
Targeting Tail Latency in Replicated Systems
with Proactive Rejection

Laura Lawniczak
lawniczak@cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Germany

Tobias Distler
distler@cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Germany

Abstract

When put under stress, traditional state-machine replication pro-
tocols typically exhibit response times that by far exceed the aver-
age level of normal-case operation. The common way to mitigate
such overload-induced tail latency is to overprovision computing
and network resources. However, this method often leads to large
amounts of resources left unused over extended periods of time,
especially in application scenarios in which high loads are mostly
limited to short phases. In this paper, we circumvent the need for
overprovisioning with Idem, a replication protocol specifically de-
signed to process client requests with low latency even during load
spikes. Most notably, Idem replicas avoid overload by proactively
rejecting requests in a collaborative manner. In contrast to cen-
tralized overload-prevention strategies, the collaboration among
replicas allows Idem to always timely notify clients about rejections
of their requests, not only under favorable conditions but also in
the presence of replica crashes.

CCS Concepts

• Computer systems organization→ Reliability.

Keywords

Crash fault tolerance, state-machine replication, tail latency, over-
load prevention, proactive rejection.

ACM Reference Format:

Laura Lawniczak and Tobias Distler. 2024. Targeting Tail Latency in Repli-
cated Systems with Proactive Rejection. In 25th International Middleware
Conference (MIDDLEWARE ’24), December 2–6, 2024, Hong Kong, Hong Kong.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3652892.3700775

1 Introduction

State-machine replication [63] enables a system to tolerate server
crashes by maintaining the state of an application on multiple ma-
chines and keeping it consistent using a replication protocol [44,
56]. Providing fault tolerance for latency-sensitive applications
(e.g., navigation services, key-value stores, or online games) re-
quires replicated systems that are able to consistently maintain
low and stable response times. In practice, accomplishing this goal
is inherently difficult due to the phenomenon of tail latency [26],
which refers to the existence of cases or phases over the course

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 25th International
Middleware Conference (MIDDLEWARE ’24), December 2–6, 2024, Hong Kong, Hong
Kong, https://doi.org/10.1145/3652892.3700775.

of a system’s lifetime in which the achieved latency exceeds the
average response time by multiple factors or even magnitudes.

With progress depending on only a quorum of replicas (instead
of all servers), replicated systems in general have advantages when
it comes to masking disruptive factors that typically slow down
individual replicas at a time (e.g., hardware issues) [26]. However,
the same does not apply to causes of tail latency that affect the entire
replica group, such as periods of overload during which a large
number of requests are concurrently issued to the replicated service.

Unfortunately, traditional replication-protocol designs [44, 56]
usually do not take overload scenarios into account. As a conse-
quence, replicated systems commonly provide two distinct tiers
with regard to their service quality: (1) During times of low and
medium utilization, clients on average experience comparably low
response times. (2) Once the demand exceeds the saturation point,
requests start to queue up and as a result end-to-end latency sky-
rockets [3, 62], thereby severely impacting clients across the board.
The traditional way to reduce the risk of the latter is overprovi-
sioning computing and network resources [26]. However, this is
not only costly but also wastes significant amounts of resources in
the common case of the overload being limited to relatively short
phases, with long stages of lower utilization in between.

In this paper, we address the problem of load-induced tail latency
in replicated systems by presenting Idem, a state-machine replica-
tion protocol that effectively prevents overload and hence offers
clients a third option. Specifically, when the utilization of the repli-
cated service is high, Idem replicas proactively (and with low la-
tency) reject some of the incoming requests to keep the load at a
manageable level without the need for overprovisioning resources.

As a special property, Idem’s overload-prevention mechanism op-
erates in a collaborativemanner, meaning that replicas reach individ-
ual decisions on the rejection of requests, instead of delegating this
task to a dedicated load balancer or replica (e.g., the leader). Thus,
in contrast to solutions that only put a particular entity in charge
of preventing overload, Idem’s collaborative method does not com-
prise a single point of failure and is able to continuously deliver
rejection notifications with low latency, even during leader crashes.

While being effective in many applications, our approach reaches
its full potential in conjunction with semi-autonomous clients. Such
clients achieve their highest degree of efficiency when using the
replicated service, but are equipped with a (less powerful) local
fallback procedure they can resort to in case their requests are re-
jected. Typical examples of this kind of procedure include auxiliary
navigation subsystems in unmanned vehicles [36, 65] or movement
prediction algorithms in multiplayer online games [69].

In particular, this paper makes the following contributions:
(1) It presents Idem, a crash-tolerant replication protocol that relies

https://doi.org/10.1145/3652892.3700775
https://doi.org/10.1145/3652892.3700775


MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

on collaborative overload prevention to deal with load-induced
tail latency. (2) It shows how to implement our collaborative ap-
proach in such a way that it effectively keeps response times stable,
is robust against replica crashes, and incurs only low overhead.
(3) It experimentally evaluates Idem in comparison with state-of-
the-art replication protocols.

2 System Model

As shown in Figure 1, we target distributed systems that are com-
posed of two parts: (1) a replicated service at the core and (2) a
(potentially large) number of semi-autonomous clients at the edge
that regularly access the replicated service (sending one request
at a time) to perform their tasks. The provided application is time-
sensitive, so the service’s results are only of use if clients receive
them in a timely manner. However, if necessary clients can fallback
on internal computation to achieve an adequate, if inferior, result,
for example when the replicated system is unavailable.

2.1 Replicated Service at the Core

Our approach targets data-center environments in which the net-
work commonly experiences long phases of synchrony. Nodes, that
is replicas and clients, are linked via fair-loss point-to-point con-
nections [16], meaning that message losses and network partitions
may occur, but (by retransmitting messages) two correct nodes
will eventually be able to communicate with each other. To ensure
service availability, the system at the core relies on a state-machine
replication protocol that tolerates up to 𝑓 replica crashes, with 𝑓 in
our data-center use cases usually being low (e.g., 𝑓 ≤ 2).

When deploying such a protocol, resources need to be considered
carefully. While dimensioning the system for the maximum load or
even overprovisioning guarantees a good and stable performance,
this strategy also often results in resources being wasted [21, 64].
Underprovisioning resources, on the other hand, for many applica-
tions leads to a better utilization and suffices most of the time, but
it hinders a system from handling bursts of high loads.

2.2 Semi-Autonomous Clients at the Edge

The clients at the edge of our system comprise a mechanism that
allows them to fallback to internal computation and retain basic
functionality during phases in which, due to temporary network
unreliability, they cannot reach the replicated service. While this
allows clients to make rough decisions on their own, the outputs of

> >

> > >

>

>

>

>

>

>
> >

>

>

>

>

>

>

Û

Û

Clients

> >

Replicated Service

R

RR

Z

Figure 1: Basic system architecture

the replicated service offer a significantly better quality of service.
Additionally, the internal fallback computation has disadvantages
such as a high resource consumption or bad user experience, so
it should only be activated when necessary. Overall, this means
that (1) timely results from the replicated service should be used if
available and (2) it is beneficial for a client to know early whether
the service cannot provide this timeliness, as the client then can
promptly activate its fallback measures.

2.3 Example Applications

As shown by the following examples, several real-world application
scenarios fit our targeted system model and architecture.

Robot Warehouse. In the first example, semi-autonomous robots
transporting goods inside a warehouse act as clients, while a repli-
cated service is responsible for route planning and coordination of
the robots. For this purpose, the service maintains the last known
position and destination of each robot and collects information
about other important events (e.g., blockages or robot failures).
With this holistic approach, it can route the robots very efficiently,
minimizing congestion and travel-path length. However, as robots
continue to move, the instructions of the service quickly become
outdated and are of little to no use after a certain period of time. To
tolerate phases of service unavailability, the robots are integrated
with sensors such as Lidar [50] which allow them to navigate au-
tonomously. Nevertheless, since a robot has no internal knowledge
of the other robots’ routes or of obstacles outside its own sensors’
field of view, navigation relying on sensors is usually inferior to a
timely result of the replicated service.

Live Data. To provide a seamless experience to users of Web
applications such as chat programs or newsfeeds, short delays
in service accesses should be masked by the client side (e.g., by
temporarily displaying old data [67]), whereas long delays should
be signaled to the user (e.g., via a loading animation or, in the worst
case, an error message). In this context, it is essential for the client
logic to be able to distinguish the first case from the second, as
for example the frequent displaying of brief loading animations
typically results in user frustration. Hence, there is generally great
benefit in Web clients knowing early whether or not the replicated
service is currently able to provide a timely result.

Massive Multiplayer Online Gaming. In massive multiplayer on-
line gaming, only the servers know the exact positions and actions
of all participants, but clients can use previous data to roughly pre-
dict player and object movement if there is no timely result from the
service [69]. However, the movement prediction cannot consider
sudden changes in direction and furthermore leads to additional
computation than can decrease the performance of the game, and
thus hamper the user experience. Consequently, this local fallback
mechanism should only be resorted to when necessary. Besides,
in online gaming there can be a very large number of concurrent
clients (i.e., players) as well as a high fluctuation of clients and
client numbers, as players may log in and out of a game frequently.
Overall, this increases the danger of the server side being subjected
to (sudden) overload bursts.



Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

3 Problem Statement

In this section, we analyze the issues time-sensitive replicated ap-
plications face in the presence of overload. Furthermore, we outline
our solution to address these problems.

3.1 State of the Art

To examine their behavior under load, we conducted experiments
with different state-of-the-art state-machine replication protocols;
for details please refer to Section 7. In all cases, the protocols
showed a similar reaction as the one recorded from Paxos [43],
which is plotted in Figure 2. As illustrated by these measurements,
the quality of service perceived by clients can be categorized into
two tiers: (1) If the system is in a healthy state and faces small or
medium load (marked by the green area), clients receive timely
responses from the replicated service. We define this as the good
tier. (2) In an overload situation, however, the latency in these
systems can be dramatically higher than expected. A client will
either get a late result that is no longer of use, or receive no
response at all before running into a timeout. Such issues are
characteristic of the red area and hence referred to as bad tier.

