensures that once a command has reached a correct front end,
the command will eventually be handled by the agreement
stage and processed on at least f+1 correct executor replicas.

B. Flow Control and Checkpointing

To improve efficiency, MIRADOR does not wait for a com-
mand to be executed before agreeing on the next, but instead
enables replicas to handle multiple commands concurrently.
For this purpose, all micro replicas of Section V-A possess
fixed-size windows that define the range of (command or
agreement) sequence numbers a replica needs to maintain. As
a crucial side effect, the bounded windows prevent replicas
from becoming overloaded. In the following, we explain MI-
RADOR’s flow-control mechanism for shifting these windows.

Basic Approach. An upstream micro replica maintains its
output values so that downstream clusters can use them as
inputs for their respective tasks. As a consequence, micro
replicas must keep their outputs as long as this information is
needed by others. With the main clusters in MIRADOR being
organized as a chain, this means that outputs can be garbage
collected once the last affected cluster in the chain approves
the deletion. To safely and reliably relay such permission
MIRADOR comprises multiple control loops (see Figure 6)
that all implement the relay pattern presented in Section IV-C.

The sources in this pattern are represented by the members
of the cluster giving the approval to garbage collect values
up to a certain sequence number. The roles of relays are
assigned to a dedicated cluster of monitor micro replicas
that periodically collect the latest opinions on the garbage-
collection threshold from their sources as well as each other.
With the threshold dynamically changing, a validation by
direct comparison of the provided opinions is not feasible.
Each monitor therefore determines its accepted threshold by
selecting the maximum of two computed sequence numbers
gs (the 2f + 1 highest threshold obtained from sources) and
gm (the f +1 highest threshold announced by monitors). De-
termining the garbage-collection threshold this way guarantees
that at least f+1 correct source replicas approve the deletion.

The sinks of a control loop are all upstream replicas that
are interested in getting the permission to shift their windows.
They compute the garbage-collection threshold by selecting
the 2f + 1 highest sequence number obtained from different
monitors. Thanks to the relay pattern, this ensures that if one
correct upstream micro replica observes a certain threshold
and acts on it, eventually all correct upstream micro replicas
will act accordingly, resulting in the replicas to stay in sync.

Specific Control Loops. As shown in Figure 6, MIRADOR
performs flow control using two control loops. The completion
control loop ensures that micro replicas in the front-end stage
only discard a command after it has been processed by a
sufficient number of executors. As front ends manage their
outputs in independent client-specific windows, the garbage-
collection threshold in the completion control loop is repre-
sented as a vector g⃗ containing a separate threshold gc for each
client c. Each of these thresholds reflects the highest processed
command sequence number of the respective client and is
individually handled according to the rules described above.

In the agreement stage, the agreement control loop is
responsible for keeping consensus-related information avail-
able until the agreement process for a sequence number is
complete. For this purpose, executors announce a garbage-
collection threshold in the form of a single sequence number,
which after verification by a cluster of agreement monitors is
used as lower window bound by all agreement-stage replicas.

Checkpoints. With monitor micro replicas accepting garbage-
collection thresholds once 2f + 1 of the 3f + 1 downstream
replicas have approved them, it is possible that upstream
replicas discard values before they were fetched by all cor-
rect downstream replicas. Consequently, before increasing its
announced threshold a downstream replica must be sure that
there are means for other correct replicas to skip sequence
numbers in case they have fallen behind, for example when
rejoining the system after a temporary network partition.

Depending on the specific characteristics of a cluster, MI-
RADOR addresses this problem in two different ways: (1) For
front ends whose tasks for a command sequence number t
can be correctly performed without knowledge of the effects
of previous sequence numbers t′ < t, no further action is
necessary. Trailing replicas can simply increase their window



bounds after learning a higher garbage-collection threshold.
(2) In stages handling tasks for which such dependencies
exist (e.g., the execution stage), micro replicas regularly check-
point all relevant state and on request forward a checkpoint
to a trailing replica; the replica accepts and applies the
checkpoint after verifying it based on f+1 matching opinions.

