
This is the authors’ preprint version of an article to appear in the
Proceedings of the 30th Real-Time and Embedded Technology and Applications Symposium (RTAS ’24)

TINYBFT: Byzantine Fault-Tolerant Replication for
Highly Resource-Constrained Embedded Systems

Harald Böhm, Tobias Distler, Peter Wägemann
System Software Group

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract—Byzantine fault-tolerant (BFT) state-machine repli-
cation offers resilience against a wide spectrum of faults including
hardware crashes, software failures, and attacks. Unfortunately,
having been mostly designed for use on large servers, existing
implementations of such replication protocols consume vast
amounts of memory and therefore are not available to embedded
systems that consist of highly resource-constrained devices. In
this paper we address this problem with TINYBFT, the first
BFT state-machine replication library specifically developed to
run on nodes comprising 1 MB of RAM or less. To achieve this,
TINYBFT relies on a memory-efficient implementation of the
PBFT protocol that allocates all of its memory statically and thus,
in contrast to common state-of-the-art PBFT-based libraries, has
a guaranteed worst-case memory consumption that is known
at compile time. Experiments show that our library provides
sufficiently low latency even on tiny ESP32-C3 microcontrollers.

Index Terms—Byzantine Fault Tolerance, Embedded Systems,
State-Machine Replication, Highly Resource-Constrained Devices

I. INTRODUCTION

Byzantine fault-tolerant (BFT) state-machine replication [1]
is a powerful technique to implement resilient distributed sys-
tems as it enables them to tolerate arbitrarily faulty (“Byzan-
tine” [2]) behavior in a subset of nodes. While a large part
of the research in this area is focused on server-grade hard-
ware [3]–[5], especially in the context of blockchains [6]–[8],
Byzantine fault tolerance in general (i.e., not necessarily in the
form of state-machine replication) has also gained importance
in embedded systems. One of the first major examples of use
cases were robust system architectures in the avionics industry
relying on custom hardware components [9], [10], however
more recently there also have been proposals to provide
Byzantine fault tolerance on small general-purpose platforms
such as Raspberry Pi [11]–[13], for example to protect critical
components in Internet-of-Things (IoT) systems.

Taking into account these efforts to push resilience mech-
anisms towards the edge of computing infrastructures, in this
paper we go one step further than previous works by exploring
how to perform BFT state-machine replication in embedded
systems that are composed of tiny devices. In particular, our
work differs from existing approaches in two main aspects:
(1) Nodes in our target environments are highly resource-
constrained devices that comprise only 1 MB or less of internal
RAM (e.g., ESP32-C3: 160 MHz, 400 KB RAM [14]). In
terms of memory size, this is more than three orders of magni-
tude smaller than the 4 GB of RAM available on the Raspberry
Pis used in [12], [13]. (2) While other works in the embedded-

systems domain usually concentrate on individual BFT mech-
anisms such as reliable broadcast [15]–[17], atomic broad-
cast [17], or other forms of consensus [13], our goal is to pro-
vide full-fledged state-machine replication. In addition to BFT
agreement and the establishment of a total order on all opera-
tions, this for example also includes means for checkpointing
and the periodic garbage collection of protocol state [18].

The main result of our research efforts is TINYBFT, the
first library that enables BFT state-machine replication on tiny
devices. TINYBFT relies on PBFT [3] for agreement, but in
contrast to existing libraries [3], [4] implements the protocol in
a way that is both memory efficient and (by means of static al-
location) able to ensure an upper bound on memory consump-
tion. Our experiments with a replicated key-value store confirm
that TINYBFT runs on highly resource-constrained nodes
such as ESP32-C3 microcontrollers [14]. Furthermore, the
measurements show that with a response time of about 80 ms
on this tiny platform the library clearly meets our latency
demands (i.e., hundreds of milliseconds to a few seconds).

As pointed out by Roth and Haeberlen [19], when it
comes to Byzantine fault tolerance in embedded systems,
without a proper analysis of the requirements of the respective
application and/or the properties of the underlying platform,
there is the risk of employing protocols that are unnecessarily
complex for the intended use cases. Hence, we do not advocate
for the use of our library in scenarios in which less pow-
erful mechanisms (e.g., reliable broadcasts without ordering
guarantees) are sufficient. On the other hand, state-machine
replication can be a valuable and effective technique even in
embedded systems, as we illustrate in this paper based on
several examples of use-case scenarios that are able to benefit
from a library such as ours. Specifically, this applies to settings
in which a group of tiny devices needs to replicate a common
state (e.g., subsequently collected sensor data) in a consistent
manner, and Byzantine faults are not only limited to non-
malicious behavior (e.g., random memory corruption) but may
also include an adversary’s attempts to deliberately introduce
inconsistencies between the participating nodes.

In particular, this paper makes the following contributions:
(1) It analyses existing BFT state-machine replication protocol
designs with respect to their suitability for embedded systems
with tiny nodes. (2) It presents TINYBFT, the first BFT state-
machine replication library for highly resource-constrained de-
vices. (3) It experimentally evaluates the memory consumption
and performance of TINYBFT on the actual target hardware.



II. SYSTEM MODEL AND BACKGROUND

In this section, we discuss details on the architecture and
common characteristics of our target environments as well as
potential use-case scenarios. Furthermore, we provide back-
ground information on BFT state-machine replication.

A. Target Environments
As illustrated in Figure 1, our target systems comprise two

main parts: (1) a device tier consisting of tiny embedded de-
vices that rely on a BFT state-machine replication protocol to
keep crucial parts of their states consistent even in the presence
of arbitrary faults, as well as (2) one or more gateways that
enable the device tier to communicate with the outside world,
for example to receive commands from an administrator or to
externalize collected data. Compared with device-tier nodes,
the gateways run on significantly more powerful machines for
which limited resources are not an issue. Since there already
are solutions to achieve Byzantine fault tolerance through
replication for these kinds of gateways [12], [15], our work fo-
cuses primarily on the device tier. This goes as far as the gate-
ways may become an optional system part if a use-case sce-
nario, for example, does not require administrator intervention
due to the group of device-tier nodes running autonomously.
In the following, we discuss each of the two parts in detail.

Device Tier. The device tier is composed of highly resource-
constrained nodes (e.g., microcontrollers with additional com-
munication interfaces [20] or integrated, embedded system-on-
chip platforms [14]) that each comprise only a very limited
amount of RAM (i.e., 1 MB or less). If available, using inter-
chip communication busses such as SPI [21], I2C [22], or
I3C [23], it is possible to extend the available resources with
non-volatile memory [24] or external RAM [25], however such
measures only offer a small number of additional megabytes.
Furthermore, with the supplemental memory not being directly
available in the processor’s address space, access times are
significantly higher than for integrated RAM, which is a factor
we take into account at design time (see Section III).

Apart from memory, a second scarce resource in device-
tier nodes is energy. In this context, we do not make any
specific assumptions on how the energy for operating a node is
supplied, thereby supporting both battery-backed devices [26]
as well as energy-neutral devices that harvest all the energy
they consume from the environment [27]. Either way, a node
may temporarily run out of energy and thus in the meantime
cannot participate in the replication protocol. In our target sys-
tems, such scenarios are infrequent and limited to comparably
short periods of time. For the rare case that a node is out
of energy for a prolonged time we count this as a node failure.

In addition to energy faults, we assume that nodes in the
device tier can show any form of arbitrary faulty behavior. Be-
sides problems rooted in hardware or software errors, this also
includes scenarios in which an adversary gained control of a
node and actively uses the node in an effort to introduce incon-
sistencies into the device tier’s replicated state. To prevent such
efforts from being successful, device-tier nodes replicate their
state using a protocol that is able to tolerate Byzantine faults.

Gateways
(optional)

Device Tier

State-Machine
Replication Protocol>

>

>
>

>

>

>

Regular
interaction

Occasional
interaction

Figure 1. Basic system architecture

To run the protocol, each device-tier node is equipped
with a transceiver that allows the node to communicate with
others by sending and receiving messages over wireless links.
Although unicast primitives are available, the wireless nature
of the communication makes multicast the most efficient (and
hence preferred) option for the interaction within the device
tier. Possible technologies used for this purpose include WiFi,
Bluetooth (LE) [20], and LoRa [28], the latter being a method
specifically targeting low-power and long-range transmission.
As a result of network communication being unreliable, (mul-
tiple) retransmissions of a message may become necessary
for the message to eventually arrive at the intended receiving
node(s). Consequently, we neither assume an upper bound on
the delay with which messages are delivered to receivers, nor
require the state-machine replication protocol to provide hard
real-time guarantees. With regard to protocol latency, we target
overall response times in the range of hundreds of milliseconds
to a few seconds, which for example is sufficient for many IoT
control applications [16].

