
Back to the Core-Memory Age:
Running Operating Systems in NVRAM only

Abstract. Classical core memory was entirely non-volatile and could
keep at least part of the operating system (OS) in main memory even
across power cycles. These days we can have terabytes of NVRAM to
repeat this approach, albeit on an entirely different scale and with large
parts of the OS state still kept in the volatile CPU caches. In this pa-
per, we discuss our experiences of running large modern operating sys-
tems including their applications entirely in NVRAM. We adapted stock
Linux and FreeBSD kernels to work exclusively with NVRAM by hiding
all DRAM from the kernels at boot time to establish a realistic perfor-
mance baseline without changing anything else. Following this entirely
NVRAM-agnostic approach, we could observe an effective performance
penalty of a factor of about four, but only negligible increases in whole-
system power draw. For our system with two CPU sockets and 56 cores
total, we also observed a reduction in power draw in several scenarios.
Due to prolonged execution times, the energy consumption increased as
well for these measured workloads. While this might be discouraging at
first sight, this result was achieved without any performance tuning as
to the specific characteristics of today’s NVRAM technology. Therefore,
we are also discussing means to mitigate the observed shortcomings by
integrating NVRAM appropriately into the memory hierarchy of future
robust persistent systems.

Keywords: NVRAM · Operating Systems · Energy

1 Introduction

The current trend towards fast byte-addressable non-volatile memory (NVM)—
NVRAM for short as synonymous—with latencies and a write resistance much
closer to ordinary RAM1 than to Flash, positions this storage class memory
(SCM [3]) as a possible replacement for the established volatile technologies. This
opens up a fundamentally new approach to the resilient operation of computing
systems, in which all programs, including the operating system, are regularly
executed directly in NVRAM.

Completely dispensing with DRAM promises a positive effect on energy con-
sumption, which is particularly important for the service life of mobile devices,
but stationary setups would also benefit in terms of electricity costs or cooling.
Such an “NVM-only” solution, however, still has to cover the volatile state stored

1 In the following, RAM stands for any form of volatile main memory, such as DRAM
or SRAM, whenever the precise specification is immaterial.

2

in CPU registers and caches and keep it consistent with the counterparts held
in the NVRAM.

Given such a top of the “memory pyramid” with both volatile and non-volatile
features, the primary advantages of NVRAM—direct byte-addressability and
persistence—are not, in fact, transparently made available to the vast majority
of applications and imply major challenges, especially for the programming of
such systems [10] as “using NVM for persistence requires fail-safe guarantees from
application or device failures” [7]. For example, power failures in combination
with NVRAM cause control flows that can unexpectedly transform a sequential
process into a non-sequential process: A program has to deal with its own state
from previous interrupted runs [9].

With quite simple precautions, however, these problems can be solved effi-
ciently and functionally transparently even without special hardware support,
both for the machine programs (i.e., applications) and for a large part of the
operating system programs at the operating system level itself:

1. by a sporadically triggered checkpointing mechanism integrated into the
exception-handling subsystem [2] and

2. by integration of this new storage class into the memory hierarchy via the vir-
tual memory subsystem, whereby the persistence of NVRAM pages buffered
in RAM is ensured by the former (point 1., analogous to [5]).

Both concepts combined pave the way for direct execution from NVRAM for
the operating system and the machine programs running on it, but especially
for legacy software.

But the advantage of such a purely software-based whole-system persistence
with direct execution from NVRAM is of little value if the resulting performance
is too poor for the common use case, making this mode of operation unattractive.
It is therefore essential to first compare the cost of an NVRAM-based (general
purpose) operating system with that of its traditional RAM-based variant before
moving on to implementing NVRAM-specific concepts for an energy-efficient
transparent execution of legacy software, in order to be able to better classify the
hoped-for added value—in a real environment, not on a simulation or emulation
basis.

