
WoCA: Avoiding Intermittent Execution in Embedded
Systems by Worst-Case Analyses with Device States

Phillip Raffeck
FAU Erlangen-Nürnberg

Erlangen, Germany

Johannes Maier
FAU Erlangen-Nürnberg

Erlangen, Germany

Peter Wägemann
FAU Erlangen-Nürnberg

Erlangen, Germany

Abstract
Embedded systems with intermittent energy supply can rev-
olutionize the Internet of Things, as they are energy self-
sufficient due to energy harvesting. Existing intermittent-
computing approaches, running directly from non-volatile
memory, allow incremental progress of machine-code in-
structions. However, this progress does not apply to many
devices (e.g., transceivers) having transactional (i.e., all-or-
nothing) semantics: Power failures during transactions lead
to starvation when frequently experiencing failed attempts.
We introduce WoCA, an approach that exploits static,

whole-systemworst-case analysis for device-driven intermit-
tent computing. With the currently available energy, WoCA
enables transactional device uses and guarantees forward
progress. WoCA’s novel static analysis tracks program-path–
sensitive device states and transitions to yield energy bounds.
With these bounds, WoCA’s runtime decides when to safely
execute code between checkpoints. Using WoCA’s hardware
platform, we validate that WoCA makes more efficient use
of available energy compared to worst-case–agnostic ap-
proaches, while also giving runtime guarantees.

CCS Concepts: •Computer systems organization→ Em-
bedded and cyber-physical systems.

Keywords: static analysis, intermittent systems, worst-case
energy consumption (WCEC), energy constraints, devices
ACM Reference Format:
Phillip Raffeck, JohannesMaier, and PeterWägemann. 2024.WoCA:
Avoiding Intermittent Execution in Embedded Systems by Worst-
Case Analyses with Device States. In Proceedings of the 25th ACM

SIGPLAN/SIGBED International Conference on Languages, Compil-

ers, and Tools for Embedded Systems (LCTES ’24), June 24, 2024,

Copenhagen, Denmark. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3652032.3657569

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’24, June 24, 2024, Copenhagen, Denmark

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0616-5/24/06
https://doi.org/10.1145/3652032.3657569

1 Introduction
Energy-Self-Sufficient IoT. According to ARM’s outlook,
the number of their produced Internet-of-Things (IoT) sys-
tems is estimated to be one trillionwithin the next decade [40].
The smallest of these systems have no dedicated power sup-
ply because they harvest their energy from the environ-
ment (e.g., solar cells). Numerous researchers agreed that
among the central challenges for the 2020s are such energy-
independent systems [1]. While energy-self-sufficient sys-
tems have the benefit of avoiding battery replacement, they
come with the central challenge of an unstable power sup-
ply. As a consequence of this supply and the limited energy
storage, these systems face intermittent operation [27].

Intermittent Operation. To provide reliable execution, in-
termittency approaches have to address (1) forward progress
and (2) memory consistency: Checkpointing the system is
essential to resume execution safely after a power failure [4,
28, 49]. Once sufficient energy is harvested, the system re-
stores from non-volatile memory and continues operation
until reaching subsequent checkpoints. Re-executing from a
checkpoint when data was written to non-volatile memory
prior to the power failure can invalidate memory consis-
tency [28]. Existing intermittency approaches avoid periodic
checkpointing and ensure memory consistency by means of
just-in-time (JIT) checkpointing [4, 6, 21, 28]: The hardware
support for charge assessment of such approaches releases
an exception prior to facing a power loss, which then leads to
a checkpoint. While existing approaches guarantee memory
consistency, they are not able to ensure that device-driven
systems make forward progress. Approaches exist to reduce
the energy wasted by re-executing code [52]. However, at
worst, these approaches continuously waste energy without
reaching a subsequent checkpoint, suffering from starvation.

Worst-Case Analysis. Recent work identifies correctness
guarantees as a crucial research direction for intermittent
systems [3]. We argue that giving runtime guarantees is
only possible by capturing the system’s dynamic behav-
ior through static analysis [13]. In real-time systems, static
analysis techniques for determining the worst-case execu-

tion time (WCET) [48] are the only means for providing safe
execution within time budgets. In contrast, dynamic profil-
ing techniques are incapable of providing runtime guaran-
tees. For energy consumption, researchers have been making
progress over the last decades in determining upper bounds
for the worst-case energy consumption (WCEC) [22, 29, 32,

Appears in: Proceedings of the 25th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’24)

Copenhagen, Denmark, June 24, 2024

https://doi.org/10.1145/3652032.3657569
https://doi.org/10.1145/3652032.3657569
https://doi.org/10.1145/3652032.3657569

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

42, 45–47]. The fundamental methodology for determining
WCEC is to describe the possible runtime behavior (i.e., pos-
sible execution paths) by means of a formal problem formula-
tion and combine this formulation with a hardware-specific
cost model. Solving the formulation then yields resource
bounds.

Worst-Case Analysis in Intermittent Systems. The use
of WCEC estimates has recently gained attention in intermit-
tent systems: RockClimb [12] uses WCETs to compute a safe
active time of code regions, which is used at runtime to decide
whether a region can be transactionally executed. Yarahmadi
et al. [51] useWCECs to guarantee power-failure freedom for
executing basic blocks. Having guarantees for the execution
of regions, including checkpoints, has three benefits: First,
worst-case estimates allow guaranteed power-failure–free
execution, avoiding starvation. Second, worst-case aware-
ness reduces the complexity of checkpointing approaches
because memory consistency is straightforward to guaran-
tee. Third, avoiding the creation of checkpoints reduces the
induced time and energy overheads. However, no approach
addressed device-driven systems and their states.