Gateways. Deployed on comparably large machines, gateways
serve as juncture between the device tier and external entities.
Specifically, they may be used to provide device-tier nodes
with additional inputs, for example by administrators submit-
ting reconfiguration commands in order to make changes to the
system. Conversely, gateways can also be employed as relays
for data that has been collected by the device tier and should
be further processed, analyzed, or stored on a more powerful
computing infrastructure (e.g., a cloud-based framework).

Due to the interaction with gateways requiring additional
energy, device-tier nodes typically communicate with them at a
much lower frequency than they exchange messages with each
other. As a consequence, the device tier should be primarily
viewed as a standalone system that needs to be able to remain
operational on its own, a requirement that is fulfilled by the
group of device-tier nodes keeping their states consistent using
the BFT state-machine replication protocol.

B. Use-Case Scenarios

Having presented our target system architecture, in the
following we outline several application examples for it.

Resilient Control Applications. As recently shown by Gu-
jarati et al. [13], a key-value store managing the latest values
recorded by sensors is a powerful abstraction for building



control applications. Replicating such a key-value store with
a state-machine replication protocol enables device-tier nodes
to update sensor data in a coordinated fashion, which in turn
would allow a control application operating on this information
to make decisions that are consistent across all nodes. More
concretely, to add a new value obtained by a local sensor,
a device-tier node in this use-case scenario issues a write
request to the replicated key-value store, which is then totally
ordered by the replication protocol with respect to all other
write requests. (If necessary, administrators can submit their
own write requests via gateways.) With each device-tier node
executing the write requests in the order determined by the
replication protocol, the key-value store copies on all nodes
advance in the same deterministic way. By also synchronizing
the points in time at which the control-application process on
each node reaches decisions (e.g., on every 10th update), it is
ensured that all nodes act in a consistent manner.

Blockchain-based Recording. Blockchains (or more general:
distributed ledgers) provide means to store data in an indeli-
ble and unalterable fashion. Compared with permissionless
blockchains such as the one used for Bitcoin [29], permis-
sioned blockchains have the advantage of requiring signifi-
cantly less resources due to relying on state-machine replica-
tion protocols for consensus [30]. For our target environments,
this for example creates the opportunity to reliably record
sensor data within the device tier, while at the same time
protecting the data against undetected manipulation. With the
size of a blockchain increasing with every block that is added
to the ledger, device-tier nodes in such a use-case scenario oc-
casionally upload older blocks to the gateways and solely keep
the hash of the latest block in local memory, thereby making
room for new blocks. This way, despite having only a small
amount of memory available, the device tier is able to contin-
uously record new data in the blockchain even if the commu-
nication with gateways is limited to infrequent interactions.

Energy-Neutral Room Booking. Energy-neutral room dis-
plays [31] offer an eco-friendly way to present up-to-date
information (e.g., the meeting schedule for a conference room)
without requiring a stationary power supply or the replacement
of batteries; instead, all the energy they consume is gathered
from the environment (e.g., by turning a crank that is attached
to the display [31]). Interconnecting such devices via a state-
machine replication protocol allows them to synchronize their
states and provide enhanced functionality, for example in the
form of a room-booking service. In this use-case scenario,
the replicated state represents the occupancy plan for a large
room with multiple entrances (each equipped with its own
display) or the combined plans of a group of neighboring
smaller rooms. New reservations for a room can be submitted
at each of the associated displays, leading to state-modifying
operations that are then consistently distributed and applied on
all displays. In this context, the total order established by the
state-machine replication protocol on all operations enables the
system to handle cases in which conflicting reservations for the
same room are concurrently submitted at different displays.

C. Byzantine Fault-Tolerant Replication
As illustrated in Figure 2, BFT state-machine replication

provides fault tolerance by maintaining copies of the replicated
state on multiple nodes, which are also referred to as replicas.
Without further assumptions, at least n = 3f + 1 replicas are
required to tolerate up to f faulty nodes [32]. As is common
in this domain, we use the term “faulty” for nodes that at some
point deviate from their specification, independent of whether
the abnormal behavior is visible from the outside or not. Nodes
that are temporarily unavailable (e.g., due to an intermediate
lack of energy) are not considered to be faulty, provided
that they keep their relevant protocol state when resuming
operation. Non-faulty nodes are referred to as “correct”.

The main tasks of a replication protocol are to keep the state
copies of all correct replicas in sync and to enable coordinated
reads and writes to the replicated state. For this purpose, the
application logic operating on the replicated data implements a
deterministic state machine [1] that retrieves/modifies the state
by executing commands. To ensure consistency, the order in
which commands are processed is identical across all correct
replicas. Establishing this order is the responsibility of an
agreement protocol that assigns each new command a unique,
monotonically increasing sequence number.

As explained in Section IV, the inner workings and provided
guarantees of the agreement stage depend on the specific
protocol in use; in Section V-A, we discuss an example of such
a protocol in detail. In general, there are two main guarantees
that typically are of major interest for most use cases: safety
and liveness [33]. Informally, safety refers to the fact that
correct replicas are in the same state after having executed
commands up to the same sequence number, thereby enabling
the replica group as a whole to behave like a centralized
service implementation. Liveness, on the other hand, means
that new commands will eventually be ordered and executed
by the group, and the system hence is able to make progress.

Traditionally, BFT replication protocols clearly distinguish
between nodes hosting the replicated application (“replicas”)
and nodes issuing commands to the service (“clients”) [18].
In our target systems, the nodes in the device tier commonly
perform both roles, which is why in the remainder of this
paper we use the term client only to emphasize the associated
functionality. Notice that we do not impose any restrictions on
when commands may be issued. That is, at any given moment
each device-tier node in the system is allowed to create a new
command (e.g., to record a recently collected sensor value)
and submit it to the state-machine replication protocol.

Replica 1

Replica 3

Replica 2

Replica n

...

Execution

Execution

Execution

Execution

Agreement

Commands Totally ordered commands

Figure 2. State-machine replication



III. PROBLEM STATEMENT

Operating a BFT state-machine replication protocol in the
environment and under the circumstances described in Sec-
tion II-A poses several challenges. In the following, we discuss
three of them in detail and outline our respective contributions.

Challenge #1: Selecting the Right Protocol Design

Decades of research in the area of BFT state-machine repli-
cation have brought up a variety of protocol designs [18] that
are tailored to different use cases and hence make it difficult
to determine which design is best suited for our specific target
environment. As a consequence, and due to the lack of a one-
fits-all solution, it is crucial to precisely examine the particular
assumptions each protocol design is based on (e.g., regarding
the availability of participating nodes as well as the synchrony
and reliability of the network connecting them), in order to be
able to make a well-informed selection decision.

Our Contribution. In Section IV, we present an overview of
existing BFT state-machine replication protocol designs and
analyze their suitability with respect to our target environment.

Challenge #2: Reducing a Protocol’s Memory Footprint

To our knowledge, we are the first to study BFT state-
machine replication among nodes that each only have a tiny
amount of resources available, especially when it comes to
memory. Related works in the context of embedded systems
and IoT systems typically either based their analyses on simu-
lations [15]–[17] or performed the evaluation with Raspberry
Pis comprising multiple gigabytes of RAM [12], [13], which
in terms of memory is three orders of magnitude larger than
the devices we are focusing on in this paper. Outside of
the embedded-systems domain, BFT protocols are commonly
run on server-grade hardware [4], [5], [8], [34], resulting in
memory consumption to become an (almost) irrelevant factor
in the design of these protocols. As a consequence, due to their
huge memory footprint we are not able to directly use existing
implementations in our target systems. This is especially true
for state-of-the-art BFT replication libraries such as BFT-
SMaRt which are written in Java [4], since hosting a Java
runtime on our tiny device-tier nodes is out of the question.

Given these circumstances, with regard to memory, the
challenge we face consists of two aspects: (1) We need to find
a way to reduce the memory footprint of a BFT state-machine
replication protocol (including the state of the replicated
application) to an extent that it fits on our device-tier nodes.
(2) To enable the replication protocol to uphold its safety
and liveness guarantees, we must ensure that nodes do not
run out of memory while executing the protocol. Ideally, this
can be achieved by providing an upper bound on the size
of a protocol’s memory footprint, however attaining this goal
is made complicated by the fact that existing protocol imple-
mentations [3], [4] usually do not guarantee such a limit.

Our Contribution. Using the seminal PBFT protocol as ex-
ample, in Section V we present a detailed study on where and
how much memory is typically spent in a BFT state-machine

replication protocol. Leveraging these insights, in Section VI
we then describe TINYBFT, the first BFT state-machine
replication library for highly resource-constrained devices.