This is exactly what this paper does: it presents a case study where Linux
and FreeBSD, including machine programs, are executed from both NVRAM and
DRAM, and compares the obtained performance characteristics. DRAM-based
operation is nothing special, but it determines the baseline for comparison. In
contrast, the NVRAM-based operation of "vanilla" Linux or FreeBSD is—to the
best of our knowledge—an unprecedented act, which, as we will describe, requires
some bold engineering work. The migration of Linux and FreeBSD from DRAM
to NVRAM will not only show whether the higher access latencies of the latter
are drowned out in the background noise of the overall system but also help to
gain insights and guidelines for operating system development in general. Please
note again, that none of the aforementioned challenges of a persistent operating
system are addressed at this early stage and that our modified OS kernels are
still functionally volatile, only running in non-volatile memory. We go further

Back to the Core-Memory Age 3

than [13] and supplement their work with the evaluation of systems that run
entirely in NVRAM. In this sense, the paper makes the following contributions:

– A field report on the adventure of freeing Linux and FreeBSD from DRAM
dependencies and preparing both operating systems for the exclusive use of
NVRAM.

– A before-and-after comparison of the performance and energy efficiency of
the systems in different configurations using either NVRAM or DRAM, with
various benchmarks and practical, real-world workloads.

– Recommendations for action for the transition towards NVRAM-based op-
erating systems that paves the functionally transparent use of NVRAM for
legacy software.

The rest of the paper is organised as follows: Section 2 introduces the hard-
ware used for the experiments, explains the operating system configurations
and briefly describes the evaluation scenarios and benchmarks. Section 3 char-
acterises the performance and energy efficiency of the hardware and operating
system platforms we use and presents a before-and-after comparison. The empir-
ical results are then discussed in Section 4, followed by a presentation of relevant
related work in Section 5. Finally, Section 6 gives a brief summary of our work.

2 Fundamentals and Methodology

In this Section, we present the computer hardware used for the experiments,
explain the operating system configurations required for them and describe the
evaluation scenarios as well as the benchmarks.

2.1 Hardware Platform

In addition to the processor system components of our test device, especially
the NVRAM equipment, the raw data of the main memory regarding timing
and bandwidth are interesting as a reference for the theoretical (manufacturer’s
specification) performance. The latter is especially significant as a baseline for
the subsequent evaluation.

Processing Systems The evaluation platform used to run and benchmark both
Linux and FreeBSD is a Dell PowerEdge R650 equipped with two Intel® Xeon®
Gold 6330 processors. Each processor has 28 cores and 56 threads, respectively.
Their base frequency is 2.0GHz, even though they can boost to up to 3.10GHz.
As conventional memory, there are eight 32GB DDR4 RDIMMs.

For NVRAM, there are eight DIMMs of OptaneTM Persistent Memory 200
with a capacity of 128GB each. Both kinds of memory are distributed evenly
between the CPUs, populating each memory channel with one DIMM. In total,
the system has 256GB RAM and 1024GB NVRAM. Even though the available
RAM and NVRAM support up to 3200MT/s, both are limited by the CPUs to
2933MT/s. The NVRAM is configured to App Direct Mode.

4

NVRAM Baseline The manufacturer specifications of the memory bandwidth
for the 128GB NVRAM DIMM are shown in Table 1. The idle average latency

Access granularity
Access mode 64B 256B
100% read 1.86 GB/s 7.45 GB/s
100% write 0.56 GB/s 2.25 GB/s

67% read, 33% write 1.06 GB/s 4.25 GB/s
Table 1: OptaneTM Persistent Memory 200 performance [6].

for 64B accesses in App Direct Mode is given as 340 ns. Note that each load or
store instruction fetches a 64-byte cache line. At the persistent memory module,
this results in a read or write of 256 bytes of data accessed [4].

For the evaluation carried out here, namely running "vanilla" Linux and
FreeBSD, respectively, directly from NVRAM, the access mix of 67% read and
33% write is baseline relevant. In contrast, the (to-be) NVRAM-based backup
of the volatile system state will have 100% write in focus.

2.2 Operating Systems

While our modified versions themselves would allow running on an “NVM-only”
platform, we can neither modify the hardware nor the firmware. Common prob-
lems tackled by both implementations revolve around x86-64’s startup process,
which requires physical memory below 4GiB for switching from real mode to long
mode. In addition, some legacy drivers depend on 32-bit addressable memory,
while NVRAM populates physical addresses well above 4GiB.

However, we would like to point out that once the system finished booting,
all allocations are served from NVRAM only. As such, the RAM is solely used as
a workaround for hardware and firmware limitations and not used for essential
functionality of the operating system in execution.

Linux NVRAM is already extensively supported by current versions of Linux
and can be used as a block device (DAX), directly mapped into the address
space of an application or extend the system memory. Together with the ability
to dynamically on- and offline memory regions during runtime, usage of RAM
could be almost eliminated for userspace applications. However, as the memory
of the kernel itself can not be moved, it would remain in RAM.

