
Generic Checkpointing Support for
Stream-based State-Machine Replication

Laura Lawniczak, Marco Ammon, and Tobias Distler
{lawniczak,marco.ammon,distler}@cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Germany

Abstract
Stream-based replication facilitates the deployment and op-
eration of state-machine replication protocols by running
them as applications on top of data-stream processing frame-
works. Taking advantage of platform-provided features, this
approach makes it possible to significantly minimize imple-
mentation complexity at the protocol level. To further extend
the associated benefits, in this paper we examine how the
concept can be used to provide generic support for creat-
ing, storing, and applying checkpoints of replica states, both
in the use case for catch up and garbage collection as well
as to recover failed replicas. Specifically, we present three
checkpointing-mechanism designs with different degrees of
platform involvement and evaluate them in the context of
Twitter’s stream-processing engine Heron.

CCS Concepts: • Computer systems organization→ Re-
liability.

Keywords: State-machine replication, checkpointing, recov-
ery, data-stream processing
ACM Reference Format:
Laura Lawniczak, Marco Ammon, and Tobias Distler. 2023. Generic
Checkpointing Support for Stream-based State-Machine Replica-
tion. In 10th Workshop on Principles and Practice of Consistency for
Distributed Data (PaPoC ’23), May 8, 2023, Rome, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3578358.3591329

1 Introduction
Implementing and operating replicated systems is an inher-
ently difficult task due to the high complexity associated
with their underlying protocols (e.g., Paxos [14], Raft [19]).
Stream-based state-machine replication [15] mitigates this
problem by designing protocols in such a way that they can
run as applications on data-stream processing frameworks
like Heron [13] or Storm [21]. With these platforms already
offering support for essential tasks such as the deployment of

PaPoC ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 10th Workshop on Principles and Practice of Consistency for Distributed
Data (PaPoC ’23), May 8, 2023, Rome, Italy, https://doi.org/10.1145/3578358.
3591329.

code, the creation and management of network connections,
as well as the recovery of failed processing-node instances, as
a key benefit, this approach leads to significantly smaller and
less complex protocol implementations, as recently demon-
strated by the crash-tolerant Tara protocol [15].

When developing a stream-based protocol, in most cases
it is straightforward to determine how to leverage an ex-
isting platform-provided feature, because in general there
essentially is only one way to integrate the corresponding
functionality. However, this specifically does not apply to
the problem of designing an efficient checkpoint mechanism,
which is crucial to allow trailing replicas to update their
states and to enable failed replicas to recover from crashes.
As we show in this paper, with respect to checkpointing
there are multiple design alternatives, especially when pur-
suing the goal of exploiting the particular characteristics of
stream-based protocol architectures for efficiency.

To explore the design space, we present and evaluate multi-
ple generic checkpointing mechanisms with varying degrees
of platform involvement, ranging from a purely application-
based solution (in which the protocol itself is responsible
for capturing, storing, and transferring checkpoint data) to
a highly platform-based approach (in which the protocol
only needs to capture and write back checkpoint data when
instructed to do so by the underlying framework). Apart
from the checkpoint use cases commonly supported by tra-
ditional replication-protocol implementations such as BFT-
SMaRt [3] (i.e., enabling slow or newly started replicas to
catch up), we are specifically interested in examining an
additional feature closely related to checkpointing: the au-
tomatic recovery of a crashed replica instance, possibly on
another server in case the entire physical machine failed.
Requiring access to the surrounding computing infrastruc-
ture, such recovery mechanisms typically are not part of
replication libraries [3, 12]. In contrast, with data-stream
processing framework like Heron (assisted by its resource
manager Mesos) controlling the entire cluster environment,
support for automatic recovery is readily available to stream-
based replication protocols.

https://doi.org/10.1145/3578358.3591329
https://doi.org/10.1145/3578358.3591329
https://doi.org/10.1145/3578358.3591329


PaPoC ’23, May 8, 2023, Rome, Italy Lawniczak et al.

In summary, this paper makes the following contributions:
(1) It shows that in stream-based replication protocols such
as Tara different stages have different requirements with
regard to checkpointing. (2) It presents three designs for of-
fering checkpoint support to stream-based protocols, includ-
ing both application-based and platform-based approaches.
(3) It experimentally evaluates the proposed techniques in
the context of a fault-tolerant coordination service.