3.2 Challenge: Improving the Bad Case

Our goal in this paper is to offer clients of replicated systems a new
middle tier with regard to the quality of service. By providing clients
with timely notifications if the system is currently under high load
and unable to provide a timely result, clients knows early enough
when to switch to their own fallback mechanisms to still provide an
adequate result. With this, we aim to minimize the bad case when
clients obtain no useful results at all. We achieve this by introduc-
ing proactive rejection, a systematic way to monitor and actively
reject requests before a system reaches an overload state, thereby
allowing a system to maintain more stable response times.

Please notice that our focus in this paper is on preventing

overload-induced tail latency, meaning that our approach is not
designed to tackle other causes of tail latency (e.g., delays during the
request execution at the application level). Consequently, we do not
guarantee hard worst-case bounds on the provided latency, which
for our clients does not pose a problem, because they can always
resort to their fallback mechanism. Also, although the names may
suggest otherwise, proactive rejection is not related to the concept
of abortable consensus [8], as further discussed in Section 8.

Good

Tier

Bad

Tier

10 20 30 40 50

1

2

3

4

Timely result

Throughput [1,000 reqs/s]

L
a
t
e
n
c
y
[
m
s
]

Paxos

Figure 2: Behavior of existing replication protocols. Data

points depict the average latency and standard deviation.

−5 0 5 10
0

500

1000

Time [s]

L
a
t
e
n
c
y
[
m
s
]

Leader

crash

Normal Case
Clients receive rejection

notifications after ∼1ms

View Change
Clients time out due to

receiving neither a result

nor a rejection notification

Figure 3: Impact of a leader crash on rejections in Paxos𝐿𝐵𝑅 .

3.3 Why Not Simply Let the Leader Reject?

With the leader replica in protocols such as Paxos coordinating the
consensus process for requests, our first intuition was to implement
proactive rejection by putting the leader in charge of decidingwhich
requests to reject. Although effective during normal-case operation,
this leader-based rejection (LBR) unfortunately turned out to have
a major drawback when it comes to view changes. Specifically, as
shown in Figure 3, a crash of the leader means that clients neither
receive a result nor a rejection notification until the view change is
complete and clients performed a successful fail-over to the new
leader. Given this significant period of uncertainty, such system be-
havior falls into the bad tier and hence rules out LBR as technique for
our target use cases, for which we strive for a more robust solution.

Notice that for several reasons it is not straightforward to ad-
dress the view-change problem by extending LBR to involve ad-
ditional replicas: (1) Follower replicas in crash-tolerant protocols
(during normal-case operation) typically do not directly interact
with clients and thus only have limited knowledge about the amount
of incoming requests. Similarly, resorting to a rotating-leader pro-
tocol [5, 53, 73] is not an option, as the continuous leader changes
make it inherently difficult to assess the anticipated load of the
entire system at a single replica. (2) Independent of whether the
leader of the next view is chosen via election [56] or statically
defined by the view number [43], a replica can only become the
new leader once a majority of replicas in the system considers a
view change to be necessary. That is, a new leader must not decide
on rejecting client requests until having confirmation that a view
change will actually take place. (3) View-change timeouts usually
represent comparably large periods of time (e.g., Ongaro et al. [56]
recommend the view-change timeout to be at least a magnitude
larger than the broadcast time, other replicated systems use view-
change timeouts of multiple seconds [11, 40]). Thus, any attempts
to extend LBR to other replicas either result in significant delays
(in case the timeout is respected) or are no longer leader-based (in
case a follower acts before the timeout expired).

To avoid the issues associated with leader-based strategies, we
design proactive rejection as a collaborative approach in which each
replica monitors the system’s load independently and for every
request decides whether to accept or reject it. As a key benefit, this
enables a replicated service to provide clients with timely rejection
notifications even during view changes.

3.4 Requirements

Leveraging the insights gained from our problem analysis in the
previous sections, we identify the following requirements for a
mechanism providing proactive rejection:



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

• Effectiveness. Whenever its replicated service is subjected
to request bursts, the rejection mechanism should preserve
the system from reaching an overload-state, thereby avoiding
overload-induced tail latency. Ideally, this goal is achieved
while at the same time sustaining a high throughput of suc-
cessfully processed client requests.

• Robustness. To give clients the chance of a prompt reaction,
the mechanism should deliver rejection notifications in a
timely and stable manner. Apart from normal-case operation,
this should also be true under disruptive conditions (e.g., view
changes, misconfigured rejection thresholds, phases of ex-
treme load). This implies that the mechanism must operate
in a decentralized manner and not comprise a single point of
failure such as a dedicated replica or external load balancer.

• Low Overhead. Taking effect at high load levels, the mecha-
nism itself should incur as little overhead as possible, both in
terms of performance as well as network traffic. In particular,
the mechanism must not prevent the replicated system from
reaching saturation.

In the next section, we provide details on how we satisfy these
requirements in Idem by directly incorporating proactive rejection
into the design of a replication protocol.

4 Idem

This section presents Idem, a crash-fault tolerant state-machine
replication protocol specifically designed to reduce overload-induced
tail latency by actively rejecting requests under high load.

4.1 Collaborative Overload Prevention

Compared with traditional state-machine replication protocols, in
which the interaction between clients and replicas is typically lim-
ited to the exchange of requests and replies, Idem introduces a third
type of message ⟨Reject, 𝑖𝑑⟩ which a replica can send to inform
the client about the id of a submitted request that the replica has
opted not to process any further. This decision is made by each
replica individually (i.e., without coordinating with other replicas)
and based on an acceptance test performed on each request.

As shown in Figure 4, after multicasting its request to all replicas,
an Idem client waits for a response, which may come in one of two
forms. If the request has been accepted (and therefore agreed on and
ordered by Idem), the client is provided with a regular Reply and
can complete the operation. On the other hand, in case the client
receives Rejects from at least 𝑛 − 𝑓 of the 𝑛 replicas, it abandons
the operation and resorts to a local fallback mechanism to handle
the temporary unavailability of the replicated service. As described
in Section 2, the clients in our target use cases are equipped with
such fallback procedures, and thus remain operational even if some
of their requests are rejected.

We use the term “collaborative” for our approach to emphasize
the concerted effort of Idem’s replicas in preventing overload, and
to underline that the approach neither delegates the task of rejecting
requests to a single replica nor requires replicas to reach consensus
on rejection decisions. The latter is crucial because a solution to
relieve pressure on an agreement protocol itself should not require
additional agreement between replicas.

Client

Replica 1

Replica 2

Replica 3

AT

AT

AT

Acceptance Test

Agreement

&

Execution

Request Reply

AT

AT

AT

Request Reject

Fallback

Accepted Request Rejected Request

Figure 4: Collaborative overload prevention: Replicas use

acceptance tests to decide whether or not to process requests.

Collaboration in Idem includes the guarantee that a request will
be executed once it has been accepted by (at least) one correct
replica, even if there are other replicas at which the acceptance
test was negative. To ensure this, having accepted a request, a
replica is responsible for keeping the request available in the sys-
tem and (if necessary) relaying it to other replicas. Idem replicas
meet this requirement by relying on a forwarding mechanism that
incurs negligible overhead due to using lazy propagation, caching
recently rejected requests, and offering to relay requests on de-
mand. For better understandability, we defer the specifics of the
forwarding mechanism to Section 5, in which we also discuss the
semantics and provided guarantees of our collaborative overload
prevention approach in a detailed and more formal manner.

4.2 Protocol Overview

Idem is a leader-based protocol that requires 2𝑓 + 1 replicas to
tolerate up to 𝑓 replica crashes. As shown in Figure 5, it inte-
grates collaborative overload prevention as a preceding protocol
phase (Reqire), which is followed by a two-phase Paxos-style
agreement process (Propose and Commit). Implementing overload
prevention in the form of an individual phase offers the key benefit
of applying a clean separation of concerns, leaving the properties
of the agreement algorithm unaffected. Furthermore, it also makes
it easier to combine our approach with other consensus protocols,
however the specifics of doing so are outside the scope of this paper.

Idem clients access the replicated service by submitting their re-
quests to all replicas in the system. This design decision has several
advantages: (1) As explained in Section 4.1, it enables replicas to
perform collaborative overload prevention by individually deciding
on the acceptance of incoming client requests. (2) It avoids a com-
mon bottleneck [12] in many traditional replication protocols in
which the leader is responsible for distributing requests to the rest
of the replica group and hence the leader’s network link is at risk
to quickly become saturated, especially when the service workload
consists of large requests. In contrast, with Idem clients directly
sending their requests to all replicas, Idem replicas can perform the
agreement on request ids instead of full requests (see Section 4.3).
Due to request ids in most use cases being several magnitudes
smaller than full requests, this approach mitigates another common
cause of load-induced tail latency. (3) It allows Idem replicas to



Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Agreement

Client

Replica 1

Replica 2

Replica 3

Leader

AT

AT

AT

REQUEST REQUIRE PROPOSE

Ó

Ó

Ó

COMMIT REPLY

Implicit Garbage Collection

Figure 5: Protocol phases of Idem.

garbage-collect old requests and consensus state without the need
for further coordination among each other (see Section 4.4), which
is particularly beneficial during periods of high system load.

The following sections describe the individual protocol parts
of Idem in more detail: First the request handling, and then the
garbage collection and view-change mechanisms.