To overcome this limitation, the most recent version available during the de-
velopment process (v6.1) was modified to allow to only use NVRAM already
from the early boot stages on. During bootstrapping, a stub decompresses the
kernel image and allows to randomise the used kernel start addresses. To de-
tect suitable regions, as well as later on, when initialising the memory allocation

Back to the Core-Memory Age 5

pools, a firmware-provided memory map is used. As this map also provides in-
formation about non-volatile memory regions, we introduced a kernel parameter
(memtype) to allow the selection of memory types to be used on each boot.

FreeBSD As the basis for our changes to the FreeBSD system, we used the 13.1
release, the most recent one at the time of writing. The current state of NVRAM
support in FreeBSD is limited to a device driver exposing the detected NVRAM
DIMMs. From there on, it can be used as a fast backing store for conventional
filesystems—which, however, does not make the whole system NVRAM-capable
by itself.

FreeBSD uses a custom, single-stage UEFI bootloader maintained in lockstep
with the rest of the operating system for non-legacy bootstraps by default. Based
on the EFI memory map, we adjusted the loader to place the kernel and modules
into NVRAM. In addition, the initial virtual address mapping used during the
early boot stage had to be adapted to reflect this change.

The FreeBSD kernel for x86-64 has a documented dependency on the kernel
being loaded into the lower 4GiB of memory, and many internal invariants rely
on that property. We identified each of these reliant components in the kernel
and modified them to work with the altered kernel placement. With the kernel
placed in NVRAM, the initialisation of the memory subsystem had to be changed
as well. Based on the EFI memory map, most of the RAM pages are ignored. A
small, single-digit number of RAM pages in the low physical address range are set
aside and stored in a separate data structure to serve the architecture-specific re-
quirements. In addition, all NVRAM regions are assigned to the NUMA domain
of their corresponding CPU in order to avoid memory accesses across domains.
To satisfy the 32-bit address DMA requirements of old drivers, IOMMU-assisted
DMA remapping had to be enabled as well. This required no further changes
aside from setting the appropriate kernel parameter, however, the DMA remap-
ping driver requires a single page of RAM below 4GiB for itself. These changes
by themselves suffice to fully bootstrap the kernel in NVRAM with only a single
CPU core. For multi-core support the set aside memory was used to initialize a
transient allocator, which can be used to satisfy any memory allocations to low-
address memory. The architecture of x86-64 requires 20-bit addresses for startup
and 32-bit addresses for the transition to long mode. With all cores online, all
references to the transient allocator and DRAM memory are dropped, resulting
in the execution of the operating system and all future allocations being served
from NVRAM.

2.3 Evaluation Approach

During the evaluation, the systems were mostly isolated from any outside-induced
noise, by shutting down any non-evaluation–related service and disabling SSH
access on the standard port.

As our modified Linux allows to select the memory region type that should
be used as main memory dynamically by a command line parameter, the same

6

binary had been used in the comparison. Our configuration is based on Debian,
with some unused modules removed.

The evaluation of the FreeBSD systems is done on the same hardware with
the same kernel configuration (GENERIC). Both kernels and loaders (original
and modified) are loaded via iPXE netboot, while the whole FreeBSD userland
is already installed on the local harddrive.

All our power measurements are conducted using an external measurement
device, the Microchip MCP39F511N Power Monitor Demonstration Board [12].
The server’s (cf. Section 2.1) two power-supply units (PSUs) are each connected
to one of the MCP39F511N measurement channels, allowing for a realistic whole-
system measurement, including the power losses in the PSUs and other hardware
components. The MCP39F511N is connected to another server to ensure that
the power measurement does not influence the system under test. Thus, our mea-
surement approach provides realistic, real-world power values of the otherwise
unaltered, off-the-shelf hardware platform.

Microbenchmark To gain detailed measurements regarding the performance char-
acteristics of NVRAM vs. RAM and placement strategies of the operating sys-
tems under test, the sysbench [14] test suite was used. The baseline was estab-
lished by using sysbench’s memory benchmark. For estimating the impact on
the whole system performance, fileio was used, which interacts with more of the
OSs subsystems, such as the virtual file system, buffer caches and system call
handling. The sysbench version used is supplied by the operating system vendor,
Debian respectively FreeBSD—in both cases version 1.0.20.

