
Today’s system software relies heavily on dynami-
cally linked libraries: While this implies especially
the standard library, using further third-party libraries
for cryptography, compression, or parsing is not un-
common. However, an application that uses these
libraries will inevitably inherit their vulnerabilities.
For example, the Apache HTTP Server and its core
modules have had 14 vulnerabilities with high sever-
ity since 2010, while the libraries of its six basic de-
pendencies have had over 80 such vulnerabilities at
the same time.
Applying fixes requires a timely restart – which is
undesirable for stateful software systems or systems
with active client connections.
While dynamic software updates are a remedy for
this, existing approaches requiremodifications to ei-
ther the source code or the build chain, preventing
deployment on a broad scale in user space. LUCI ad-
dresses this shortcoming with a solution that relies
only on unmodified ELF shared objects as they are
commonly distributed in Unix-like systems.

Problem

For the LUCI approach, an updated library release
must be identical to the previous version in the layout
of the writable data segment. Furthermore, neither
the interface to the library (API) nor the initialization
routines must change.
Since common bugfix patterns only affect the function
scope, while structural changes are rare and API &
ABI compatibility is maintained, the requirements are
usually met for non-feature updates.
Using the ELF metadata and, if available, the DWARF
debug information, LUCI is able to detect changes that
are not eligible for dynamic software updates.

Update Constraints

When executing an application, the operating system loads
the dynamic linker/loader (RTLD / ld.so) into the virtual
memory of the process. The loader’s responsibilities in-
clude loading all necessary libraries, binding unresolved
symbols, and initializing all components before startup.

LUCI is a drop-in replace-
ment for the glibc loader
on the x86_64 architecture,
allowing for easy & user-
transparent deployment
without requiring additional
permissions since it already
has access to the process’s
virtual memory.

LUCI Outline

When an application is started with the LUCI dynamic
linker/loader and a used libraries changes on the file
system, LUCI automatically detects and analyzes the
shared object. If LUCI finds incompatibilities, it notifies
the user about the need for a manual restart. Other-

wise, LUCI loads the updated shared object into the
virtual memory of the running process:
The sections are mapped to a (previously unused)
memory area, except for the writable sections,
which are insteadmemory aliases to the corre-
sponding sections of the previous version. Then
all references in the process are updated to
point to the new version – similar to lazy binding,
only the Global Offset Table must be adjusted,
and therefore quiescence is not required.

Since no new indirections are introduced, this ap-
proach imposes no runtime overhead and can be

reapplied to subsequent releases, allowingmultiple dy-
namic updates of the same library.

LUCI Workflow

The LUCI approach is tested on several popular library releases from the Debian and Ubuntu Linux distributions. During the execution of test suites (with significant
code coverage), the shared objects on the file system are replaced with subsequent releases collected from prebuilt packages in the official repositories.

Expat Library Releases in Debian Buster
Out of 18 updated shared object packages, only five
updates – all of them during the development phase
of Debian Buster – do not meet the requirements and
are, therefore, not eligible for dynamic updates.

development stable

Expat 2.
2.
0-
2

2.
2.
1-
1

2.
2.
1-
2

2.
2.
1-
3

2.
2.
2-
1

2.
2.
2-
2

2.
2.
3-
1

2.
2.
3-
2

2.
2.
5-
1

2.
2.
5-
2

2.
2.
5-
3

2.
2.
6-
1

2.
2.
6-
2

…
+
de

b1
0u

1
…
+
de

b1
0u

2
…
+
de

b1
0u

3
…
+
de

b1
0u

4
…
+
de

b1
0u

5
…
+
de

b1
0u

6

meta –
code –

init –
ro –
relro –
data –

update – – –
compatible change incompatible change

Distribution Overview for Expat
For all Expat packages in recent distribution versions,
LUCImaintains the ability to updatemost releases of
shared objects without the need to restart the appli-
cation. Especially during the stable phase, while
keeping the API and only applying bug fixes, LUCI is
able to achieve high dynamic update rates.

Build Expat update

custom (vanilla) 2.0.0 – 2.5.0 17 / 26 (65%)

Debian Buster
all 2.2.0 – 2.2.6 13 / 18 (72%)
stable 2.2.6 6 / 6 (100%)

Debian Bullseye
all 2.2.7 – 2.2.10 9 / 10 (90%)
stable 2.2.10 5 / 5 (100%)

Ubuntu Focal
all 2.2.7 – 2.2.9 6 / 6 (100%)
stable 2.2.9 4 / 4 (100%)

Ubuntu Jammy
all 2.4.1 – 2.4.7 10 / 12 (83%)
stable 2.4.7 2 / 2 (100%)

Summary of Evaluated Libraries
Evaluation of dynamic updates using LUCI, performed
on Apache HTTP Server core dependency libraries,
with prebuilt packages from different Debian and
Ubuntu distribution releases:

Expat XML parser
Extended Crypt Library
OpenSSL
Perl 5 Compatible Regular Expression Library
Zlib

While LUCI can apply the majority of updated re-
leases without a restart for most libraries, only
OpenSSL cannot be dynamically updated, mainly
due to its extensive use of function pointers in
global data. However, even in this case, LUCI detects
the incompatibility and notifies the user while con-
tinuing to run the application using the old library.

Results in Off-the-shelf Shared Objects

alias

LUCI: Loader-based Dynamic Software Updates
for Off-the-shelf Shared Objects
Bernhard Heinloth, Peter Wägemann, Wolfgang Schröder-Preikschat

Code and Artifacts at
github.com/luci-project/eval-atc23

Supported by
German Research Foundation
Project number 465958100 — SCHR 603/16-1 “NEON”
Project number 502947440 — WA 5186/1-1 “Watwa”

sys.cs.fau.de

ld-luci.so
meta

code

data

libX.so.1.0.1
meta

code

ro relro

data

libX.so.1.0.2
meta

code

ro relro

data

app.elf
meta

code

data

process’s
virtual memory

static
dynamic

r

r

rw

rw

...

rx

r

rx

r

rw

rw

...

...

https://github.com/luci-project/eval-atc23
https://sys.cs.fau.de/

