
Probabilistic Byzantine Fault Tolerance
Diogo Avelãs∗

LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

dinoroba@proton.me

Hasan Heydari∗
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal
hheydari@ciencias.ulisboa.pt

Eduardo Alchieri
Universidade de Brasilia,

Brasil
alchieri@unb.br

Tobias Distler
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

distler@cs.fau.de

Alysson Bessani
LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal
anbessani@ciencias.ulisboa.pt

ABSTRACT

Consensus is a fundamental building block for constructing reli-
able and fault-tolerant distributed services. Many Byzantine fault-
tolerant consensus protocols designed for partially synchronous
systems adopt a pessimistic approach when dealing with adver-
saries, ensuring safety even under the worst-case scenarios that
adversaries can create. Following this approach typically results
in either an increase in the message complexity (e.g., PBFT) or an
increase in the number of communication steps (e.g., HotStuff).
In practice, however, adversaries are not as powerful as the ones
assumed by these protocols. Furthermore, it might suffice to ensure
safety and liveness properties with high probability. To accom-
modate more realistic and optimistic adversaries and improve the
scalability of BFT consensus, we propose ProBFT (Probabilistic
Byzantine Fault Tolerance). ProBFT is a leader-based probabilistic
consensus protocol with a message complexity of 𝑂 (𝑛

√
𝑛) and an

optimal number of communication steps that tolerates Byzantine
faults in permissioned partially synchronous systems. It is built on
top of well-known primitives, such as probabilistic Byzantine quo-
rums and verifiable random functions. ProBFT guarantees safety
and liveness with high probability even with faulty leaders, as long
as a supermajority of replicas is correct and using only a fraction
(e.g., 20%) of messages exchanged in PBFT. We provide a detailed
description of ProBFT’s protocol and its analysis.

CCS CONCEPTS

• Computing methodologies → Distributed algorithms; •
Computer systems organization → Dependable and fault-

tolerant systems and networks.

KEYWORDS

Byzantine fault-tolerance, Consensus, Probabilistic protocols, Byzan-
tine quorum systems

∗The two first authors contributed equally to this research.

PODC ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM Symposium
on Principles of Distributed Computing (PODC ’24), June 17–21, 2024, Nantes, France,
https://doi.org/10.1145/3662158.3662810.

ACM Reference Format:

Diogo Avelãs, Hasan Heydari, Eduardo Alchieri, Tobias Distler, and Alysson
Bessani. 2024. Probabilistic Byzantine Fault Tolerance. In ACM Symposium
on Principles of Distributed Computing (PODC ’24), June 17–21, 2024, Nantes,
France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3662158.
3662810

1 INTRODUCTION

Context. Consensus is a fundamental building block for construct-
ing reliable and fault-tolerant distributed services, where partici-
pants agree on a common value from the initially proposed values.
This problem is primarily used to implement state machine repli-
cation [16, 50, 51] and atomic broadcast [26, 36, 48], and attracted
considerable attention in the last few years, mainly due to its sig-
nificant role in blockchains [5, 43, 55] and decentralized payment
systems (e.g., [35]). Due to its importance and widespread appli-
cability, consensus has been extensively studied in diverse system
models, considering various synchrony assumptions and a spec-
trum of failure models, ranging from fail-stop to Byzantine, across
permissioned and permissionless settings [11, 33, 47, 53].

Many Byzantine fault-tolerant (BFT) consensus protocols (e.g.,
PBFT [13] and HotStuff [56]1) adopt a pessimistic approach when
dealing with Byzantine participants and adversaries, ensuring the
safety of protocols even when Byzantine participants behave com-
pletely arbitrarily under the worst-case scenarios that corruption
and scheduling adversaries can create. That is, they typically con-
sider adversaries that choose a corruption strategy and manipulate
the delivery time of messages based on the entire history of the
system, including the past and current states of replicas, as well as
their exchanged messages.

Protocols following the pessimistic approach are built on the idea
of (1) making non-revocable decisions by considering the opinions
of a quorum of replicas, as opposed to relying solely on a single
replica, and (2) requiring the quorums used for making decisions
to intersect in at least one correct replica. Although effective, en-
suring deterministic quorum overlaps poses inherent challenges in
achieving both resource efficiency and high performance. Some pro-
tocols (e.g., PBFT) approach this conflict by opting for low latency
and applying message-exchange patterns with quadratic message

1Strictly speaking, PBFT [13] and HotStuff [56] are state machine replication protocols,
not consensus protocols. In this paper, when we refer to PBFT and HotStuff, we
specifically discuss the single-shot versions of these protocols presented in [7], which
address the consensus problem.

https://orcid.org/0009-0004-5838-1667
https://orcid.org/0000-0003-2309-2457
https://orcid.org/0000-0002-6022-3631
https://orcid.org/0000-0002-2440-5366
https://orcid.org/0000-0002-8386-1628
https://doi.org/10.1145/3662158.3662810
https://doi.org/10.1145/3662158.3662810
https://doi.org/10.1145/3662158.3662810

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

complexity. However, this can be prohibitively expensive, espe-
cially for BFT systems with a large number of replicas. Other proto-
cols (e.g., HotStuff) aim at reducing message complexity at the cost
of adding extra communication steps. Unfortunately, this approach
leads to increased end-to-end response times.

In practice, however, implementing punishment mechanisms,
like those used in existing Proof-of-Stake blockchains (e.g., [8, 12]),
can make it costly for Byzantine participants to deviate from its
specification, knowing that their actions may lead to detection and
subsequent punishment. Besides, adversaries are not as powerful as
the ones assumed by protocols following the pessimistic approach.
Accordingly, in many real-world applications, it is sufficient to as-
sume a static corruption adversary, which chooses a corruption
strategy at the beginning of the execution of a consensus instance,
as well as an adversarial scheduling that manipulates the delivery
time of messages independently of the sender’s identifier and if it is
faulty or not. Given this, ensuring safety and liveness with a high
probability might be acceptable in many practical scenarios. This
paper describes a new protocol for these less pessimistic practical
scenarios that requires less message exchanges and still keeps opti-
mal latency. This protocol is called ProBFT (Probabilistic Byzantine
Fault Tolerance).

Overview of ProBFT. ProBFT is a BFT leader-based consen-
sus protocol that operates in permissioned partially synchronous
systems and probabilistically ensures liveness and safety proper-
ties. It achieves the optimal good-case latency of three communica-
tion steps [1], just like PBFT, albeit with a message complexity of
𝑂 (𝑛
√
𝑛). Figure 1 compares ProBFT, PBFT, and HotStuff in terms

of the number of communication steps and exchanged messages
for different numbers of replicas. ProBFT’s resource efficiency and
scalability improvements are enabled by a unique combination of
building blocks that are usually not employed in traditional BFT
protocols, including probabilistic quorum systems [37], a mecha-
nism to configure the degree of communication redundancy, and a
verifiable random function (VRF) [38].

Like PBFT and HotStuff, ProBFT operates in a sequence of views,
each having a designated leader responsible for proposing a value.
The protocol consists of two modes of execution – normal case and
view-change. The normal case starts when the leader broadcasts
its proposal through a Propose message. Since the leader might
be Byzantine and send distinct proposals to different replicas, non-
Byzantine replicas need to communicate with each other to check
that they received the same proposal. With this aim, upon receiving
a Propose message, a correct replica multicasts the proposal to a
sample of 𝑜 × 𝑞 distinct replicas taken uniformly at random from
the set of replicas, where 𝑞 = 𝑂 (

√
𝑛) and 𝑜 > 1 is a real constant.

Upon receiving Preparemessages from a probabilistic quorumwith
size 𝑞, a correct replica multicasts a Commit message to another
random sample composed of 𝑜 × 𝑞 distinct replicas. Upon receiving
Commit messages from a probabilistic quorumwith size 𝑞, a correct
replica decides on the proposed value.

ProBFT’s normal case execution relies on probabilistic quorums
to solve consensus. That is, in contrast to traditional BFT protocols
(e.g., PBFT, HotStuff, and randomized protocols like [10, 41]), we
abandon the requirement of quorums strictly having to intersect
and instead only aim at quorums overlapping with high probability.

(a) Message pattern and number of communication steps.

100 150 200 250 300 350 400

n

0

50000

100000

150000

200000

250000

300000

#
ex

ch
a

n
ge

d
m

es
sa

ge
s

PBFT

HotStuff

ProBFT – o = 1.6

ProBFT – o = 1.7

ProBFT – o = 1.8

(b) Number of exchanged messages.