4.3 Request Handling

To issue a request, a client sends a ⟨Reqest, 𝑖𝑑, 𝑐𝑜𝑚𝑚𝑎𝑛𝑑⟩ mes-
sage containing the actual command and a unique request id to all
replicas. As is the case for many replication-protocol implemen-
tations [11, 43], Idem assumes that each client has at most one
pending request at a time and that the request id consists of a tuple
⟨𝑐𝑖𝑑, 𝑜𝑛𝑟 ⟩, with 𝑐𝑖𝑑 being a static client identifier and 𝑜𝑛𝑟 a client-
specific operation number which increases for each new request
the client submits. Consequently, replicas can use the operation
number to distinguish a client’s latest request from older ones.

Upon receiving a request, a replica uses a local acceptance test to
decide whether to accept or reject the request based on the current
load. This acceptance test is independent of the rest of the Idem
protocol and can be tailored to specific use cases (see Section 5.1).
If a replica rejects the request, it immediately sends a ⟨Reject, 𝑖𝑑⟩
message to the client, without taking further action. Otherwise, the
replica stores the request locally and by means of Idem’s forward-
ing mechanism ensures that eventually all replicas in the system
learn about the accepted request (see Section 5.2). If a replica re-
ceives such a forwarded request, it accepts the request (if it has
not already done so) regardless of the current load. As each replica
accepts at most 𝑟 client-issued requests at the same time, the total
number of active requests in the system is limited to 𝑟𝑚𝑎𝑥 = 𝑛 × 𝑟 ,
with 𝑛 being the total number of replicas.

After accepting a request (either from a client or via a forward),
the replica sends a ⟨Reqire, 𝑖𝑑⟩ message with the request’s id to
the current leader. For each request id, the leader waits for 𝑓 + 1
Reqires before it proposes the request. This ensures that at least
one correct replica has knowledge of the request and can potentially
forward it to the other replicas, providing liveness in the presence
of replica failures. Note that the leader itself does not need to be
among those 𝑓 + 1 replicas. To propose a request id, the leader
of view 𝑣 assigns it a unique sequence number 𝑠𝑞𝑛 and sends a
⟨Propose, 𝑖𝑑, 𝑠𝑞𝑛, 𝑣⟩ message to all replicas.

Once a replica receives a Propose from the leader, it stores the
message, sends a ⟨Commit, 𝑖𝑑, 𝑠𝑞𝑛, 𝑣⟩ message to all replicas, and
waits for a total of 𝑓 +1Commits (including its own; the leader’s pro-
posal counts as a commit). Having obtained the necessary commits
as well as the corresponding request (either directly or after a for-
ward), a replica executes the request and (in case of the leader) sends
a ⟨Reply, 𝑖𝑑, 𝑟𝑒𝑠𝑢𝑙𝑡⟩ to the client. Now, the request is no longer con-
sidered active and the replica can accept a new request in its stead.

4.4 Checkpointing and Garbage Collection

For improved efficiency, Idem executesmultiple consensus instances
in parallel, organized in a fixed-size window that defines the range
of sequence numbers that a replica is currently working on. To
shift the window forward, Idem relies on periodic checkpoints stor-
ing the current state of the application together with important
metadata such as the highest executed request id for each client,
which is used for duplicate detection. The creation of a checkpoint
enables the garbage collection of the included requests and their
corresponding consensus instances, allowing to move the window.
These checkpoints can then be used to bring lagging replicas up to
date without the need to replay the included requests.

While, in theory, requests can be deleted as soon as they are
included in a checkpoint, both the creation and application of a
checkpoint are often costly compared to the regular execution of a
request. Hence, it is practical to wait until at least 𝑓 +1 replicas have
executed a request before deleting it, to ensure that sufficient up-to-
date replicas can continue to participate in the consensus protocol
(even in the presence of temporary message loss) without the need
to apply a checkpoint. In Idem, replicas can determine this via
the information about the currently active requests that is used for
overload prevention, and which serves as implicit notification of the
other replicas’ progress, without the need for exchanging additional
messages between replicas. For this purpose, the window size 𝑤
must be at least as large as the number of concurrently allowed
requests 𝑟𝑚𝑎𝑥 = 𝑛 × 𝑟 . Assuming this relation, a replica knows that
it can discard old requests and consensus instances and move its
window as soon as it receives new proposals (or commits) with
a sequence number 𝑠𝑞𝑛 > 𝑠𝑞𝑛𝑙𝑜𝑤 + 𝑟𝑚𝑎𝑥 , with 𝑠𝑞𝑛𝑙𝑜𝑤 denoting
the current start of the window. This indicates that at least 𝑓 + 1
replicasmust have executed these old requests (removing them from
the number of active requests) in order to accept new ones.

As a key benefit, this approach permits Idem to omit superfluous
checkpoint or progress messages during normal operation. Only
when a replica is lagging behind, it explicitly asks another replica
for the newest checkpoint to catch up.

4.5 View Change

As a leader-based protocol, Idem includes a view-changemechanism
to reassign the leader role after a crash. To detect a crashed leader,
each replica starts a view-change timer when a request has not been
executed for a certain amount of time. This timer is stopped as soon
as the replica perceives progress, for example by means of a new
commit or checkpoint. If this is not the case and the timeout expires,
however, the replica assumes that the current leader has crashed
and abandons its current view 𝑣 . From that point on, the replica
ignores any messages concerning 𝑣 and older views, so there will be



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

no more changes in its window regarding these views. Additionally,
the replica restarts the view-change timer as a safeguard in case
the current view change is not successful.

Having abandoned a view 𝑣 , a replica requests a view change
by multicasting a ⟨ViewChange, 𝑣𝑡 , 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠⟩ message which in-
cludes the target view 𝑣𝑡 = 𝑣 + 1 and the current proposal win-
dow. The same happens when a replica receives 𝑓 + 1 matching
ViewChanges, indicating that the current view does not have
enough support to maintain progress. The leader of the new view
stores the latest ViewChange message of each replica, waits for
𝑓 + 1 matches, and then merges them to update its own window,
finally re-proposing the included requests for the new view.

5 Overload-Prevention Details

With collaborative overload prevention being Idem’s core means
to target overload-induced tail latency, in this section we provide
further details on the mechanism. Apart from discussing design
choices and possible optimizations, we also precisely define the
semantics it provides to clients.

5.1 Acceptance Test

Whenever an Idem replica receives a new request from a client, it
relies on an acceptance test to decide whether to accept or reject
this request. We do not put any restrictions on how exactly this
decision is reached and which checks or criteria the acceptance test
might involve. As key benefit, this makes it possible to tailor the
acceptance test to one’s use-case application, system environment
and workload characteristics.

Non-Determinism. In contrast to many other auxiliary functions
used in replicated systems (e.g., methods to determine the state
partition(s) accessed by a request during execution [29, 47]), the
acceptance test in Idem does not have to be deterministic. That
is, when a client invokes the same request on different replicas
or at different points in time, each replica may return different re-
sults. This additional flexibility is enabled as a result of two specific
properties of our approach: (1) The decision to accept or reject a
particular request does typically not mainly depend on the request
itself. Instead, it is commonly based on the question whether or
not the system currently has enough resources to handle additional
requests without overloading. (2) As a consequence of network
asynchrony and non-uniform distances between clients and repli-
cas, replicas in general receive requests at different points in time,
and hence also perform the acceptance test on separate occasions.
Without additional coordination between replicas, which as dis-
cussed in Section 4.1 would be impractical, this means that during
periods of varying load replicas are likely to draw diverging con-
clusions anyway. Hence, we decided to enlarge the design space
for acceptance tests and allow non-deterministic implementations.

Active Queue Management. In its basic form, it is sufficient for
a replica to simply store accepted client requests in a queue while
they are in progress, and reject all subsequent requests while the
length of this queue reaches the configured threshold. In the context
of queue management, this technique is known as “tail drop”. While
providing adequate performance, tail drop’s efficiency significantly
depends on the traffic variability and is especially problematic in
high-load scenarios [13]. Hence, for our implementation of Idem,

we took inspiration from another essential technique: active queue
management [2]. Here, requests are not only dropped after the
threshold has been reached but to a certain probability already
before that, providing a more stable outcome.

Additionally, we want to help replicas reach a unanimous deci-
sion on the acceptance/rejection of requests, as this avoids scenarios
in which requests are only accepted at a single replica and block
a request slot until the timeout-based forwarding mechanism is
triggered. To achieve this, our acceptance test uses the following
rules: Each client is assigned a group number, with a maximum of
𝑟 clients being in the same group (𝑟 the number of concurrently ac-
cepted client-issued requests). These groups are now assigned time
slices with one group being prioritized in each slice. This way, only
up to 𝑟 clients are prioritized at the same time. When the num-
ber of active requests 𝑟𝑛𝑜𝑤 reaches a certain threshold (e.g., 60%
of 𝑟 ), a replica starts differentiating between prioritized and non-
prioritized clients. If a request arrives from a prioritized client, it is
treated as in tail drop and accepted unless the maximum is reached.
Non-prioritized clients, however, use active queue management
and are rejected with a probability 𝑝 = 𝑟𝑛𝑜𝑤/𝑟 . Replicas employ a
pseudo-random function with the same seed for each request,
further increasing the chance of reaching the same decision.

While a perfect unanimity between replicas due to differences in
local clocks, scheduling and message arrival is highly unlikely, this
nevertheless assists replicas in reaching a more global decision on
request acceptance, especially under high load. Section 7.7 shows
the effectiveness of this technique, particularly in the presence
of replica failures. Additionally, this mechanism achieves fairness
amongst clients as each client is regularly part of the prioritized
group and has a high chance of getting their requests accepted. In
our evaluations, this results in all clients having a similar share of
accepted and rejected requests over the runtime of an experiment.