To minimize overhead, micro replicas in MIRADOR do
not create checkpoints for every sequence number but in
predefined intervals. When a checkpoint is due, a replica
creates a snapshot of its state and stores the checkpoint
locally. When asked by a monitor for the garbage-collection
threshold, a replica reports the sequence number of the latest
checkpoint. With monitors accepting the 2f +1 highest value
they obtained from different replicas (see above), a correct
monitor only supports a garbage-collection threshold if at
least f + 1 correct replicas have created a checkpoint for the
sequence number. Due to the fact that correct replicas produce
matching checkpoints for the same sequence number, this is
sufficient to ensure that (if necessary) trailing replicas will
later be able to fetch the checkpoint and verify its correctness.

A replica knows that it is trailing once it learns of the
existence of a garbage-collection threshold g that is higher
than the sequence number for which the replica is currently
seeking inputs. At this point, a trailing replica stops querying
upstream replicas for normal-case inputs and instead focuses
on obtaining a checkpoint for sequence number g and verifying
it based on f + 1 matching opinions. If in the meantime the
replica obtains knowledge of a higher threshold g′ > g,
the replica restarts the entire process for sequence number g′.

C. View Change

As a leader-based protocol, MIRADOR comprises means to
reassign the proposer role to a different replica. Similar to
traditional monolithic BFT protocols [11], [40], the main task
of such a view-change mechanism in MIRADOR is to ensure
that already agreed commands keep their assigned agreement
sequence numbers across views. Specifically, if at least one
correct executor has observed a command as committed,
then the command is guaranteed to be the agreed value for
the respective sequence number in the current view and all
higher views. Following the principles of micro replication,
MIRADOR’s view-change mechanism is distributed across a
set of micro-replica clusters with dedicated responsibilities.
Announcing a New View. As illustrated in Figure 7, MI-
RADOR’s view-change process is initiated by a cluster of
2f + 1 controller micro replicas whose primary task is to
determine and announce the system’s current view. During
normal-case operation, each controller for this purpose con-
tinuously checks whether all commands that newly arrive at
the front-end cluster are indeed accepted (and thus processed)
by the executor cluster within a certain period of time. As
long as this is the case, the current view is operational and
controllers take no further action. However, if a controller
observes a prolonged discrepancy between submitted and
agreed commands, the controller suspects the current proposer
to be faulty and reacts by announcing a higher view number.

Front-End Stage Agreement Stage
Proposer Preparer Committer

Controller

RecordKeeper ConservatorAuditor Curator

Execution Stage

ViewMonitorCommand Sequence
Number Vectors

View
Numbers

Selected Commands
Limits

Commands

Conserved Commands

Figure 7. MIRADOR clusters involved in view change

For efficiency, controllers do not gather full commands,
but instead base their decisions on command sequence num-
bers. More precisely, a controller repeatedly queries front-end
replicas for a vector t⃗expected containing the highest known
command sequence number of each client. In parallel, it also
obtains a corresponding vector t⃗actual from executors, which
indicates the progress that the agreement actually made. If
a command advertised in t⃗expected is not reflected in t⃗actual
within a timeout Tp, a controller advocates for a higher view.

To announce the new view, MIRADOR uses a third control
loop that matches the structure of the other control loops
presented in Section V-B. Here, a cluster of view monitors con-
stantly watches the controllers and distributes the current view
number to all replicas in the agreement and execution stage
as well as the controller cluster. If a replica this way learns
of a higher view, it immediately ceases participation in its old
view. For proposers and preparers, this for example means
to temporarily suspend the agreement of new commands.
Picking Up the Pieces. Whenever the view control loop
announces a new view, a cluster of conservators starts to
collect knowledge about the state that the old view has left the
agreement stage in. Specifically, conservators accumulate two
pieces of information: (1) Using input from the preparer clus-
ter, they determine an upper bound for the agreement sequence
numbers that potentially have been decided. (2) Conservators
query committers for the commands they have previously
accepted (cf. prepared requests in PBFT [11]), as these com-
mands may have been processed by a correct executor. Both
preparers and committers only respond to such conservator
queries if they currently are in the view that a conservator asks
for. This ensures that they do no longer contribute to previous
views and also have not already participated in higher views.