During testing, different combinations of sysbench configurations were run
multiple times to test a variety of workloads. These options for adjustment are
the number of used threads, the block size of memory chunks and the kind of
access. By modifying the number of threads, the OS is forced to make NUMA-
placement decisions, while different block sizes influence cache usage.

Application In order to evaluate the systems’ performance with a real-world
workload, the build-system of the respective OS is deemed as suitable. Most of
the workload is comprised of source to binary translation, whereas source files are
read into memory, optimised and written back as an object file. Since the option
-pipe is used during translation, no intermediate files are generated, leading
to greater memory consumption. During linking, all object files are read again,
and merged into a single binary. In between are some transformations made by
tools such as awk for generating header files and gzip for compression of build
artefacts.

3 Performance Characterisation

Following [13], we measure the performance of the NVRAM hardware (Intel
OptaneTM) underlying the experiments on the one hand and the operating sys-
tems on the other. The focus is on the timing and power requirements of Linux

Back to the Core-Memory Age 7

threads 2 7 28 56 112
NVRAM

RAM

1KiB 8KiB 64KiB 512KiB 4MiB
0

500

1,000

1,500

re
ad

[G
iB

/
s]

1KiB 8KiB 64KiB 512KiB 4MiB
0

200

400

600

800

block size per thread

w
ri
te

[G
iB

/
s]

(a) within the caches

2MiB 8MiB 32MiB 128MiB 512MiB
0

50

100

150

re
ad

[G
iB

/
s]

2MiB 8MiB 32MiB 128MiB 512MiB
0

50

100

block size per thread

w
ri
te

[G
iB

/
s]

(b) out of the caches

Fig. 1: sysbench memory throughput for different block sizes per thread executed
on top of our modified Linux.

8

and FreeBSD for the conventional DRAM-based deployment and the NVRAM-
based (“NVM-only”) approach to be evaluated. Every measurement was repeated
five times, and the presented numbers are the median thereof with a 95% confi-
dence level.

Memory Benchmarks The sysbench benchmark was conducted in the local,
non-shared configuration, where each thread allocates its own memory buffer
to perform the read and write operations. The memory read benchmark (Fig.
1a) reveals in the case of Linux the impact of the cache architecture of the
CPU. NVRAM and DRAM curves are close together with sharp drops near
the 32KiB and 512KiB tick marks, which strongly correlates with the sizes of
the private level 1 (48KiB) and level 2 (1.25MiB) data caches per core. In the
case of 112 threads, two hyperthreads per core share the private caches, and the
drop happens therefore earlier. As expected, the NVRAM throughput also drops
sharply from the DRAM curve as well after the L2 boundary due to the inclusive
caching strategy of the CPUs, which fills up the shared 42MiB L3 cache as well.
Once we fall out of the cache hierarchy (Fig. 1b) the NVRAM achieves around
21GiB/s with 28 threads. DRAM scales further to 56 threads and achieves close
to 121GiB/s (Fig. 1b), where NVRAM still remains at 21GiB/s. NVRAM does
not scale very well for a high number of threads, the difference to DRAM in-
creases to a factor between 5 to 6. However, at 112 threads where hyperthreads
come into play, the NVRAM rate sharply drops to less than 6GiB/s while DRAM
still holds up at approx. 110GiB/s which gives us a high penalty factor of about
18.

The memory-write benchmark for Linux (Fig. 1a) shows no sharp drops at the
boundary of the L1 cache but at the L2 boundary, similar to the read benchmark,
Generally, when we still operate in the caches the write rate is about half the
read rate which is most probably caused by the fact, that each cache line that
is newly written to must first be fetched from memory as well. Once we are out
of the caches (Fig. 1b), NVRAM maxes out at approx. 2.1GiB/s already with
two threads. In the case of DRAM, the combined memory controllers are then
saturated with 56 threads offering a combined write bandwidth of about 56GiB/s
while NVRAM stays at approx. 1.7GiB/s, which gives us a severe penalty factor
of nearly 33 for the experiments with a large number of threads. The curves for
FreeBSD are largely similar, therefore we do not show them here. There is,
however, a significant difference in the cache case. FreeBSD always revealed a
lower throughput than Linux, which might be caused by less aggressive settings
for the frequency scaling of the CPUs.