Figure 1: Comparing the normal case of three consensus pro-

tocols – PBFT, ProBFT, and HotStuff – regarding the number

of communication steps and message complexity.

As a key benefit, this strategy enables us to keep the number of
communication steps at a minimum while significantly reducing
quorum sizes, thereby improving resource consumption and scala-
bility. Specifically, for a system with 𝑛 replicas, ProBFT employs
probabilistic quorums of size 𝑞 = 𝑙

√
𝑛, with 𝑙 ≥ 1 being a config-

urable, typically small constant [37]. For example, for 𝑙 = 2 and
𝑛 = 100, a replica can make progress after receiving 20 matching
messages from different replicas, which is a significant reduction
when compared with the 67 messages necessary in PBFT.

Since a comparably small number of messages is sufficient to
advance a phase in ProBFT, to offer resilience against Byzantine
behavior, it is crucial to prevent faulty replicas from manipulating
the decisions in probabilistic quorums (e.g., by flooding the system
with their own messages). In ProBFT, this is achieved by delegating
the selection of message recipients to a globally known VRF. That
is, in the protocol phases relying on probabilistic quorums, replicas
do not freely pick the destinations of their messages but instead are

Probabilistic Byzantine Fault Tolerance PODC ’24, June 17–21, 2024, Nantes, France

required to send the messages to the specific group of recipients
determined by the VRF.

Although novel, ProBFT is heavily based on PBFT, being thus
somewhat simple to understand and implement. Nonetheless, the
probabilistic nature of the protocol makes its analysis far from triv-
ial. More specifically, the main challenges encountered in analyzing
ProBFT are:
– In the analysis of probabilistic algorithms, we often deal with in-

dependent events, enabling the application of powerful and more
straightforward bounds like the Chernoff bounds [42]. However,
in ProBFT, the probability of forming probabilistic quorums by
replicas is dependent. That is, as replicas multicast their Prepare
(resp., Commit) messages to random samples, knowing that a
replica has received Prepare (resp., Commit) messages from a
probabilistic quorum decreases the chance of other replicas to
receive Prepare (resp., Commit) messages from a probabilistic
quorum. This dependency complicates ProBFT’s analysis.

– The probability of deciding a value by a replica depends on the
number of replicas that multicast matching Commit messages.
Additionally, the number of replicas that multicast their Commit
messages depends on the number of replicas that multicast their
Prepare messages. This dual dependency layer for computing
the probability of deciding a value by a replica adds complexity
to the analysis of ProBFT.

– A Byzantine leader might send multiple proposals to violate
safety. Rather than examining each possible case individually,
we find the optimal behavior for a Byzantine leader, considering
that it intends to maximize the probability of safety violation.
In summary, besides the design of ProBFT, the main technical

contribution of this paper is the analysis of the protocol, represented
by the following theorem:
Theorem 1 (Informal main result). ProBFT guarantees liveness
with probability 1 and safety with a probability of 1− exp(−Θ(

√
𝑛)).

Paper organization.The remainder of the paper is organized as fol-
lows. Section 2 introduces our system model and describes the key
techniques employed in ProBFT. Section 3 describes the ProBFT
protocol. Section 4 presents the correctness proofs of ProBFT. Sec-
tion 5 presents a numerical analysis of the protocol. Finally, Sec-
tions 6 and 7 discuss related work and conclude the paper, respec-
tively.

2 PRELIMINARIES

2.1 System Model

We consider a distributed system composed of a finite set Π of
𝑛 processes, which we call replicas, among which up to 𝑓 < 𝑛/3
might be subject to Byzantine failures [29] and not behave according
to the protocol specification. A non-faulty replica is said to be
correct. During execution, we denote by Π𝐶 and Π𝐹 the sets of
correct and faulty replicas, respectively. The system is partially
synchronous [7, 20] in which the network and replicas may operate
asynchronously until some unknown global stabilization time GST,
after which the system becomes synchronous, with unknown time
bounds for communication and computation.

We assume that each replica has a unique ID, and it is infeasible
for a faulty replica to obtain additional IDs to launch a Sybil attack

[17]. We consider a static corruption adversary, i.e., Π𝐹 is fixed at the
beginning of execution by the adversary. Byzantine replicas may
collude and coordinate their actions. It is important to note that
while Byzantine replicas may be aware of Π𝐹 , the correct replicas
are unaware of Π𝐹 and only know the value of 𝑓 . Furthermore,
we assume an adversarial scheduler that manipulates the delivery
time of messages independent of the sender’s identifier, its past and
current states, and whether it is Byzantine or not.

Each replica signs outgoing messages with its private key and
only processes an incoming message if the message’s signature can
be verified using the sender’s public key. We denote ⟨T,𝑚⟩𝑖 as a
message of type T with content𝑚 signed by replica 𝑖 . We assume
that the distribution of keys is performed before the system starts.
At run-time, the private key of a correct replica never leaves the
replica and, therefore, remains unknown to faulty replicas. In con-
trast, faulty replicas might learn the private keys of other faulty
replicas. In practical settings, it is a standard assumption that the ad-
versary does not have unlimited computational resources; therefore,
they cannot break cryptographic primitives.

2.2 Consensus

We assume there is an application-specific valid predicate to indi-
cate whether a value is acceptable [7, 9, 51]. Assuming that each
correct replica proposes a valid value, any protocol that solves
probabilistic consensus satisfies the following properties:

– Validity. The value decided by a correct replica satisfies the
application-defined valid predicate.

– Probabilistic Agreement. Any two correct replicas decide on
different values with probability 𝜌 depending on the number of
existing Byzantine replicas and quorum/sample sizes.

– Probabilistic Termination. Every correct replica decides with
probability 1.

The first two properties are safety properties, while the last one
is a liveness property.

2.3 Single-shot PBFT

Since ProBFT follows a structure very similar to PBFT [13], we
briefly review the single-shot version of the latter considering the
use of a synchronizer [7]. This version is a leader-based consensus
protocol that operates in a succession of views produced by the
synchronizer, each having a designated leader defined in a round-
robin way. Each protocol view consists of three steps and works as
follows (see Figure 2):

– Propose (or pre-prepare) phase. The leader of view 𝑣 is re-
sponsible for proposing a value to the other replicas. With this
aim, the leader broadcasts a value through a Propose message.
A correct leader must carefully choose the value to ensure that
if a correct replica has decided on a value in a previous view, it
will propose the same value.

– Prepare phase. Upon receiving a Propose message from a
replica 𝑖 in view 𝑣 , a correct replica broadcasts a Preparemessage
if 𝑖 is the leader of 𝑣 , and the proposed value is a valid proposal.

– Commit phase. Upon receiving Prepare messages from a quo-
rum of replicas, a correct replica broadcasts a Commit message.

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

Figure 2: Overview of PBFT. Each correct replica broadcasts

its Prepare and Commit messages. The size of any quorum

is |𝑄 | = ⌈(𝑛 + 𝑓 + 1)/2⌉. The set of replicas 𝐼 in the intersection

of two quorums contains at least one correct replica.

A replica decides the value proposed by the leader upon receiving
Commit messages from a quorum of replicas. There are multiple
scenarios where replicas cannot decide a value in a view 𝑣 , like
when the leader is Byzantine and remains silent. In those scenarios,
the synchronizer transitions the view from 𝑣 to 𝑣 + 1, changing the
designated leader.

2.4 Verifiable Random Function

A verifiable random function (VRF) [23, 24] enables the random
selection of a subset from a given set, ensuring that the selection
process is verifiable and secure. We assume a globally known VRF
that provides the following two operations:
– VRF_prove(𝐾𝑝,𝑖, 𝑧, 𝑠)⇒ 𝑆𝑖 , 𝑃𝑖 . Given the private key 𝐾𝑝,𝑖 for

a replica 𝑖 , a seed 𝑧, and a positive integer 𝑠 , VRF_prove selects a
sample 𝑆𝑖 containing the IDs of 𝑠 distinct replicas uniformly at
random. Alongwith 𝑆𝑖 , this operation returns a proof 𝑃𝑖 , enabling
other replicas to verify whether the sample was obtained using
this operation.