Further Options. Depending on the application and/or environ-
ment, other decision criteria could include for example different
request priority categories or an analysis of the request depending
on the estimated resource costs.

5.2 Forwarding Mechanism

Although conducting the acceptance test for requests independently
of each other, as a group replicas cooperate to provide the following
guarantee (see Section 6.2 for proof):

Property 5.1 (Liveness). If a client request is accepted by at
least one correct replica, the request will be eventually agreed on and
executed by all correct replicas in the system.

In order to guarantee that the overall replicated system meets this
requirement, after having accepted a client request a replica’s for-
warding mechanism is responsible for keeping the request available.
An Idem replica achieves this by relaying the request to other repli-
cas, thereby ensuring that all correct replicas eventually are in
possession of the request, including those that had not directly
received the request from the client (e.g., due to network issues)
or that previously rejected and discarded the request. However, as
naively forwarding all accepted requests would put an unneces-
sary strain on replicas, Idem’s forwarding mechanism applies the
following optimizations to minimize overhead:



Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Delayed Forwarding. In practice, forwarding does not necessarily
have to be performed immediately after the acceptance of a request.
Instead, it can be delayed until the expiration of a timeout and only
performed in case the corresponding request is not fully processed
in the meantime. This time-based relaying of requests is limited to
the rare scenarios in which a request is only available on 𝑓 replicas.

Caching of Recently Rejected Requests. Replicas in Idem do not
simply discard a request once they rejected it. As there is a chance
that this request is accepted by other replicas, it might still be
agreed on, which is why replicas in Idem store a limited number of
recently rejected requests in a cache, thereby reducing the number
of required forwarded requests.

Request Fetching. Idem allows replicas to explicitly ask for the
forwarding of a particular request by sending a ⟨Fetch, 𝑖𝑑⟩message
to another replica. Specifically, a replica uses this option when the
agreement process commits the id of a request that the replica
at this point does not own (e.g., due to not having received the
request or already having removed it from its recently rejected
cache). Request fetching enables lagging replicas to quickly catch
up without having to wait for the forward timeout, and it also
removes the need to proactively forward requests that have already
been executed but are not included in a checkpoint.

5.3 Client-Side Semantics

Combined with Property 5.1, the fact that replicas individually
decide on the acceptance/rejection of a request may result in clients
being able to observe different scenarios, which as further discussed
below are not all mutually exclusive.

• Success: Once a client receives a Reply to its request, the
client has proof that the request was accepted by at least
one correct replica, completed the agreement process, and
consequently either already has been or eventually will be
executed by all correct replicas. As a result, the client is
allowed to use the reply and consider the operation finished.

• Ambivalence: As soon as a client has obtained 𝑛 − 𝑓 Re-

jects from different replicas, there is some indication that
its request might not be processed. Whether or not this is
the case depends on the reaction of the remaining 𝑓 replicas
from which the client has not heard of yet. However, with up
to 𝑓 replicas possibly having crashed, at this point there is no
guarantee that the client will receive additional responses in
the future. Hence, the client needs to make a decision based
on the partial information it possesses at this point.

• Failure: If a client is able to collect 𝑛 Rejects, it has con-
firmation that its request was rejected by all replicas in the
system and hence will not be executed. Based on this knowl-
edge, the client immediately aborts the operation and resorts
to its fallback mechanism.

Our approach ensures that after having submitted its request to the
replicated service, a client will eventually end up in one of these
three scenarios (see Section 6.3). While the success and failure
states are final and entail direct and definitive actions regarding the
completion/abortion of the operation, the ambivalence state offers
some flexibility on how the client decides to react:

• Pessimistic client implementations minimize rejection
latency by immediately aborting an operation if the first
𝑛 − 𝑓 responses from replicas are all Rejects.

• Optimistic client implementations delay their reaction
for a certain (configurable) amount of time in the hope to ob-
tain further responses (i.e., a late reply or 𝑓 Rejects) in order
to subsequently switch to the success or failure scenario. If
this strategy is not successful, the client aborts the operation
after a timeout. Compared with the pessimistic variant, this
approach trades off a potentially higher rejection latency for
an improved success rate of operations.

The outlined pessimistic and optimistic approaches represent the
two ends of an entire spectrum of possible client-implementation
variants. Additional and more complex decision strategies are con-
ceivable. One optimization, for example, is to extend the optimistic
approach with a warning to the user-side application upon receiv-
ing the 𝑛 − 𝑓 th Reject. This provides a client with the opportunity
of being able to start fallback preparations early, while (in the back-
ground) still waiting for a late reply to arrive.

Independent of the particular strategy, if a client aborts an oper-
ation while being in the state of ambivalence, there can be cases
in which the operation nevertheless is eventually executed by
Idem, for example if the client’s request has been accepted by
a single replica that temporarily got disconnected from the rest
of the group. Such scenarios do not pose an additional problem
since they can occur in replicated systems anyway. Specifically, if
a temporary network partition occurs between a client and Idem
while the client submits a request, there may be uncertainty at
the client with regard to whether or not its request reached the
system and was processed there. A common way used by tradi-
tional clients to handle such situations is to issue a subsequent
probe request once the network partition is resolved. For example,
if the client of a key-value store is uncertain about the execution
of a write, a subsequent read to the same key brings clarity. If de-
manded by the application, the same techniques can be used by
clients to remove uncertainty in the context of Idem.

In both the ambivalence and failure state, the client can resort
to its fallback mechanism and make decisions independent of the
replicated system. If an application requires state to be shared
between the client and the server, this can cause these two states
to diverge, especially if the system is under an overload situation
and rejecting requests for a prolonged amount of time. To avoid
such divergence affecting the service quality, applications in Idem
can mitigate this in numerous ways, for example by using aging
mechanisms and giving stale data less weight, or by monitoring a
client’s state via external means.

6 Correctness

With our approach to overload prevention not affecting the inter-
nals of the consensus algorithm (see Section 4.2), in this section we
focus on aspects that are specific to Idem. In particular, this includes
correctness arguments for Idem’s implicit garbage collection, the
liveness property ensured by its forwarding mechanism, and Idem’s
client-side semantics.



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

6.1 Implicit Garbage Collection

Theorem 6.1. Assuming 𝑟𝑚𝑎𝑥 <= 𝑤 and a window𝑊 starting
at 𝑠𝑞𝑛, a replica can discard the oldest request in𝑊 once it receives a
consensus instance with sequence number 𝑠𝑞𝑛 + 𝑟𝑚𝑎𝑥 .

Proof. To propose a new request ⟨𝑅𝑛𝑒𝑤 , 𝑠𝑞𝑛 + 𝑟𝑚𝑎𝑥 ⟩, the leader
first waits for 𝑓 + 1 Reqires. That means that at least 𝑓 + 1 replicas
have accepted 𝑅𝑛𝑒𝑤 and at that point had less than 𝑟𝑚𝑎𝑥 active re-
quests. As a replica only removes a request from this set once it has
been executed, at least 𝑓 + 1 replicas must have executed a request
⟨𝑅𝑜𝑙𝑑 , 𝑠𝑞𝑛⟩. A replica can now safely discard all requests up to this
sequence number andmove the window start forward to 𝑠𝑞𝑛+1. □

6.2 Server-Side Liveness

Theorem 6.2 (cf. Property 5.1). If a client request is accepted
by at least one correct replica, the request will be eventually agreed
on and executed by all correct replicas in the system.

Proof. If a replica accepts a request, the replica hands the re-
quest over to the agreement protocol, and furthermore adds the re-
quest to a local set of accepted requests whose contents the replica
periodically multicasts to all replicas in the system. This imple-
ments a reliable-broadcast mechanism [16] which for the fair-loss
point-to-point connections in our system model (see Section 2.1)
guarantees that if the sending replica is correct, the request will
eventually be received by all correct replicas. As replicas automat-
ically (i.e., without conducting an acceptance test of their own)
accept requests that are relayed by other replicas, all correct repli-
cas eventually instruct the agreement protocol to order the request.
With all correct replicas endorsing the request, independent of
the specifics of the consensus protocol, the request is eventually
agreed on and executed by all correct replicas in the system.

The reliable-broadcast mechanism only takes effect for requests
contained in a replica’s set of accepted requests. Due to a replica
solely removing requests from this set that are already included in
a stable checkpoint in the replica’s possession, garbage collection
does not interfere with the requests’ agreement and execution. □

6.3 Client-Side Liveness

Theorem 6.3. If a correct client issues a request to the repli-
cated service, the client eventually will reach one of the three states:
success, ambivalence, or failure.

Proof. In accordance with our system model, the request dis-
tributed by a correct client is eventually received by all correct
replicas in the system, potentially after one or more retransmis-
sions (see Section 2.1); for the same reason, responses sent by correct
replicas eventually arrive at a correct client. Correct replicas per-
form the acceptance test for each new request they receive, which
leaves two cases: (1) If at least one of the correct replicas accepts
the request, Theorem 6.2 ensures that the request will be executed
by all replicas and therefore the client will eventually be provided
with a reply, hence reaching the success state. (2) If 𝑛𝑐 replicas in
the group are correct and none of them accepts the request, the
client will eventually receive at least 𝑛𝑐 Rejects from these replicas
and consequently either enter the ambivalence state (𝑛𝑐 ≥ 𝑛 − 𝑓 )
or the failure state (𝑛𝑐 = 𝑛). These two cases are exhaustive. □

Theorem 6.4 (Liveness). If the probability of passing the accep-
tance test is lower-bound by 𝑝 > 0 for every request (even if the system
is saturated) and a correct client issues infinitely many requests, it
will reach the success state infinitely many times with probability 1.