Challenge #3: Exploiting Additional (Non-Volatile) Memory

As explained in Section II-A, some of the embedded plat-
forms we consider for the device-tier nodes [14], [35] can be
equipped with additional memory modules in order to increase
the available memory by a few megabytes. However, with ac-
cesses to extension modules being significantly slower than ac-
cesses to internal RAM, making efficient use of the additional
resources is not straightforward. Consequently, the design of
a replication library needs to take the specific access times
of the different memory regions into account and minimize
the number of costly accesses by carefully deciding which
part of the replica state to maintain in internal RAM, and
which information to move to the additional memory modules.

Using non-volatile memory technologies, such as
FRAM [24], for the extended memory not only has the
benefit of increasing the amount of available resources, it also
offers another important property: persistence. Being able
to keep data in non-volatile storage is crucial in replicated
systems, because it enables a node to resume operation
after temporary outages (e.g., due to running out of energy
before its battery is recharged) without becoming faulty, as
discussed in Section II-C. For this purpose, it is essential
that a node persists all protocol information that is required
to avoid inconsistent statements. For example, if a node has
acknowledged the reception of a command proposal p for a
specific sequence number, it must be ensured that the node
remembers this action even after having recovered from an
outage in order to prevent the node from later accepting a
different proposal p′ ̸= p for the same sequence number.

Our Contribution. In Section VI, we provide details on
TINYBFT’s support for additional non-volatile memory mod-
ules, discussing both efficiency as well as resilience aspects.

IV. ANALYSIS OF BFT PROTOCOL DESIGNS

In this section, we analyze state-of-the-art BFT state-ma-
chine replication protocols based on several criteria that should
be taken into account when selecting a protocol for the group
of device-tier nodes in our target environment.

A. Synchrony Models

One of the most important factors influencing the design of
a replication protocol is its synchrony model, that is the as-
sumptions made about the clocks of correct nodes, the duration
of local computations, and especially the time it takes mes-
sages to be transmitted between correct senders and receivers.
In the following, we discuss the three main synchrony models
used for BFT state-machine replication [36] in detail.

Synchrony. Protocols in this category commonly require the
clocks of correct nodes to run at the same rate, and furthermore
assume known upper bounds on processing times as well as the
transmission delay of messages. As a major benefit, under such
conditions it is possible to tolerate f Byzantine faults with



only 2f+1 replicas [37]. Unfortunately, although these strong
assumptions hold in many embedded systems, especially those
providing hard real-time guarantees, they are not applicable
to our target environments. In particular, as explained in
Section II-A, the unreliable wireless network through which
device-tier nodes communicate cannot guarantee timely deliv-
ery, thereby ruling out the use of the synchronous model.

Partial Synchrony. Protocols designed for this model [38]
typically rely on 3f + 1 nodes [3], [7] and in general do
not require any timing assumptions for safety, meaning that
the replicated state for example remains consistent even in
the presence of arbitrarily long message transmissions. On
the other hand, to circumvent the FLP impossibility [39],
liveness (i.e., protocol progress) is only ensured if there
are phases during which the network behaves synchronously.
Specifically, during these phases a worst-case delay for the
transmission of messages must exist, although the value of
this upper bound does not necessarily have to be known to
participating nodes. Protocols such as PBFT [3], which assume
their nodes to not possess this knowledge, make up for this by
dynamically increasing the lengths of timeouts so that during
synchronous phases the message interactions that are needed
to make progress (e.g., the election of a new leader) eventually
complete before the timeouts protecting them expire.

As detailed in Section II-A, in our target environments the
transmission of a message in some cases may take longer than
usual as a result of retransmissions being necessary to mask
network unreliability or temporary node outages. However,
with such phases of asynchrony being limited to short periods
of time compared with the overall lifetime of the system, cor-
rect nodes in our target environments are predominantly able to
communicate with each other in a synchronous fashion, hence
making partial synchrony a suitable model for our use cases.

Asynchrony. Unlike protocols designed for partial synchrony,
completely asynchronous protocols usually do not depend
on any timing assumptions at all, neither for safety nor
for liveness. That is, for asynchronous protocols to make
progress, it is sufficient if messages of correct senders are
eventually delivered to correct receivers, potentially after
multiple retransmissions. Unfortunately, offering such weak
requirements comes at the cost of increased protocol com-
plexity, and especially a large number of required rounds of
node interactions, which normally results in comparably high
latencies [40]–[42]. For our highly resource-constrained target
systems, both of these aspects are prohibitively expensive

Replica 1

Replica 2

Replica 3

Replica 4

Pre-prepare Prepare Commit Prepare Pre-commit Commit Decide

(a) PBFT [3] (b) HotStuff [7]

Figure 3. Comparison of communication patterns

which is why, despite the asynchronous model itself being
generally suitable for our application scenarios, we decided
not to select an asynchronous protocol as basis for our library.
Notice that this should not categorically rule out the use of
asynchronous protocols in embedded systems. In fact, their
weak assumptions probably make them good candidates for
systems in which nodes experience prolonged outages and/or
comprise significantly more memory than our tiny devices.

B. Communication Patterns

To reach an agreement on the order in which to execute
new operations, the nodes of a replica group repeatedly need to
interact by exchanging messages with each other. As illustrated
in Figure 3, BFT state-machine replication protocols employ
different communication patterns for this purpose. PBFT-style
protocols [3], [5], [43], [44], for example, rely on multiple
phases in which senders broadcast their messages to all other
nodes in the group (see Figure 3a). In contrast, phases in
protocols with HotStuff-like designs [7], [45] consist of two
separate steps (see Figure 3b): an initial broadcast performed
by one node, followed by unicasts of the remaining nodes
which all transmit their answers to the same receiver (i.e., typ-
ically, but not necessarily the original broadcaster).

Compared with PBFT’s approach, HotStuff’s communica-
tion pattern involves significantly more sequential steps, but on
the other hand has the benefit of entailing a lower overhead
with regard to the number of transmitted messages (i.e., O(n)
instead of O(n2), with n denoting the group size). Further-
more, HotStuff requires fewer send operations if broadcasts are
implemented as a collection of individual unicasts to different
receivers [4], as it is often the case in server-based systems in
which nodes are linked via point-to-point TCP connections.
However, the same does not apply to the environments we
target with our work in this paper (see Section II-A). Here,
nodes exchange messages using wireless communication that
directly offers broadcasts by default, whereas unicasts have
to be specifically implemented as broadcasts with only a
single active receiver. Consequently, PBFT-style protocols are
a better fit for our target systems, especially since they allow
us to complete the agreement process in fewer communication
steps and hence minimize overall protocol latency.

C. Resource Efficiency

Requiring a group size of at least 3f + 1 to tolerate up to
f faulty nodes, minimizing the resource consumption of BFT
state-machine replication is also an important research goal in
the context of systems with server-grade nodes [44], [46]. To
achieve this, several works have shown that it is possible to
reduce the minimum number of necessary nodes to 2f +1 (or
in other words: improve the resilience provided by n nodes
from ⌊n−1

3 ⌋ to ⌊n−1
2 ⌋) by equipping each node with a trusted

component that is assumed to only fail by crashing. Proposals
for the implementation of such a module include a smart-
card [47], an FPGA [48], a trusted platform module [49], a vir-
tual machine [49], and a trusted execution environment [50]–
[52] such as Intel SGX [53]. Unfortunately, these technologies



are not generally available on our highly resource-constrained
target devices. As a result, our focus remains on protocols that
do not make limiting trust assumptions but instead tolerate
Byzantine faults in all parts of a node.

D. Summary

Our analysis of different designs yielded PBFT-style proto-
cols as the best fit for our embedded target systems, which is
why we select PBFT as foundation for our replication library.
As a beneficial side effect, this also allows us to profit from
a large number of optimizations that have been developed
for these kind of protocols over the years [18], including the
ordering of operation batches (instead of individual operations)
as well as the agreement on hashes (instead of full operations),
as further detailed in Section VI-E.

V. MEMORY-CONSUMPTION ANALYSIS

With memory being a scarce resource on our target devices,
we need an estimate of how much is actually required to run
the PBFT replication protocol that we chose for TINYBFT. In
addition, we analyze how close the actual memory consump-
tion of Castro’s PBFT implementation [3] is to the determined
amount. Since both of these aspects concern specifics of PBFT,
we start this section by presenting the protocol in detail.

A. PBFT Overview

Developed for non-embedded systems, PBFT separates the
roles of clients and replicas into different entities. Using
3f + 1 replicas, the protocol is able to tolerate up to f faulty
replicas as well as an unlimited number of faulty clients.
Clients and replicas in PBFT communicate by exchanging
messages that are authenticated and thus enable receivers to
detect and ignore messages that have been manipulated, or
which do not originate from their alleged sender. In this
context, PBFT assumes an adversary to be computationally
bound and therefore unable to break cryptographic techniques.

Clients. To access the replicated service, a client issues a
request carrying the command to be invoked, and then waits
for f + 1 matching replies from different replicas before
accepting the corresponding result. In the presence of at most
f faulty replicas, collecting f + 1 responses with matching
contents ensures that at least one of those replies originates
from a correct replica and hence contains the correct result.