Prior to obtaining potentially committed commands, conser-
vators first need to learn the range of agreement slots that are
relevant for the view change. The lower bound of this range is
defined by the garbage-collection threshold of the agreement
loop (see Section V-B), to which all view-change clusters are
connected. For the upper bound, conservators ask preparers
for a tuple ⟨ψ, ω⟩ in which ψ denotes the highest agreement
sequence number for which a preparer has previously accepted
a command in any lower view, and ω represents the upper end
of the preparer’s output window. Based on the responses of at
least 2f+1 preparers, a conservator selects the upper bound Ψ
to be the 2f + 1 lowest reported ψ and accepts this bound
once Ψ does not exceed the f + 1 highest reported ω. Since
2f+1 matching preparer outputs are necessary for a committer



to accept a command, slots higher than Ψ cannot have been
committed in any lower view and thus do not have to be con-
sidered. Bounding Ψ with the f+1 highest reported ω ensures
that faulty preparers cannot trick correct conservators into
accepting arbitrarily high sequence numbers as upper bounds.

Having determined the relevant range, conservators then
query replicas of the committer cluster for the associated com-
mands. For each agreement sequence number, a committer x
reports a tuple zx = ⟨m, v⟩x containing the command m and
the number of the latest view v in which the command was
accepted; empty slots are encoded with a dummy value ♣.
Having verified the validity of the included commands, conser-
vators for each agreement slot s combine the obtained tuples
into a vector z⃗s representing a summary of the committer
replicas’ opinions on the agreement sequence number.
Entering the New View. In a next step, the conserved tuples
are handled by a series of curator, auditor, and record keeper
clusters that together implement a three-step BFT consen-
sus responsible for determining the command-to-agreement-
sequence-number mapping with which to start the new view.
For this purpose, the current curator (i.e., a micro replica
acting as view-change leader) queries the conservator cluster
for z⃗ vectors until for each relevant agreement sequence
number it obtains a set Z of 2f + 1 tuples zi (from different
committers) in which each zi has been reported by at least
2f + 1 conservators. This ensures that, after downloading Z
from the curator, a correct auditor will be able to find at least
f+1 correct conservator replicas confirming the correctness of
each zi in Z . For each agreement sequence number, the view-
change result (i.e., the value to be selected for the new view)
is the command of the tuple with the highest view v in Z .

Record keepers query auditors and each other for view-
change results and accept a command once it is backed up by
at least 2f + 1 auditors or f + 1 record keepers. Once these
commands are obtained by preparers and the new proposer,
the agreement stage resumes normal-case operation.
Coordinating the View Change. MIRADOR cleanly dis-
tinguishes between (1) assigning a new command to an
agreement sequence number during normal-case operation and
(2) selecting the value for an agreement sequence number
during view change. Following the micro-replication prin-
ciples, these tasks consequently are separated into different
clusters (i.e., proposer and curator). Since both tasks require
a dedicated leader replica, there needs to be a possibility
to reassign the leader roles of proposers and curators in-
dependently. MIRADOR solves this problem by defining the
view number v = ep||ec as a concatenation of a proposer
epoch ep and a curator epoch ec, and enabling controllers to
increase either in case of suspected faulty behavior. In order
to achieve this in a coordinated fashion, controllers switch
between different modes. During normal-case operation, they
monitor the progress of front ends and executors (as discussed
above) and if necessary abandon the current proposer by
setting their local view number to v′ = (ep+1)||0. In a similar
way, if conserved commands do not arrive at the record-keeper
cluster in a timely manner, controllers can replace a curator by

announcing a view v′′ = ep||(ec+1). Computing the next view
number this way ensures that the sequence of view numbers
is strictly monotonically increasing and therefore establishes a
total order on the commands reported by committers for lower
views, as it is the case in traditional protocols [11], [40].

VI. EVALUATION

This section presents a case study that evaluates our Java-
based MIRADOR prototype in comparison with the widely
used replication library BFT-SMaRt [16]. In addition to
the parts detailed below, for the case study we also used
TLA+ [41] to model check selected parts of MIRADOR,
verifying certain elementary behavior for both the preparer
and the committer. Furthermore, we designed an external
dashboard that collects and presents the current state of micro
replicas. Using the same messages and interfaces as regular
micro replicas do to retrieve protocol information from their
upstream neighbors, the dashboard only queries the micro
replicas that are currently of interest. Thus, when the dash-
board is inactive, the system is able to run at full native speed.