– VRF_verify(𝐾𝑢,𝑖, 𝑧, 𝑠, 𝑆𝑖, 𝑃𝑖) ⇒ bool. Given the public key
𝐾𝑢,𝑖 of replica 𝑖 , a seed 𝑧, a positive integer 𝑠 , a sample 𝑆𝑖 , and
its associated proof 𝑃𝑖 , VRF_verify determines whether 𝑆𝑖 is a
valid sample generated using VRF_prove with the given parame-
ters. It returns true if the sample and proof are valid and false
otherwise.
The VRF should provide the following guarantees [24]:

– Uniqueness. A computationally limited adversary must not be
able to produce two different proofs 𝑃𝑖 and 𝑃 ′𝑖 for the same input
parameters 𝐾𝑢,𝑖 , 𝑧, and 𝑠 .

– Collision resistance. Even when a private key is compromised,
it should be infeasible for an adversary to find two distinct seeds 𝑧
and 𝑧′ for which the VRF_prove returns the same sample.

– Pseudorandomness. For an adversarial verifier without knowl-
edge of the proof, the corresponding sample should be indistin-
guishable from a randomly selected set of replica IDs.

3 PROBFT

3.1 Overview

ProBFT is a leader-based probabilistic consensus protocol that
operates in a succession of views produced by the synchronizer. In
ProBFT, illustrated in Figure 3, one of the replicas is assigned the

Figure 3: Overview of ProBFT. The size of any probabilistic

quorum is 𝑞 = |𝑄 | = 𝑂 (
√
𝑛). Each correct replica multicasts

its Prepare and Commit messages to random samples of

sizes 𝑜 × 𝑞, where 𝑜 is a constant. The set of replicas 𝐼 in the

intersection of two probabilistic quorums contains at least

one correct replica with high probability.

role of leader in each view, meaning that this replica is in charge
of proposing a value. ProBFT’s consensus process comprises three
phases of message exchange between replicas – propose, prepare,
and commit, just like in PBFT. In the propose phase, the leader
proposes a value by broadcasting it to other replicas, which is then
agreed on in the subsequent prepare and commit phases.

Given the linear message complexity of the propose phase, we
restrict the utilization of probabilistic quorums to the two remaining
phases. That is, in each of the prepare and commit phases, any
replica relies on the VRF to determine a subset of replicas with size
𝑜×𝑞 to whom its messages should be sent, where 𝑜 > 1 is a constant.
Any replica progresses by receiving messages from a probabilistic
quorum with size 𝑞 = 𝑙

√
𝑛, being 𝑙 also a small constant (e.g., 2).

The constant 𝑜 defines how large the random subset of replicas
contacted on each phase by each replica is when compared with the
probabilistic quorum size. Bigger values of 𝑜 increase the probability
of forming a probabilistic quorum (with 𝑞 replicas), increasing the
chance of the protocol to terminate (see Section 4), albeit generating
more messages (see Figure 1b). As a result, in contrast to the𝑂 (𝑛2)
communication complexity associated with traditional protocols
such as PBFT, ProBFT’s message complexity for the prepare and
commit phases is 𝑂 (𝑛

√
𝑛).

As seed for computing its recipient sample with the VRF, a
replica is required to use 𝑣 | | T, which is a concatenation of the
current view 𝑣 , and an identifier T representing the phase/message
type (“prepare” for Prepare and “commit” for Commit). Each replica
starts a prepare phase upon receiving the leader’s proposal and a
commit phase upon forming a probabilistic quorum, i.e., receiv-
ing 𝑞 matching messages. Forcing replicas to involve the VRF this
way and thereby apply deterministic seeds has the following key
benefits:
(1) With the inputs of VRF_prove being dictated by the protocol,

faulty replicas cannot control their recipient sample for a par-
ticular view and phase. Consequently, a faulty replica cannot
deliberately favor a certain subset of replicas, for example, in
support of a faulty leader trying to trick these replicas into
forming a probabilistic quorum for a specific value.

(2) Since a replica’s recipient samples are computed from its pri-
vate key (see Section 2.4), faulty replicas cannot predict the

Probabilistic Byzantine Fault Tolerance PODC ’24, June 17–21, 2024, Nantes, France

individual samples of correct replicas in advance. That is, at
the start of a view, faulty replicas do not know the upcoming
prepare and commit phase message-exchange patterns between
correct replicas, thereby making it inherently difficult for them
to identify promising attack targets (e.g., correct replicas that
are included in none or only in a few recipient samples of other
correct replicas).

(3) With the prepare and commit phase recipient samples usually
differing (due to the use of the phase parameter in the seed),
correct replicas are more likely to observe the misbehavior of
a faulty leader. For example, if a faulty leader performs equiv-
ocation by proposing different values to different subsets of
replicas, then the phase-specific recipient samples increase the
probability of a correct replica learning about the existence of
contradictory proposals.
In summary, the use of the VRF for selecting recipient samples in

the prepare and commit phases significantly strengthens ProBFT’s
resilience against malicious behaviors.

3.2 Protocol Specification

Algorithm 1 presents ProBFT specification. This description as-
sumes a synchronizer exactly like the one presented in [7]. The
protocol proceeds in a series of views, with each new view having a
fixed leader responsible for proposing a value to be decided. Every
replica in the system can determine the leader for a view 𝑣 with
the leader predicate.

leader(𝑣) = (𝑣 − 1 mod 𝑛) + 1

Upon receiving a notification from the synchronizer to transition
to view 𝑣 , a replica stores 𝑣 in a variable curView and sets a flag
voted to false to record that it has not yet received any proposal
from the leader in the current view. If 𝑣 = 1, the leader is free to
broadcast its proposal (line 7). However, for other views, a correct
leader must be careful in choosing its proposal because if a correct
replica has already decided on a value in a prior view, the leader is
obligated to propose the same value. To facilitate this, upon entering
a view 𝑣 > 1, a correct replica sends a NewLeader message to the
leader of 𝑣 , providing information about the latest value it accepted
in a prior view (line 9). Any message exchanged in the protocol is
tagged with the sender’s view. A receiver will only accept a message
if its own view stored in the curView variable matches the view of
the sender.

For any view 𝑣 > 1, the leader of 𝑣 waits until it receives New-
Leader messages from a deterministic quorum of replicas. After
computing its proposal, the leader broadcasts the proposal, along
with some supporting information, in a Propose message (lines 11-
16). After presenting the rest of the protocol, we will describe the
process for computing the proposal. Since a Byzantine leader may
send different proposals to different replicas, correct replicas need
to communicate with others to ensure they have received the same
proposal. With this aim, correct replicas process the leader’s pro-
posal in two phases – prepare and commit.

Upon receiving a Propose message𝑚 containing a proposal 𝑥
from a replica 𝑗 in view 𝑣 , a correct replica 𝑖 starts the prepare phase
if it is currently in view 𝑣 , it has not processed a Propose message
in this view, and message𝑚 satisfies the safeProposal predicate

Algorithm 1 ProBFT – replica 𝑖 .
upon newView(𝑣)
1: curView ← 𝑣

2: curVal ← ⊥
3: voted ← false
4: blockView ← false
5: proposal ←⊥
6: if curView = 1 ∧ 𝑖 = leader(curView)
7: broadcast ⟨Propose, ⟨curView, myValue()⟩𝑖 ,⊥⟩𝑖
8: else if curView > 1
9: send ⟨NewLeader, curView, preparedView, preparedVal, cert⟩𝑖

to leader(curView)

upon receiving {⟨NewLeader, 𝑣, view 𝑗 , val 𝑗 , cert 𝑗 ⟩𝑗 : 𝑗 ∈ 𝑄} =
𝑀 from a deterministic quorum 𝑄

10: pre: curView = 𝑣 ∧ 𝑖 = leader(𝑣) ∧
(∀𝑚 ∈ 𝑀 : validNewLeader(𝑚))