Device-Driven Systems with Interrupts. Real-world sys-
tems usually have two properties that significantly compli-
cate their WCET/WCEC analysis: (peripheral) devices (e.g.,
sensors, transceivers) in intermittent systems [6] and the
presence of asynchronous interrupts (e.g., device-related in-
terrupts). Regarding the whole system’s power demand, de-
vices play a major role: For example, on our evaluation plat-
form [15], the CPU itself requires around 20mW, while our
used LoRa [44] radio transceiver requires up to 250mW. Be-
sides the discrepancy in power demand, the semantics of the
transmission differ from the execution of instructions: Under
the assumption that CPU instructions execute directly from
non-volatile memory, as in Ratchet [43], instructions can be
executed incrementally. On the contrary, sending a packet
inherently has transactional semantics. For example, a power
outage right before the completed transmission renders the
packet useless. Similar considerations also hold when com-
municating with devices over the commonly used SPI bus:
In addition to the energy waste of uncompleted transactions,
facing a power failure during SPI communication (e.g., with
a memory device) can leave the device in an inconsistent
state. In summary, the semantics of certain devices require a
transactional execution model, thus requiring the avoidance
of intermittency for code regions. Besides these transactional
semantics, a further aspect that unavoidably comes with han-
dling devices is the presence of interrupts: The asynchronous
nature of interrupts complicates capturing their dynamic be-
havior within a static analysis. However, for the practical
applicability of worst-case estimates, these device-related
interrupts must be part of the system’s analysis. We argue
that devices are often the main driver (i.e., sensing, commu-
nication) of (IoT) systems, making them device-driven.

WoCA’s Contributions.We present WoCA, an approach
that exploits worst-case analyses for intermittent systems.
We leverage WCEC analysis to avoid intermittent execu-
tion of code with regard to complex multi-state devices:
Based on the WCEC estimates, we use a runtime system
that spans software- and hardware-related aspects for check-
point management. We show how we integrate peripherals
into the static analysis to achieve guaranteed execution of
an embedded system that communicates with a transceiver
device (i.e., LoRa). Using WCEC analysis in device-driven
intermittent systems enables us to achieve our main goals of
forward progress and memory consistency. Our approach to
avoiding intermittency leverages a WCEC analysis, named
SysWCEC [45], which is a tool integrated into a compiler.
However, this tool is only capable of handling devices with
binary states (i.e., on/off). That is, the analysis misses the han-
dling of different device states (and the related transitions)
in a program-path–specific way. WoCA’s differentiation of
context-sensitive device states is a requirement for WoCA’s
device-driven intermittent systems. In summary, this paper
makes the following four contributions: (1)Worst-Case– &

Device-Aware Checkpoints: TheWoCA approach is the first to
handle devices with worst-case bounds for forward-progress
and memory-consistency guarantees in intermittent systems.
(2) Energy-Consumption Model & Static WCEC Analysis: We
show how our energy- and timing-related models of devices
are safely integrated into WoCA’s static WCEC analysis.
Thereby, WoCA is the first approach that introduces the
notion of context-sensitive device states and their related tran-
sitions as part of the analysis. (3) Open-source Software &
Hardware Implementation: The open-source prototype of
WoCA comprises both a hardware prototype (i.e., PCB) with
accurate energy accounting as well as the hardware-aware
software implementation. (4) Evaluation Comparing WoCA

with Existing Work: We conduct evaluations to show that
exploiting holistic knowledge of both the software and hard-
ware has advantages over existing approaches.

2 Background & System Model
As WoCA relies on static analysis, our system model has
assumptions to statically describe all dynamically possible
cases. We consider these assumptions realistic since they
hold for our hard- and software implementation (Section 5).
Resource Compositionality.WoCA targets low-power

applications on single-core processors. The processor’s mi-
croarchitectural behavior (i.e., caching, pipelining) is deter-
ministic (i.e., freedom from timing anomalies [18]). As a
consequence thereof, the worst-case execution time of two
successive tasks (𝑊𝐶𝐸𝑇 (𝜏1) + 𝑊𝐶𝐸𝑇 (𝜏2)), can be safely
combined to yield the composed demand. We bypass the
necessity of precisely modeling the processors’ caching be-
havior by placing all executed program code and data into
the zero-wait–cycle accessible SRAM [15, 16]. Due to the

Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States LCTES ’24, June 24, 2024, Copenhagen, Denmark

simplicity of our targeted systems, determining the temporal
behavior on a processor-cycle–accurate level is possible.
Power-Related Behavior. The power behavior requires

special attention for determining safe energy-consumption
estimates, as power and, eventually, energy (i.e., power over
time) have several system-wide influences. Determining
WCECs –without device awareness– is possible with similar
considerations as determining WCETs on a cycle-accurate
level. In this context, several works exist for instruction-level
energy models for processors [29, 39]. However, most de-
vices differ in their temporal behavior from processors, as
they, for example, require power for a distinct amount of
time (Δ𝑡) when being in the state of transmitting packets.
With regard to our targeted transceiver devices and their
temporal behavior [33], we model the energy demand of
transceiver states with their maximum power multiplied by
the respective worst-case time in this state. As a result, the
energy demand of such operations can be generally bounded
by𝑊𝐶𝐸𝐶 (Δ𝑡) =

∫ 𝑡=Δ𝑡

𝑡=0 𝑃𝑚𝑎𝑥 (𝑡)𝑑𝑡 , where the timespan Δ𝑡
refers to the WCET of this operation. Refinements of the
𝑃𝑚𝑎𝑥 estimates are possible with knowledge of the target
application [10]. Regarding 𝑃𝑚𝑎𝑥 , WoCA treats the proces-
sor itself as a device with state-dependent maximum power
demands. In summary, all power-related behavior is software-
controlled and thus analyzable by static analysis.
Non-Volatile Memory. For checkpointing across power

outages,WoCA requires non-volatile memory (NVM). In con-
trast to other approaches [12, 28], direct code execution from
NVM is not required, as WoCA’s guarantees to run check-
points to completion loosens this NVM-related restriction.
Avoiding this restriction is valuable since the availability of
embedded hardware platforms directly executing from NVM
is severely limited, with the MSP430FR series being the de
facto standard for intermittent systems [41].