A. Debuggability
As first part of our case study, we want to answer the

question whether micro replication indeed offers benefits when
it comes to debugging replication-protocol implementations.
To obtain meaningful results, we analyze a set of 14 real-world
bugs that were recently reported for BFT-SMaRt, and most of
which have been fixed in the meantime [42]. As summarized
in Figure 8, we conclude that two of the bugs (#10 and #13)
in themselves are already straightforward to diagnose due to
resulting in exceptions that directly point to the root cause.
With regard to the remaining 12 bugs, micro replication pro-
vides advantages by either avoiding them in the first place or
simplifying the search for them, as discussed in the following.
Bug Avoidance. Interestingly, our study shows that the
majority of the bugs discovered in BFT-SMaRt cannot occur in
a micro-replicated implementation, a fact that could be viewed
as ideal form of debuggability since it obviates the need for
any debugging procedures. 5 of the bugs (labeled MRA in
Figure 8) are ruled out by the micro-replica architecture, which

# Bug description Type
1 Faulty clients may overload replicas by sending huge requests MRA
2 Faulty clients may trigger a view change via forwarded messages CSR
3 Replicas erroneously accept negative request sequence numbers MRA
4 Timers of pending requests not discarded at client-session restart CSR
5 Replicas possibly ignore new requests after client-session restart ETL
6 Faulty clients may exploit synchronization bug to cause deadlock MRA
7 Timing issue at request reception may lead to unnecessary view change CSR
8 Deadlock if different consensus steps are processed in a particular order CSR
9 Race condition when waiting for another thread to deserialize message MRA

10 Faulty clients may trigger an exception by sending unsigned requests EQU
11 Synchronization bug in delivery thread may result in deadlock MRA
12 Faulty clients may prevent replicas from responding to correct clients CSR
13 Faulty replicas may cause a correct replica’s receiver thread to crash EQU
14 Out of memory error due to buffering messages from higher views ETL

Figure 8. Categorization of recent bugs in BFT-SMaRt [42] with regard to
their debuggability in the context of micro replication: equally difficult to
debug (EQU), cannot occur due to micro-replica architecture (MRA) or clean
separation of responsibilities into modules (CSR), easier to locate (ETL).



stores inputs and outputs in preallocated data structures (#1
and #3) and executes each micro replica in a single thread (#6,
#9, #11). An additional 5 bugs (labeled CSR) are avoided by
the micro-replication principles demanding a clean separation
of responsibilities. As our analysis shows, this aspect is crucial
due to a significant number of problems in BFT-SMaRt being
caused by interference of different protocol mechanisms, with
the reception of client requests affecting the initiation of view
changes (#2, #4, #7), a monolithic replica handling multiple
consensus steps (#8), and incoming faulty requests possibly
disrupting the distribution of replies to clients (#12). In con-
trast, in MIRADOR the mentioned protocol parts are delegated
to separate clusters, with front ends receiving commands,
controllers triggering view changes, and executors sending out
results, thereby eliminating the potential for interference.
Bug Search. The remaining two bugs are not per se prevented
by our approach, however micro replication makes it signif-
icantly easier to locate them. For Bug #5, whose observable
effect is that a restarted client does not receive any results to its
requests, a debugging tool such as our dashboard would show
that new commands do not reach later protocol stages, thereby
correctly indicating the front-end cluster to be the culprit.

Bug #14, one of the most critical bugs in the analyzed set,
represents a memory leak that can be exploited by a malicious
leader to deliberately crash any correct replica. It is caused by
the fact that when receiving agreement messages for higher
views, BFT-SMaRt replicas buffer these messages for later
use. Since there is no upper limit on the capacity of this
buffer, a faulty leader for example may force other replicas
out of memory by sending large proposals for views with
arbitrarily high numbers. As shown in Figure 9a, we were able
to reproduce such a scenario in an experiment in which the
attack starts at 30 s and the overall system fails at about 400 s.