The theoretical performance maximum of our system should be 8×0.56GiB/s
for 64B write and 8×1.86GiB/s for 64B read if all our eight DIMMs in the
system can really be operated in parallel. The measurements revealed a signifi-
cantly higher rate for the read operations, which can probably by attributed to
the wide internal 256B accesses of the DIMMs. However, the data rate of the
write operations was less than half of the theoretical maximum. We attribute this
to the fact that there is always a simultaneous read stream back to the caches
when one continuously writes to cacheable memory. Additionally, read and write

Back to the Core-Memory Age 9

rates strongly depend on NUMA placement strategies as well as thread place-
ment/migration strategies of the underlying operating systems, which we did
not change at all.

When the combined working sets of all applications fit mostly into the cache
hierarchy, there is only a slight performance penalty for the NVRAM-based
systems caused by working set changes. Memory-bound applications, however,
might suffer severely, especially the low write rates are the biggest problem and
can inhibit parallel execution significantly.

File Benchmarks In Figure 2, the results of the sequential memory read and
write benchmarks using the traditional file system interface via system calls are
shown for Linux and FreeBSD. In the case of NVRAM, Linux reaches its read
peak of about 5.4GiB/s already with four threads, while FreeBSD reaches its
peak of nearly 4.9GiB/s with 28 threads. From 14 threads on, however, the
curves of the two systems are relatively close together. Both systems do not
scale well beyond seven threads, irrespective of the type of memory used. In
the case of DRAM, Linux outperforms FreeBSD by a large margin, 15.5GiB/s
achieved already with seven threads vs about 10GiB/s with 28 threads. All in
all, for the read benchmark, the performance penalty of NVRAM is about 3x in
the case of Linux and approx. 2x for FreeBSD.

Linux (NVRAM RAM) FreeBSD (NVRAM RAM)

1 4 7 14 28 56 84 112

5

10

15

re
ad

[G
iB

/
s]

1 4 7 14 28 56 84 112
0

1

2

number of threads

w
ri
te

[G
iB

/
s]

Fig. 2: sysbench fileio sequential read and write throughput

In the case of the write benchmark (Fig. 2), the throughput is way lower than
in the case of read, probably because an fsync() operation is automatically in-
serted for every 100 write requests by the benchmark, that caused real write

10

operations to storage. The scalability is very low for this benchmark, both sys-
tems are saturated with a few numbers of threads already. We strongly assume
that even the occasional fsync() operations quickly saturated the SSDs of our
system. Linux achieved slightly less than 2GiB/s with DRAM and four threads.
With NVRAM it achieved slightly less than 0.85GiB/s with four threads as well.
The penalty for NVRAM was about 2.4x. In the case of FreeBSD, one thread
already achieved the peak of 0.1GiB/s for NVRAM and about 0.18GiB/s for
DRAM. In all cases, the penalty for NVRAM was less than 1.5x.

Parallel Make Benchmarks For the before and after comparison, we use a parallel
make on each of the system’s build infrastructure to show how painful an “NVM-
only” approach really is in terms of system performance and whether or not the
differences in performance are lost in the system-related background noise and
are no longer perceived.

7 14 28 56 63 70 84 112

1×

3×

5×

×
1.
08

×
1.
13

×
1.
26 ×
1.
94

×
2.
18

×
2.
33

×
2.
46 ×
3.
27

6:
20

3:
20 1:
51 1:

09

1:
05

1:
01

0:
59

0:
52

×
1.
25

×
1.
41

×
1.
81

×
3.
14

×
3.
07

×
3.
18

×
3.
5

×
3.
71

53
:5
9

29
:3
5

17
:1
1

10
:5
3

10
:2
8

10
:0
6

09
:3
4

09
:0
5

number of threads

no
rm

al
is
ed

ex
ec
ut
io
n-

ti
m
e
ov
er
he

ad

Linux, RAM Linux, NVRAM FreeBSD, RAM FreeBSD, NVRAM

Fig. 3: Linux and FreeBSD parallel make

In Figure 3, parallel makes of Linux and FreeBSD kernels are shown were
7–112 threads were applied for system generation. This gives us a first insight
what performance penalties can be expected in a real system used for software
development. Interestingly enough, the NVRAM-based systems can hold up well
to their DRAM-based counterparts, as long as no more than 28 threads are used.
A performance loss of around 25% is way better than the memory performance
numbers suggest. The overall “system jitter” hides the disadvantages of NVRAM
to a large extent here. From 56 threads on, the NVRAM-based system continu-
ously loses ground but never more than a factor of four. In the case of FreeBSD
most benchmarks even revealed a factor of less than three. The DRAM-based
systems are able to continuously achieve a slight performance benefit from more
threads but at a very low margin. There is only a negligible achievement from 56
threads onwards, probably due to increasing serial portions of the build process.