Devices & Their Penalties. The NVM in WoCA systems
is part of the set of devices. We assume that practical IoT sys-
tems have at least one transceiver device. Further, our system
model includes sensor devices (e.g., temperature, air quality).
For all devices, their states (e.g., receive, transmit) are con-
trolled by the system’s software, and their respective context-
sensitive 𝑃𝑚𝑎𝑥 estimates are statically known.WoCA’s notion
of devices regards them not necessarily as “peripheral” since
modern system-on-chip platforms directly include numer-
ous components. As a generic abstraction, our notion treats
any power-consuming component as a device with differ-
ent states and respective power demands. Further, switch-
ing between these device states requires context-sensitive
time/energy transition penalties. Each penalty consists of a
software-related part (e.g., writing the device’s registers) and
a hardware-related part (e.g., waiting for the device’s state
transition). Resource-consumption values of device states
and transition penalties are available by documentation or
by accurate, measurement-based determination.

Charge for Useful Work & State of Charge. The as-
sumption of transactional device interactions determines a
lower bound of the energy 𝐸𝑚𝑖𝑛 , which is required to ex-
ecute useful work with WoCA systems: For example, the
observed energy for transmission on our target platform is
𝐸𝑚𝑖𝑛 = 975 µJ. Consequently, the energy storage (e.g., capac-
itor) requires at least this amount of stored energy 𝐸𝑚𝑖𝑛 to
execute useful work. Thus, intermittent systems with trans-
actional device semantics require a sufficiently large energy
storage to safely execute work. Besides the offline dimen-
sioning, WoCA requires hardware to assess the currently
available state of charge. Further, our hardware supports
issuing interrupts once a lower/upper energy threshold is
reached, which avoids frequently polling the state of charge.
Synchronous Tasks & Asynchronous Interrupts. Our

system model contains several tasks (typically less than a
dozen in intermittent systems) that are synchronously acti-
vated. Besides synchronous tasks (𝜏1, 𝜏2, . . . , 𝜏𝑛), our model in-
cludes asynchronous interrupts (𝐼𝑆𝑅1, 𝐼𝑆𝑅2, . . . , 𝐼𝑆𝑅𝑛), which
are often unavoidable when making use of devices. In order
to bound the required time/energy resources for interrupts,
WoCA requires a minimum inter-arrival time between two
subsequent interrupts. In practical systems, determining and
enforcing these timing requirements are achieved by struc-
tured interrupt activation [34]. All code for the tasks and for
the interrupts are available for the static analysis, and the
semantics for device accesses are unambiguous.

3 Problem Statement
Running Example. This section details the problems of
safe operations in device-driven systems: the problem of
transactional device uses (Section 3.1) and the handling of
interrupts (Section 3.2). These problems are illustrated with
a running example shown in Figure 1, where the task 𝜏1
activates a transceiver device tx, transmits, and waits for
the packet to be transmitted, before switching tx off.

3.1 The Problem of Device Uses
Dynamic Power Demands. While the processor has a max-
imum power demand of 𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 , the transceiver requires
substantially more power, leading to 𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 ,𝑡𝑥𝐻𝑖𝑔ℎ . We re-
fer to these two values as 𝑃𝑙𝑜𝑤 and 𝑃𝐻𝐼𝐺𝐻 . Devices are often
power-hungry, which is the reason for their selective acti-
vation. The assumption that 𝑃𝐻𝐼𝐺𝐻 is always consumed and
not selectively leads to a safe𝑊𝐶𝐸𝐶 bound [12]. However,
this approach has vast pessimism: A transceiver with ex-
emplarily 𝑃𝑚𝑎𝑥,𝑡𝑥𝐻𝑖𝑔ℎ = 1000mW for a single, very short
active time and a CPU with 𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 = 1mW would lead to
around 1000 x overestimation over a long runtime.
Hardware-Dependent States.We detail the problem of

different device states based on the LoRa modulation [44],
which we later use in our evaluation: The transmission time
of LoRa packets depends on (1) the size of the payload PL,

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

Task 𝜏1

1 p = next_packet ();

//state dependent:

//takes 1 µs or 8ms:
2 tx_on(HIGH_POWER);

3 tx_send(p);

4 tx_wait_for_done ();

5 tx_off ();

6 return;

Interrupt 𝐼𝑆𝑅1 H

I d = data_get ();

II buffer_add(d);

Po
w
er

Time

𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 ,𝑡𝑥𝐻𝑖𝑔ℎ = 𝑃𝐻𝐼𝐺𝐻

𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 = 𝑃𝑙𝑜𝑤

�

3 + 42

8ms

H1

Po
w
er

Time

𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 ,𝑡𝑥𝐻𝑖𝑔ℎ = 𝑃𝐻𝐼𝐺𝐻

𝑃𝑚𝑎𝑥,𝐶𝑃𝑈 = 𝑃𝑙𝑜𝑤

�H2

Figure 1. Intermittent systems must account for devices’
transactional semantics. A power failure � in transactions
can lead to inconsistency. Asynchronous interrupts H com-
plicate the problem of analyzing the time/energy behavior.

(2) the bandwidth BW, and (3) the spreading factor SF. The
following code extends the transmission example of Figure 1
by a configuration of the device:
Task(𝜏config){ ... set_bandwidth(BW);

set_spreading_factor(SF); ... }

Task(𝜏1) { ... tx_send(PL); ... }

When statically analyzing the send operation, the current
state of the transceiver device is essential: Both values of
BW and SF influence the transmission time and, thereby, the
operation’s WCEC. Thus, a device-aware WCEC analysis
requires these values at each actual call site, that is, the pro-
gram path’s actual context. Since most protocols can change
these parameters during runtime [50], these parameters need
to be available for analysis in a context-specific way. While
the number of transmitted bytes is available at the call site,
the other values (2) and (3) originate from prior code paths
from Task(𝜏config). To our knowledge, no WCEC technique
has achieved this device-state–aware analysis.