Agreement. One of the replicas in the group serves as leader
and has the responsibility to initiate the agreement process
for new commands, in which the other replicas participate
as followers. As shown in Figure 3a, PBFT’s agreement stage
consists of three phases, whose names are commonly also used
for the messages sent within them. In the first phase, the leader
assigns the lowest unused sequence number to a new command
and proposes both in a pre-prepare message to its followers.
Next, the followers distribute a prepare message containing a
hash of the leader’s proposal. This phase serves as a safeguard
to detect cases in which a faulty leader has made conflicting
proposals to different followers. The main goal of a replica in
the prepare phase is to assemble a so-called prepare certificate,

which is a set of 2f prepares from different followers and a
matching pre-prepare; the existence of such a certificate proves
that there cannot be other correct followers that continue the
process with a different proposal. Having obtained a prepare
certificate, a replica enters the final phase and broadcasts a
commit message. The agreement process is complete once a
replica collects a commit certificate (i.e., 2f + 1 matching
commits from different replicas), at which point the replica
marks the associated command ready for execution.

Checkpoints. In order to be able to perform the agreement
process for multiple sequence numbers concurrently, PBFT
replicas maintain a window of active sequence numbers. For
safety, it is essential that correct replicas keep all protocol
state (e.g., certificates) for the sequence numbers inside this
window. To move the window forward, and thereby garbage-
collect old protocol data, replicas rely on checkpoints of
the replicated state. Specifically, they periodically (e.g., every
Kth sequence number, with K being a configurable number
smaller than the window size) snapshot the replicated state and
broadcast a hash of it in a checkpoint message. Once a replica
assembles a checkpoint certificate for a sequence number s in
the form of 2f+1 matching checkpoint messages, it considers
the checkpoint stable and increases its window start to s+ 1.

Besides enabling garbage collection, checkpoints are also
an important means to assist correct replicas that have fallen
behind (e.g., due to a temporary outage). In such case, the
affected replica initiates a state transfer during which it fetches
the replicated state (stored in the latest checkpoint) from
another replica, and afterwards resumes normal-case operation.

View Change. In PBFT, the term view refers to the time span
a specific leader replica is in charge of initiating agreement.
If followers suspect their leader to be faulty, they trigger
a view change to assign the leader role to another replica.
Similar to the other PBFT mechanisms discussed above, view
changes also involve the collection of certificates, in this case
to confirm a replica’s vote for the view change. Once the
new leader takes over, it informs the rest of the group by
distributing a new-view message.

B. Protocol Analysis

In the following, we present a model for the memory con-
sumption of PBFT replicas. The main purpose of this model is
to get a basic estimate of where memory is spent in the proto-
col, and this way determine a baseline that enables us to assess
the memory efficiency of implementations. Notice that the
model is not intended to offer completeness and thus should
not be used to calculate worst-case bounds, nevertheless the
model captures all major sources of memory consumption in
PBFT. In our model, we use Mx to denote the maximum size
of a message x whose size depends on the specific replicated
application and hence is typically configurable; for PBFT, this
especially applies to client requests, which is why the sizes of
all messages carrying requests are also application-dependent.
In contrast, By indicates that the maximum size of a message y
is fixed, which is the case for all remaining message types.



Client Handling. PBFT assumes a correct client to invoke op-
erations sequentially, meaning that each client has at most one
pending request at a time. Consequently, replicas only have to
keep the most recent request they received from each client.
In addition, to enable retransmissions, replicas also need to
preserve their latest reply to each client. Assuming a maximum
number of clients U , this results in a client-handling state of

Sclient−handling = U · (Mrequest +Mreply) (1)

Agreement. As explained in Section V-A, PBFT’s agreement
process requires replicas to assemble certificates consisting
of pre-prepare, prepare, and commit messages. For each
sequence-number slot in its agreement window of size W ,
a replica must retain one prepare certificate (of maximum
size Cprepare) and one commit certificate (of maximum size
Ccommit). Overall, this leads to the following memory con-
sumption for the agreement stage:

Cprepare = Mpre−prepare + 2f ·Bprepare (2)
Ccommit = (2f + 1) ·Bcommit (3)

Sagreement = W · (Cprepare + Ccommit) (4)

Checkpoints. Checkpointing makes it necessary for a replica
to keep multiple copies of the application state, which is of
configurable maximum size A. Although techniques such as
copy-on-write [3], [54] typically enable a reduction of the
average snapshot size in practice, without additional assump-
tions (e.g., an upper bound on the number of state values that
are modified between two checkpoints) they have no impact on
the worst case. Consequently, for our conservative calculations
we consider full state snapshots. Within the agreement win-
dow, there exist W

K sequence numbers that trigger checkpoint
creation for a checkpoint interval K. Furthermore, the latest
stable checkpoint itself has to be kept as well:

Ssnapshots = (
W

K
+ 1) ·A (5)

In addition, each time a replica creates a checkpoint, it seeks
to obtain a checkpoint certificate. Combined with the main
application instance, this results in the following memory
consumption for the state of a replica’s execution stage:

Ccheckpoint = (2f + 1) ·Bcheckpoint (6)

Sexecution = Ssnapshots +
W

K
· Ccheckpoint +A (7)

View Change. A replica votes for a view change by distribut-
ing a message of size Mvc, which the receiver then attests
by itself broadcasting an acknowledgment of size Bvc−ack.
Together with the original message, 2f of these acknowl-
edgments confirm the distribution of the vote. Once the
view change is complete, the new leader starts its term by
publishing a new-view message of size Mnv . Due to the
fact that view-change efforts for multiple views may occur
concurrently (e.g., as a result of network issues), a replica must

be prepared to store the latest view-change-related messages
of all 3f + 1 replicas in the system:

Cvc−vote = Mvc + 2f ·Bvc−ack (8)
Sview−change = (3f + 1) · (Cvc−vote +Mnv) (9)

C. Implementation Analysis

Next, we complement our theoretical analysis with the
study of a practical codebase, namely Castro’s PBFT imple-
mentation [3], which in the following we refer to as CPI.
We selected CPI for this purpose because despite its age it
is still a rare example of an implementation that is open
source, written in a language that fits the needs of our target
environments (i.e., C/C++), and implements the PBFT protocol
in its entirety; unfortunately, especially the later criterion ruled
out many more recent research prototypes (e.g., Themis [55]).
Below, we summarize the most important findings of our study,
which then enable us to assess CPI’s memory consumption
based on our model presented in Section V-B.

Certificate Logs. To maintain prepare, commit, and check-
point certificates, CPI relies on three instances of a log-based
data structure that allocates memory for new messages on
demand; view-change information is managed separately. In
the worst case, the prepare and commit certificate logs contain
one entry for each sequence-number slot in the agreement win-
dow, whereas for the checkpoint certificate log CPI allocates
twice as many entries. The latter design decision is interesting
for two reasons: (1) Although periodic checkpoints are only
created for every Kth sequence number, CPI keeps (empty)
certificates available also for other window slots. After a
further analysis of the code, we believe that this is a by-
product of the fact that CPI’s state-transfer mechanism for
reasons of efficiency involves the creation of an exceptional
checkpoint, which may occur at an arbitrary sequence number.
(2) CPI allocates checkpoint certificates for two full agreement
windows instead of one. Presumably, this is due to a replica
having to store the latest checkpoint for a sequence number s,
which at this point is below the start of the replica’s agreement
window at s+1. In both cases, the design decisions made for
the CPI implementation appear to have been mainly driven
by convenience, but come at the cost of significant additional
memory consumption.

State and Checkpoint Management. CPI partitions the state
of the replicated application into equal-size blocks of 4 KiB
and organizes these blocks in a data structure that resembles
a Merkle tree [56]. As key advantages, this approach allows a
replica to create efficient snapshots using copy-on-write tech-
niques and to quickly compute snapshot hashes (as required for
checkpoint messages, see Section V-B). Furthermore, a tree-
based state management lays the foundation for an efficient
state transfer by enabling replicas to identify newly modified
blocks and fetch only those from other replicas [3].

CPI’s partition tree has a fixed height of 4, and each non-
leaf node a fixed number of 256 children. As a result, the
partition tree provides the necessary metadata for managing an



0
1
2
3
4
5
6
7
8
9

10

PBFTCPI CPI

2.7 MB

8.6 MB

M
em

or
y

co
ns

um
pt

io
n

[M
B

]

(a) CPI default configuration

PBFTMin PBFTESP PBFT25
0.0

0.2

0.4

0.6

0.8

1.0

5.4 KB
91.4 KB

635.5 KB

M
em

or
y

co
ns

um
pt

io
n

[M
B

]

(b) Memory-efficient configurations

Figure 4. Memory-consumption estimates for different configurations

application state of up to 64 GiB, which is an example of CPI’s
focus on server-grade hardware. In addition to the partition
tree, CPI maintains a second tree of similar structure storing
previously computed hashes of individual blocks and parti-
tions. In this context, the fact that the structure of both trees
is fixed (and hence requires a replica to always allocate all
metadata objects needed for a 64 GiB state) leads to memory
being wasted for replicated applications with small states.