Proof. For a newly issued request to be processed in a timely
manner and lead to the success state, 𝑓 + 1 replicas need to accept
this request. According to the assumption that a replica accepts a
request with probability 𝑝 > 0, the probability for a client’s request
being successful is hence 𝑝 𝑓 +1 > 0. Using the second Borel-Cantelli
lemma [24] and with individual requests of a client being indepen-
dent, this ensures that, given infinitely many requests, the probabil-
ity that infinitely many of them will reach the success state is 1. □

In a typical real-world system environment, the assumption of
a non-zero probability for a request passing the acceptance test is
justified. A live system regularly processes requests and can accept
new ones, even while saturated. Due to variation (e.g., in scheduling
or processing time of requests), this happens in non-deterministic
intervals. Additionally, the network latency usually behaves non-
deterministic as well. A newly issued request hence reaches the
system at an essentially random point in time regarding the load
and capacity of the system. As long as the acceptance test does not
directly discriminate against specific clients or requests, this results
in each request having an above-zero probability of reaching the
system at the right moment and being accepted in the next slot.
Note that this probability substantially varies based on the current
load situation: Without overload, the probability is mainly 1, but it
can drop significantly for severe overload situations.

For acceptance tests that use a prioritization scheme (such as
the implemented version of active queue management) and hence
do occasionally discriminate against certain clients, the argument
still applies as long as the prioritization scheme itself is fair and
regularly assigns each client to the prioritized group.

Also, if a client has a request it requires to be processed by the
replicated service, Theorem 6.4 ensures that a single request is
eventually processed when being continuously resubmitted.

7 Evaluation

In this section, we evaluate collaborative overload prevention in
Idem, investigating the impact of different configurations and load
levels, and comparing our solution to the state of the art. For this
purpose, we distinguish between four main systems: (1) Idem refers
to the Java implementation1 of our protocol as presented in Sec-
tions 4 and 5. (2) Idem𝑛𝑜𝑃𝑅 denotes Idem with a disabled rejection
mechanism, meaning that the system does not perform proactive
rejection and therefore is not protected against overload. As a key
benefit, this setting allows us to investigate the impact of the collab-
orative overload prevention itself. (3) Paxos represents an imple-
mentation of Kirsch and Amir’s Paxos variant [43], which relies on
a steady leader and hence is directly comparable to Idem. Sharing
the same code base with Idem, this Paxos implementation enables
us to precisely analyze the effects of the replication protocol on per-
formance. (4) BFT-SMaRt is a widely used replication library [11],
which we configure to run in its crash-fault tolerant setting. Based

1The prototype is publicly available under https://doi.org/10.5281/zenodo.13847918

https://doi.org/10.5281/zenodo.13847918


Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 10 20 30 40 50
0

1

2

3

4

Timely result

Idem:

Overload

Throughput [1,000 reqs/s]

L
a
t
e
n
c
y
[
m
s
]

Paxos

BFT-SMaRt

Idem𝑛𝑜𝑃𝑅

Idem

Figure 6: Performance comparison under increasing load.

on BFT-SMaRt, we are able to study how a production-grade imple-
mentation reacts to overload. We configure all four systems (e.g.,
batch size, checkpoint intervals) beneficial to the corresponding
protocol to allow for a fair comparison.

7.1 Experimental Environment

We conduct our experiments using the YCSB [25] benchmark with
an update-heavy workload. The application is a key-value store
and thus represents a typical example of a time-sensitive system
that is either directly or indirectly used as replicated service in our
target use cases such as the ones described in Section 2.3. Replicas
run on a cluster of three servers (Intel Xeon CPU E3-1275 v5 @ 3,60
GHz, 16GB RAM), while clients are hosted on a separate server and
are configured to submit requests in a closed loop.

For Idem, clients apply the optimistic approach described in Sec-
tion 5.3 with a timeout of 5ms, meaning that after having received
𝑛− 𝑓 rejections, a client waits up to 5ms in the hope of a reply before
abandoning its request. Following the established technique to man-
age load in distributed client-server systems [15, 71], after having
aborted an operation due to rejection, and thereby having learned
that the replicated service is currently under high load, a client
issues the next operation after a random delay (50–100ms). For
deciding on rejects, Idem replicas rely on a default reject threshold
of 𝑅𝑇=50 and perform active queue management (see Section 5.1)
with time slices of 2s. Further, replicas in Idem forward a request if
it is not executed within 10ms after sending the initial Reqire. The
evaluation results each represent an average of three runs and error
bars show the standard deviation in latency across the duration of
a run. Individual points in the graphs represent the load pressure
on the system, caused by an increase in closed-loop clients.

7.2 Performance under Increasing Request Load

Our first experiment compares the performance of Idem, Paxos
and BFT-SMaRt under an increasing request load. As shown in
Figure 6, Paxos and BFT-SMaRt perform poorly under overload. As
soon as these systems reach their respective maximum throughput,
the latency drastically escalates when the load is further increased.
In contrast, for Idem collaborative overload prevention effectively
limits the latency of the system. Up until the point the rejection
mechanism takes action, the system behaves the same as traditional
protocols. But as soon as there are more requests in the system than
the reject threshold allows (at around 43k requests/s), the latency
no longer increases but plateaus at around 1.3ms.

0

1

2

3

4

1x 2x 4x 6x 8x

Client-Load Factor

T
h
r
o
u
g
h
p
u
t
[
1
,0
0
0
r
e
q
s
/
s
]

% Accepts Reject Throughput

% Rejects Reject Latency

0

0.5

1

1.5

2

100%

L
a
t
e
n
c
y
[
m
s
]

Figure 7: Reject behavior in Idem under increasing load.

We strained all systems with up to four times their maximum
throughput, resulting in systems without active rejection to reach
more than 600% of their normal latency; additional load would
extend the degradation even further. A comparison between Idem
and Idem𝑛𝑜𝑃𝑅 shows that enabling the rejection mechanism only
has a negligible impact on the unsaturated system’s performance;
the two curves only diverge after the rejection threshold is reached
and the rejection mechanism becomes effective. More importantly,
it confirms that our collaborative overload-prevention mechanism
is what effectively minimizes overload-induced tail latency in Idem.

7.3 Reject Behavior

The reason that Idem is able to avoid overload-induced tail latency
is the usage of rejection to actively prevent an overload state. Since
the rejection notifications are also an important means for the client
to assess the current state of the system, we now investigate their
behavior in detail.

The results shown in Figure 7 represent the throughput and
latency for rejects in Idem for different degrees of overload. As a
metric for overload, we use the number of active clients that are
concurrently interacting with the replicated service. Note that in
an overload situation this does not necessarily scale linearly to the
number of requests, since Idem clients actively try to regulate the
pressure (i.e., request load) on the system (see Section 7.1). For our
experiments, we determine 50 clients as the baseline (client-load
factor 1x), since this is the point where the system reaches satura-
tion and latency starts increasing disproportionally compared to the
increase in throughput. With our clients running in a closed loop,
they issue requests at high frequency, achieving a throughput of 43k
requests/s. Consequently, 50 benchmark clients are representative
of thousands or tens of thousands of real-world clients.

The results show that the rejects also have a stable latency of
around 1.3–1.5ms, even with an overload of up to 8 times the base-
line client load. This is in the same range as a timely result and
hence allows a client to quickly switch to its fallback computation
once it learns that the system is busy.

The high standard deviation of reject latency is a side effect of
the fact that clients pursue the optimistic approach of additionally
waiting up to 5ms after receiving 𝑛 − 𝑓 rejects in an effort to obtain
a late reply. As the latency represents the time between the client
sending its request and either getting a result or abandoning the
operation, this timeout is included in the latency if only some
replicas reject a request while others accept it. The comparably low
average latency shows that this does not happen often.



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

0 10 20 30 40 50
0

1

2

3

4

MaxOverload

Idem (𝑅𝑇 =20):

Throughput [1,000 reqs/s]

L
a
t
e
n
c
y
[
m
s
]

Idem𝑛𝑜𝑃𝑅

Idem (𝑅𝑇 =75)

Idem (𝑅𝑇 =50)

Idem (𝑅𝑇 =20)

Figure 8: Variation of reject threshold in Idem.

Also, even for a severe overload, the amount of rejects compared
to the total throughput is very low (only around 10% for a client-
load factor of 8) and in moderate overload scenarios even less than
3%. This is caused by the clients’ behavior of delaying their subse-
quent requests when they receive a reject and know the system is
overloaded. The higher the client-load factor is, the more clients
behave this way, thereby regulating the overall pressure on the
system and leading to a slower increase of rejects.

7.4 Rejection Overhead

In our next experiment, we evaluate the overhead of Idem’s re-
jection mechanism by comparing Idem with Idem𝑛𝑜𝑃𝑅 in terms of
their network usage. For this purpose, we issue a fixed number
of 1,000,000 requests to both systems under different load scenar-
ios (client-load factor 0.5x, 1x and 4x) and monitor the total net-
work traffic both of clients and between replicas. A request is only
counted as completed upon a successful response. Rejected and
therefore aborted requests in Idem do not count towards the total
request number and need to be resubmitted.

The results in Table 1 show clearly that Idem’s rejection mech-
anism has a negligible impact on the total network traffic of the
system. With a variation between individual measurements of the
same setup of around 2-3%, there is no visible difference between
Idem and Idem𝑛𝑜𝑃𝑅 . This highlights the effectiveness of our mea-
sures to minimize the rejection mechanism’s overhead (especially
by reducing the number of forwarded requests and the caching of
recently rejected requests; see Section 5.2) and emphasizes the low
number of additional rejects even in high overload scenarios.