The remainder of this paper is structured as follows: Sec-
tion 2 provides background on stream-based replication in
general, and the Tara protocol in particular. Section 3 iden-
tifies the requirements checkpointing mechanisms need to
fulfill for stream-based replication. Section 4 details our three
designs and elaborates on possible implementation variants.
Section 5 evaluates the proposed designs during normal-
case operation and in the presence of node crashes. Finally,
Section 6 discusses related work and Section 7 concludes.

2 Background
State-machine replication protocols allow a system to toler-
ate failures by composing the system as a group of replicated
servers all maintaining an instance of the application state.
Stream-based state-machine replication [15] facilitates the
implementation and deployment of such a system by run-
ning the replication protocol as an application on top of a
stream-processing framework. For this purpose, the protocol
is designed as a set of stages that are organized in a directed
acyclic graph through which information flows in the form
of data tuples. Figure 1 illustrates this concept using the five
main stages of the Tara protocol [15], which are responsible
for the agreement and execution of client commands.

2.1 Replication Protocol
Tara’s main replication process consists of the following
steps (see Figure 1). When new client commands arrive, the
underlying framework inserts them into one of its input
queues from where they enter the protocol via the request-
source stage. Next, commands flow through a sequence of
three stages (i.e., proposers, committers, and executors) that
together implement a crash-tolerant consensus algorithm
responsible for assigning a unique sequence number to each
command. Once this assignment is confirmed, each executor
processes the commands in the order of their sequence num-
bers and forwards the corresponding results to the reply-sink
stage, where they are eventually delivered to clients.

To offer the same fault tolerance properties as traditional
state-machine replication protocols, each Tara stage com-
prises a group of replicas. A replica is represented as an indi-
vidual processing-node instance in the protocol’s topology
and together they form a fully replicated system. The number
of replicas in each stage depends on the specific responsibili-
ties and varies between 𝑓 + 1 (for request sources, proposers,

Protocol

Platform &
Physical Plan

Request
Input
Queues

Reply
Output
Queues

Request Sources Proposers Committers Executors Reply Sinks

Stream ManagerStream Manager

Container

Request
Source 2

Reply
Sink 2

Proposer 2 Committer 3 Executor 3

Topology
Manager

Deployment

Data Flow

Mapping

Replica
Instances

Figure 1. Stream-based state-machine replication

and reply sinks) and 2𝑓 + 1 (for committers and executors) to
tolerate up to 𝑓 crashes per stage. Of the 𝑓 + 1 proposers only
a single one, the leader, actively participates in the protocol.
If this replica fails, a view-change mechanism ensures that
the leader role is assigned to one of the remaining proposers.

2.2 Execution Platform
Stream-processing frameworks execute applications as a
series of processing nodes organized in a directed acyclic
graph. With the topology of a stream-based replication pro-
tocol being structured in such a way, it can be executed
as an application on platforms such as Twitter’s stream-
processing framework Heron [13]. At startup, the proto-
col topology is translated into a physical execution plan
defining how the nodes are distributed among servers. As
shown in Figure 1, this step allows replicas of different stages
to be packed into the same container. Containers are Heron’s
unit of deployment and each of them is run by a local stream
manager, which, for example, takes care of routing data
tuples (within its own container and between containers),
thereby enabling replicas to communicate.
At the global level, a central topology manager is respon-

sible for handling tasks that affect the entire system. This
includes the deployment and configuration of containers
during startup as well as (assisted by stream managers) the
monitoring and recovery of processing nodes at runtime.
Notice that once deployed, a stream-based protocol is able to
run on its own even if the topology manager becomes (tem-
porarily) unavailable: an active participation of the topology
manager is only necessary to recover replicas after faults.
This is thanks to (1) the topology manager not being directly
involved in the data flow and (2) the protocol’s built-in fault-
tolerance and view-change mechanisms operating at the
application level. By itself, the protocol can tolerate up to
𝑓 concurrent replica failures per stage. Notice that it is im-
portant to configure the topology and container distribution
in such a way that each physical server only hosts at most
one node of each stage, ensuring independent replicas.