When creating a new checkpoint, CPI stores the used parts
of the current partition tree into a dedicated checkpoint record.
By default, this record data structure initially comprises space
for pointers to 256 blocks, even if the application state (for ex-
ample) fits into a single block. With checkpoint records being
organized in a similar log as checkpoint certificates, the record
log suffers comparable problems of allocating memory for se-
quence numbers for which usually no checkpoints are created.

Comparison. Leveraging our model from Section V-B, we can
now assess the memory efficiency of CPI’s implementation of
PBFT. For this purpose, we configure our model with CPI’s
default parameters to determine a baseline memory consump-
tion PBFTCPI and compare this value to CPI’s actual memory
consumption (see Figure 4a). Based on the results we make
two important observations: (1) Using CPI’s default configura-
tion, there is no possibility to keep memory consumption under
the threshold we target in our work (i.e., 1 MB), which again
is a consequence of CPI focusing on non-embedded systems.
(2) Due to CPI’s excessive allocation of memory, especially
in the context of state and checkpoint management (see
Section V-C), its actual memory consumption exceeds the
baseline by more than a factor of 3, thereby making the
implementation unsuitable for our target devices. Notice that
this problem cannot be easily solved by applying a smaller
configuration, because CPI’s partition and hash trees alone
consume more than 7.3 MB of memory, an amount that is
not affected by configuration parameters.

D. Exploring Memory-Efficient Configurations

Apart from determining a baseline for the memory effi-
ciency of implementations, our model can also be used as
a tool to explore the vast space of possible configurations.
Applying this approach, we searched for configurations that (in
contrast to PBFTCPI) can actually be deployed on highly
resource-constrained devices. In this context, we identified
three particular configurations of interest (see Figure 4b).

PBFTMin. For the PBFTMin configuration, we set all parame-
ters to the lowest values that still result in a functioning PBFT
protocol execution, which allows us to study the smallest
possible memory footprint. Our calculations show that this
configuration consumes about 5.4 KB of memory. The fact
that this value is well below our threshold objective (1 MB)
indicates a significant degree of flexibility when its comes to
developing custom configurations for our target systems.

PBFTESP. In a next step, our goal is to find a suitable
configuration for the ESP32-C3 platform on which we conduct
our experimental evaluation in Section VII. These devices
are equipped with 400 KB RAM [14] of which the processor
reserves 16 KB as cache, leaving 384 KB of memory for
further allocations. The remaining amount is not exclusive to
the replication library but also has to be used for fundamental
components and services, including for example the operating
system as well as the WiFi and IP stacks. In the end, this
leaves at most 170 KB of memory for the replication library.

Using our model, we designed a configuration that meets
this requirement while supporting applications with a com-
parably large state of up to 16 KiB, which can be accessed
or modified with 1 KiB requests/replies. The configuration
relies on an agreement window comprising W = 4 slots
and a checkpoint interval of K = 2. Although significantly
smaller than the windows typically used in server-based BFT
systems (CPI’s default window size is 256, for example), such
small windows better fit our use-case scenarios. Specifically,
with our replicas in general representing the only clients, the
number of requests that are concurrently issued is usually low.
Consequently, a large agreement window would solely occupy
additional resources without offering major benefits.

PBFT25. With our third configuration, we investigate the
impact of the replica-group size on memory consumption by
extending the number of participants from 4 to 25 replicas.
Utilizing more than 600 KB of memory, the protocol state for
such a large group size no longer fits into the internal RAM of
our ESP32-C3 devices, but could still be supported by making
use of additional memory modules (see Section VI-C).

VI. TINYBFT
This section presents TINYBFT, the first BFT state-machine

replication library for highly resource-constrained devices. In
particular, we provide details on our techniques to significantly
reduce memory usage compared with CPI, and on TINYBFT’s
support for additional memory modules.

A. Static Memory Allocation
Unlike the vast majority of existing BFT replication li-

braries (e.g., [3], [4]), all memory consumed by TINYBFT is
allocated statically, which follows the best practices in (safety-
critical) embedded systems [57] and enables us to a priori de-
termine an upper bound for TINYBFT’s memory consumption.
To achieve this, we designed a novel memory layout consisting
of four regions with clearly defined purposes. In the following,
we present each of these regions and elaborate on the type of
information that TINYBFT manages in them.



Agreement Region. The agreement region hosts an array of
the agreement window size W , in which each element reserves
space for exactly one prepare certificate and one commit cer-
tificate. Treating the array as a ring buffer, when a replica shifts
its window to a higher starting sequence number, TINYBFT
reinitializes the slots that are now below the window and
immediately assigns them to higher sequence numbers. As
a key benefit, this approach allows TINYBFT to efficiently
move the window without performing memory (de)allocations.

Checkpoint Region. Exploiting the insight that a replica has
to keep at most W

K +1 checkpoints at the same time (see Equa-
tion 5), TINYBFT’s checkpoint region stores exactly this
number of checkpoint certificates. Apart from the certificates,
this region also reserves space for one additional checkpoint
message from each other replica in the system. Retaining the
latest checkpoint message received from each peer allows a
replica to collect information about checkpoints for sequence
numbers above its current agreement window, and thereby
detect scenarios in which the replica has fallen behind and
hence should request a state transfer.

Event Region. In contrast to the agreement and checkpoint
region, the event region is dedicated to messages whose life-
time is not directly related to the agreement window. Examples
include newly submitted requests, as well as messages related
to TINYBFT’s view-change and state-transfer mechanisms.

Scratch Region. While the three memory regions discussed so
far store messages until they are no longer needed, TINYBFT’s
scratch region is used for holding messages temporarily.
Initially, each message created or received by a replica is
placed here. Once the replica determines that a message has
to be retained (e.g., as part of a particular certificate), it copies
the message to one of the other three regions, meaning that
at this point the corresponding part of the scratch region
can be reused for the next incoming or outgoing message.
Structurally, the scratch region manages a fixed number of
slots that each provide space for up to the maximum message
size. Hence, as in the other three statically allocated regions,
memory fragmentation does not become a problem.

Although the involvement of the scratch region comes at
the cost of an additional copy operation if a message is
kept, the region provides more flexibility regarding the storage
location of messages. Specifically, as further discussed in
Section VI-C, it enables TINYBFT to transparently support
non-volatile memory modules by moving the other three
regions there. With the additional memory typically not being
directly accessible in the microprocessor’s address space, a
copy operation in this scenario is required anyway.

B. State Management

Similar to CPI, TINYBFT also relies on a partition tree
to manage application-state blocks, because this approach
allows us to reuse CPI’s optimized state-transfer mechanism
(which only transmits blocks whose contents have changed)
without further modification. However, TINYBFT’s partition
tree differs from its CPI counterpart in two important aspects:

(1) With our target devices having just small amounts of mem-
ory available, we reduce the height of TINYBFT’s partition
tree to the minimum required to manage an application’s state.
For our example configuration PBFTESP a height of 2 is suffi-
cient, meaning that all blocks are directly connected to the root
node. As a main benefit, compared with CPI’s four-level tree,
this enables us to significantly minimize metadata overhead
for managing application states of highly resource-constrained
systems. (2) TINYBFT’s partition tree only reserves space
for blocks that are actually needed to handle an application
state of the statically configured size, which further reduces
TINYBFT’s memory footprint compared with CPI.

C. Support for Additional Non-Volatile Memory

As discussed in Section III, our target devices offer the pos-
sibility to add memory modules providing persistent storage,
and hence enable a replica to resume operation after an outage.
TINYBFT facilitates this process by allowing its agreement,
checkpoint, and event memory regions to be moved to such
modules. In contrast to the scratch region, these three regions
contain state that needs to be kept available across outages in
order for a correct replica to remain correct.

Entailing higher latency than accesses to internal RAM, we
designed TINYBFT to minimize the number of accesses to
persistent memory modules. To achieve this, a replica initially
places all incoming messages in the scratch region (i.e., in
internal RAM). In a next step, the replica then performs several
checks to (1) validate that the message is both well-formed as
well as properly authenticated, and (2) determine whether the
message contains relevant information that enables the replica
to make progress. The latter especially aims at messages that
arrive at a point in time at which a corresponding decision
has already been made. For example, with 2f + 1 matching
commits being sufficient to assemble a commit certificate (see
Section V-A), in the presence of 3f+1 replicas there are usu-
ally up to f commits that do not contribute to the completion
of the certificate. Only if a message passes all checks a replica
moves the message to its destination in one of the other three
regions. Otherwise, a replica discards it without the message
ever touching persistent memory.