Unfortunately, debugging this kind of issues is inherently
difficult because the observable symptoms not necessarily
point in the direction of the cause. Specifically, even though
the bug is associated with the reception of proposals, we
saw out-of-memory errors in various locations, including code
parts that interact with clients. Not surprisingly, when running
out of memory, the accompanying exception in traditional
monolithic replicas may be thrown in any protocol part that
tries to allocate memory. In contrast, micro replication makes
it possible to reduce the blast radius of memory leaks to small
areas (e.g., by hosting each micro replica in a separate virtual
machine). This way, when we introduce the same bug into MI-
RADOR, it always results in preparer failures (see Figure 9b),
thereby making it easier to identify the source of this bug.
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Figure 9. Impact of a memory leak in both systems
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Figure 10. Request-interval impact on latency and CPU usage

B. Performance
For the next part of our study, we conduct a performance

evaluation comparing the following four settings: (1) MI-
RADORMC refers to our prototype when configured to run each
micro replica in its own Java virtual machine (JVM). (2) BFT-
SMaRtMC relies on the library’s default BFT configuration,
which applies the BFT protocol proposed by Cachin in [43]
for agreement [6]. (3) MIRADOR1C is a variant of MIRADOR
in which for resource efficiency micro replicas of different
clusters are combined in the same JVM and executed on a
single core. (4) BFT-SMaRt1C refers to a setting where we
apply the Linux tool taskset to limit BFT-SMaRt to a single
core per server, thereby providing a baseline for MIRADOR1C.
For our experiments we use a set of five servers (8 cores,
3.60 GHz, 16 GB RAM, Ubuntu 20.04.4) of which four are
hosting replicas and one is executing the participating clients.

Protocol Latency. In our first experiment, we analyze the
impact of the interval with which a MIRADOR replica queries
its upstream counterparts for inputs. Since our focus is on
end-to-end protocol latency, for this purpose we use a mi-
crobenchmark in which 30 clients exchange empty commands
and results with the replicated service. As clients run in a
closed loop, the per-client throughput at latency L is 1/L.

The results in Figure 10 show that for a request interval of
1 ms, both MIRADORMC and MIRADOR1C provide response
times of about 5 ms. With the protocol’s normal-case path con-
sisting of 6 steps (see Figure 5), this observation indicates that
outputs do not always have to wait an entire request interval
to be collected by downstream replicas. For larger intervals,
the latency experienced by clients increases linearly with the
duration between two queries. Although the two protocol
implementations in this scenario advance at about the same
speed, MIRADORMC due to the use of isolated JVMs does this
at a higher (but still reasonable) resource consumption, which
represents the costs for enabling improved debuggability.

Responding on average after less than 2 ms, the two BFT-
SMaRt variants in the experiment offer lower latency than
MIRADORMC and MIRADOR1C. Apart from BFT-SMaRt’s
replication protocol requiring only 5 phases of message ex-
change, this is caused by the fact that replicas in BFT-SMaRt
immediately push their outputs at the end of each protocol
step. As discussed in Section IV-B, although the pull-based
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Figure 11. Measurement results for the YCSB benchmarks

communication is an essential part of micro replication, its
principles do not prevent micro replicas from using additional
forms of interaction as optimization. To illustrate how this
flexibility may be exploited in practice, we implement two
further variants MIRADORMC,acc and MIRADOR1C,acc using
an accelerator-based mechanism (see Section IV-B) in which
replicas push their outputs to a preferred quorum [12] of down-
stream replicas. As the results in Figure 10 show, without im-
peding debuggability, these measures enable MIRADORMC,acc
and MIRADOR1C,acc to provide latencies as low as BFT-SMaRt.
YCSB. Next, we rely on YCSB [44] to evaluate micro repli-
cation with realistic application workloads. At the server side,
YCSB provides a database of 1 KB records which each contain
multiple fields of 100 B values. The six benchmarks test a
variety of workloads using different combinations of inserts,
reads, updates, and scans. To reduce read and scan latency,
both BFT-SMaRt and MIRADOR leverage PBFT’s read-only
optimization [11]. In MIRADOR this means that clients directly
submit their reads to executors, thereby bypassing 4 of the
6 regular-path steps, and for all operations accept a result after
obtaining 2f + 1 matching replies. Figure 11 shows that the
read-only optimization is also effective in MIRADOR. Overall,
the measurements confirm that when using accelerators a
micro-replicated protocol is able to offer throughputs and
latencies that match the performance of traditional protocols.
Unreliable Network. Our final experiment examines the
impact of unstable network behavior with a phase in which
10% of protocol messages are randomly dropped. As shown
in Figure 12, once the issues start, BFT-SMaRt enters a series
of repeated view changes due to followers missing some of the
(old and new) leaders’ proposals. In contrast, thanks to micro
replicas periodically submitting pull-based queries, MIRADOR
is able to continuously make progress without view change.