7.5 Variation of Reject Threshold

As shown in Section 7.2, the reject mechanism has a significant
impact on Idem’s behavior. The defining factor here is the reject
threshold 𝑅𝑇 , so how many concurrent active requests each replica
allows before further ones are rejected. This directly impacts the
possible maximum throughput of the system. Hence, in our next ex-
periment, we investigate the impact of adjusting the reject threshold

Medium Load High Load Overload

Idem𝑛𝑜𝑃𝑅 3.26GB 3.15GB 3.19GB
Idem 3.24GB 3.08GB 3.19GB

Table 1: Overhead of Idem’s rejection mechanism.

0

10

20

30

40

50

1x 2x 4x 6x 8x

Client-Load Factor

T
h
r
o
u
g
h
p
u
t
[
1
,0
0
0
r
e
q
s
/
s
]

(a) Misconfigured threshold

1x 2x 6x 10x 14x

Client-Load Factor

Throughput

Latency

0

1

2

3

L
a
t
e
n
c
y
[
m
s
]

(b) Extreme load

Figure 9: Idem’s behavior under disruptive conditions.

on the system’s performance. Figure 8 shows how the throughput
and latency change depending on different reject thresholds.

The two reject threshold settings of 𝑅𝑇=50 and 𝑅𝑇=75 both pro-
vide a good balance between low latency and achieved throughput.
𝑅𝑇=50 is more conservative and set just below what the system
could potentially handle. This results in a slightly lower throughput
of 43k requests/s, but achieves a stable latency of less than 1.3ms.
𝑅𝑇=75, on the other hand, sets the threshold somewhat above the
overload edge of the system. This allows it to offer a higher through-
put of approximately 46k requests/s at a slightly higher latency (up
to 1.6ms), which nevertheless shows the desired plateau effect.

Additionally, we repeat the experiment with an artificially low
reject threshold of 20, which is considerably below what the system
can handle. Such a configuration affects the achievable throughput,
which is restricted to only 32k requests/s, around 65% of the possible
maximum throughput. However, it provides a very low and stable
latency: even for severe overload situations, the latency is constantly
close to the minimum latency of the system and never above 0.6ms.

In summary, the reject threshold directly impacts the effective-
ness of the proactive rejection mechanism. Note that even though
the configurations exhibit different behaviors in an overload sit-
uation or when their respective reject threshold is reached, they
all have nearly identical performance below this threshold. Hence,
when the underlying base performance of the system is known (e.g.,
by benchmarking the system with a disabled rejection mechanism),
it is possible to configure the reject threshold to target a desired
latency and throughput on that graph.

7.6 Idem under Disruptive Conditions

As the previous sections have shown, a well-configured Idem can
offer a stable low latency even when the system suffers from an
overload situation. In this section, we investigate how an inappro-
priate usage of Idem does affect this behavior. First, wemisconfigure
Idem with an unreasonably high reject threshold, and afterwards
we evaluate the impact of extreme overloads up to 14 times as high
as our baseline client load.

Misconfiguration. In the first part of this experiment, we set
the reject threshold to 100, which is way above what the system
can handle and means that the system reaches an overload state
before the active rejection mechanism can prevent it. The results
shown in Figure 9a represent the average throughput and latency
for different stages of overload, again represented by the client-load



Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0

1

2

3

4

5
Result Throughput/Latency

Leader crash

0

1

2

3

4

5

−10 0 10
0

1

2

3

4

5

Follower crash

Time [s]

T
h
r
o
u
g
h
p
u
t
[
1
0
.0
0
0
r
e
q
/
s
]

0

1

2

3

4

5

(a) Normal load

0

1

2

3

4

5

−10 0 10

Follower crash

Time [s]

Throughput

Latency

0

1

2

3

4

5

(b) Overload

0

1

2

3

4

5

−10 0 10
Time [s]

0

1

2

3

4

5

L
a
t
e
n
c
y
[
m
s
]

(c) Overload without AQM

0

10

20

30

40

50
Reject Latency

Leader crash

−10 0 10
0

10

20

30

40

50

Follower crash

Time [s]

L
a
t
e
n
c
y
[
m
s
]

Paxos-LBR

Idem

(d) Comparison with LBR

Figure 10: Impact of a replica crash on Idem. In all measurements, a respective replica was crashed after 250s of service.

factor as defined in Section 7.3. As in previous experiments with
Idem, the latency rises in an overload scenario and this upward
trend is only slowed at around 2ms, which is when the rejection
mechanism is activated. However, the mechanism is still able to
considerably slow the increase in latency, which is nearly constant
between 4x and 6x of the client-load factor. Only after this already
severe overload, the latency again starts to slowly increase. This
is likely caused by the fact that, with the system already being in
an overload state just by the immense number of requests, replicas
are no longer able to withstand the increasing number of rejects
without it having an impact on performance. Our experiment shows
how important it is to consider the maximum throughput of the
system when configuring the reject threshold. However, Idem is
nevertheless able to prevent the immediate explosion in latency
shown by state-of-the-art protocols at such overload.

Extreme Load. The second part of this experiment puts Idem
under extreme overload, with up to 14 times our defined client-load
baseline. The results are shown in Figure 9b. For a medium overload
of up to a client-load factor of 6, the throughput stays relatively
stable and latency slightly increases to 1.3ms, which is only around
0.4ms higher than the latency just before the rejection mechanism
takes action. After that, the system behavior shifts and both the
throughput and latency decrease with more load. At 14 times the
client load, the system has a reduced throughput of 24k requests/s
(55% of its highest throughput), but offers an average latency of only
0.9ms. We reason this decrease in throughput is caused due to the
vast majority of clients facing mostly rejects and thus delaying their
subsequent requests to relieve the system. Overall, the experiment
shows that Idem can easily tolerate even extreme overload bursts
and still offer a stable latency.

7.7 Impact of Replica Failure

The next experiments investigate the impact of replica failures on
Idem, both under normal load and when it is in an overload situa-
tion. In this context, we inspect replica crashes for an additional
system: Idem𝑛𝑜𝐴𝑄𝑀 is a variant of Idem without active queue man-
agement (see Section 5.1), meaning without measures to provide
a more unanimous decision on rejects. During the experiments,
we run each system under a constant load and deliberately crash
a leader or follower after a certain amount of time. We conduct

our experiments with two load configurations: one with 50 clients,
which represents a normal load and is just before the reject mecha-
nism takes action, and one with 100 clients, which is already past
the overload threshold of the systems.

Leader Crash. Let us first inspect the impact of a leader crash on
Idem and Idem𝑛𝑜𝐴𝑄𝑀 as shown in the top row of Figures 10a to
10c. After the leader has crashed, Idem needs to complete a view
change before it can process requests again. This takes around 1.5
seconds, which mostly consists of the timeout before a view change
is triggered. In the overload scenario, Idem shows a slight decrease
in throughput of around 9% and an increase in latency of around
45% after the view change. Note that the latency is still stable below
1.7ms. This performance decrease is caused by the fact that the
leader in Idem waits for 𝑓 + 1 Reqires before proposing a request.
As there are double the amount of concurrent requests in the system
than the request threshold allows, the 𝑓 +1 remaining replicas have a
high chance of accepting a different subset of requests that will then
only be agreed after the forward timeout of 10ms. When comparing
to Idem𝑛𝑜𝐴𝑄𝑀 , which shows a high instability in both throughput
and latency with only 𝑓 + 1 replicas, it is obvious that the active
queue management succeeds to effectively mitigate this problem.

Follower Crash. When crashing a follower replica (as shown
in the bottom row of Figures 10a to 10c), there is no need for a
view change and no complete interruption in service for either
system. After the follower crash, both Idem and Idem𝑛𝑜𝐴𝑄𝑀 display
a similar behavior as discussed above, as there are again only 𝑓 + 1
remaining replicas in the system.

7.8 Comparison with Leader-based Rejection

In our final experiment we compare Idemwith Paxos𝐿𝐵𝑅 , the Paxos
variant from Section 3.3 that uses leader-based rejection. Both ap-
proaches successfully prevent an overload situation and sustain a
low reply latency, which is why we focus on the reject latency for
this experiment. Figure 10d shows the reject latency of both systems
when a leader or follower fails during an overload situation.

In case of a follower crash, Paxos𝐿𝐵𝑅 is not affected, resulting in
no change in the reject latency. Idem shows a slight increase in reject
latency after the crash, but also offers a continuous rejection. This
latency increase is caused by the optimistic client implementation,



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

which leads clients to wait a short time (∼5ms) after 𝑛 − 𝑓 rejects
for either a result or, more likely in a high-overload scenario, 𝑛
rejects. As the latter cannot be fulfilled with the missing replica, it
is more likely for a client to wait the full timeout before abandoning
the request, leading to an increase in measured reject latency.

A more distinct difference between Paxos𝐿𝐵𝑅 and Idem can be
seen when the system experiences the crash of the current leader.
As the rejection in Paxos𝐿𝐵𝑅 depends solely on the leader, it cannot
offer any rejects after the crash until the view change is completed
and the client has identified the new leader. As clients in Paxos ini-
tially only send a request to the presumed leader, this takes multiple
client-side timeouts as well as the time for the view change to be
effective, resulting in a reject downtime of around 4 seconds. Idem,
on the other hand, is able to continuously provide the client with
rejects even during a leader crash and view change, demonstrating
the advantage of collaborative overload prevention.

8 Related Work

The topic of correct provisioning and overload prevention under
changing operative conditions is widely researched [1, 35] and has
recently gained even more relevance with the categorization of
metastable failures [14, 39], a failure state of permanent overload
with very low goodput. Auto-scaling [37, 51] allows to dynamically
adjust the number of resources to match the current load, but is
often designed for elastic applications in the cloud and not easily
applicable to state-machine replication protocols as it would require
configuration changes. Load-balancing [17, 23, 42, 61, 72] works by
trying to fairly distribute load among multiple nodes, decreasing
the risk of tail latency caused by the contention on individual nodes.
Another option is to add admission control [9, 10, 22, 32, 71] and
simply block or delay requests when the system reaches an overload
situation. In contrast to proactive rejection, this does not provide
the client with any means to react other than waiting for a timeout.