D. Memory-Efficient Configuration

As shown by our analysis in Section V-B, PBFT’s memory
consumption to a significant extent depends on the values
of a set of configurable variables, including for example the
number of replica faults to tolerate, the size of the agreement
window, and the checkpoint interval; TINYBFT adds further
variables such as a maximum size for individual messages
as well as the size of application-state blocks. Freely tuning
these parameters makes it possible to flexibly trade off space-
efficiency for performance, thereby providing an effective
means to tailor TINYBFT to the particular characteristics and
requirements of the target platform and application.

To protect TINYBFT against invalid configurations, we
added a mechanism to its build process that automatically
checks dependencies between parameters and in case of



conflicts triggers compiler errors. Our solution relies on
CMake [58], a tool used in many embedded development
platforms and real-time operating systems [59], [60]. If, for
example, a user tries to change the maximum size of individual
messages to 1 KiB (by adjusting the corresponding CMake
variable) while leaving the size of state blocks at its default
of 4 KiB, this would constitute a conflict, because as part of
state transfer a replica must be able to transmit blocks over the
network. Consequently, static assertions in our code in such
case result in a compile error indicating that the block size is
too large for the maximum message size, thereby preventing
TINYBFT from being deployed with an invalid configuration.

E. Implementation

For our TINYBFT implementation, we reuse parts of
CPI’s codebase such as the agreement protocol logic and
the mechanisms for checkpointing, view change, and state
transfer. In addition to the design changes described in Sec-
tions VI-A through VI-D, we also integrate a new crypto
library (MbedTLS [61]) to meet the requirements of modern
systems. MbedTLS is part of the trusted firmware project [62],
especially targets embedded systems, and therefore already
supports a large variety of embedded platforms.

To account for the heterogeneity of embedded platforms,
we designed the TINYBFT implementation as a layered ar-
chitecture in which the actual library resides on top of a
small hardware abstraction layer. As its main responsibility,
this layer provides transparent access to platform-dependent
hardware components such as a system’s cycle counter and
real-time clock, which are for example used to monitor view-
change timeouts. With the hardware abstraction layer provid-
ing a stable function call interface to the library, only this small
layer has to be implemented for each target platform, thereby
making it significantly easier to port TINYBFT to new devices.

TINYBFT offers all common PBFT optimizations [3],
which among others include the following: (1) To minimize
consensus overhead, the leader may combine multiple requests
into a batch, which from this point on is treated as one (large)
request and thus assigned only a single sequence number.
Once the batch is ready for execution, a replica processes the
corresponding commands in the order in which they appear in
the batch, thereby guaranteeing consistency among replicas.
(2) To take load off the leader, TINYBFT enables replicas to
apply hash-based ordering. Using this optimization, a replica
directly broadcasts its own requests to all other replicas in
the system, which in turn allows the leader to only include
request hashes (instead of the full requests) into its pre-prepare
messages. As a consequence, pre-prepare messages become
smaller and the load associated with the transmission of full
requests is distributed more equally across replicas.

VII. EVALUATION

In this section, we evaluate the performance and memory
consumption of TINYBFT using a replicated key-value store,
which (as discussed in Section II-B) can serve as basis for
resilient control applications in our target environments.

A. Performance Comparison with CPI

In the first experiment, we study the performance impact
of our design decisions presented in Section VI, using CPI as
baseline. As explained in Section V-C, due to its high memory
consumption CPI does not fit on our target devices, which
is why for this experiment we resort to server-grade hard-
ware (Intel Xeon E3-1275v5, 3.6 GHz, 4 cores, 16 GB RAM,
1 Gbit Ethernet). To enable a fair comparison, we run CPI with
the same configuration (i.e., PBFTESP, see Section V-D) and
crypto library (i.e., MbedTLS, see Section VI-E) as TINYBFT.

The workloads in this experiment consist of reads and writes
of different sizes. Since the four replicas themselves are not
sufficient to issue the necessary amount of concurrent requests
for this purpose, we rely on a set of 250 external clients. Each
replica is hosted on a dedicated server, while the clients are
co-located on an additional machine. All reported numbers
represent the average of three runs.

Figure 5 presents the measurement results obtained from
this experiment in the form of the relationship between
throughput (on the horizontal axis) and provided latency
(on the vertical axis). Along the plotted lines, we gradually
increase the workload by instructing clients to send requests
at higher frequency. For small and medium workloads, the
latency achieved by both TINYBFT and CPI remains low.
After a system reaches saturation, latency continues to increase
while throughput stagnates or even decreases; as shown in the
bottom graphs of Figure 5, this effect can result in multiple
latency values being reported for the same throughput. Inde-
pendent of the workload evaluated as part of this experiment,
TINYBFT achieves a similar performance as CPI. For this
reason, we conclude that our newly designed memory layout
and partition tree have no measurable performance overhead.

0 1 2 3
0

50

100

150

200

250

Throughput [kOps/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s] CPI

TinyBFT

(a) Write (8 B)

0 1 2 3
0

50

100

150

200

250

Throughput [kOps/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s] CPI

TinyBFT

(b) Read (1 KiB)

0 1 2 3
0

50

100

150

200

250

Throughput [kOps/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

CPI

TinyBFT

(c) Write (1 KiB)

0 1 2 3
0

50

100

150

200

250

Throughput [kOps/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

CPI

TinyBFT

(d) Read-Write (1 KiB)

Figure 5. Performance comparison between CPI and TINYBFT



B. Performance on Tiny Devices

For our next set of experiments, we deploy each TINYBFT
replica on an actual node of our target platform (ESP32-
C3, 160 MHz CPU, 2.4 GHz WiFi 802.11 b/g/n). Once again,
we measure throughput and latency for different operations
modifying and/or retrieving entries managed by the replicated
key-value store application. In addition to micro benchmarks,
which primarily focus on individual operations, we also study
more complex access patterns using YCSB [63], a benchmark
suite designed to evaluate typical real-world use cases.

Micro Benchmarks. Offering a group of devices the opportu-
nity to perform state-machine replication without the help of
the outside world, in TINYBFT’s target use cases the replicas
themselves are usually the only nodes issuing commands
to the replicated service (see Section II-B). To account for
this characteristic, in this experiment we set the maximum
number of concurrent requests to the number of replicas.
Furthermore, we analyze different workloads by configuring
individual targets for the throughput demanded by the service.

As shown by the measurement results presented in Figure 6,
despite the small amounts of resources available, TINYBFT
is able to process workloads with continuously low latency of
about 50 ms for small commands and about 80 ms for large
commands. This even applies to high-utilization scenarios in
which a new request is immediately issued after the previous
one completed. In this context, we observed throughputs of up
to 31 operations per second for writes and up to 43 operations
per second for reads. Overall, this experiment reveals that
TINYBFT is able to provide good performance on highly
resource-constrained embedded platforms such as ESP32-C3.

0

20

40

60

80

100

16 24 32 Max

Achieved
Throughput

31.6
30.421.6

13.7

Workload Target [Ops/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

(a) Write (8 B)

0

20

40

60

80

100

16 24 32 Max

Achieved
Throughput

43.329.322.7
13.7

Workload Target [Ops/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

(b) Read (1 KiB)

0

20

40

60

80

100

16 24 32 Max

22.3
21.916.615.3

Workload Target [Ops/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

(c) Write (1 KiB)

0

20

40

60

80

100

16 24 32 Max

21.3

23.3

22.314.7

Workload Target [Ops/s]

L
a
te
n
c
y
(m

e
d
ia
n
)
[m

s]

(d) Read-Write (1 KiB)

Figure 6. TINYBFT performance on ESP32-C3

0

10

20

30

40

50

Update Heavy Read Heavy Read Only

Th
ro

ug
hp

ut
[O

ps
/s

]

(a) Overall throughput

0

10

20

30

40

50

Update Heavy Read Heavy Read Only

La
te

nc
y

[m
s]

Reads
Updates

(b) Operation-specific latency

Figure 7. YCSB benchmark results on ESP32-C3

YCSB. In the next experiment, we rely on the YCSB [63]
benchmark suite to evaluate TINYBFT with a variety of access
patterns. For this purpose, we implement an adapter that
enables the YCSB client-side implementation to interact with
the replicated key-value store provided by our group of tiny
devices. As values, YCSB uses hierarchical 256 B records that
each comprise multiple fields. For retrieving and modifying
one or more fields of a record, the adapter offers two dedicated
methods: read() and update().

As part of our study we examine the following scenarios:
YCSB’s update-heavy benchmark issues equal shares of reads
and updates (i.e., 50 % each). In the read-heavy benchmark,
the vast majority of operations are reads (95 %), mixed up
with some occasional updates (5 %). Finally, the read-only
benchmark performs no state modifications at all, but solely
fetches record fields from the key-value store.