VII. DISCUSSION

In the following, we discuss implications, advantages, and
limitations of our design choices made for micro replication.
Modularization. Micro replication breaks a protocol down
into its atoms, thereby introducing development and mainte-
nance overhead compared with traditional designs. Taking into
account that some of today’s production infrastructures com-
prise hundreds or even thousands of loosely coupled micro-
services [45], [46], we think it is not unreasonable to believe
that the additional costs are manageable in practice. One of
Twitter’s main data-processing frameworks, for example, was
specifically built to place nodes in separate JVMs for better
debuggability [47]. Besides, as shown by MIRADOR1C, at the
expense of weaker replica isolation the deployment overhead
can be reduced by combining clusters into a single process.

While fined-grained modularization decisively reduces the
blast radius for certain bugs (see Bug #14 in Section VI-A),
there are issues for which micro replication does not offer
additional benefits over traditional approaches. Specifically,
this is true for bugs that take effect multiple stages away from
their source, for example if during view change the leader
propagates a command with the wrong view number [48] or a
correct replica loses state during a restart [49]. In both cases,
the impact may only become visible after the agreement stage.
Furthermore, micro replication cannot serve as protection
against protocol designs that violate fundamental principles,
for example by committing a command in too few steps [50].
Pull-based Communication. Compared with traditional push-
based approaches, our design decision to use pull-based micro-
replica interaction introduces additional costs in terms of
latency (i.e., two communication steps instead of one) and
messages (i.e., request + reply instead of a single message).
However, as confirmed by our evaluation results, the impact
on performance can be effectively mitigated by adding ac-
celerators. As discussed in Section IV-B, accelerators are a
best-effort mechanism and thus may only serve as addition to
pull-based queries, not as a replacement. Nevertheless, during
periods of benign network conditions accelerators free replicas
from the need to send queries at high frequency, thereby min-
imizing the runtime overhead of pull-based communication.

Organizing replica interaction in a pull-based manner offers
the key benefit that external debuggers can use the same
queries as regular downstream replicas to inspect an upstream
replica’s current state (see Section IV-A). Notice that this does
not guarantee that a debugger will always be able to observe
a replica’s complete history. Specifically, it can miss outputs
that have been created and already garbage-collected between
two debugger queries. Our experience and the analysis of

0 60 120 180
0

5

10

15

Start of phase in
which 10% of
messages are

randomly dropped

MIRADORMC,acc

BFT-SMaRtMC

Return to normal

BFT-SMaRt
throughput

restored after
an additional
view change

Time [s]Th
ro

ug
hp

ut
[k

O
ps

/s
]

Figure 12. Impact of an unreliable network



BFT-SMaRt in Section VI-A show that this limitation usually
does not pose a major problem in practice as many bugs in
protocol implementations (including the MIRADOR prototype)
result in the entire system getting stuck. In such cases,
knowledge about the current replica state is key and there is no
functioning garbage collection to discard the relevant evidence.
Nevertheless, since this of course does not cover all debugging
scenarios, as discussed in Section III, we regard pull-based
debugging only as additional option to the use of log files.

Single-Threaded Micro-Replica Architecture. Besides avoid-
ing race conditions (see Bugs #6, #9, #11 in Section VI-A),
relying on single-threaded execution within micro replicas can
also offer benefits with regard to performance. With most steps
in a replication protocol only involving a few comparably in-
expensive actions (e.g., checking message fields, updating in-
memory data structures), as pointed out by Kończak et al. [17]
there are usually no advantages in implementing the protocol
logic as a multi-threaded component. Even worse, distribut-
ing tasks across multiple threads using staged event-driven
designs [51] typically results in significant synchronization
overhead that prevents a replica from fully exploiting the
available CPU and network resources [4], [52]–[54].