11: 𝑣max ← max{view 𝑗 : ⟨NewLeader, 𝑣, view 𝑗 , _, _⟩𝑗 ∈ 𝑀}
12: valmax = mode{val 𝑗 : ⟨NewLeader, 𝑣, 𝑣max , val 𝑗 , _⟩𝑗 ∈ 𝑀}
13: if valmax ≠ ⊥
14: broadcast ⟨Propose, ⟨𝑣, valmax⟩𝑖 , 𝑀⟩𝑖
15: else
16: broadcast ⟨Propose, ⟨𝑣, myValue()⟩𝑖 , 𝑀⟩𝑖
upon receiving ⟨Propose, ⟨𝑣, 𝑥⟩𝑗 , _⟩𝑗 =𝑚
17: pre: blockView = false ∧ curView = 𝑣 ∧ voted = false ∧

safeProposal(𝑚)
18: curVal, voted, proposal ← 𝑥, true,𝑚
19: 𝑆𝑝 , 𝑃𝑝 ← VRF_prove(𝐾𝑝,𝑖 , 𝑣 | | “prepare”, 𝑜 × 𝑞)
20: send ⟨Prepare, ⟨𝑣, 𝑥⟩𝑗 , 𝑆𝑝 , 𝑃𝑝 ⟩𝑖 to 𝑆𝑝
upon receiving {⟨Prepare, ⟨𝑣, 𝑥⟩∗, 𝑆, 𝑃⟩𝑗 : 𝑗 ∈ 𝑄} = 𝐶 from a

probabilistic quorum 𝑄

21: pre: blockView = false ∧ curView = 𝑣 ∧ curVal = 𝑥 ∧
voted = true ∧ (∀⟨_, _, 𝑆, 𝑃⟩𝑗 ∈ 𝐶 : 𝑖 ∈ 𝑆 ∧
VRF_verify(𝐾𝑢,𝑗 , 𝑣 | | “prepare”, 𝑜 × 𝑞, 𝑆, 𝑃))

22: preparedVal, preparedView, cert ← curVal, curView,𝐶
23: 𝑆𝑐 , 𝑃𝑐 ← VRF_prove(𝐾𝑝,𝑖 , 𝑣 | | “commit”, 𝑜 × 𝑞)
24: send ⟨Commit, ⟨𝑣, 𝑥⟩∗, 𝑆𝑐 , 𝑃𝑐 ⟩𝑖 to 𝑆𝑐
upon receiving {⟨Commit, ⟨𝑣, 𝑥⟩∗, 𝑆, 𝑃⟩𝑗 : 𝑗 ∈ 𝑄} = 𝑀 from a

probabilistic quorum 𝑄

25: pre: blockView = false ∧ preparedVal = 𝑥 ∧
curView = preparedView = 𝑣 ∧ (∀⟨_, _, 𝑆, 𝑃⟩𝑗 ∈ 𝑀 : 𝑖 ∈ 𝑆 ∧
VRF_verify(𝐾𝑢,𝑗 , 𝑣 | | “commit”, 𝑜 × 𝑞, 𝑆, 𝑃))

26: decide(curVal)
upon receiving ⟨_, ⟨𝑣, 𝑥⟩𝑗 , . . . ⟩∗ =𝑚
27: pre: blockView = false ∧ curView = 𝑣 ∧ 𝑗 = leader(𝑣) ∧

voted = true ∧ curVal ≠ 𝑥
28: blockView ← true
29: broadcast𝑚, broadcast proposal

(also explained later), which ensures that a Byzantine leader cannot
reverse decisions reached in a prior view (with high probability).
The replica then stores 𝑥 in curVal and sets voted to true (line 18).
Afterward, replica 𝑖 uses the VRF to select a random sample 𝑆𝑃 to
which it sends a Prepare message.

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

A correct replica waits until receiving a set 𝐶 of Prepare mes-
sages from a probabilistic quorum. We call this set of messages a
prepared certificate for a proposed value 𝑥 in a view 𝑣 if it satisfies
the following predicate:

prepared (𝐶, 𝑣, 𝑥, 𝑗) ⇐⇒
∃𝑄 : |𝑄 | = 𝑞 ∧𝐶 = {⟨Prepare, ⟨𝑣, 𝑥⟩𝑖 , 𝑆𝑘 , 𝑃𝑘 ⟩𝑘 : 𝑘 ∈ 𝑄} ∧
𝑖 = leader(𝑣) ∧ (∀⟨_, _, 𝑆𝑘 , 𝑃𝑘 ⟩𝑘 ∈ 𝐶 : 𝑗 ∈ 𝑆𝑘 ∧

VRF_verify(𝐾𝑢,𝑘 , 𝑣 | | “prepare”, 𝑜 × 𝑞, 𝑆𝑘 , 𝑃𝑘))
Once a replica 𝑗 creates a prepared certificate for a value 𝑥 in
a view 𝑣 (i.e., 𝑗 prepares 𝑥), it stores 𝑥 , 𝑣 , and this certificate in
preparedVal, preparedView, and cert, respectively. Afterward, the
replica generates a new random sample of replicas 𝑆𝑐 to whom it
will multicast a Commit message (lines 22-24). Every correct replica
that multicasts a Commit message enters the commit phase. It then
waits until receiving Commitmessages from a probabilistic quorum.
It is worth noting that a correct replica neither sends a Commit
message nor processes a received Commit message (line 25) if it
has not yet prepared a value. After observing a quorum of Commit
messages, a correct replica with a prepared certificate decides on
the proposed value (line 26).

Recall that when the synchronizer triggers a newView notifica-
tion in a replica for a view greater than one, the replica sends a
NewLeader message to the new leader. If a replica has created
a prepared certificate in a prior view, it sends that certificate in
the NewLeader message. This allows the leader to generate its
proposal based on a quorum of well-formed NewLeader messages
that can be checked using the following predicate:

validNewLeader(⟨NewLeader, 𝑣, view, val, cert⟩𝑗) ⇐⇒
view < 𝑣 ∧ view ≠ 0⇒ prepared(cert, view, val, 𝑗)

The leader chooses its proposal by selecting the value prepared
in the most recent view by more replicas (lines 11-12). If no such
prepared values exist, it uses its own proposal provided by the
function myValue(). Since a faulty leadermay not follow this rule, it
is essential for the correct replicas to validate that the leader adheres
to this selection rule for proposals. With this aim, the leader’s
Propose message contains the NewLeader messages received by
the leader, in addition to the proposal. A correct replica checks the
validity of the proposed value by redoing the leader’s computation
using the following predicate:
safeProposal(⟨Propose, ⟨𝑣, 𝑥⟩𝑗 , 𝑀⟩𝑗) ⇐⇒
𝑣 ≥ 1 ∧ 𝑗 = leader(𝑣) ∧ valid(𝑥) ∧ (𝑣 = 1 ∨
(|𝑀 | ≥ ⌈(𝑛 + 𝑓 + 1)/2⌉ ∧ (∀𝑚 ∈ 𝑀 : validNewLeader(𝑚))∧
(∃𝑣max = max{view𝑘 : ⟨NewLeader, 𝑣, view𝑘 , _, _⟩𝑘 ∈ 𝑀}∧
𝑥 = mode{val𝑘 : ⟨NewLeader, 𝑣, 𝑣max , val𝑘 , _⟩𝑘 ∈ 𝑀})))

When a correct replica detects that the leader is faulty, i.e., re-
ceiving messages from any replica with different proposals signed
by the leader, it instantly blocks the current view and waits for the
synchronizer to trigger a new view (lines 27-29). Besides, it informs
other replicas about this misbehavior. It is important to emphasize
that informing other replicas is necessary only when the leader
is Byzantine and sends distinct proposals. Therefore, it does not
impact the message complexity of the protocol when the leader is
correct.

3.3 Message and Communication Complexities

ProBFT’s message complexity is 𝑂 (𝑛
√
𝑛), as computed based on

four terms:𝑂 (𝑛) for NewLeader messages,𝑂 (𝑛) for Propose mes-
sages, 𝑂 (𝑛

√
𝑛) for Prepare messages, and 𝑂 (𝑛

√
𝑛) for Commit

messages. Further, in ProBFT, for any view greater than one, a new
leader sends a Propose message with a certificate containing a full
(not probabilistic) quorum of NewLeader messages to all replicas.
EachNewLeadermessagemight contain a prepared certificatewith
a probabilistic quorum of Preparemessages. Hence, ProBFT’s com-
munication complexity is𝑂 (𝑛2√𝑛). Note that ProBFT has this com-
munication complexity only when a view-change occurs. In the first
view, there is no need to send NewLeader messages to the leader,
as avoided in practical instantiations of PBFT (e.g., [6, 14]). There-
fore, ProBFT’s best-case communication complexity is Ω(𝑛

√
𝑛),

contrary to PBFT, which still has Ω(𝑛2).

4 PROBFT PROOF OUTLINE

This section outlines the correctness proofs of ProBFT. More specif-
ically, we show that ProBFT satisfies three properties of probabilis-
tic consensus, i.e., Validity, Probabilistic Termination, and Proba-
bilistic Agreement. Here we discuss the main arguments of the
proofs and refer to the extended version [3] for the full proofs.