Generic Checkpointing Support for Stream-based State-Machine Replication PaPoC ’23, May 8, 2023, Rome, Italy

3 Stage-Specific Checkpointing
Like traditional replication protocols [14, 19], stream-based
protocols rely on checkpoints (i.e., snapshots of replica states)
to allow trailing replicas to catch up and to recover crashed
replicas. In this section, we show that in stream-based ar-
chitectures, however, different stages have both different
characteristics and use cases with regard to checkpointing.
In particular, we discovered that stages can be classified
into two categories requiring group checkpoints and instance
checkpoints, respectively (see Table 1). Such categorization
is useful as it allows us to develop tailored checkpointing
mechanisms in Section 4.

3.1 Group Checkpoints
This type of checkpoint represents the traditional notion of
checkpointing in state-machine replication protocols and
is used in stages for which it is ensured that all correct
replicas eventually are in an identical state after having
processed the same inputs. In general, this is true for later
protocol stages that operate on the sequence of commands
produced by the consensus process, as it is for example the
case for the executors in Tara. With all replicas possessing
consistent states, the snapshot created by one replica can
bring another replica of the same group up to speed,
which is why we refer to this category as group checkpoints.

To minimize overhead, group checkpoints are created pe-
riodically, for example every 1,000th sequence number. A
larger checkpoint interval (i.e., less frequent snapshots) can
prolong recovery, but on the other hand usually improves
the performance in fault-free periods, especially for replicas
with a large state to capture. For group checkpoints, the size
of the replica state is typically dominated by the state of the
replicated service and therefore varies between use cases.
Similar to other state-machine replication protocols [14,

19], group checkpoints in the context of stream-based repli-
cation are an intrinsic part of the protocol since they enable
replicas to garbage-collect information on earlier sequence
numbers [15]. Consequently, creation and application of
such checkpoints should still be possible even if parts of the
underlying stream-processing framework, and the topology
manager in particular, are currently not available.

3.2 Instance Checkpoints
This kind of checkpoint is used by stages in which correct
replicas may observe different inputs and thus end up in
different states. A textbook example for such a stage are

Table 1. Comparison of group and instance checkpoints

Group Checkpoints Instance Checkpoints
Applicability Each replica of the same group Specific replica instance
Granularity Sequence-number interval Each externalized update
Size Use-case specific Small
Recovery Protocol level Platform level

Tara’s committers, which are responsible for replicating
the leader’s proposals across multiple servers. Specifically,
when the acting leader crashes, a subset of committers may
receive proposals that due to the failure do not reach all
committers. To ensure correctness, it is essential that in the
subsequent view change each committer precisely reports
the proposals it has acknowledged in the past and is not
allowed to lose any externalized information. This means
that it is not feasible to share snapshots among replicas, as
done with group checkpoints. Instead, these stages require
checkpoints that enable the recovery of a specific replica
instance (e.g., Committer 3, not simply any committer).

Recovering a specific replica instance makes it necessary
to restore all state updates that were externalized via the
replica’s outputs prior to the crash and therefore might have
been observed by others. Although the state of the affected
stages is typically small and (due to belonging to a generic
consensus algorithm) does not depend on the size of the
replicated service, creating a new instance checkpoint for
each output tuple usually results in significant overhead. This
problem can be mitigated by persisting multiple subsequent
state updates in a single checkpoint, similar to the batching
of commits in log-based file systems and databases [9].

In contrast to group checkpoints, instance checkpoints are
not an integral part of the stream-based replication protocol
but instead a means for the stream-processing platform to re-
cover individual replicas, possibly on a different server. With
the recovery from an instance checkpoint being initiated and
performed by the platform, there is an inherent dependency
between the checkpointing mechanism for replica instances
and the platform component responsible for their recovery.
In particular, this means that instance checkpoints only need
to be accessible when the topology manager is available.