The results of this experiment in Figure 7 indicate that
updates take about twice as long as reads to complete, which
is a consequence of the fact that at the adapter level each
update() call involves two commands to the TINYBFT
library: one to fetch the current version of the record, and a
subsequent one to write back the modified version. Therefore,
the throughput achieved by a benchmark to a significant degree
depends on its ratio of reads to updates. With regard to
absolute numbers, the measurements confirm TINYBFT’s high
efficiency, both in terms of throughput as well as latency.

C. Memory Consumption

In our fourth experiment, we measure the memory consump-
tions of the evaluated systems immediately after the initializa-
tion process of each implementation is complete. Notice that
this method favors CPI because due to its dynamic allocation
of messages, its memory consumption typically increases once
the system actually processes requests. In contrast, TINYBFT
allocates all of its memory statically, meaning that the reported
numbers remain constant over the entire system lifetime,
independent of the workload that needs to be handled.



Table I
MEMORY CONSUMPTION (IN BYTES) AFTER INITIALIZATION

Protocol Part CPI (Intel) TINYBFT (Intel) TINYBFT (ESP32-C3)

Client handling 5,952 12,428 11,460
Agreement 1,320 11,684 11,908
Execution 7,395,588 110,448 115,780
View 1,992 7,688 7,920
Other 554,984 40,320 18,447

Total 7,959,872 181,604 165,515

Based on the results shown in Table I, we make the fol-
lowing observations: (1) On ESP32-C3, TINYBFT consumes
significantly less memory compared with the Intel setting,
which can be mainly attributed to smaller libc buffers for file
parsing. (2) The largest memory increase in comparison to our
baseline model pertains to TINYBFT’s execution stage, which
(as discussed in Section VI-B) was a deliberate choice in order
to optimize state transfer. (3) Despite both TINYBFT and
CPI using the same configuration, TINYBFT’s overall memory
footprint is 97.7 % smaller than the memory footprint of CPI,
confirming the effectiveness of our memory-efficient design.

D. Energy-Consumption Considerations

Although the fact that the ESP32-C3 platform uses WiFi is
not an ideal fit for low-power communication in highly energy-
constrained settings (compared to systems such as Bluetooth
LE or LoRa), it allows us to give an approximation of a node’s
power demand when running TINYBFT. To approximate the
minimum lifetime of a battery-operated TINYBFT system, we
use the maximum reported peak-current estimates for the em-
bedded platform [64]. For this scenario, we assume the trans-
mission mode to be continuously active for the agreement-
process duration of about 80 ms (see Section VII-B). Here, the
specific transmission mode is IEEE 802.11n (HT20, MCS7
with transmission power of 18.5 dBm) and the peak current
drawn is 276 mA. During the rest of the time, the system
remains in light-sleep mode (i.e., 130µA) and wakes up once
data is received with the support of 802.11’s delivery traffic
indication messages. Under the assumption of a single standard
18650 lithium-ion battery with 3,500 mAh, we approximate
the lifetime of each node, with the workload of one agree-
ment per hour, to be around 1,000 days. This approximation
shows that TINYBFT is practical for resource-constrained
settings. Moreover, using communication technologies de-
signed specifically for (long-range) low-power communication
would help TINYBFT to further increase the battery lifetime.

VIII. RELATED WORK

For many years, the avionics industry has been a major driv-
ing force when it comes to applying Byzantine fault tolerance
in embedded and real-time systems, oftentimes solving the
associated problems by relying on additional hardware com-
ponents [9], [10]. More recently, these approaches were com-
plemented by software-based solutions. Gujarati et al. [13], for
example, presented a highly reliable key-value store that can
be hosted on commodity embedded platforms and serve as

basis for real-time control applications. Fröhlich et al. [15]
and Kozhaya et al. [16], [17] developed reliable broadcast
protocols for cyber-physical systems. Bhat et al. [65] proposed
a BFT atomic broadcast protocol that is designed with a
focus on energy efficiency and, in contrast to our work,
requires a synchronous network with upper bounds on message
delivery. Loveless et al. [11] leveraged speculation to improve
the latency of BFT state-machine replication in embedded
systems with multi-core processors. With TINYBFT, we join
the efforts to further improve the resilience of embedded
systems by providing a library that enables BFT state-machine
replication on tiny devices.

TINYBFT benefits from the heterogeneity of memory-
storage technologies, which are available on modern embedded
platforms. In this context, Jayakumar et at. [66] present
memory-mapping strategies for embedded systems that op-
erate with both internal volatile and non-volatile RAM. The
focus of their work is to reduce the energy demand of the
targeted systems. Their setup is based on TI’s MSP430FR57
microcontroller [67], a widely used platform in the domain
of intermittent computing [68]–[70], where power outages
are considered to be frequent. Unfortunately, the size of the
internal FRAM of this platform is very limited with 16 KiB.
When reconsidering TINYBFT’s possible configurations from
Section V-C, only the PBFTMin configuration could run en-
tirely from the available FRAM. Addressing hardware setups
that support all variants of internal/external and volatile/non-
volatile RAM, we are more flexible with choosing suitable
embedded hardware platforms for TINYBFT. In any case,
TINYBFT profits from the increasing availability of non-
volatile RAM platforms in order to further support fine-grained
checkpointing with the goal of energy-demand reduction.

IX. CONCLUSION

TINYBFT is the first library that enables highly resource-
constrained embedded devices to provide resilience against
arbitrary faults by performing BFT state-machine replication.
Taking the specific characteristics of our target environments
into account, we selected PBFT as replication protocol for
our library and developed a memory-efficient implementation
which, thanks to static allocation, is able to guarantee a worst-
case memory consumption that is known at compile time.
Based on our evaluation results, we conclude that (1) our
design choices allow TINYBFT to reduce its memory footprint
without having a measurable impact on performance and
(2) TINYBFT offers comparably low response times of less
than 100 ms when executed on tiny microcontrollers.

The source code of TINYBFT is available at:
https://gitos.rrze.fau.de/tinybft

Acknowledgments: We would like to thank the anonymous re-
viewers for their valuable feedback. This work was supported by
the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) under grant number 20E2122B (LuFo VI-2, BALu)
and by the German Research Foundation (DFG) under project number
502947440 (Watwa).

https://gitos.rrze.fau.de/tinybft


REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[3] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI ’99), 1999, pp. 173–186.

[4] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication for
the masses with BFT-SMaRt,” in Proceedings of the 44th International
Conference on Dependable Systems and Networks (DSN ’14), 2014, pp.
355–362.

[5] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proceedings of the 16th Middleware
Conference (Middleware ’15), 2015, pp. 173–184.

[6] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[7] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,” in Pro-
ceedings of the 38th Symposium on Principles of Distributed Comput-
ing (PODC ’19), 2019, pp. 347–356.

[8] A. Bessani, E. Alchieri, J. Sousa, A. Oliveira, and F. Pedone, “From
Byzantine replication to blockchain: Consensus is only the beginning,”
in Proceedings of the 50th International Conference on Dependable
Systems and Networks (DSN ’20), 2020, pp. 424–436.

[9] A. L. Hopkins, T. B. Smith, and J. H. Lala, “FTMP—A highly reliable
fault-tolerant multiprocessor for aircraft,” Proceedings of the IEEE,
vol. 66, no. 10, pp. 1221–1239, 1978.

[10] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai, “The
MAFT architecture for distributed fault tolerance,” IEEE Transactions
on Computers, vol. 37, no. 4, pp. 398–404, 1988.

[11] A. Loveless, R. Dreslinski, B. Kasikci, and L. T. X. Phan, “IGOR:
Accelerating Byzantine fault tolerance for real-time systems with eager
execution,” in Proceedings of the 27th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS ’21), 2021, pp. 360–373.

[12] C. Berger, H. P. Reiser, F. J. Hauck, F. Held, and J. Domaschka,
“Automatic integration of BFT state-machine replication into IoT sys-
tems,” in Proceedings of the 18th European Dependable Computing
Conference (EDCC ’22), 2022, pp. 1–8.

[13] A. Gujarati, N. Yang, and B. B. Brandenburg, “In-ConcReTeS: In-
teractive consistency meets distributed real-time systems, again!” in
Proceedings of the 43rd Real-Time Systems Symposium (RTSS ’22),
2022, pp. 211–224.

[14] Espressif Systems, ESP32-C3 Series Datasheet, https://www.espressif.
com/sites/default/files/documentation/esp32-c3 datasheet en.pdf, 2023.

[15] A. A. Fröhlich, R. M. Scheffel, D. Kozhaya, and P. E. Verı́ssimo,
“Byzantine resilient protocol for the IoT,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 2506–2517, 2018.

[16] D. Kozhaya, J. Decouchant, and P. Esteves-Verı́ssimo, “RT-ByzCast:
Byzantine-resilient real-time reliable broadcast,” IEEE Transactions on
Computers, vol. 68, no. 3, pp. 440–454, 2019.