4.1 Validity

Recall that the Validity property states that the value decided by
a correct replica satisfies the application-defined valid predicate.
In ProBFT, before deciding a value 𝑥 , a correct replica 𝑖 must re-
ceive 𝑥 as a proposal from the leader and verify its validity using the
safeProposal predicate (line 17). In this predicate, several condi-
tions must be satisfied, one of which is that valid(𝑥) must be true.
Accordingly, a value decided by a correct replica is valid, satisfying
the Validity property.

4.2 Probabilistic Termination

To demonstrate that ProBFT satisfies Probabilistic Termination,
suppose there is a non-empty subset of correct replicas that have
not decided a value by GST. Recall that ProBFT employs a round-
robin mechanism for changing the leaders. Accordingly, among
the replicas that have not made a decision by GST, there will be
some correct replica 𝑖 that performs the leader’s role by propos-
ing a value 𝑥 in a view 𝑣 . Note that all correct replicas receive
such a proposal during 𝑣 as the system is synchronous after GST
and multicast their Prepare messages. We show that any correct
replica decides 𝑥 with a high probability during view 𝑣 if it has
not already decided a value. To do so, we first demonstrate that
any correct replica receives Prepare messages from a probabilistic
quorum of replicas with a high probability. The following theorem
demonstrates that with a proper value of 𝑜 , such an event occurs
for a correct replica with a probability of at least 1 − exp(−

√
𝑛), i.e.,

forming such a quorum with high probability, even if all Byzantine
replicas remain silent.

Theorem 2. Suppose each correct replica takes a sample com-
posed of 𝑜 × 𝑙

√
𝑛 distinct replicas, uniformly at random from Π, and

multicasts a message to them, where 𝑜 ∈ [1, 3.732(𝑛/(𝑛 − 𝑓))], and
𝑙 ≥ 1. Provided that a replica forms a probabilistic quorum upon

Probabilistic Byzantine Fault Tolerance PODC ’24, June 17–21, 2024, Nantes, France

receiving 𝑙
√
𝑛 messages, the probability of forming such a quorum

is at least 1 − exp(−
√
𝑛).

Recall that a correct replica prepares the value proposed by the
leader upon receiving Prepapre messages from a probabilistic quo-
rum. According to Theorem 2, a correct replica prepares the value
proposed by a correct leader with high probability, so almost all
correct replicas send Commit messages to their randomly selected
samples. It is clear that the probability of receiving Commit mes-
sages from a probabilistic quorum is less than the probability of
receiving Prepare messages from a probabilistic quorum. However,
the following theorem demonstrates that every correct replica re-
ceives Commit messages from a probabilistic quorum with a high
probability, resulting in deciding a value with a high probability.

Theorem 3. After GST, if the leader of view 𝑣 is correct, then each
correct replica decides a value in 𝑣 with a probability of at least
1 − 2(𝑛 − 𝑓) × exp(− Θ(

√
𝑛)).

Proving the above theorem constitutes the most complex part of
demonstrating that ProBFT satisfies the Probabilistic Termination
property. This complexity arises from the following sources:
– The probability of forming probabilistic quorums by replicas
is dependent. That is, as replicas multicast their Prepare (resp.,
Commit) messages to random samples, knowing that a replica
has received Prepare (resp., Commit) messages from a proba-
bilistic quorum decreases the chance of other replicas to receive
Prepare (resp., Commit) messages from a probabilistic quorum.
This dependency prevents us from directly using well-known
and sharp bounds like the Chernoff bounds [42]. To circumvent
this dependency, we use the notion of negative association [19],
enabling us to leverage the Chernoff bounds.

– The number of replicas that receive Commit messages from prob-
abilistic quorums depends on the number of replicas that receive
Prepare messages from probabilistic quorums. We address this
dual dependency inherent in computing the probability of de-
ciding a value by a replica by conditioning the probability of
forming quorums by Commit messages on the probability of
forming quorums by Prepare messages.
In ProBFT, when the leader of view 𝑣 is correct, a correct replica

might not receive enough messages to form quorums, leading to
not deciding a value in view 𝑣 . According to Theorem 3, such an
event happens with a low probability. However, as there are infinite
views whose leaders are correct, each correct replica decides with
probability 1.

Theorem 4 (Main liveness result). In ProBFT, every correct replica
eventually decides a value with probability 1.

4.3 Probabilistic Agreement

In ProBFT, different replicas may decide different values since
quorum intersections are not guaranteed, but the protocol has to
ensure that the probability of agreement violation is low. We begin
by computing the probability of ensuring agreement within a view.

Probabilistic Agreement in a view. In ProBFT, to cause disagree-
ment in a view, it is required that multiple values are decided in
the same view by multiple correct replicas. Such a situation only

(a) The general case. The Byzantine leader sends𝑚 different proposals

to𝑚 non-empty subset of replicas, which might overlap. It also does

not send any proposal to subset Π0
.

(b) A sub-optimal case. The Byzantine leader sends two proposals

val1 and val2 to Π1
and Π2

, respectively.

(c) The optimal case. Given two setsΠ1
𝐶
,Π2

𝐶
⊆ Π𝐶 with equal sizes, the

Byzantine leader sends only two proposals val1 and val2 to Π1
𝐶
∪ Π𝐹

and Π2
𝐶
∪ Π𝐹 , respectively.

Figure 4: Different scenarios in which a Byzantine leader can

cause disagreements in a view.

happens when the leader is Byzantine since correct leaders send a
single proposal in their views.

There are many cases in which a Byzantine leader can com-
promise the agreement in a view. Rather than examining every
possible case individually, we find the optimal behavior for a Byzan-
tine leader, considering that it intends to maximize the probability
of agreement violation. For this purpose, we consider the three
cases illustrated in Figure 4. The first case is the most general one,
which can be used to derive any possible situation. The second and
third cases demonstrate specific situations. In the third case, the
probability of agreement violation is greater than or equal to the
probability of agreement violation in the second case and any other
situation obtained from the first case.

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

– The general case. The Byzantine leader sends multiple proposals
val1, . . . , val𝑚 , where𝑚 ≥ 2. As a result, some replica(s) might
receive one or even multiple proposals, and some others might
not receive any proposals. This case is depicted in Figure 4a.

– A sub-optimal case. The Byzantine leader divides the set of repli-
cas into two equally sized groups Π1 and Π2. It sends a pro-
posal val1 to Π1 and another proposal val2 to Π2. This case is
depicted in Figure 4b.

– The optimal case. The Byzantine leader makes a distinction be-
tween correct and Byzantine replicas. It divides the correct repli-
cas into two equally sized groups – Π1

𝐶
and Π2

𝐶
. It sends a pro-

posal val1 to Π1
𝐶
∪ Π𝐹 and another proposal val2 to Π2

𝐶
∪ Π𝐹 .

This case is depicted in Figure 4c.
In order to describe why the first case represents the most gen-

eral situation, we need to present some notations. For each pro-
posal val𝑖 , where 1 ≤ 𝑖 ≤ 𝑚, we associate a set Π𝑖 ⊂ Π containing
each replica 𝑝 that receives val𝑖 as a proposal from the leader. As the
leader might send multiple proposals to a replica, any set Π𝑖 might
intersect with another set Π 𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤ 𝑚. We denote by
Π0 the set of replicas to which the leader does not send any pro-
posal, but these replicas can receive messages from other replicas.
Indeed, Π \ Π0 contains every replica that can multicast Prepare
and Commit messages. Furthermore, we denote the correct (resp.
Byzantine) replicas within a set Π𝑖 by Π𝑖

𝐶
(resp. Π𝑖

𝐹
).

It is essential to remark that a correct replica 𝑝 to decide a value
val𝑖 requires to form a probabilistic prepare quorum 𝑃 and a proba-
bilistic commit quorum𝑄 such that 𝑃,𝑄 ⊆ Π𝑖 ; otherwise, 𝑝 does not
decide a value due to receiving two distinct values. Consequently,
if replica 𝑝 ∈ Π𝑖 decides a value, the value is val𝑖 .