3.3 General Requirements
To limit the design space, in this paper we focus on check-
pointing mechanisms that (independent of the specific check-
point type) store a replica’s state in a synchronous manner,
meaning that the snapshot-creation procedure must block
until all captured data has reached its destination (e.g., lo-
cal storage, another server); exploiting asynchronous ap-
proaches [7] is part of future work. Once a checkpoint has
been created, older checkpoints by the same replica may be
garbage-collected. That is, for each replica it is sufficient to
only keep the latest group/instance checkpoint.

4 Checkpointing Techniques
In this section, we introduce three checkpointing-mechanism
designs for stream-based replication that represent differ-
ent tradeoffs with regard to the degree of platform involve-
ment. As summarized in Table 2, two of the approaches
are tailored to a specific type of checkpoint, whereas the



PaPoC ’23, May 8, 2023, Rome, Italy Lawniczak et al.

Table 2.Overview of the checkpointing techniques analyzed
in this paper and the types of checkpoints (CPs) they support.

Group CPs Instance CPs
Protocol-driven checkpointing Yes No
Global platform-based checkpointing No Yes
Local platform-based checkpointing Yes Yes

third is able to support both group checkpoints as well as in-
stance checkpoints. In the following, we discuss each of the
three techniques in detail. When it comes to implementation-
related specifics, we focus on Heron as underlying stream-
processing framework since this is the platformwe use in our
prototype. However, the general concepts are also adaptable
to other stream-processing frameworks.

4.1 Protocol-Driven Checkpointing
The main idea behind our first technique, protocol-driven
checkpointing (PDC), is to delegate full responsibility for
checkpoint creation and management to the stream-based
replication protocol. Specifically, this means that each replica
itself is equipped with procedures and resources for deciding
when to create a new checkpoint, storing its latest snapshot,
and transferring a checkpoint to another replica on demand.
Providing the entire checkpointing functionality at the

application level, PDC has the benefit of achieving platform
independence, but on the other hand adds complexity to
the replication-protocol implementation. Furthermore, with
persistent storage being managed by the underlying frame-
work and therefore not available to this approach, each
replica needs to keep its latest snapshot in memory. As
a consequence, in order to transfer a checkpoint between
two replicas, both of the replicas must be running. This
prevents PDC from being used for instance checkpoints,
whose purpose is to recover the same replica instance after a
crash. With regard to group checkpoints, on the other hand,
this does not pose a problem. Here, the size of the replica
group (e.g., 2𝑓 + 1 executors in Tara) ensures that there al-
ways is at least one correct replica that has the latest check-
point and can provide it to trailing or recovering replicas.

4.2 Global Platform-based Checkpointing
The key design goal of our second technique, global platform-
based checkpointing (GPC), is to leverage mechanisms that
already exist in stream-processing frameworks to enable the
recovery of stateful topologies. As a result, GPC requires only
limited implementation work at the protocol level, which
mainly consists of routines to retrieve a replica’s internal
state and to update its state based on a provided snapshot.
Due to the checkpointing process being initiated by the topol-
ogy manager, GPC does not support group checkpoints; as
discussed in Section 3, group checkpoints need to be pro-
ducible even in the topology manager’s absence and replicas
must be able to request checkpoints themselves.

In Heron, the recovery of stateful stream-based applica-
tions is based on a coordinated rollback-recovery scheme [8],
which ensures that all processing nodes (i.e., in our case:
replicas) in the system create consistent checkpoints. As illus-
trated in Figure 2, the platform for this purpose inserts special
markers into the stream of regular data tuples. Starting at the
roots of the directed acyclic graph, themarkers are forwarded
from stage to stage, thereby eventually reaching all replicas.
Whenever a replica receives a marker M𝑖 for a new check-
point number 𝑖 , the replica temporarily suspends the process-
ing of data tuples from the input stream through which the
marker arrived. Once the replica has seen the same marker
in all of its input streams, the replica creates a snapshot of
its state, adds the marker M𝑖 to all of its output streams, and
resumes processing data tuples. With all replicas behaving
accordingly, this approach ensures that their checkpoints
together represent a consistent snapshot of the system state
at a specific point in time (i.e., a specific sequence number).
Apart from capturing replica states, all data tuples trans-