In the context of leader-based crash-tolerant state-machine repli-
cation exist numerous works on improving the effectiveness and
performance of a system [19, 27, 30, 34, 38, 45, 48, 57]. Copilot [55]
aims to sustain normal-case latency despite the slowdown of one
replica by adding a “copilot” to the leader, thereby offering redun-
dancy to the leader role. S-Paxos [12] separates the replication of
commands from the agreement process to enable an id-based order-
ing. PigPaxos [20] alleviates a bottleneck in the leader by introduc-
ing “relay nodes” taking over part of the leader’s communication.
While such measures reduce the overload or slowdown potential at
the leader, they cannot avoid overload-induced tail latency when
the system as a whole is under pressure. SwiftPaxos [60] targets
contention-based latency in a geo-replicated setting by allowing
replicas to dynamically switch between a fast and slow path based
on a request’s dependencies. This allows the system to achieve an
optimal latency both during low and high system load. However, it
is not designed to prevent or mitigate overload. To our knowledge,
there is no work targeting the prevention of overload-induced tail
latency in state-machine replication protocols at the system level
and to the extent we present with Idem in this paper.

For replicated systems, rotating-leader or multi-leader proto-
cols [4, 5, 7, 33, 53, 54, 70, 73, 74] aim at increasing the scalabil-
ity and reliability of state-machine replication protocols by allow-

ing all replicas to act as command leaders. While removing the
bottleneck of a single stable leader, this cannot protect a system
when the overload affects all replicas equally, as is the case for
our target applications. However, we expect that the concept of
collaborative overload-prevention can be integrated into suchmulti-
leader protocols with little adjustments.

Abortable consensus [8] is a generic technique to dynamically
switch the protocol used by a group of replicas to ensure consistency.
While also potentially declining the execution of requests, in con-
trast to our approach, it is not suitable to prevent overload due to the
abortion of operations being limited to (rare) reconfiguration events.

Similar to crash-tolerant protocols, Byzantine fault-tolerant repli-
cation protocols [6, 11, 18] also suffer from overload induced tail la-
tency. Protocols such as Omada [31], Spinning [68] or Mir-BFT [66]
already provide measures to reduce the load at the leader, how-
ever, their main goal is to restrict the capability of faulty actors
(i.e., clients or the leader replica) to impede the system’s perfor-
mance, and they cannot prevent overload at a system level induced
by legitimate requests. While Idem is currently designed for a crash
fault-tolerant setting, we believe it is possible to adapt the approach
to the Byzantine fault model. In this context, the concept of micro
replication [28] may help to provide collaborative overload preven-
tion in a modular and consensus-algorithm-independent way.

As mentioned in Section 3.2, overload is not the only source of
tail latency in distributed systems [26, 49]. Other factors such as
network contention, unfavorable scheduling or garbage collection
can also increase the response time of individual requests, even
independent of the current load. Existing approaches tackle these
problems via considerate scheduling [58, 59], special hardware [41]
or programming and communication models [46], or adapting the
language runtime [52]. As a protocol-level approach, proactive
rejection is independent of the actual implementation and thus can
be combined with many of these existing solutions.

9 Conclusion

Idem uses collaborative overload prevention to effectively reduce
overload-induced tail latency via proactive rejection. We showed
that proactive rejection enables Idem to sustain adequate through-
put and stable latency in severe overload situations. Furthermore,
the collaborative approach allows Idem to provide its clients with
continuous stable reject latency even during replica crashes.

Acknowledgments

We thank the anonymous reviewers as well as our shepherd, Matej
Pavlovic, for their invaluable feedback. This work was partially
funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 446811880, 541017677.

References

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. 2002. Performance Guar-
antees for Web Server End-Systems: A Control-Theoretical Approach. IEEE
Transactions on Parallel and Distributed Systems 13, 1 (2002), 80–96.

[2] Richelle Adams. 2013. Active Queue Management: A Survey. IEEE Communica-
tions Surveys & Tutorials 15, 3 (2013), 1425–1476.

[3] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting the
Performance of Strongly-Consistent Replication Protocols. In Proceedings of the
2019 International Conference on Management of Data (SIGMOD ’19). 1696–1710.



Targeting Tail Latency in Replicated Systems with Proactive Rejection MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

[4] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2019.
WPaxos: Wide area network flexible consensus. IEEE Transactions on Parallel
and Distributed Systems 31, 1 (2019), 211–223.

[5] Yair Amir, Louise E. Moser, Peter M. Melliar-Smith, Deborah A. Agarwal, and
Paul Ciarfella. 1995. The Totem Single-Ring Ordering and Membership Protocol.
ACM Transactions on Computer Systems 13, 4 (1995), 311–342.

[6] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi,
Boon Thau Loo, and Mohammad Sadoghi. 2024. The Bedrock of Byzantine Fault
Tolerance: A Unified Platform for BFT Protocols Analysis, Implementation, and
Experimentation. In Proceedings of the 21st Symposium on Networked Systems
Design and Implementation (NSDI ’24). 371–400.

[7] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy Ravin-
dran. 2017. Speeding up Consensus by Chasing Fast Decisions. In Proceedings of
the 47th International Conference on Dependable Systems and Networks (DSN ’17).
49–60.

[8] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. 2015. The Next 700 BFT Protocols. ACMTransactions on Computer
Systems 32, 4, Article 12 (2015).

[9] Novella Bartolini, Giancarlo Bongiovanni, and Simone Silvestri. 2007. Distributed
Server Selection and Admission Control in Replicated Web Systems. In Proceed-
ings of the 6th International Symposium on Parallel and Distributed Computing (IS-
PDC ’07). Article 31.

[10] Novella Bartolini, Giancarlo Bongiovanni, and Simone Silvestri. 2009. Self-*
Through Self-Learning: Overload Control for DistributedWeb Systems. Computer
Networks 53, 5 (2009), 727–743.

[11] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State Machine
Replication for the Masses with BFT-SMaRt. In Proceedings of the 44th Interna-
tional Conference on Dependable Systems and Networks (DSN ’14). 355–362.

[12] Martin Biely, Zarko Milosevic, Nuno Santos, and André Schiper. 2012. S-Paxos:
Offloading the Leader for High Throughput State Machine Replication. In Proceed-
ings of the 31st Symposium on Reliable Distributed Systems (SRDS ’12). 111–120.

[13] Christof Brandauer, Gianluca Iannaccone, Christophe Diot, Thomas Ziegler, Serge
Fdida, and Martin May. 2001. Comparison of Tail Drop and Active Queue Manage-
ment Performance for Bulk-Data and Web-like Internet Traffic. In Proceedings of
the 6th IEEE Symposium on Computers and Communications (ISCC ’01). 122–129.

[14] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu. 2021.
Metastable Failures in Distributed Systems. In Proceedings of the 18th Workshop
on Hot Topics in Operating Systems (HotOS ’21). 221–227.

[15] Marc Brooker. 2019. Timeouts, Retries, and Backoff with Jitter. The Amazon
Builders’ Library (2019).

[16] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. 2011. Introduction to
Reliable and Secure Distributed Programming (2nd Edition). Springer Publishing
Company, Inc.

[17] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. 1999. Dynamic Load
Balancing on Web-Server Systems. IEEE Internet Computing 3, 3 (1999), 28–39.

[18] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI ’99). 173–186.

[19] Tarcisio Ceolin, Fernando Dotti, and Fernando Pedone. 2020. Parallel State
Machine Replication from Generalized Consensus. In Proceedings of the 39th
Symposium on Reliable Distributed Systems (SRDS ’20). 133–142.

[20] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. PigPaxos:
Devouring the Communication Bottlenecks in Distributed Consensus. In Proceed-
ings of the 2021 International Conference on Management of Data (SIGMOD ’21).
235–247.

[21] Liuhua Chen and Haiying Shen. 2016. Towards Resource-Efficient Cloud Systems:
Avoiding Over-Provisioning in Demand-Prediction Based Resource Provisioning.
In Proceedings of the 2016 International Conference on Big Data (BigData ’16).
184–193.

[22] Xuan Chen and John Heidemann. 2005. Flash Crowd Mitigation via Adaptive
Admission Control Based on Application-Level Observations. ACM Transactions
on Internet Technology 5 (2005), 532–569.

[23] Timothy C.K. Chou and Jacob A. Abraham. 1982. Load Balancing in Distributed
Systems. IEEE Transactions on Software Engineering SE-8, 4 (1982), 401–412.

[24] Kai Lai Chung and Paul Erdös. 1952. On the Application of the Borel-Cantelli
Lemma. Trans. Amer. Math. Soc. 72, 1 (1952), 179–186.

[25] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st Symposium on Cloud Computing (SoCC ’10). 143–154.

[26] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (2013), 74–80.

[27] Christian Deyerl and Tobias Distler. 2019. In Search of a Scalable Raft-based
Replication Architecture. In Proceedings of the 6th Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC ’19). 1–7.

[28] Tobias Distler, Michael Eischer, and Laura Lawniczak. 2023. Micro Replication.
In Proceedings of the 53rd International Conference on Dependable Systems and
Networks (DSN ’23). 123–137.

[29] Tobias Distler and Rüdiger Kapitza. 2011. Increasing Performance in Byzantine
Fault-Tolerant Systems with On-Demand Replica Consistency. In Proceedings of
the 6th European Conference on Computer Systems (EuroSys ’11). 91–105.

[30] Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri. 2010. HP:
Hybrid Paxos forWANs. In Proceedings of the 8th European Dependable Computing
Conference (EDCC ’10). 117–126.