In absolute times, the generation of the FreeBSD system was nearly a magni-
tude faster than the generation of Linux, probably due to the size of the sources.

Back to the Core-Memory Age 11

The penalty factors for NVRAM are slightly better (from 1.08x to 3.27x) for
any degree of parallelism than in the case of the Linux kernel. But the general
observations are otherwise similar. For up to 28 threads the NVRAM-based sys-
tem holds up very well with its DRAM counterpart, with a penalty of less than
1.3x.

threads 14 28 56 84 112
NVRAM

RAM

1KiB 8KiB 64KiB512KiB 4MiB 32MiB

500

600

700

re
ad

po
w
er

[W
]

Linux

1KiB 8KiB 64KiB512KiB 4MiB 32MiB

500

600

700

FreeBSD

1KiB 8KiB 64KiB512KiB 4MiB 32MiB

500

600

700

block size per thread

w
ri
te

po
w
er

[W
]

1KiB 8KiB 64KiB512KiB 4MiB 32MiB

500

600

700

block size per thread

Fig. 4: Whole-system power draw for the benchmarks presented in Figure 1.

Power Consumption Figure 4 illustrates the average power draw for the sysbench
memory evaluation scenarios presented in Figure 1: On Linux, the power demand
for reading and writing blocks of up to 512KiB (or 1MiB, depending on the level
of parallelism) from/to NVRAM (solid shapes and lines) is almost identical
compared to running the respective benchmark on DRAM (blank shapes and
dashed lines). When surpassing the boundary of 512KiB/1MiB—the same block
size the overall throughput decreases (see Figure 1a) due to caching effects—the
power draw starts to decrease alongside the throughput. As for the throughput,
the power decrease is more pronounced when operating on NVRAM due to its
lower performance, causing the same benchmarks running on DRAM to cause a
higher power draw while exhibiting a higher throughput. This decrease in power
draw is most likely caused by the CPUs becoming idle by waiting for the memory.
Also, in terms of power draw, the difference between reading from and writing to
memory is small: While writing to both DRAM and NVRAM draws slightly more

12

power for small block sizes, these values begin to fall below the corresponding
values for reading when surpassing the block size of 512KiB/1MiB.

When running the same benchmarks on FreeBSD, the observed values are
very similar to the values observed on Linux.

4 Discussion

In this Section, we discuss insights gained from the experiments and deduct
the following Recommendations for Action (RFAs) to adapt current operating
systems to NVRAM:

NVRAM Awareness at OS-Level (RFA #1) Today’s hardware systems still need
some RAM because of legacy considerations. Typical Intel-compatible CPUs
reveal a kind of embryonal development in the boot phase going through 16-bit
real and various protected modes with segments, 32-bit mode with segments,
paging and PAE, and finally, paged 64-bit mode. During these phases, the lower
32-bit physical address space must be used and must be changed later. Finally,
all volatile parts of the physical memory must be kept away from the kernel to
boot, which requires some system-dependent adaptations. All in all, adapting
the boot trampoline and kernel initialisation is rather tedious and fiddly.

The benchmarks have clearly shown that a naive usage of NVRAM by simply
replacing DRAM with NVRAM causes a significant performance penalty, de-
pending on the workload. A simple system like that might still be useful because
of its pure capacity. Huge out-of-core workloads can, in principle, be put onto
rather small and relatively cheap machines. Similarly, thousands of low-intensity
processes might run as well. For those applications, the Optane Memory Mode
that manages some of the available DRAM as hardware-controlled cache, would
probably be sufficient, for example. However, in that mode, a part of the DRAM
is lost and NVRAM is treated as volatile.