Hardware-Dependent Transition Penalties. Changing
the state of a device usually involves a non-negligible penalty
in the time and, likewise, in the energy dimension. These
penalties can range from few clock cycles (e.g., for writ-
ing a register) to significant execution times of hundreds
of milliseconds, when major hardware reconfigurations are
involved [11, 15, 35]. The device-related penalty itself is sub-
divided into a software-related part (e.g., access registers)
and a hardware-related part, for example, waiting for a timer
device to stabilize its phase-locked loop (PLL). Figure 1 il-
lustrates such an activation penalty when transitioning the
transceiver device into HIGH_POWERmode in phase 2 . Phase
5 deactivates the device, also involving a certain time/en-
ergy penalty. Handling penalties becomes more complicated
with consideration of the devices’ context (i.e., their cur-
rent state) when accessing the devices for their state transi-
tion: On the system’s execution path that leads to task 𝜏1’s
execution of 2 , the device can already have the required
reconfiguration for the HIGH_POWER state. In this case, the
transition cost of 2 is significantly smaller than actually

performing the reconfiguration. Figure 1 shows this device-
context–specific reconfiguration (in purple) with the tem-
poral transition penalty either being 1 µs or, in the case of
the actual hardware reconfiguration 8ms. In other words,
the software-related cost for accessing the registers remains,
but the hardware-related penalty (e.g., PLL locking) is zero.
Similar to the device-agnostic assumption of always using
the system’s maximum power 𝑃𝐻𝐼𝐺𝐻 , always assuming the
maximum penalty causes pessimism, which WoCA avoids.

Transactional Semantics. Besides device states and hard-
ware-dependent transition penalties, a third problem comes
from the devices’ transactional behavior: As illustrated in the
top-right power trace, the power failure (� symbol in Fig-
ure 1) interrupts the systems after the task 𝜏1 is completely
finished, and the packet p is transmitted. However, when the
power-failure interrupt hits the system right before the trans-
mission’s end, as in the bottom-right trace, the transmission
is incomplete. In a benign case, a simple transmission retry is
possible. However, in the worst case, the transceiver remains
in an inconsistent state, with regard to its internal memory
state. While device interactions in intermittent systems with
DMA can circumvent transactions [28], numerous devices
have transactional semantics (e.g., use of the SPI bus).
Our Approach for Devices.WoCA solves the problems

of dynamic power demands, transition penalties, and trans-
actional behaviors as follows: First, it introduces the notion
of context-dependent device states and device-state transitions.
Then, WoCA decomposes the code in a way that allows it
to handle arbitrary device de-/activations. The decomposi-
tion is the basis for exploring all path-sensitive transition
penalties.

3.2 The Problem of Interrupts
As Figure 1 shows, besides the task 𝜏1, an asynchronous
interrupt H exists in the system. This interrupt can occur
exactly once while the task executes, meaning that the inter-
rupt’s minimum-inter arrival time is longer than the task’s
WCET. The existence of the interrupt requires in-depth con-
siderations to eventually determine both timing and energy
bounds. The time-related aspect is well-explored. The execu-
tion time of the task is prolonged by the interrupt’s WCET,
which leads to the worst-case response time (WCRT) of 𝜏1.
The response time from 𝜏1’s start to its return generally in-
cludes all interferences by higher-priority tasks or interrupts,
which are highest-priority interferences from an analysis
point of view. Thus, in our running example, the WCRT is
composed by𝑊𝐶𝑅𝑇 (𝜏1) =𝑊𝐶𝐸𝑇 (𝜏1) +𝑊𝐶𝐸𝑇 (H).
However, this additive composition does not hold for

bounding 𝜏1’s energy demand: The interrupt can occur in the
𝑃𝑙𝑜𝑤 state, as shown with theH1 in the top-right trace of Fig-
ure 1. Alternatively, in the worst case with respect to energy,
the interruptH2 occurs in the high-power state 𝑃𝐻𝐼𝐺𝐻 . This
case leads to the energy demand of𝑊𝐶𝐸𝑇 (H) · 𝑃𝐻𝐼𝐺𝐻 , in-
stead of𝑊𝐶𝐸𝑇 (H) ·𝑃𝑙𝑜𝑤 for the interrupt. The bottom-right

Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States LCTES ’24, June 24, 2024, Copenhagen, Denmark

orange area (with the upwards-facing line pattern) is larger
than in the upper trace. A safe analysis technique must ac-
count for both scenarios to safely avoid the power failure�
during transactions, as in the bottom-right scenario.

Our Approach for Interrupts. In short, WoCA explores
all system-wide program paths while tracking context-sensi-
tive device states and power demands. Thus, WoCA analyzes
tasks not only in isolation but with all possible interferences.

4 The WoCA Approach
WoCA is split into an offline/analysis part (see Section 4.1)
and an online/runtime part (see Section 4.2).

4.1 WoCA’s Offline Analysis
Our offline part for WoCA extends the existing approach
SysWCEC [45].We leverage this method for our goal of avoid-
ing intermittency in device-driven systems with transceiver
devices [20], which comes with the problem of device-state–
dependent transition penalties. In the following, we present
all components that enable us to determine resource bounds,
being the foundation to guarantee transactional device uses.
Maximum-Flow Problems. The core principle of the

worst-case analysis is translating the problem of finding the
WCEC to a maximum-flow problem formulation. Such for-
mulations are straightforward to solve with common math-
ematical solvers [5, 17]. For WCET analysis, this strategy
is employed by the well-explored implicit path enumeration

technique (IPET) [26, 31]. For WCET, the IPET determines
how often the system executes a basic block (in the control-
flow graph) in the WCET case. For WoCA, this technique
determines how often the system executes in the WCEC
case. Both techniques work on a directed graph G = (V, E),
where V = {𝜈𝑖 : 0 ≤ 𝑖 < |V|} is the set of all nodes, and
E = {𝜀𝑖 : 0 ≤ 𝑖 < |E |} describes all edges in the graph. The
variable 𝑓 is the execution frequency of the edge (transition)
or node (state). The objective function determines theWCEC
for an analyzed task, specifically𝑊𝐶𝐸𝐶 (G) =

𝑚𝑎𝑥
(
(∑︁
𝜈∈V

𝑊𝐶𝐸𝐶 (𝜈) · 𝑓 (𝜈))︸ ︷︷ ︸
states

+ (∑︁
𝜀∈E

𝑊𝐶𝐸𝐶 (𝜀) · 𝑓 (𝜀))︸ ︷︷ ︸
transitions

)

In order to make the maximum-flow technique applicable to
our approach of analyzing device-driven systems and device
transitions, WoCA must decompose the considered systems
according to this graph representation. The example system
from the problem statement now serves to illustrate WoCA’s
decomposition, as shown in Figure 2.