mitted since the latest global checkpoint are also recorded in
Heron. In combination, this allows the framework to recover
a protocol topology by first restarting all replicas, then ap-
plying the respective snapshots, and issuing the redelivery
of logged data tuples in the recorded order. Always restoring
the protocol in its entirety, this approach is primarily suitable
for scenarios in which a larger number of replicas (typically
belonging to multiple stages) need to be recovered at once.
Using GPC for instance checkpoints makes it necessary

to ensure that each replica’s outputs are only forwarded to
the next stage after the corresponding state updates have
been stored in a checkpoint (see Section 3.2). With Heron’s
built-in mechanism only initiating checkpoints at the granu-
larity of seconds, it is advisable to combine all of a replica’s
state updates since the latest checkpoint and persist them
together in a single batch. Even though this does not elimi-
nate the need to delay the externalization of outputs (which
is required for correctness), this has the benefit of reducing
the number of costly write operations to stable storage.

4.3 Local Platform-based Checkpointing
To avoid the drawbacks associated with GPC while still ex-
ploiting framework-provided checkpointing features, our
third technique, local platform-based checkpointing (LPC), ad-
dresses checkpointing at the replica level (in contrast to the

Request Sources Proposers Committers Executors Reply Sinks

M1

M1

M1

M1

CP1

CP1

CP1

CP1

CP1

CP1

CP1

CP1

CP1

Checkpoints Marker

Data Tuple

Figure 2. Distributed checkpointing in GPC



Generic Checkpointing Support for Stream-based State-Machine Replication PaPoC ’23, May 8, 2023, Rome, Italy

Stream
Manager

Checkpoint
Manager

Replica Replica

Stable
Storage

(a) LPCCM

Stream Manager

Replica Replica
Stable
Storage

(b) LPCCS

Figure 3. Persisting a checkpoint in the two LPC variants

topology level as in GPC). Using LPC, replicas themselves
decide when to trigger the creation of a new checkpoint; all
following steps are then handled by replica-local platform
components. Without the topology manager being involved
in snapshot generation, this approach enables LPC to support
both group checkpoints and instance checkpoints.
Starting from the general LPC concept, we designed two

specific variants that differ in the way the snapshot data
is persisted to stable storage: (1) As shown in Figure 3a,
LPCCM for this purpose follows Heron’s built-in path that
entails replicas transmitting the checkpoint contents to their
local stream manager. From there, the data is forwarded to a
dedicated checkpoint manager (CM), which is responsible for
performing the actual write to stable storage. (2) In contrast,
in LPCCS replicas directly interact with the stable storage
through a lightweight protocol-independent checkpointing
shim (CS) that is added to the execution environment that
replicas run in (see Figure 3b). Compared with LPCCM, this
offers the benefit of significantly reducing the inter-process
communication necessary to store (and load) a checkpoint.
Independent of the particular variant, LPC supports the

use of batched writes to improve efficiency. Different from
GPC, batching in LPC however is not time-based but in-
stead applied at the granularity of state updates. As a key
advantage, this makes it possible to produce checkpoints
more frequently and thereby minimize the latency overhead
induced by instance checkpoints (see Section 5.2).

5 Evaluation
This section evaluates the three presented checkpointing
techniques (with both variants of LPC) using a coordina-
tion service that is replicated by Tara as an application on
Heron. We use a cluster of three servers for the replicas
and one server acting as the Heron main node that among
other things hosts the topology manager (all Intel Xeon CPU
E3-1245 v3, 3,40 GHz, 8GB RAM). All platform-based check-
points use the file-system interface provided by Heron, stor-
ing the data with NFS on a dedicated server with an SSD.
The servers are connected with 1Gbit Ethernet. Clients run
on up to three additional machines and submit requests in a
closed loop. Each result represents the average of three runs.

5.1 Group-Checkpoint Performance
In our first experiment, we evaluate the performance impact
of managing group checkpoints for the two of our techniques
that support this type of checkpoint: PDC and LPC.We check-
point executors as this is the only stage in Tara that uses
group checkpoints. The system is configured to store a check-
point every 1,000 requests. As can be seen in Figure 4, it is pos-
sible to use platform-based checkpointing without impacting
overall system performance. Both PDC and LPCCM show a
nearly identical performance with a maximum throughput
of about 13,000 requests. While LPCCS still shows an ade-
quate performance, there is a decline in both throughput and
latency of up to 20% under high load. This is likely due to
the fact that LPCCS does not shift the load of managing asyn-
chronous tasks (e.g., the deletion of old checkpoints) to the
checkpoint manager, thus having more impact on the per-
formance of the actual replicas in comparison with LPCCM.