Transition from DRAM to NVRAM (RFA #2) Current Linux systems can al-
ready use NVRAM following the SNIA recommendations. Furthermore, (parts
of) the NVRAM can also be used by the virtual memory subsystem as a kind of
overflow memory in times of high memory pressure. The NVRAM is handled as
a “far away”, still volatile, NUMA domain in this case without taking advantage
of its persistence features at all. In contrast, we clearly want to go beyond pure
capacity scaling. In further work, we want to use NVRAM truly as storage-class
memory, targeting robust systems, that provide efficient whole system persis-
tence with stock hardware and fast recovery times after power losses and the
like. Therefore, in the next step, we will develop a suspend-to-NVRAM mecha-
nism, that allows us to freeze and wakeup entire systems with minimal latency
on demand. Following [5, 2], we will integrate this mechanism into the handling
of power failures, such that systems will be able to survive power losses, ideally
with low amounts of residual energy from the power supply or a low-capacity
UPS.

Back to the Core-Memory Age 13

Persistency Guarantees and Power/Energy (RFA #3) Contemporary operating
systems, such as Linux and FreeBSD, are designed for running in and work-
ing with volatile main memory. Due to this volatility, the operating system
conducts a variety of persistency measures—such as periodic file-system cache
writebacks—just to protect from the loss of volatile data in the rare event of
a power outage. Such persistency measures, however, come at the cost of com-
putational and energetic overhead, and their implementation also increases the
trusted code base.

Once the persistency of the main memory is guaranteed by the hardware, that
is, the system is using non-volatile main memory instead of volatile DRAM, the
software-implemented persistency measures become superfluous and can be re-
moved. Despite the lower throughput of NVRAM, without such measures, the
operating system can finally leverage the advantages of NVRAM over conven-
tional, volatile DRAM and, thus, compensate for the lower performance at least
partially—and achieve even higher performance compared to DRAM-only by
implementing the subsequent RFA #4.

Architectural Changes due to NVRAM (RFA #4) Finally and most importantly,
we will make virtual memory subsystems NVRAM-aware and develop a virtual
NVRAM that will manage the DRAM only as a cache for NVRAM to mitigate
the inherent performance penalties while retaining its persistence. Such a multi-
level virtual memory subsystem is most likely needed anyway in the future since
other memory technologies like high-bandwidth memory (HBM) also have to be
integrated appropriately.

Apart from the memory hierarchy, NVRAM awareness offers plenty of oppor-
tunities for improvements ranging from simplistic ones to highly sophisticated
schemes based on machine learning and similar techniques. For example, when
a scheduler decides to move low-intensity processes to “slow” economy cores, its
memory contents might be moved lazily to NVRAM as well. Program code often
has a high locality of reference and fits into the internal CPU caches, thus code
could always be placed into NVRAM without much performance loss, as our
benchmarks show. Accessing code and data in large persistent file system caches
would be possible without hard page faults but fast lazy mappings. All in all,
the observed performance penalties can most certainly be overcome but require
substantial changes to rather complex parts of current operating systems.

5 Related Work

There is as yet no Linux or FreeBSD that, together with all machine programs
(i.e., applications), runs directly and exclusively from NVRAM. Thus, at present,
our approach cannot be compared with other solutions on a level playing field.

This includes the concept of whole system persistence [8], which achieves the
persistence of complete systems on the basis of special DIMMs that contain both
DRAM and equally sized Flash memory. The content of the DRAM part is saved
with the help of backup capacitors on the local Flash as soon as a power failure is

14

detected. The same applies to NV-Hypervisor [11], where DRAM content is also
hardware-based persisted. In contrast, with our “NVM-only” vision, we do not
expect any special hardware support other than NVRAM to keep main memory
contents persistent.

Twizzler [1] seems to be an exception to these developments: It is presented
as a system from which a complete NVRAM-based operating system can be
built with a data-centric design. Whether Twizzler itself can be considered an
“NVM-only” system, however, remains an open question. In addition, Twizzler
must be understood as a replacement for an exokernel-based operating system
(implemented in Rust) and would establish Linux or FreeBSD as a guest oper-
ating system, if at all. The programming model of Twizzler unfolds its positive
effect, especially when used directly by the machine programs that are then to
run in NVRAM; it does not make the latter transparent for legacy software as
our approach does.

6 Conclusion

We strongly argue that NVRAM needs to be integrated appropriately into the
memory hierarchy to realize its true potential. Since this is a highly complex
undertaking, we have first shown with our work here that state-of-the-art oper-
ating systems can be run directly from NVRAM, which is a first to the best of
our knowledge. What’s more: entire software stacks, including legacy software,
can actually be run from NVRAM and don’t have to do without the persistence
properties of this memory technology.