Notice that the absence of parallelism at the replica level
does not rule out the use of parallelism in other parts of the
replicated system. For example, micro replication does not
prohibit multi-threading at the application level (i.e., after an
executor delivered a command to its local service-application
instance), meaning that it can be integrated with approaches
that exploit concurrency during command execution [55], [56].
Furthermore, to prevent single-threaded replicas from becom-
ing a bottleneck (e.g., due to high message-authentication
overhead), a micro-replicated protocol may distribute the
agreement load across multiple partitions [53], [57], [58] by in-
stantiating the agreement-stage clusters (i.e., proposers, prepar-
ers, committers etc.) several times and assigning each partition
a portion of commands. This creates parallelism at the protocol
level (which can also be used to improve resilience [59])
without violating the single-threaded replicas principle.

Generalizability. We believe that many of the designs and
mechanisms developed for CFT and BFT protocols [30], [60]
can either be directly incorporated or adapted to fit the
micro-replication principles. For example, exploiting the close
structural similarity between Kirsch et al.’s Paxos variant [28]
and PBFT, deriving a CFT version of MIRADOR is straightfor-
ward. Furthermore, the use of trusted subsystems may allow
micro-replicated protocols to save resources [29], [61]–[67].
However, some concepts such as Raft’s strong leader [15] are
not as easily expressible using micro replication. In general,
this applies to all approaches that exploit the fact that the
same monolithic replica can participate in multiple subsequent
protocol steps. Although a source for bugs (see Bug #8 in
Section VI-A), if done correctly, this property can foster effi-
ciency. PBFT, for example, ensures that a new leader presides
over the view change preceding its own view and therefore can
leverage that a correct leader will properly handle both tasks;

in contrast, in MIRADOR curators and proposers may fail
independently (see Section V-C). Notice that this does not rule
out designs in which individual replicas are assigned special
roles (e.g., to achieve linear communication complexity [7],
[40] or to coordinate leaderless consensus [68]–[70]), as
long as this difference in characteristics is taken into account.

VIII. RELATED WORK

Since debugging distributed and multi-threaded systems is
notoriously difficult, a myriad of approaches and frameworks
exist that have been designed to provide assistance in this
process. This includes record and replay support for individual
virtual machines/processes [25], [71], [72] or even entire
distributed systems [20], [26], [73], [74], hardware-assisted
replay [75]–[77], parallelized debuggers [20], [78], visualiza-
tion of protocol execution [79], automated tracing [80]–[82],
automated damage assessment [22], and effective log anal-
ysis [83]–[85]. When used for replicated systems, such tools
can benefit from protocols being designed based on the micro-
replication principles. First and foremost, the fact that all
protocol-phase transitions are externalized and involve (pull-
based) network communication allows tracers to gain easy ac-
cess to up-to-date state information. Also, the standardized ar-
chitecture and interfaces of micro replicas greatly simplify the
provision of tooling support for the entire system. Finally, the
reduced blast radius of failures enables debuggers to concen-
trate on specific areas, thereby speeding up the bug search.

We are not the first to leverage modularization in replication
protocols. For Paxos, Lamport [33] introduced the roles of
proposers, acceptors, and learners to distinguish essential
algorithm steps. Whittaker et al. [86] extended this idea in
a decoupled architecture focused on eliminating scalability
bottlenecks. Boichat et al. [87] deconstructed Paxos into
modules for leader election and consensus, thereby providing
the basis for new protocol variants. For BFT, Aublin et al. [88]
presented an approach to build complex protocols as a com-
position of multiple tailored instances of the same abstraction.
Yin et al. [8] proposed an architecture that separates agreement
from execution, to which Clement et al. [12] later added
a client-handling stage. Recently, Messadi et al. [89] split
a protocol into three compartments (i.e., preparation, confir-
mation, execution). Compared with these approaches, micro
replication differs in two important aspects: (1) It aims for
a much finer granularity by isolating each protocol step in a
separate module. (2) It not only focuses on specific tasks, but
instead targets all mechanisms that are essential in practice.
This includes protocol parts such as flow control and view
change, which are often the ones most difficult to debug.

IX. CONCLUSION

Micro replication enables the design of replication protocols
that simplify debugging-related tasks such as bug-source isola-
tion, state-information retrieval, and root-cause identification.
Our evaluation shows that the improvement in debuggability
can be achieved without impeding performance.
Acknowledgments: Partially funded by the Deutsche Forschungsgemein-
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