System States 𝜈𝑖 . The central part of the system’s decom-
position is the notion of the single states 𝜈 . In order to ac-
curately compute the worst-case energy consumption value
for the state𝑊𝐶𝐸𝐶 (𝜈𝑖), the state requires several essential
components, specifically, (1) the code that is executed in this
state (see { 1 }), (2) the power (progress) for this state (see

𝑃𝑚𝑎𝑥), (3) the associated state of all devices in the system (see
{𝑑𝑖 }). As a consequence, when one of these components
changes, this marks the terminator for the respective state
𝜈 . Figure 2 illustrates these terminators of the system graph
with the @symbol in the left part. For example, the call to
tx_on(HIGH_POWER) initiates a change of a device state in
2 and, thus, terminates the prior system state 1 where the
device was in the OFF state. This decomposition is depicted
in the middle part of Figure 2. The implementation of such a
system-state analysis requires a mapping between function
calls and respective device states along with the transition
costs (see implementation details in Section 5.3). As the right
part of Figure 2 outlines, multiple device graphs D𝑖 may ex-
ist since the system state 𝜈𝑖 stores a set of associated device
states. However, for readability, the running example further
uses one device graph of an example transceiverDtransceiver

with its states 𝑑𝑖 ∈ Dtransceiver.
Device States 𝑑𝑖 . The device’s graph of states and their

transitions advances the state of the art in WCEC analysis. It
serves as an input for WoCA’s analysis. Essentially, WoCA
supports devices that behave as an automaton, which holds
true for common low-power transceivers of embedded sys-
tems [7, 9]. Crucial for the WCEC analysis is the precise
and context- or path-sensitive handling of transition costs.
Depending on the prior state, transitioning to the ON state
either requires 1 µs or 8ms. The system-state exploration
maintains the prevailing device states for determining accu-
rate transition costs, detailed as follows.

Exploration of System States. The decomposed code (left
part in Figure 2) serves as input for the exploration of system-
wide program paths under consideration of device states and
potential interrupt occurrences. The exploration starts with
the initial system state, after system reset, and keeps track
of all state changes. Considering the running example, the
interrupt might occur in the state 𝜈1 (containing the code of
1). Consequently, the transition to the interrupt state 𝜈6 and
back to 𝜈1 exists in G. The device state (𝑑1) and the state’s
maximum power (𝑃𝑙𝑜𝑤) are propagated along the transition
𝜀16 and back over 𝜀61. To differentiate transitions due to de-
vice changes and interrupts, we use the superscript 𝑑 in the
transition 𝜀𝑑 to denote a 𝑑evice-related system-state change.
Such device-induced transitions 𝜀𝑑 from D are copied to
normal transitions 𝜀 in G during the state exploration. For
example, with the transition 𝜀𝑑12, the device state changes
to the next state 𝜈2 from 𝑑1 to 𝑑2 (i.e., ON). The time/energy
cost for this transition stems from the device graph, and the
state exploration stores this cost for the system-state graph.
The exploration terminates once all system states are visited,
which happens within a few minutes, given the fact that em-
bedded systems have a manageable amount of system states.
The final G is one essential component for formulating the
maximum-flow problem together with the WCEC values.

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

Task 𝜏1
1 p = next_packet ();

2 tx_on(HIGH_POWER);

3 tx_send(p);

4 tx_wait_for_done ();

5 tx_off ();

6 return;

@

@

@

@

Interrupt 𝐼𝑆𝑅1 H

I d = data_get ();

II buffer_add(d);

System Graph G
Device Graph Dtransceiver
Device Graph Dtransceiver
Device Graph Dtransceiver

OFF | 𝑑1 | 𝑃𝑚𝑎𝑥,𝑜 𝑓 𝑓 = 0

ON | 𝑑2 | 𝑃𝑚𝑎𝑥,𝑜𝑛

TX | 𝑑3| 𝑃𝑚𝑎𝑥,𝑡𝑥 (𝑃𝑡𝑥)

𝜀𝑑12= 8ms

𝜀𝑑23

𝜀𝑑11

𝜀𝑑22= 1 µs

𝜀𝑑33

𝜈1 | { 1 } | 𝑃𝑙𝑜𝑤 | {𝑑1} 𝜈6 | {H} | 𝑃𝑙𝑜𝑤 | {𝑑1}

𝜈2 | { 2 } | 𝑃𝐻𝐼𝐺𝐻 | {𝑑2} 𝜈7 | {H} | 𝑃𝐻𝐼𝐺𝐻 | {𝑑2}

𝜈3 | { 3 , 4 } | 𝑃𝐻𝐼𝐺𝐻 | {𝑑3} 𝜈8 | {H} | 𝑃𝐻𝐼𝐺𝐻 | {𝑑3}

𝜈4 | { 5 } | 𝑃𝐻𝐼𝐺𝐻 | {𝑑2} 𝜈9 | {H} | 𝑃𝐻𝐼𝐺𝐻 | {𝑑2}

𝜈5 | { 6 } | 𝑃𝑙𝑜𝑤 | {𝑑1} 𝜈10 | {H} | 𝑃𝑙𝑜𝑤 | {𝑑1}

𝜀16

𝜀61
𝜀𝑑12

𝜀𝑑23

𝜀𝑑32

𝜀𝑑21

system transition
references
device transition

system state
references device state

Figure 2. WoCA’s analysis decomposes the system into states with device-state awareness, which is the basis for exploring
the system’s dynamic behavior. The device-state–aware differentiation of transitions, for example, 𝜀𝑑12 = 8ms and 𝜀𝑑22 = 1 µs
highlighted in purple when entering state 𝑑2, enables WoCA to determine accurate bounds in a context-sensitive way.