5.2 Instance-Checkpoint Performance
In our next experiment, we inspect the performance of the
system under full crash-recovery conditions, storing instance
checkpoints for each node in a way that it can be safely rein-
troduced into the system after a failure. Of course, stronger
resilience properties achieved by synchronous logging do
not come without cost [2], which is why performance in this
experiment is substantially lower than in the previous one.

The results in Figure 5 show a distinct difference between
GPC and the two LPC variants. Since GPC triggers check-
points in a fixed time interval and to avoid publishing poten-
tially lost data, messages are withheld until they are saved
in a checkpoint. This introduces a high latency even under
light load since each request has to wait on the next check-
point in at least three stages. With a configured checkpoint
interval of 500ms this results in an average latency of around
1.2s. Originally, Heron only offers a minimal interval of 1s.
We removed this configuration restriction, but below 500ms
the system was overwhelmed by the number of checkpoints.
However, this time-based checkpointing also has the advan-
tage of allowing the system to adapt to the load, enabling a
larger throughput with a high but still stable latency.

0 2 4 6 8 10 12 14
0

20

40

60

80

Throughput [1,000 reqs/s]

La
te

nc
y

[m
s]

PDC
LPCCM
LPCCS

Figure 4. Throughput vs.
latency: group checkpoints

0 200 400 600 800
0

0.4

0.8

1.2

1.6

2

Throughput [reqs/s]

La
te

nc
y

[s
]

GPC
LPCCM
LPCCS

Figure 5. Throughput vs.
latency: instance checkpoints



PaPoC ’23, May 8, 2023, Rome, Italy Lawniczak et al.

0 30 60 90 120 150 180
0

200

400

600

800
Committer crash

Committer recovered

Topology recovered

Time [s]

Th
ro

ug
hp

ut
[r

eq
/s

] LPCCS
GPC

Figure 6. Impact of non-leader replica failure

LPC does not have this restriction, but for every request
needs to save a checkpoint at multiple nodes. Hence, we
introduce batching in both the request source and commit-
ter stage to mitigate this. With a batch factor of up to 10
in both stages, LPCCM has a comparably low latency of ap-
proximately 300ms and can reach a maximum throughput
of around 400 requests per second. A close inspection shows
that with multiple replicas persisting checkpoints in a high
frequency, the single checkpoint manager on each server
quickly becomes the bottleneck. Since LPCCS shares this load
amongst its replicas, it can reach a higher throughput of 600
requests per second with the same latency.

5.3 Node-Crash Impact
As was shown in the previous experiment, both methods
allowing full crash recovery have their advantages, with
GPC offering a higher and more adaptive throughput while
LPC being able to provide lower latency, especially for low
to average load. Hence, as an additional decision criteria, we
now evaluate the impact of a single node crash on the system.
For LPC, we only consider LPCCS since it offers a better
performance under crash-recovery conditions than LPCCM.
In our experiment shown in Figure 6, we deliberately

crash one committer replica after 60 seconds of service. Us-
ing LPCCS, the crash (and subsequent automatic recovery)
of a single non-proposer replica has no impact on system
throughput. For GPC, on the other hand, one sees the vast
impact of the global recovery scheme. As even the crash
of a single node triggers the rollback and recovery of the
whole topology, the system experiences a significant down-
time up to a minute. In regards to availability during and
after a replica crash, our experiments confirm that a local
recovery technique has a huge advantage over the existing
global mechanism offered by Heron.

6 Related Work
Checkpointing in state-machine replication is a crucial topic,
which is why there has been a lot of research in the area
of both the creation of checkpoints [4, 7, 18, 20] and their
impact on performance [2, 17]. In this paper, we focus not on
the creation but the management of checkpoints, especially
in combination with utilizing the infrastructure provided by
the stream-processing platform. Hence, these insights into
checkpoint creation are complementary to our work.