[17] D. Kozhaya, J. Decouchant, V. Rahli, and P. Esteves-Verı́ssimo, “Pistis:
An event-triggered real-time Byzantine-resilient protocol suite,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2277–2290, 2021.

[18] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Computing Surveys, vol. 54, no. 1, 2021.

[19] E. Roth and A. Haeberlen, “Do not overpay for fault tolerance!” in
Proceedings of the 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS ’21), 2021, pp. 374–386.

[20] Infineon Technologies AG, “CYW43439 – 1x1 single-band Wi-Fi 4
(802.11n) + Bluetooth 5.2 combo,” 2023.

[21] M. Heene, S. Hill, and J. Jelemensky, “Queued serial peripheral interface
for use in a data processing system,” 1989, US Patent 4,816,996.

[22] NXP Semiconductors, “I2C-bus specification and user manual,”
https://web.archive.org/web/20210813122132/https://www.nxp.com/
docs/en/user-guide/UM10204.pdf, 2014.

[23] MIPI Alliance, Inc., “MIPI I3C & MIPI I3C Basic,” 2018.
[24] Fujitsu Semiconductor, FRAM MB85RC256V, https://www.fujitsu.com/

uk/Images/MB85RC256V-20171207.pdf, 2013.

[25] Espressif Systems, “ESP-IDF programming guide – Support for ex-
ternal ram,” https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
api-guides/external-ram.html, 2023.

[26] P. Perazzo, F. Righetti, M. La Manna, and C. Vallati, “Performance
evaluation of attribute-based encryption on constrained IoT devices,”
Computer Communications, vol. 170, pp. 151–163, 2021.

[27] P. Wägemann, T. Distler, H. Janker, P. Raffeck, V. Sieh, and W. Schröder-
Preikschat, “Operating energy-neutral real-time systems,” ACM Transac-
tions on Embedded Computing Systems, vol. 17, no. 1, pp. 11:1–11:25,
2017.

[28] Semtech, “LoRa – The ultimate long-range solutions,” https://www.
semtech.com/uploads/design-support/SG-SEMTECH-WSP.pdf, 2018.

[29] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, 2008.

[30] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,”
CoRR, vol. abs/1707.01873, 2017.

[31] P. Wägemann, F. Harbecke, B. Heinloth, H. Hofmeier, and W. Schröder-
Preikschat, “An energy-neutral, WiFi-connected room display with hand-
crank–based energy harvesting,” 2019.

[32] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM, vol. 32, no. 4, pp. 824––840, 1985.

[33] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Transactions on Software Engineering, no. 2, pp. 125–143, 1977.

[34] T. Distler, M. Eischer, and L. Lawniczak, “Micro replication,” in Pro-
ceedings of the 53rd International Conference on Dependable Systems
and Networks (DSN ’23), 2023, pp. 123–137.

[35] Espressif Systems, ESP32 Series Datasheet, https://www.espressif.com/
sites/default/files/documentation/esp32 datasheet en.pdf, 2023.

[36] C. Berger, S. Schwarz-Rüsch, A. Vogel, K. Bleeke, L. Jehl, H. P. Reiser,
and R. Kapitza, “SoK: Scalability techniques for BFT consensus,” in
Proceedings of the 5th International Conference on Blockchain and
Cryptocurrency (ICBC ’23), 2023, pp. 1–18.

[37] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync Hot-
Stuff: Simple and practical synchronous state machine replication,” in
Proceedings of the 41st Symposium on Security and Privacy (SP ’20),
2020, pp. 106–118.

[38] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, p. 288–323,
1988.

[39] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[40] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 23rd Conference on Computer
and Communications Security (CCS ’16), 2016, pp. 31–42.

[41] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in Proceedings of the 27th Conference
on Computer and Communications Security (CCS ’20), 2020, pp. 803–
818.

[42] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding Dumbo:
Pushing asynchronous BFT closer to practice,” in Proceedings of the
29th Network and Distributed System Security Symposium (NDSS ’22),
2022.

[43] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? Byzantine fault tolerance with a spinning primary,” in Pro-
ceedings of the 28th International Symposium on Reliable Distributed
Systems (SRDS ’09), 2009, pp. 135–144.

[44] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine
fault tolerance,” IEEE Transactions on Computers, vol. 65, no. 9, pp.
2807–2819, 2016.

[45] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A scalable and
decentralized trust infrastructure,” in Proceedings of the 49th Interna-
tional Conference on Dependable Systems and Networks (DSN ’19),
2019, pp. 568–580.

[46] M. Correia, N. F. Neves, and P. Verı́ssimo, “BFT-TO: Intrusion tolerance
with less replicas,” The Computer Journal, vol. 56, no. 6, pp. 693–715,
2013.

[47] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc:
Small trusted hardware for large distributed systems,” in Proceedings
of the 6th Symposium on Networked Systems Design and Implementa-
tion (OSDI ’09), 2009, pp. 1–14.

[48] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient

https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://web.archive.org/web/20210813122132/https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://web.archive.org/web/20210813122132/https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.fujitsu.com/uk/Images/MB85RC256V-20171207.pdf
https://www.fujitsu.com/uk/Images/MB85RC256V-20171207.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/external-ram.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/external-ram.html
https://www.semtech.com/uploads/design-support/SG-SEMTECH-WSP.pdf
https://www.semtech.com/uploads/design-support/SG-SEMTECH-WSP.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf


Byzantine fault tolerance,” in Proceedings of the 7th European Confer-
ence on Computer Systems (EuroSys ’12), 2012, pp. 295–308.

[49] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verı́ssimo,
“Efficient Byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2013.

[50] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: SGX-based high
performance BFT,” in Proceedings of the 12th European Conference on
Computer Systems (EuroSys ’17), 2017, pp. 222–237.

[51] W. Xu and R. Kapitza, “RATCHETA: Memory-bounded hybrid Byzan-
tine consensus for cooperative embedded systems,” in Proceedings of
the 37th Symposium on Reliable Distributed Systems (SRDS ’18), 2018,
pp. 103–112.

[52] W. Xu, S. Rüsch, B. Li, and R. Kapitza, “Hybrid fault-tolerant consensus
in asynchronous and wireless embedded systems,” in Proceedings of
the 22nd International Conference on Principles of Distributed Sys-
tems (OPODIS ’18), 2018.

[53] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in Proceedings of the 2nd
Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’13), 2013.

[54] M. Eischer, M. Büttner, and T. Distler, “Deterministic fuzzy check-
points,” in Proceedings of the 38th International Symposium on Reliable
Distributed Systems (SRDS ’19), 2019, pp. 153–162.

[55] S. Rüsch, K. Bleeke, and R. Kapitza, “Themis: An efficient and memory-
safe BFT framework in Rust,” in Proceedings of the 3rd Workshop
on Scalable and Resilient Infrastructures for Distributed Ledgers (SE-
RIAL ’19), 2019, pp. 9–10.

[56] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology (CRYPTO ’87), 1988, pp. 369–378.

[57] MISRA Consortium, Guidelines for the Use of the C Language in
Critical Systems (MISRA-C:2004), 10 2004.

[58] CMake, https://cmake.org/.
[59] Espressif ESP-IDF, https://github.com/espressif/esp-idf.
[60] Zephyr, https://zephyrproject.org/.
[61] MbedTLS, https://github.com/Mbed-TLS/mbedtls.
[62] Trusted Firmware, https://www.trustedfirmware.org/.
[63] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing (SoCC ’10), 2010, pp.
143–154.

[64] Espressif Systems, ESP32-C3 Wireless Adventure: A Comprehensive
Guide to IoT, 2023.

[65] A. Bhat, A. Bandarupalli, M. Nagaraj, S. Bagchi, A. Kate, and M. K. Re-
iter, “EESMR: Energy efficient BFT-SMR for the masses,” in Proceed-
ings of the 24th International Middleware Conference (Middleware ’23),
2023.

[66] H. Jayakumar, A. Raha, J. R. Stevens, and V. Raghunathan,
“Energy-aware memory mapping for hybrid FRAM-SRAM MCUs in
intermittently-powered IoT devices,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 3, pp. 1–23, 2017.

[67] Texas Instruments Inc., MSP430FR57xx Family – User’s Guide, 2018.
[68] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent

computing: Challenges and opportunities,” in Proceedings of the 2nd
Summit on Advances in Programming Languages (SNAPL ’17), vol. 71,
2017, pp. 8:1–8:14.

[69] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in Proceedings of the 13th Symposium
on Operating Systems Design and Implementation (OSDI ’18), 2018, pp.
129–144.

[70] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-
performance intermittent computation with power failure immunity,”
in Proceedings of the 28th Real-Time and Embedded Technology and
Applications Symposium (RTAS ’22), 2022, pp. 40–54.