We have now established a nearly worst-case baseline for the possible perfor-
mance of such systems under heavy load. While the synthetic memory bench-
marks showed a wide variety of performance penalties, all of the kernel build
benchmarks only revealed a penalty of significantly less than 4x. Thus, the ex-
pected degradation was drowned in “system jitter” to a large extent. The power
draw increased only insignificantly and even decreased for several workloads,
while the overall energy consumption was proportional to the prolonged execu-
tion times of the benchmarks.

Although these measurement results may seem discouraging, one should not
forget that these numbers have been achieved with systems where we performed
a rigorous technology swap from DRAM to NVRAM without taking any special
precautions for efficient NVRAM operation. When we additionally use certain
amounts of DRAM as a software-controlled cache for NVRAM integrated into
the virtual memory subsystem, the way is paved for robust, moderately priced
servers with huge memory capacities—and which provide an efficient abstraction
layer in particular for legacy software that can also be directly run from NVRAM
without any change. We want to show this in further work.

Unfortunately, Intel has ceased to produce the Optane DIMMs used for our
work. However, first approaches like “memory semantics SSDs” were already
announced that might fill the gap and lead in a similar direction. The idea is in

Back to the Core-Memory Age 15

the world, and we strongly expect CXL-based solutions for storage class memory
in the near future.

References

1. Bittman, D., Alvaro, P., Mehra, P., Long, D.D.E., Miller, E.L.: Twizzler: a data-
centric OS for non-volatile memory. In: Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC’20). pp. 65–80. USENIX Association (2020)

2. Eichler, C., Hofmeier, H., Reif, S., Hönig, T., Nolte, J., Schröder-Preikschat,
W.: Neverlast: An NVM-centric operating system for persistent edge sys-
tems. In: Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop
on Systems. pp. 146—153. APSys ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3476886.3477513,
https://doi.org/10.1145/3476886.3477513

3. Freitas, R.F., Wilcke, W.W.: Storage-class memory: The next storage system tech-
nology. IBM Journal of Research and Development 52(4/5), 439–447 (Jul/Sep
2008)

4. Hady, F.T.: Faster access to more data. Technology brief, Intel Non-Volatile Mem-
ory Solutions Group, Intel Corporation, USA (2022)

5. Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.l.,
Alonso, G.: RapiLog: Reducing system complexity through verification.
In: Proceedings of the 8th ACM European Conference on Computer
Systems. pp. 323–336. EuroSys ’13, Association for Computing Machin-
ery, New York, NY, USA (2013). https://doi.org/10.1145/2465351.2465383,
https://doi.org/10.1145/2465351.2465383

6. Intel Corporation: Achieve greater insight from your data. Product brief (2022)
7. Kannan, S., Qureshi, M., Gavrilovska, A., Schwan, K.: Energy aware persistence:

Reducing energy overheads of memory-based persistence in NVMs. In: 2016 Inter-
national Conference on Parallel Architecture and Compilation Techniques (PACT).
pp. 165–177 (2016). https://doi.org/10.1145/2967938.2967953

8. Narayanan, D., Hodson, O.: Whole-system persistence. In: Proceedings of the sev-
enteenth international conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’12). pp. 401–410 (2012)

9. Ransford, B., Lucia, B.: Nonvolatile memory is a broken time machine. In: Pro-
ceedings of the 2014 Workshop on Memory Systems Performance and Correctness
(MSPC ’14). p. 5 (2014)

10. Ren, J., Hu, Q., Khan, S., Moscibroda, T.: Programming for non-volatile main
memory is hard. In: Proceedings of the 8th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys ’17). pp. 1–8. No. 13, ACM Digital Library (2017)

11. Sartakov, V.A., Kapitza, R.: NV-Hypervisor: Hypervisor-based persistence
for virtual machines. In: 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. pp. 654–659 (2014).
https://doi.org/10.1109/DSN.2014.64

12. Technology, M.: MCP39F511N power monitor demonstration board.
https://www.microchip.com/en-us/development-tool/ADM00706,
https://www.microchip.com/en-us/development-tool/ADM00706

13. Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.: An empirical guide
to the behavior and use of scalable persistent memory. In: Proceedings of the 18th
USENIX Conference on File and Storage Technologies. FAST ’20 (2020)

14. Zaitsev, P.: sysbench. https://github.com/akopytov/sysbench (2004)