Table 3. Summary of the analyzed checkpointing techniques
Throughput Scalability Latency

Overhead
Crash-

Recovery
Complexity
Overhead

PDC + ○␣ + n.a. −
GPC ○␣ + − − ○␣

LPC − − ○␣ + +

Similar, there exist state-machine replication protocols
that specifically discuss the recovery [2, 3, 5, 6, 11, 12] of
replicas, both of the same instance as well as on another
server in combination with reconfiguration [1]. For JPaxos,
Kończak et al. [12] for example developed different recovery
algorithms that rely on the protocol’s snapshot mechanism
for catch-up and recovery. These approaches have in com-
mon that the mechanisms are handled on a protocol level,
comparable to PDC. To our knowledge, there has not been a
study on outsourcing these tasks to an underlying platform.
One large factor in the performance and applicability of

persistent storage for checkpoints is the underlying storage
technique and hardware. In recent years, there has been
much advancement in reducing the latency of network stor-
age by using new techniques with NVM [10, 16, 22]. Com-
bined with the proposed platform-based techniques GPC and
LPC, this can help bridge the gap in performance compared
to no logging or only storing checkpoints in volatile memory.

7 Conclusion
In this paper, we presented different techniques for handling
checkpoints in stream-based protocols: (1) PDC being purely
managed by the protocol itself, (2) GPC relying mostly on
the existing checkpointing mechanism offered by the stream-
processing platforms and working on a topology level, and
(3) LPC (in two variants), a more instance focused approach,
utilizing the platform’s resources but managing the replicas
individually, granting more control to the protocol itself.
Our analysis and the evaluation with Tara shows that

all approaches have their advantages and drawbacks (see
Table 3): PDC offers among the highest throughput and best
latency, but does not provide any crash-recovery for most
nodes. Additionally, it has a high complexity overhead in
the protocol implementation as all checkpoint management
needs to be done by the application itself. The time-triggered
checkpointing of GPC allows the system to automatically
scale with the load and provide a stable – if high – latency, but
on a replica crash, the whole system experiences a massive
downtime. Also, group checkpoints still need to be managed
by the protocol itself. With LPC, both group and instance
checkpoints can be handled by the stream-processing plat-
form and the system is not affected by an individual node
crash. However, the maximum throughput is bound by the
configuration of optimizations such as batching.

Acknowledgments: Partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 446811880.



Generic Checkpointing Support for Stream-based State-Machine Replication PaPoC ’23, May 8, 2023, Rome, Italy

References
[1] Eduardo Alchieri, Fernando Dotti, Odorico M Mendizabal, and Fer-

nando Pedone. 2017. Reconfiguring Parallel State Machine Replication.
In Proceedings of the 36th International Symposium on Reliable Dis-
tributed Systems (SRDS ’17). 104–113.

[2] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel
Correia. 2013. On the Efficiency of Durable State Machine Replication.
In Proceedings of the 2013 USENIX Annual Technical Conference (USENIX
ATC ’13). 169–180.

[3] Alysson Bessani, João Sousa, and Eduardo E P Alchieri. 2014. State
Machine Replication for the Masses with BFT-SMaRt. In Proceedings
of the 44th International Conference on Dependable Systems and Net-
works (DSN ’14). 355–362.

[4] Tobias Distler. 2021. Byzantine Fault-Tolerant State-Machine Repli-
cation from a Systems Perspective. Comput. Surveys 54, 1, Article 24
(2021), 38 pages.

[5] Tobias Distler, Rüdiger Kapitza, Ivan Popov, Hans P. Reiser, and Wolf-
gang Schröder-Preikschat. 2011. SPARE: Replicas on Hold. In Pro-
ceedings of the 18th Network and Distributed System Security Sympo-
sium (NDSS ’11). 407–420.

[6] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. 2010. State Transfer
for Hypervisor-Based Proactive Recovery of Heterogeneous Replicated
Services. In Proceedings of the 5th "Sicherheit, Schutz und Zuverläs-
sigkeit" Conference (SICHERHEIT ’10). 61–72.