[31] Michael Eischer and Tobias Distler. 2017. Scalable Byzantine Fault Tolerance on
Heterogeneous Servers. In Proceedings of the 13th EuropeanDependable Computing
Conference (EDCC ’17). 34–41.

[32] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel. 2004. A
Method for Transparent Admission Control and Request Scheduling in E-
Commerce Web Sites. In Proceedings of the 13th International Conference on
World Wide Web (WWW’04). 276–286.

[33] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021. Efficient
Replication via Timestamp Stability. In Proceedings of the 16th European Confer-
ence on Computer Systems (EuroSys ’21). 178–193.

[34] Ian Aragon Escobar, Eduardo Alchieri, Fernando Luís Dotti, and Fernando Pedone.
2019. Boosting Concurrency in Parallel State Machine Replication. In Proceedings
of the 20th International Middleware Conference (Middleware ’19). 228–240.

[35] Stephane Genaud and Julien Gossa. 2011. Cost-Wait Trade-Offs in Client-Side
Resource Provisioning with Elastic Clouds. In Proceedings of the 4th International
Conference on Cloud Computing (CLOUD ’11). 1–8.

[36] Antonio G. C. Gonzalez, Marcos V. S. Alves, Gustavo S. Viana, Lilian K. Carvalho,
and João C. Basilio. 2018. Supervisory Control-Based Navigation Architecture: A
New Framework for Autonomous Robots in Industry 4.0 Environments. IEEE
Transactions on Industrial Informatics 14, 4 (2018), 1732–1743.

[37] Jordi Guitart, Jordi Torres, and Eduard Ayguadé. 2010. A Survey on Performance
Management for Internet Applications. Concurrency and Computation: Practice
and Experience 22, 1 (2010), 68–106.

[38] Heidi Howard, Aleksey Charapko, and Richard Mortier. 2021. Fast Flexible
Paxos: Relaxing Quorum Intersection for Fast Paxos. In Proceedings of the 22nd
International Conference on Distributed Computing and Networking (ICDCN ’21).
186–190.

[39] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna, Salman
Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
2022. Metastable Failures in the Wild. In Proceedings of the 16th Symposium on
Operating Systems Design and Implementation (OSDI ’22). 73–90.

[40] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the 2010 USENIX Annual Technical Conference (USENIX ATC ’10). 145–158.

[41] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo. 2017. Reinforcement Learning-
Assisted Garbage Collection to Mitigate Long-Tail Latency in SSD. ACM Transac-
tions on Embedded Computing Systems 16, 5s (2017), 1–20.

[42] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. 2012. Chronos: Predictable Low Latency for Data Center Applications.
In Proceedings of the 3rd Symposium on Cloud Computing (SoCC ’12). 1–14.

[43] Jonathan Kirsch and Yair Amir. 2008. Paxos for System Builders: An Overview.
In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Mid-
dleware (LADIS ’08). 14–18.

[44] Leslie Lamport. 1998. The Part-time Parliament. ACM Transactions on Computer
Systems 16, 2 (1998), 133–169.

[45] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (2006), 79–103.
[46] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. Enabling

Low Tail Latency on Multicore Key-Value Stores. 13, 7 (2020), 1091–1104.
[47] Bijun Li, Wenbo Xu, Muhammad Zeeshan Abid, Tobias Distler, and Rüdiger

Kapitza. 2016. SAREK: Optimistic Parallel Ordering in Byzantine Fault Tolerance.
In Proceedings of the 12th European Dependable Computing Conference (EDCC ’16).
77–88.

[48] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16). 467–483.

[49] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales
of the Tail: Hardware, OS, and Application-level Sources of Tail Latency. In
Proceedings of the 5th Symposium on Cloud Computing (SoCC ’14). 1–14.

[50] You Li and Javier Ibanez-Guzman. 2020. Lidar for Autonomous Driving: The
Principles, Challenges, and Trends for Automotive Lidar and Perception Systems.
IEEE Signal Processing Magazine 37, 4 (2020), 50–61.

[51] Tania Lorido-Botrán, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A Review of
Auto-Scaling Techniques for Elastic Applications in Cloud Environments. Journal
of Grid Computing 12 (2014), 1572–9184.

[52] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015. Trash
Day: Coordinating Garbage Collection in Distributed Systems. In Proceedings of
the 15th Workshop on Hot Topics in Operating Systems (HotOS ’15).

[53] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated StateMachines forWANs. In Proceedings of the 8th Symposium
on Operating Systems Design and Implementation (OSDI ’08). 369–384.



MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Laura Lawniczak and Tobias Distler

[54] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the 24th Symposium on
Operating Systems Principles (SOSP ’13). 358–372.

[55] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. 2020. Tolerating Slowdowns in
Replicated State Machines using Copilots. In Proceedings of the 14th Symposium
on Operating Systems Design and Implementation (OSDI ’20). 583–598.

[56] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Annual Technical Con-
ference (USENIX ATC ’14). 305–320.

[57] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony
in Data Center Networks. In Proceedings of the 12th Symposium on Networked
Systems Design and Implementation (NSDI ’15). 43–57.

[58] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17). 325–341.

[59] Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite.
2017. Rein: Taming Tail Latency in Key-Value Stores via Multiget Scheduling. In
Proceedings of the 12th European Conference on Computer Systems (EuroSys ’17).
95–110.

[60] Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. 2024. SwiftPaxos: Fast Geo-
Replicated State Machines. In Proceedings of the 21st Symposium on Networked
Systems Design and Implementation (NSDI ’24). 345–369.

[61] Aya A. Salah Farrag, Safia Abbas Mahmoud, and El Sayed M. El-Horbaty. 2015.
Intelligent Cloud Algorithms for Load Balancing Problems: A Survey. In Proceed-
ings of the 7th International Conference on Intelligent Computing and Information
Systems (ICICIS ’15). 210–216.

[62] Rainer Schiekofer, Johannes Behl, and Tobias Distler. 2017. Agora: A Dependable
High-Performance Coordination Service for Multi-Cores. In Proceedings of the
47th International Conference on Dependable Systems and Networks (DSN ’17).
333–344.

[63] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990), 299–319.

[64] Haiying Shen and Liuhua Chen. 2018. Resource Demand Misalignment: An
Important Factor to Consider for Reducing Resource Over-Provisioning in Cloud
Datacenters. IEEE/ACM Transactions on Networking 26, 3 (2018), 1207–1221.

[65] Vason P. Srini. 2006. A Vision for Supporting Autonomous Navigation in Urban
Environments. Computer 39, 12 (2006), 68–77.

[66] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić.
2022. Mir-BFT: Scalable and Robust BFT for Decentralized Networks. Journal of
Systems Research 2, 1 (2022).

[67] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. 2013. Consistency-based
Service Level Agreements for Cloud Storage. In Proceedings of the 24th Symposium
on Operating Systems Principles (SOSP ’13). 309–324.

[68] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk
Lung. 2009. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning
Primary. In Proceedings of the 28th Symposium on Reliable Distributed Sys-
tems (SRDS ’09). IEEE, 135–144.

[69] Alf Inge Wang, Eivind Sorteberg, Martin Jarrett, and Anne Marte Hjemas. 2008.
Issues Related to Mobile Multiplayer Real-time Games over Wireless Networks.
In Proceedings of the 2008 International Symposium on Collaborative Technologies
and Systems (CTS ’08). 237–246.

[70] Weilue Wang, Yujuan Tan, Changze Wu, Duo Liu, Yu Wu, Longpan Luo, and
Xianzhang Chen. 2022. Towards Highly-Concurrent Leaderless State Machine
Replication for Distributed Systems. Journal of Systems Architecture 127, Article
102516 (2022).

[71] Matt Welsh and David Culler. 2003. Adaptive Overload Control for Busy Internet
Servers. In Proceedings of the 4th USENIX Symposium on Internet Technologies and
Systems (USITS ’03).

[72] BartekWydrowski, Robert Kleinberg, StephenM Rumble, and Aaron Archer. 2024.
Load Is Not What You Should Balance: Introducing Prequal. In Proceedings of
the 21st Symposium on Networked Systems Design and Implementation (NSDI ’24).
1285–1299.

[73] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In Pro-
ceedings of the 38th Symposium on Principles of Distributed Computing (PODC ’19).
347–356.

[74] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018. SD-
Paxos: Building Efficient Semi-Decentralized Geo-replicated State Machines. In
Proceedings of the 9th Symposium on Cloud Computing (SoCC ’18). 68–81.


	Abstract
	1 Introduction
	2 System Model
	2.1 Replicated Service at the Core
	2.2 Semi-Autonomous Clients at the Edge
	2.3 Example Applications

	3 Problem Statement
	3.1 State of the Art
	3.2 Challenge: Improving the Bad Case
	3.3 Why Not Simply Let the Leader Reject?
	3.4 Requirements

	4 Idem
	4.1 Collaborative Overload Prevention
	4.2 Protocol Overview
	4.3 Request Handling
	4.4 Checkpointing and Garbage Collection
	4.5 View Change

	5 Overload-Prevention Details
	5.1 Acceptance Test
	5.2 Forwarding Mechanism
	5.3 Client-Side Semantics

	6 Correctness
	6.1 Implicit Garbage Collection
	6.2 Server-Side Liveness
	6.3 Client-Side Liveness

	7 Evaluation
	7.1 Experimental Environment
	7.2 Performance under Increasing Request Load
	7.3 Reject Behavior
	7.4 Rejection Overhead
	7.5 Variation of Reject Threshold
	7.6 Idem under Disruptive Conditions
	7.7 Impact of Replica Failure
	7.8 Comparison with Leader-based Rejection

	8 Related Work
	9 Conclusion
	References