Using the first case, we can model any situation in the system
when the Byzantine leader sends multiple proposals, as we do
not impose any restrictions on the leader’s behavior. For instance,
replica 𝑝 decides val𝑖 when either (1) it forms a probabilistic pre-
pare quorum and a probabilistic commit quorum, both composed
of Byzantine replicas within Π𝑖 , i.e., 𝑃,𝑄 ⊆ Π𝑖

𝐹
, (2) it forms a proba-

bilistic prepare quorum composed of Byzantine replicas and a prob-
abilistic commit quorum composed of correct replicas, i.e., 𝑃 ⊆ Π𝑖

𝐹

and 𝑄 ⊆ Π𝑖
𝐶
, or (3) it forms a probabilistic prepare quorum com-

posed of correct and Byzantine replicas and a probabilistic commit
quorum composed of correct replicas, i.e., 𝑃 ⊆ Π𝑖 , 𝑃 ∩Π𝑖

𝐶
∩Π𝑖

𝐹
≠ ∅,

and 𝑄 ⊆ Π𝑖
𝐶
.

Beyond the situations where a replica decides a value, the first
case demonstrates situations where a replica does not decide a value
because of receiving multiple proposals. For example, replica 𝑝 does
not decide a value when either (1) it receives multiple proposals
from the leader, i.e., 𝑝 ∈ Π𝑖 and 𝑝 ∈ Π 𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, (2) it
receives at least two different proposals val𝑖 and val 𝑗 such that val𝑖
is received from the leader and val 𝑗 is received from one of the
replicas sending its Prepare message, or (3) it receives at least two
different proposals val𝑖 and val 𝑗 such that val𝑖 is received from a
replica sending its Prepare message, while val 𝑗 is received from
another replica sending its Commit message.

In order to grasp why the third case is optimal, consider the
following observations:
(1) If the Byzantine leader sends different proposals to a correct

replica 𝑝 , 𝑝 will detect the misbehavior of the leader and notify

all replicas about it (line 29 in Algorithm 1). Hence, sending mul-
tiple proposals to 𝑝 increases the probability that correct replicas
avoid deciding some value(s). Note that there is no agreement
violation when correct replicas avoid deciding a value. Hence,
the Byzantine leader should send only one proposal to each
correct replica, i.e., Π𝑖

𝐶
∩ Π

𝑗

𝐶
= ∅, for any 𝑖, 𝑗 ∈ {1, . . . ,𝑚}, as

it intends to increase the probability of agreement violation.
Consequently, in the optimal case, the number of proposals the
leader sends is bounded by the number of correct replicas, i.e.,
𝑚 ≤ 𝑛 − 𝑓 .

(2) The Byzantine leader should send two proposals to increase
the probability of agreement violation. To show this result, we
prove in Theorem 5 that sending𝑚 proposals instead of𝑚 + 1
proposals, where𝑚 ≥ 2, increases the probability of agreement
violation. Given the previous observation that states the leader
sends at most 𝑛 − 𝑓 proposals, we can now say that the leader
prefers to send 𝑛 − 𝑓 − 1 proposals instead of sending 𝑛 − 𝑓
proposals in the optimal case. Likewise, it prefers to send𝑛−𝑓 −2
proposals instead of sending 𝑛 − 𝑓 − 1 proposals. Following this
line of reasoning, we conclude that the Byzantine leader should
send two proposals to increase the probability of agreement
violation.

(3) The probability of forming a probabilistic quorum by a replica
𝑝 for a proposal val increases by expanding the set of replicas
that send val. This result is formally presented in Theorem 6.
From the previous observation, we know that the leader should
send two proposals. Now, we can say that the Byzantine leader
should maximize the size of these two sets, resulting in the
optimal case depicted in Figure 4c.

Theorem 5. Given a Byzantine leader who intends to send mul-
tiple proposals, consider the following two scenarios: (1) given
non-empty sets Π1, . . . ,Π𝑚+1 of replicas, where𝑚 ≥ 2, and |Π1 | ≤
|Π2 | ≤ · · · ≤ |Π𝑚+1 |, the leader sends a distinct proposal to each
set, and (2) the leader merges two sets Π1 and Π2 to create a set
Π1,2 and sends𝑚 proposals to Π1,2,Π3, . . . ,Π𝑚+1. The probability
of agreement violation in the second scenario is greater than in the
first scenario.

Theorem 6. Suppose any replica forms a quorum upon receiving 𝑞
messages. Consider a set of 𝑟 replicas, each of which takes a sample
composed of 𝑜 × 𝑞 distinct replicas uniformly at random from Π,
with the condition that 𝑛 < 𝑜 × 𝑟 , and sends a message to all sample
members. The value of 𝑟 and the probability of a replica forming a
quorum are directly proportional.

Since the third case discussed above is optimal, i.e., the probabil-
ity of compromising the agreement is maximized by a Byzantine
leader when it divides the correct replicas into two equally sized
groups, Π1

𝐶
and Π2

𝐶
, and sends a proposal val1 to Π1

𝐶
∪ Π𝐹 and an-

other proposal val2 to Π2
𝐶
∪Π𝐹 , we only analyze this case. We prove

that given a Byzantine leader who may send several proposals, the
probability of agreement violation in a view under the worst-case
scenario is bounded by exp(− Θ(

√
𝑛))4 in the following theorem.

Theorem 7. Given a Byzantine leader who may send several pro-
posals, the probability of agreement violation in a view under the
worst-case scenario is at most exp(− Θ(

√
𝑛))4.

Probabilistic Byzantine Fault Tolerance PODC ’24, June 17–21, 2024, Nantes, France

Probabilistic Agreement with view change.We now consider
the case of a view change. When referring to agreement within
different views, we need to guarantee that if at least one correct
replica decides on a proposal val in a view 𝑣 , the probability that
some correct replica decides on a different proposal val′ in a view
𝑣 ′ > 𝑣 is negligible. To guarantee this condition, we need to demon-
strate that the leader of any view 𝑣 ′′ > 𝑣 proposes val with high
probability.

Recall that, in Algorithm 1, when the synchronizer notifies a
replica to enter a new view 𝑣 ′′, the replica informs the leader of 𝑣 ′′
about its latest prepared value through a NewLeader message.
The leader of 𝑣 ′′ waits until it observes a deterministic quorum of
NewLeader messages. If at least ⌈(𝑛 + 𝑓 + 1)/2⌉ correct replicas
have prepared val, then the leader must propose val, regardless of
its type, whether Byzantine or correct. The problem occurs when
𝑤 < ⌈(𝑛 + 𝑓 + 1)/2⌉ correct replicas have prepared val. Note that
𝑤 ≥ 1 as we assumed at least one correct replica has decided val.
One of the following scenarios can happen:

– 1 ≤ 𝑤 ≤ 𝑓 . If the leader is Byzantine, it can propose any value
different than val. Besides, if the leader is correct, it proposes
a value val′ ≠ val when the number of NewLeader messages
received from replicas that prepared val′ is greater than the
number of NewLeader messages received from replicas that
prepared val.

– 𝑓 + 1 ≤ 𝑤 < ⌈(𝑛 + 𝑓 + 1)/2⌉. If the leader is Byzantine, it can
propose a value val′ ≠ val if the number of replicas that pre-
pared val′ is greater than the number of replicas that prepared
val. Besides, if the leader is correct, it proposes a value val′ ≠ val
when the number of NewLeader messages received from repli-
cas that prepared val′ is greater than the number of NewLeader
messages received from replicas that prepared val.

We need to ensure that there is a high probability that the system
will not be in these scenarios. The following theorem shows this.

Theorem 8. The probability of proposing a value val′ when an-
other value val has been decided by a correct replica in a prior
view is at most exp(− (𝑞 × 𝛿2)/((𝛿 + 1) × (𝛿 + 2))), where 𝛿 =

2𝑛/(𝑜 × (𝑛 + 𝑓)) − 1.

Corollary 1 (Main safety result). ProBFT guarantees safety with
a probability of at least 1 − exp(−Θ(

√
𝑛)).

5 NUMERICAL EVALUATION

In this section, we illustrate the usefulness of ProBFT by presenting
a numerical analysis of the agreement and termination probabilities,
considering 𝑞 = 2

√
𝑛 and 𝑜 ∈ {1.6, 1.7, 1.8}.

Analysis with fixed fault threshold and varying system sizes.

In Figure 5, the top sub-figures depict analyses with 𝑓 /𝑛 = 0.2 and
varying system sizes. The top-left sub-figure depicts the probabil-
ity of ensuring agreement, considering the worst-case scenario in
which there are faulty leaders in each view. It shows that as the
system size increases, the probability of ensuring agreement also
increases. Besides, the top-right sub-figure depicts the probabil-
ity of terminating in a view after GST when the leader is correct.
It shows the probability of deciding increases as the number of
replicas increases.