Determining𝑊𝐶𝐸𝐶 (𝜈) &𝑊𝐶𝐸𝐶 (𝜀). For the𝑊𝐶𝐸𝐶 of
nodes, two main approaches exist: instruction-level energy-
consumption analysis [22, 24, 29, 39] andmodeling theWCEC
indirectly by means of the WCET multiplied by the respec-
tive maximum power 𝑃𝑚𝑎𝑥 [12, 45]. The latter approach is
favorable forWoCA since the 𝑃𝑚𝑎𝑥 value is tracked along the
system-wide program paths. Determining this value requires
knowledge of all active components: WoCA uses the device
information for each state, including the CPU device, to com-
pute a 𝑃𝑚𝑎𝑥 bound since any active device contributes to
this system-wide 𝑃𝑚𝑎𝑥 value. A WCET analysis of the node
then yields the temporal value for the𝑊𝐶𝐸𝐶 (𝜈) equation.
For this WCET analysis, WoCA further considers device-
related worst-case times, such as the transmission duration
of transceivers based on the packet length. Often, these es-
timates are documented in the device’s manual [20] or can
be found in literature, for example, for LoRa [33]. In case of
lacking documentation, measurements serve as a resort for
determining the transition costs𝑊𝐶𝐸𝐶 (𝜀).
Flow Constraints & Bounding Interrupts. Giving the

objective formulation listed above to a mathematical solver
would result in unboundedness. WoCA maps branches in
the explored graph G to respective flow constraints for the
WCEC value. As depicted in Figure 2, possible interrupts
are part of the graph. To precisely bound the number of
occurring interrupts, the analysis differentiates between
device-related and interrupt-related transitions. Further, it
adds timing-related constraints of the worst-case response
time to the problem formulation. Along with the notion of
each interrupt’s minimum inter-arrival time and the inter-
rupt transitions, the formulation eventually yields a sound
interrupt-occurrence bound, which is reflected in the final
WCEC estimate of the analyzed task.

4.2 WoCA’s Online Runtime
Software Support for Task Execution. In contrast to sophis-
ticated JIT-checkpointing techniques [4, 8, 21, 28], WoCA
shifts its main complexity and engineering effort to the

system’s design time. As the major benefit of this strategy
with worst-case awareness, the software-related runtime of
WoCA is comparably straightforward. When omitting our
energy/time overhead adjustments for handling the state-
of-charge assessment itself, the code for safely executing a
transactional code section in WoCA reads as follows:

Task 𝜏i = get_next_task ();
if(𝑊𝐶𝐸𝐶 (𝜏𝑖) < get_state_of_charge ()) {

𝜏i();
}

Hardware

Support for Task Execution. Other than the (1) system-
wide WCEC estimates of tasks and (2) the checkpointing
infrastructure, WoCA requires (3) hardware support to even-
tually decide on the code’s transactional execution. This
requirement of accurate state-of-charge assessment likewise
holds for any JIT-checkpointing technique. Typically, a ca-
pacitor is charged with the harvested energy, and the volt-
age drop over the capacitor serves to determine the state of
charge with an ADC. Having additional support, with a DAC
connected along with the capacitor to a comparator, can
serve as a lightweight signaling mechanism, also for waking
the system up once sufficient energy is available to safely
execute transactional workloads. Since WoCA only begins
its execution when ensuring the completion of transactional
operations, a minimum capacitor size for the stored energy
is required respectively (e.g., 𝐸𝑚𝑖𝑛 = 975 µJ for transmitting a
LoRa packet). WoCA’s awareness of theWCEC for executing
the checkpoint itself eventually guarantees consistency.

5 Implementation
Our prototype implementation of the WoCA approach tar-
gets the ESP32-C3 [15], a RISC-V system-on-chip, which
we integrated into custom PCBs (Section 5.1). Section 5.2
shows howwe derive the energy model for the static analysis
presented in Section 5.3. Finally, we detail device-context–
dependent timing bounds in Section 5.4.

Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States LCTES ’24, June 24, 2024, Copenhagen, Denmark

Energy StorageMother Board Daughter Board

System-on-Chip NVM

DACs
Comparators

Figure 3. WoCA’s circuit boards feature components for
state-of-charge assessment and non-volatile memory

5.1 WoCA’s Printed Circuit Boards (PCBs)
For WoCA, we developed a stack of connected PCBs that
feature all requirements to execute applications under inter-
mittent power supply safely. Figure 3 gives an overview of
these components. The mother board supports the ESP32-C3
and the LoRa transceiver (bottom side of PCB). Pin headers
forward signals to the daughter board, which features the
necessary energy-management tooling. It allows assessing
the state of charge in a polling-based way with resistors
and features two DAC-comparator circuits to detect lower
and upper voltage thresholds, providing a lightweight setup
for receiving energy-threshold–related interrupts. A non-
volatile–memory chip serves to store the system’s check-
points. Another board has the main capacitor for supplying
all components of the system and a MOSFET to disconnect
the power source from the capacitor for evaluation purposes.

5.2 Energy-Model Implementation
The basis of safe intermittent execution through guarantees
is an accurate energy model, which is used by the analysis.
Such a model has to include the consumption of all used
peripheral devices. For devices without manufacturer data on
the resource consumption, we resort to measurement-based
worst-case modeling. We employ a JouleScope JS220 [23]
energy-measurement unit, which allows the simultaneous
recording of a trigger signal to identify regions of interest in
the current/voltage signals. The maximum of all observed
values serves as the maximum value for the energy model.

For our current prototype implementation of WoCA, we
use two devices: the built-in temperature sensor of the ESP32-
C3 and an RFM98 LoRa transceiver [20] connected via SPI.
We evaluated the power demand of both devices in various
operational modes at a steady input voltage of 3.5V. The
baseline for the energy model is the current drawn by the
CPU of the ESP32-C3 at a frequency of 160MHz. We mea-
sured the power demand of a temperature sensor for being on
and during a continuous data read-out. The LoRa transceiver
serves as an example of a complex device, as it has multiple
operational states and device-state–specific energy demands,
as previously outlined with the (context-sensitive) spreading
factor and bandwidth in Section 3.1. Further, it features auto-
matic interrupt-signaled mode changes, e.g., after sending.
WoCA precisely captured this behavior in the analysis to
derive sound and accurate resource-consumption bounds.

5.3 Analysis Implementation
For our static analysis, we leverage the SysWCEC tool [45] of
the Platin analysis toolkit [19, 30] extended by a microachi-
tecture backend for the RISC-V architecture. These tools are
integrated into the LLVM compiler framework [25]. While
our prototype is partly based on the ESP IoT Development
Framework (ESP-IDF), we implemented custom drivers for
our peripherals, including GPIO and SPI, to enhance the
interaction with the analysis tool.