[7] Michael Eischer, Markus Büttner, and Tobias Distler. 2019. Deter-
ministic Fuzzy Checkpoints. In Proceedings of the 38th International
Symposium on Reliable Distributed Systems (SRDS ’19). 153–162.

[8] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. 2002. A Survey of Rollback-Recovery Protocols in Message-
Passing Systems. Comput. Surveys 34, 3 (2002), 375–408.

[9] Robert Hagmann. 1987. Reimplementing the Cedar File System Using
Logging and Group Commit. In Proceedings of the 11th Symposium on
Operating Systems Principles (SOSP ’87). 155–162.

[10] Jaehyun Hwang and Qizhe Cai. 2020. TCP ≈ RDMA: CPU-efficient
Remote Storage Access with i10. In Proceedings of the 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’20).
127–140.

[11] Jan Kończak and Paweł T Wojciechowski. 2021. Failure Recovery
from Persistent Memory in Paxos-Based State Machine Replication. In
Proceedings of the 40th International Symposium on Reliable Distributed
Systems (SRDS ’21). 88–98.

[12] Jan Kończak, Paweł T Wojciechowski, Nuno Santos, Tomasz
Żurkowski, and André Schiper. 2019. Recovery Algorithms for Paxos-
Based State Machine Replication. IEEE Transactions on Dependable
and Secure Computing 18, 2 (2019), 623–640.

[13] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing
at Scale. In Proceedings of the 41st International Conference on Manage-
ment of Data (SIGMOD ’15). 239–250.

[14] Leslie Lamport. 1998. The Part-time Parliament. ACM Transactions on
Computer Systems 16, 2 (1998), 133–169.

[15] Laura Lawniczak and Tobias Distler. 2021. Stream-based State Machine
Replication. In Proceedings of the 17th European Dependable Computing
Conference (EDCC ’21). 119–126.

[16] Xiaojian Liao, Zhe Yang, and Jiwu Shu. 2022. RIO: Order-
Preserving and CPU-Efficient Remote Storage Access. arXiv preprint
arXiv:2210.08934 (2022).

[17] Odorico M Mendizabal, Fernando Luís Dotti, and Fernando Pedone.
2016. Analysis of Checkpointing Overhead in Parallel State Machine
Replication. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing (SAC ’16). 534–537.

[18] Odorico M Mendizabal, Parisa Jalili Marandi, Fernando Luís Dotti, and
Fernando Pedone. 2014. Checkpointing in Parallel State-Machine Repli-
cation. In Proceedings of the 18th International Conference on Principles
of Distributed Systems (OPODIS ’14). 123–138.

[19] Diego Ongaro and John Ousterhout. 2014. In Search of an Understand-
able Consensus Algorithm. In Proceedings of the 2014 USENIX Annual
Technical Conference (USENIX ATC ’14). 305–320.

[20] Tuanir F Rezende, Pierre Sutra, Rodrigo Q Saramago, and Lasaro Ca-
margos. 2017. OnMaking Generalized Paxos Practical. In Proceedings of
the 31st International Conference on Advanced Information Networking
and Applications (AINA ’17). 347–354.

[21] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. 2014. Storm @Twitter. In Proceedings of the 40th International
Conference on Management of Data (SIGMOD ’14). 147–156.

[22] Qingfeng Zhuge, Hao Zhang, Edwin Hsing-Mean Sha, Rui Xu, Jun
Liu, and Shengyu Zhang. 2021. Exploring Efficient Architectures on
Remote In-Memory NVM over RDMA. ACM Transactions on Embedded
Computing Systems (TECS) 20, 5s (2021), 1–20.


	Abstract
	1 Introduction
	2 Background
	2.1 Replication Protocol
	2.2 Execution Platform

	3 Stage-Specific Checkpointing
	3.1 Group Checkpoints
	3.2 Instance Checkpoints
	3.3 General Requirements

	4 Checkpointing Techniques
	4.1 Protocol-Driven Checkpointing
	4.2 Global Platform-based Checkpointing
	4.3 Local Platform-based Checkpointing

	5 Evaluation
	5.1 Group-Checkpoint Performance
	5.2 Instance-Checkpoint Performance
	5.3 Node-Crash Impact

	6 Related Work
	7 Conclusion
	References