100 150 200 250 300

n

0.999

1

P
ro

b
ab

il
it

y

agreement vs. n

o = 1.6 o = 1.7 o = 1.8

100 150 200 250 300

n

0.999

1

termination vs. n

0.1 0.2 0.3

f/n

0.999

1

P
ro

b
ab

il
it

y

agreement vs. f/n

0.1 0.2 0.3

f/n

0.25

1

termination vs. f/n

Figure 5: ProBFT agreement and termination probability

analysis with𝑞 = 2
√
𝑛. For 𝑓 /𝑛 = 0.2, the top-left figure depicts

the probability of ensuring agreement with faulty leaders in

every view, while the top-right figure shows the probability

of terminating in a view after GST when the leader is correct.

For 𝑛 = 100, the bottom-left figure depicts the probability of

ensuring agreement with faulty leaders in every view, while

the bottom-right figure depicts the probability of terminating

in a view after GST when the leader is correct.

Analysis with fixed system size and a varying number of

faulty replicas. In Figure 5, the bottom sub-figures depict similar
analyses with 𝑛 = 100 and a varying number of faulty replicas.
The bottom-left sub-figure shows that the probability of ensuring
agreement increases as we have fewer Byzantine replicas. Similarly,
the bottom-right sub-figure shows that the probability of deciding
increases as we have fewer Byzantine replicas.

Number of exchanged messages. Figure 1b shows the number
of exchanged messages in PBFT, ProBFT (for different values of
𝑜), and HotStuff. In the figure, it is possible to see that ProBFT ex-
changes significantly fewer messages than PBFT despite having the
same good-case optimal latency. Taking together with the results
of Figure 5, we can see that ProBFT with 𝑜 = 1.7 ensures a high
probability of agreement and termination exchanging only 18-25%
of the messages required by PBFT.

6 RELATEDWORK

Scalable BFT consensus protocols. PBFT [13] is considered the
baseline “practical” BFT protocol. It is optimal in terms of resilience
(𝑓 < 𝑛/3) and best-case latency (three communication steps) but
employs an all-to-all message exchange pattern, which results in a
quadratic message complexity, making it very costly in large deploy-
ments. With the advent of large-scale systems like blockchains and
decentralized payment systems, the scalability of Byzantine consen-
sus protocols has become a hot topic, with numerous contributions
from both academia and industry.

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

There are several approaches to enhance the scalability of BFT
consensus protocols. For instance, protocols like HotStuff [56] mod-
ify the message exchange pattern from all-to-all to leader-to-all-to-
leader, resulting in a linear message complexity. Alternatively, to
improve the message complexity and balance the load on the sys-
tem, some protocols [32, 46] utilize a tree-based message exchange
pattern, while other protocols (e.g., [12, 23, 31, 58]) employ a gos-
sip layer for communication. Similarly, there are some works that
use expander graphs (and related techniques) to make Byzantine
agreement more scalable (e.g., [28]). Other works like RedBelly [15]
improve different aspects of the protocol, such as how ordered trans-
actions are disseminated and verified, to achieve better scalability
in practical deployments without reducing the message complexity
of the base protocol. While most of these works avoid the all-to-all
communication pattern, they increase the number of communica-
tion steps necessary to achieve consensus.

Randomized consensus protocols. The primary drive for devel-
oping randomized consensus protocols was the well-known FLP
impossibility result [21]. This result states that for crash-prone
asynchronous systems, designing a deterministic consensus proto-
col is impossible. One of the main approaches to circumvent such
an impossibility result involves relaxing deterministic termination
to probabilistic termination, assuming processes have access to
random numbers.

The randomized consensus protocol by Ben-Or [4] assumes a
strong adversary who can observe the entire history of the system
and uses a local coin. The protocol operates in rounds, with each
round involving 𝑂 (𝑛2) message exchanges, and it requires expo-
nential expected time to converge in the worst case. Subsequent
works like RITAS [40] and WaterBear [59] showed this type of
protocol can be made practical.

Rabin [49] showed that the same type of protocol could achieve
termination in the expected constant time by resorting to a com-
mon coin. The construction of this common coin typically requires
strong cryptographic primitives, which can negatively affect the
performance of the protocol. Further works like Cachin et al. [10]
leveraged threshold signatures to devise a protocol with constant
expected time and message complexity of 𝑂 (𝑛2). More recently,
Mostéfaoui et al. [41] proposed a similar protocol that is signature-
free. HoneyBadgerBFT [39] is a practical randomized consensus
protocol that has at least an 𝑂 (𝑛3) message complexity. Follow-up
works (e.g., [18, 22, 34]) improved different aspects of practical ran-
domized protocols, including their message complexity, but never
below 𝑂 (𝑛2). The same can be said about DAG-based protocols
(e.g., [27, 52]) that use local rules to commit blocks (i.e., decide
consensus values) and resort to a kind of randomized consensus
only when such rules are not enough.

Synchronizer. Byzantine fault-tolerant consensus protocols de-
signed for partially synchronous systems typically structure their
execution in a sequence of views, with the premise that there will be
a view in which all correct replicas will overlap with enough time
to reach a consensus if there is a correct leader. Designing these pro-
tocols is challenging, and researchers usually pay more attention to
guaranteeing the system’s safety rather than liveness [13, 25, 56].
The problem with the partially synchronous model and designing
the protocols in a sequence of views is that replicas may diverge

indefinitely before the GST, reaching GST in different views. This
problem is typically not addressed in commonly used Byzantine
fault-tolerant protocols [6, 13, 44] in which the liveness is argued
based on the assumption that after the system reaches GST, all
the correct replicas will eventually converge to the same view. By
separating the mechanism used for view synchronization in a dis-
tinct component, Bravo et al. [7] formally defined the synchronizer
abstraction, which we employ in ProBFT. Notice that using such
abstraction does not incur added message complexity as there are
constructions with linear message complexity [30, 45].

Probabilistic quorum systems. Malkhi et al. [37] introduced
probabilistic quorum systems to enhance the efficiency of data
replication by relaxing strict quorum requirements and allowing
for probabilistic guarantees of consistency. These quorum systems
operate under the implicit assumption that any chosen quorum
will be accessible without taking into account the potential effects
of failures or asynchrony [2, 54, 57]. In other words, it does not
account for the impact of an adversarial scheduler (also known as
an active adversary [2] or an asynchronous scheduler [57]) that
could potentially delay the delivery of messages. Yu [57] introduced
an alternative concept termed signed quorum systems, aiming to
address the challenges posed by network scheduling. Nevertheless,
Yu’s method remains susceptible to manipulation by an adversarial
scheduler [2].

7 CONCLUSION

We presented ProBFT, a Byzantine fault-tolerant consensus proto-
col that ensures safety and liveness with high probability in per-
missioned partially synchronous systems. This protocol’s message
complexity is 𝑂 (𝑛

√
𝑛) in a system with 𝑛 replicas, and it has an op-

timal number of communication steps. ProBFT introduces a novel
paradigm for designing scalable Byzantine-resilient protocols for
less pessimistic contexts. We believe the same techniques used in
ProBFT can be employed in other types of quorum-based protocols.
As future work, we are particularly interested in leveraging ProBFT
for constructing a scalable state machine replication protocol and
a streamlined blockchain consensus, eliminating the need for a
view-change sub-protocol.

ACKNOWLEDGMENTS

This work was partially supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 446811880
(BFT2Chain), and by FCT through the SMaRtChain project (2022.
08431.PTDC) and the LASIGE Research Unit (UIDB/00408/2020 and
UIDP/00408/2020).

REFERENCES

[1] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case
Latency of Byzantine Broadcast: a Complete Categorization. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing (PODC ’21).

[2] Amitanand Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. 2005. On the Availability of
Non-strict Quorum Systems. In Proceedings of th 19th International Symposium
on Distributed Computing (DISC ’05).

[3] Diogo Avelãs, Hasan Heydari, Eduardo Alchieri, Tobias Distler, and Alysson
Bessani. 2024. Probabilistic Byzantine Fault Tolerance (Extended Version).
arXiv:2405.04606 [cs.DC]

[4] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asynchro-
nous Agreement Protocols. In Proceedings of the 2nd Symposium on Principles of
Distributed Computing (PODC ’83).

https://doi.org/10.54499/2022.08431.PTDC
https://doi.org/10.54499/2022.08431.PTDC
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDP/00408/2020
https://arxiv.org/abs/2405.04606

Probabilistic Byzantine Fault Tolerance PODC ’24, June 17–21, 2024, Nantes, France

[5] Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and Fernando
Pedone. 2020. From Byzantine Replication to Blockchain: Consensus is only
the Beginning. In Proceedings of the 50th IEEE/IFIP Int. Conference on Dependable
Systems and Networks (DSN ’20).