Each device state is represented as an individual device 𝐷𝑖 ,
used for the system-wide state-graph representation G. On
top of that, the LoRa transceiver has internal states, which do
not directly translate to a different power state but influence
the timing or energy behavior of future operations, which
again underlines the necessity of WoCA’s device-context
sensitivity. We track these internal parameters in addition to
the externally observable state for each system-graph node.
All device operations are mapped to individual functions.
The effects of these functions on the internal state are either
derived from the function arguments or explicitly stated via
annotations by the programmer [37]. Our current prototype
relies on function arguments. Each function performs at most
one change in device power consumption. The exception
from this rule are functions that change to one state during
their whole execution and return to the previous state upon
return, for example, functions reading out sensor data.
For the automatic mode change after sending, the func-

tionality is split into two functions: start_tx and wait_tx,
for starting the transmission and waiting for the interrupt
signaling the transmission’s completion, which marks the
change back to the standby mode. For each start_tx, a
corresponding wait_tx must exist. This way, both program-
mers and compilers can derive changes in the power demand
of devices from the source code in a straightforward manner.
Similar to previous analysis approaches [14, 45], we ex-

tended our compiler (clang) to construct a system graph
of the given tasks and interrupts, with the enhancement
of also considering device-specific contexts of observable
and internal device states. The device-graph representation
D𝑖 of each device, which includes the function semantics
for device interaction, serves the compiler as a means to
identify device-state transitions in the system graph. This al-
lowsWoCA to capture the influence of devices on timing and
power demand beyond state-of-the-art on/off semantics [45].

5.4 Device-Related Timing Bounds
A typical challenge in static analyses is loop bounding, usu-
ally resolved by user-provided annotations. For device in-
teractions, such bounds may depend on hardware timings
rather than program control flow. Examples include the sta-
bilization of clock sources, transmission delays for devices
connected via communication busses (e.g., SPI), or the actual
duration of hardware operations, depending on the current

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

device configuration. Those delays can be bounded by knowl-
edge about the hardware involved. As an example, we again
consider a LoRa transmission. The maximum time on air is
calculated with knowledge about the active LoRa configura-
tion and the packet length. In WoCA, this is used to specify
a bound for the loop waiting for the completion of the trans-
mission. To ease the handling of such device-related timings,
we introduce annotations for bounds in physical time (e.g., in
microseconds) rather than program flow (e.g., loop-iteration
bounds). Together with the processor frequency and maxi-
mum power demand, the analysis infers upper bounds from
such annotations. For more complex operations with depen-
dencies on the device state, such as the LoRa transmission,
WoCA specifies the bound as a formula to allow the analysis
to calculate an accurate bound for the current device context.

6 Evaluation
Wedescribe our setup in Section 6.1. Subsequently, we present
evaluations of our analysis bounds (Section 6.2), the effects
of WoCA on the runtime behavior under continuous (Sec-
tion 6.3), and intermittent power supply (Section 6.4) with
additional focus on WoCA’s starvation freedom.

6.1 Evaluation Setup
As described in Section 5.1, our evaluation target is a custom
PCB equipped with an ESP32-C3 [15, 16] and a LoRa trans-
ceiver [20], complemented by a PCB for managing state-of-
charge and providing NVM.We use three micro-benchmarks
for our evaluations: one computational which performs the
bubble sort algorithm (bsort), one using a device with minor
complexity, namely a temperature sensor (temp), and one in-
teracting with a more complex device, the LoRa transceiver,
sending out one byte at the lowest output powermode (send).
Besides micro-benchmarks, we employ one multi-device
application comprising sensing, computing, and actuating
phases (sca). This application serves as a generic case study
for many (intermittently-powered) embedded systems: The
sensing performs 100 readouts of the temperature sensor, the
computing builds a checksum and encrypts the data, and the
actuation sends out the data via LoRa in the lowest output
power mode. The sense phase takes around 0.35ms (0.8%),
computing 4.97ms (11.4%), and actuate 38.49ms (87.8%).
Besides this (1) standard sca, we use two variants with in-
terrupts: We evaluate a (2) high-frequency interrupt sce-
nario (sca-isr-hf) with a minimum inter-arrival time of
5 µs and a load of around 300 ns, and (3) a low-frequency
scenario (sca-isr-lf) with a minimum inter-arrival time
of 1ms and 200 µs of load. In both isr scenarios, we en-
force the worst case and trigger the interrupt at its minimum
inter-arrival time.
JIT-Based Implementation. For comparison, we imple-

mented a JIT-checkpointing approach inspired by the state-
of-the-art approach Samoyed [28]. It does not require any

0 1 2 3 4 5 6 7 8

bsort

temp

send

sca

sca-isr-lf

sca-isr-hf (absolute: 11.59ms)

(absolute: 10.94ms)

(absolute: 10.45ms)

(absolute: 6.96ms)

(absolute: 0.054ms)

(absolute: 2.00ms)1.00

1.00

1.00

1.00

1.00

1.00

3.43

1.50

5.17

4.19

4.31

4.75

3.43

1.50

5.17

4.19

4.31

4.75

Analysis Pessimism (Time)

WOET
WCETWoCA
WCET𝑎𝑙𝑙−𝑜𝑛

0 1 2 3 4 5 6 7 8

bsort

temp

send

sca

sca-isr-lf

sca-sr-hf (absolute: 1593 µJ)

(absolute: 1507 µJ)

(absolute: 1430 µJ)

(absolute: 978.41 µJ)

(absolute: 6.79 µJ)

(absolute: 220 µJ)1.00

1.00

1.00

1.00

1.00

1.00

2.62

1.45

4.49

3.69

3.89

4.55

2.62

1.46

6.45

6.54

6.68

7.38

Analysis Pessimism (Energy)

WOEC
WCECWoCA
WCEC𝑎𝑙𝑙−𝑜𝑛

Figure 4. Analysis bounds normalized to worst-observed
execution time and energy consumption

resource-consumption knowledge but annotations where
a region with device usage begins and ends. Outside such
regions, an interrupt notifies the system of a voltage level
that is too low and checkpoints. Before entering a region,
the runtime system always takes a checkpoint and disables
checkpoints during the region to avoid inconsistencies. The
programmer is responsible for placing region boundaries cor-
rectly so that semantically atomic device operations are not
separated by checkpoints, which could leave devices in an un-
known state. Contrary to Samoyed, which was implemented
for a non-volatile processor, our JIT-based approach has to
checkpoint global data, the stack, and the processor registers.
Subsequently, we refer to this approach as JIT-based.

