=AU

Friedrich-Alexander-Universitat

Luci: Loader-based Dynamic Software Updates
for Off-the-shelf Shared Objects

Bernhard Heinloth, Peter Wagemann, Wolfgang Schroder-Preikschat

Today’s system software relies heavily on dynami-
cally linked libraries: While this implies especially
the standard library, using further third-party libraries
for cryptography, compression, or parsing is not un-
common. However, an application that uses these
libraries will inevitably inherit their vulnerabilities.
For example, the Apache HTTP Server and its core
modules have had 14 vulnerabilities with high sever-
ity since 2010, while the libraries of its six basic de-
pendencies have had over 80 such vulnerabilities at
the same time.

Applying fixes requires a timely restart — which is
undesirable for stateful software systems or systems
with active client connections.

While dynamic software updates are a remedy for
this, existing approaches require modifications to ei-
ther the source code or the build chain, preventing
deployment on a broad scale in user space. Lucl ad-
dresses this shortcoming with a solution that relies
only on unmodified ELF shared objects as they are
commonly distributed in Unix-like systems.

For the Lucl approach, an updated library release
must be identical to the previous version in the layout
of the writable data segment. Furthermore, neither
the interface to the library (API) nor the initialization
routines must change.

Since common bugfix patterns only affect the function
scope, while structural changes are rare and APl &
ABIl compatibility is maintained, the requirements are
usually met for non-feature updates.

Using the ELF metadata and, if available, the DWARF
debug information, Lucl is able to detect changes that
are not eligible for dynamic software updates.

A

process’s
virtual memory

app.elf

meta

data

1ibX.50.1.0.1 B

meta

ro relro

data

=S
0'.
*e

bX.50.1.0.2 I
=
: \
7
code
0 relro
data
@
‘\J — static

— dynamic

Results in Off-the-shelf Shared Objects

: alias

Luci Outline

When executing an application, the operating system loads
the dynamic linker/loader (RTLD / 1d.so) into the virtual
memory of the process. The loader’s responsibilities in-
clude loading all necessary libraries, binding unresolved
symbols, and initializing all components before startup.

Lucl Is a drop-in replace-
ment for the glibc loader
on the x86_64 architecture,
allowing for easy & user-
transparent deployment
without requiring additional
permissions since it already
has access to the process’s
virtual memory.

|d-lucli.so

meta

data

Lucit Workflow

When an application is started with the Luci dynamic
linker/loader and a used libraries changes on the file
system, Luci automatically detects and analyzes the
shared object. If Luci finds incompatibilities, it notifies
the user about the need for a manual restart. Other-
wise, Luci loads the updated shared object into the
virtual memory of the running process:
The sections are mapped to a (previously unused)
memory area, except for the writable sections,
which are instead memory aliases to the corre-
sponding sections of the previous version. Then
all references in the process are updated to
point to the new version — similar to lazy binding,
only the Global Offset Table must be adjusted,
and therefore quiescence is not required.
Since no new indirections are introduced, this ap-
proach imposes no runtime overhead and can be
reapplied to subsequent releases, allowing multiple dy-
namic updates of the same library.

The Luci approach is tested on several popular library releases from the Debian and Ubuntu Linux distributions. During the execution of test suites (with significant
code coverage), the shared objects on the file system are replaced with subsequent releases collected from prebuilt packages in the official repositories.

Expat Library Releases in Debian Buster

Out of 18 updated shared object packages, only five
updates - all of them during the development phase
of Debian Buster — do not meet the requirements and
are, therefore, not eligible for dynamic updates.

development stable
— QA M T IO O
D I B R R B |
O O O O O O
YT ANRTNTYXYT NPT Y E G T EO D
O~~~ AN ANOMOOMOMWULUOULW OO T T O O T O
NNt
Expat tncncicincicldilvvyr 2 1
meta - OO0OO0O OOO0OO OO0O0OO0CO0O00O0
code - 0O O 00O ONORONONOCRONONO
—init - @ O »
ro - O O OO0O0O ONORONONOCRONONO
rello - O O 00O ONONONONONONONO
data - @ ® O
update - X VVV = XXXV = XVVVVVVV

QO compatible change @ incompatible change

o D F G

sys.cs.fau.de

Distribution Overview for Expat

For all Expat packages in recent distribution versions,
Luci maintains the ability to update most releases of
shared objects without the need to restart the appli-
cation. Especially during the stable phase, while
keeping the API| and only applying bug fixes, Lucl is
able to achieve high dynamic update rates.

Build Expat update

custom (vanilla) 2.0.0-2.5.0 17/26 (65%)
| all 220-226 13/18 (72%)
Debian Buster 226 6/ 6 (100%)
| all 227-2210 9/10 (90%)
Debian Bullseye e 2210 5/ 5 (100%)
all 227-229 6/ 6 (100%)

Jouniu Focal 229 4/ 4 (100%)
all 241-247 10/12 (83%)

Jouniu Jammy e 247 2/ 2 (100%)

German Research Foundation
Project number 465958100 — SCHR 603/16-1 “NEON”
Project number 502947440 — WA 5186/1-1 “Watwa”

Summary of Evaluated Libraries

Evaluation of dynamic updates using Luci, performed
on Apache HTTP Server core dependency libraries,
with prebuilt packages from different Debian and
Ubuntu distribution releases:

v Expat XML parser
v Extended Crypt Library

X OpenSSL
v Perl 5 Compatible Regular Expression Library
v Zlib

While Luci can apply the majority of updated re-
leases without a restart for most libraries, only
OpenSSL cannot be dynamically updated, mainly
due to its extensive use of function pointers Iin
global data. However, even in this case, Luci detects
the incompatibility and notifies the user while con-
tinuing to run the application using the old library.

Code and Artifacts at @

github.com/luci-project/eval-atc23 [m] &~

.

https://github.com/luci-project/eval-atc23
https://sys.cs.fau.de/