[6] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State Machine
Replication for the Masses with BFT-SMaRt. In Proceedings of the 44th Interna-
tional Conference on Dependable Systems and Networks (DSN ’14).

[7] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2022. Making Byzantine
Consensus Live. Distributed Computing 35, 6 (2022).

[8] Vitalik Buterin and Virgil Griffith. 2019. Casper the Friendly Finality Gadget.
arXiv:1710.09437 [cs.CR]

[9] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure
and Efficient Asynchronous Broadcast Protocols. In Proceedings of the 21st Annual
International Cryptology Conference (Crypto ’01).

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random Oracles in
Constantipole: Practical Asynchronous Byzantine Agreement Using Cryptogra-
phy. In Proceedings of the 19th Symposium on Principles of Distributed Computing
(PODC ’00).

[11] Christian Cachin, Giuliano Losa, and Luca Zanolini. 2022. Quorum Systems in
Permissionless Network. In Proceedings of the 26th International Conference on
Principles of Distributed Systems (OPODIS ’22).

[12] Daniel Cason, Enrique Fynn, Nenad Milosevic, Zarko Milosevic, Ethan Buchman,
and Fernando Pedone. 2021. The Design, Architecture and Performance of
the Tendermint Blockchain Network. In Proceedings of the 40th International
Symposium on Reliable Distributed Systems (SRDS ’21).

[13] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI ’99).

[14] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Symposium on Operating Systems Design and Implementation.

[15] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly: A Secure,
Fair and Scalable Open Blockchain. In Proceedings of the IEEE Symposium on
Security and Privacy (SP ’21).

[16] Tobias Distler. 2021. Byzantine Fault-Tolerant State-Machine Replication from a
Systems Perspective. Comput. Surveys 54, 1 (2021).

[17] John R Douceur. 2002. The Sybil Attack. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS ’02).

[18] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT
made practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’18).

[19] Devdatt P Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge University Press.

[20] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
Presence of Partial Synchrony. J. ACM 35, 2 (1988).

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (1985).

[22] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Dumbo-NG: Fast Asynchronous BFT Consensus with Throughput-
Oblivious Latency. In Proceedings of the 2022 ACM SIGSACConference on Computer
and Communications Security (CCS ’22).

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).

[24] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Včelák. 2022.
Verifiable Random Functions (VRFs). Technical Report draft-irtf-cfrg-vrf-11. Inter-
net Engineering Task Force.

[25] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In Proceedings of the
49th International Conference on Dependable Systems and Networks (DSN ’19).

[26] Vassos Hadzilacos and Sam Toueg. 1994. A modular approach to fault-tolerant
broadcasts and related problems. Technical Report. Cornell University.

[27] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All You Need is DAG. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing (PODC ’21).

[28] Valerie King and Jared Saia. 2011. Breaking the 𝑂 (𝑛2) bit barrier: Scalable
Byzantine agreement with an adaptive adversary. J. ACM 58, 4 (2011).

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982).

[30] Andrew Lewis-Pye and Ittai Abraham. 2023. Fever: Optimal Responsive View
Synchronisation. In Proceedings of the 27th International Conference on Principles
of Distributed Systems (OPODIS ’23).

[31] Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. 2020. Gosig: A Scal-
able and High-Performance Byzantine Consensus for Consortium Blockchains.
In Proceedings of the 11th Symposium on Cloud Computing (SoCC ’20).

[32] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin Cao, and Muhammad Ali
Imran. 2020. A Scalable Multi-Layer PBFT Consensus for Blockchain. IEEE
Transactions on Parallel and Distributed Systems 32, 5 (2020).

[33] Xiao Li, Eric Chan, and Mohsen Lesani. 2023. Quorum Subsumption for Hetero-
geneous Quorum Systems. In Proceedings of the 37th International Symposium on
Distributed Computing (DISC ’23).

[34] Shengyun Liu, Wenbo Xu, Chen Shan, Xiaofeng Yan, Tianjing Xu, Bo Wang,
Lei Fan, Fuxi Deng, Ying Yan, and Hui Zhang. 2023. Flexible Advancement in
Asynchronous BFT Consensus. In Proceedings of the 29th Symposium on Operating
Systems Principles (SOSP ’23).

[35] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry,
Eli Gafni, Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. 2019. Fast and
Secure Global Payments with Stellar. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP ’19).

[36] Shyh-Wei Luan and Virgil D Gligor. 1990. A Fault-tolerant Protocol for Atomic
Broadcast. IEEE Transactions on Parallel & Distributed Systems 1, 3 (1990).

[37] Dahlia Malkhi, Michael Reiter, Avishai Wool, and Rebecca Wright. 2001. Proba-
bilistic Quorum Systems. Information and Computation 170, 2 (2001).

[38] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable Random Functions.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS ’99).

[39] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
Honey Badger of BFT Protocols. In Proceedings of the 23rd Conference on Computer
and Communications Security (CCS ’16).

[40] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo.
2011. RITAS: Services for Randomized Intrusion Tolerance. IEEE Transactions on
Dependable and Secure Computing 8, 1 (2011).

[41] Achour Mostéfaoui, HamoumaMoumen, and Michel Raynal. 2015. Signature-free
Asynchronous Binary Byzantine Consensus with 𝑡 < 𝑛/3,𝑂 (𝑛2) Messages, and
𝑂 (1) Expected Time. J. ACM 62, 4 (2015).

[42] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press.

[43] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[44] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021.

Cogsworth: Byzantine View Synchronization. Cryptoeconomic Systems 1, 2 (2021).
[45] Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The

Missing Link for Linear Byzantine SMR. In Proceedings of the 34th International
Symposium on Distributed Computing (DISC ’20).

[46] Ray Neiheiser, Miguel Matos, and Luís Rodrigues. 2021. Kauri: Scalable BFT Con-
sensus with Pipelined Tree-based Dissemination and Aggregation. In Proceedings
of the 28th Symposium on Operating Systems Principles (SOSP ’21).

[47] Rafael Pass and Elaine Shi. 2017. The Sleepy Model of Consensus. In Proceedings
of the 23rd International Conference on the Theory and Applications of Cryptology
and Information Security (ASIACRYPT ’17).

[48] Fernando Pedone and André Schiper. 1998. Optimistic Atomic Broadcast. In
Proceedings of the 12th International Symposium on Distributed Computing (DISC
’98).

[49] Michael O. Rabin. 1983. Randomized Byzantine Generals. In Proceedings of
the 24th Proceedings of the 24th Symposium on Foundations of Computer Science
(FOCS ’83).

[50] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990).

[51] João Sousa and Alysson Bessani. 2012. From Byzantine Consensus to BFT State
Machine Replication: A Latency-Optimal Transformation. In Proceedings of the
9th European Conference on Dependable Computing (EDCC’12).

[52] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’22).

[53] Robin Vassantlal, Hasan Heydari, and Alysson Bessani. 2023. On the Minimal
Knowledge Required for Solving Stellar Consensus. In Proceedings of the 43rd
International Conference on Distributed Computing Systems (ICDCS ’23).

[54] Marko Vukolić. 2013. The Origin of Quorum Systems. Bulletin of EATCS 2, 101
(2013).

[55] Marko Vukolić. 2015. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.
BFT Replication. In Proceedings of the International Workshop on Open Problems
in Network Security (iNetSec ’15).

[56] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In Pro-
ceedings of the 38th Symposium on Principles of Distributed Computing (PODC ’19).

[57] Haifeng Yu. 2006. Signed Quorum Systems. Distributed Computing 18, 4 (2006).
[58] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:

Scaling Blockchain via Full Sharding. In Proceedings of the 2018 Conference on
Computer and Communications Security (CCS ’18).

[59] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2023. WaterBear: Prac-
tical Asynchronous BFT Matching Security Guarantees of Partially Synchronous
BFT. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23).

https://arxiv.org/abs/1710.09437

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Consensus
	2.3 Single-shot PBFT
	2.4 Verifiable Random Function

	3 ProBFT
	3.1 Overview
	3.2 Protocol Specification
	3.3 Message and Communication Complexities

	4 ProBFT Proof Outline
	4.1 Validity
	4.2 Probabilistic Termination
	4.3 Probabilistic Agreement

	5 Numerical Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