6.2 Static Analysis
Pessimism Evaluation. Any static-analysis approach is in-
herently only as good as the underlying models. For WoCA,
two models come into play: the hardware model for the
timing analysis and the energy model for the device graph.
Both models are a potential source of analysis pessimism,
which may affect the usability of the results. We, thus, com-
pare the WCET and WCEC estimates from the Platin an-
alyzer for the benchmarks against the worst-observed ex-
ecution time (WOET) and the worst-observed energy con-
sumption (WOEC) under a steady supply of 3.5V. With the
Gurobi 10.0.0 [17] solver, all analyses finish within 17 s. Fig-
ure 4 shows that all analysis results are upper bounds of
the observed values, underlining WoCA’s claim of safe re-
source budgeting. The pessimism factor of theWCEC bounds
is comparable to that of the WCET bounds, showing that
the timing-related pessimism transfers to energy bounds,

Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States LCTES ’24, June 24, 2024, Copenhagen, Denmark

0 1 2 3 4 5 6 7 8

send-SF

send-BW

send-PL
(absolute: 24.2ms)

(absolute: 46.2ms)

(absolute: 111ms)1.00

1.00

1.00

3.07

3.11

3.58

6.52

4.65

3.83

6.52

4.65

3.83

Analysis Pessimism (Time)

WOET
WCETWoCA
WCET𝑛𝑜−𝑐𝑡𝑥
WCET𝑎𝑙𝑙−𝑜𝑛

0 1 2 3 4 5 6 7 8

send-SF

send-BW

send-PL
(absolute: 3.45mJ)

(absolute: 6.49mJ)

(absolute: 16.11mJ)1.00

1.00

1.00

3.47

3.29

3.42

7.64

5.20

3.73

7.86

5.79

4.71

Analysis Pessimism (Energy)

WOEC
WCECWoCA
WCEC𝑛𝑜−𝑐𝑡𝑥
WCEC𝑎𝑙𝑙−𝑜𝑛

Figure 5. Influence of device states normalized to WoCA’s
less pessimistic bound WCECWoCA

which comes from WoCA’s approach of multiplying 𝑃𝑚𝑎𝑥

with the WCET bound. To assess the influence of different
device states, we also compute WCEC bounds for a device-
agnostic approach (all-on), which has to assume that devices
are running at full power for the complete execution. While
the pessimism is the same for the WCET bounds, WoCA’s
context awareness leads to lower pessimism for the WCEC
bounds. For the transceiver, theWCECall-on bound represents
the benevolent case, where it is known that the device will
only send in the lowest power configuration. When this is
not known, the pessimism factor increases even more, for
example, to 11.7 for send. This again shows the necessity to
consider devices’ active times and power configurations.

Device-State Evaluation. In an application, devices may
perform operations in different contexts, which can affect
the energy demand of the device, for example, through a
longer transmission time. We evaluate this effect using tasks
sending with different spreading factors (send-SF), different
bandwidths (send-BW), and different payload sizes (send-PL).
As shown in Figure 5, analyzingwith no knowledge about the
device context (WCECno-ctx) yields higher pessimism than
WoCA’s context awareness (WCECWoCA). Combined with a
pessimistic all-always-on approach (WCECall-on), which has
to be used by the competing approach RockClimb [12], the
pessimism increases even more but by a significantly smaller
margin. This influence of single parameters shows the need
to model device contexts beyond power states. WoCA yields
accurate bounds with its notion of device states.

6.3 Continuous Power
To assess the overhead of the WoCA approach, we executed
the benchmarks for 100 executions with a steady power sup-
ply of 3.5V, measuring the response time from the start

0 5 10 15

bsort

temp

send

sca

sca-isr-lf

sca-isr-hf
(absolute: 1062.3ms)

(absolute: 1103.4ms)

(absolute: 1036.6ms)

(absolute: 681.85ms)

(absolute: 5.35ms)

(absolute: 200.1ms)1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.00

1.01

1.01

1.01

1.00

4.24

3.14

500

498.12

runtime (normalized to WoCA)

plain C

WoCA

JIT-based

Figure 6. Runtime for 100 execs. with continuous power

bsort temp send sca sca-
isr-lf

sca-
isr-hf

0

5

10

15

20

1 0
3 4 4

8

1 0
3 5 5

02

100 100 101

#c
he
ck
po

in
ts WoCA all-on JIT-based

i
n
f
e
a
s
i
b
l
e

Figure 7. Checkpoints for 100 execs. on intermittent power

of the first execution to the end of the last. This allows us
to quantify the overhead of the measures against intermit-
tent execution (i.e., checkpoint management) in phases of
sufficient energy. We compare WoCA against calling the an-
alyzed function without any measures (plain C) as a baseline.
Additionally, we compare against the JIT-based approach. As
it has no notion of interrupts, we skip the interrupt bench-
marks for JIT-based. Figure 6 shows that JIT-based incurs
significantly more overheads. This stems from the fact that
such worst-case–agnostic approaches, like Samoyed [28],
have to checkpoint before each execution phase with device
interactions. This effect becomes worse with larger check-
point sizes and shorter device interactions, as can be seen
with temp. WoCA only needs to query the current state of
charge before execution, leading to a reduced degree of over-
head. In summary, this reduced resource overhead is possible
with WoCA’s use of device-aware WCEC bounds.

6.4 Intermittent Power
To evaluate the behavior under intermittent execution, we
equip the system with a 12mF capacitor as an energy buffer
and use a separate microcontroller (i.e., Arduino Nano) to
disrupt the power supply as described in Section 5.1 in a
periodic pattern of 100ms charging and 500ms discharging.
Our runtime system collects the number of checkpoints. We
also record the start and end of experiments by tracing the
output of a GPIO pin using the JouleScope JS220 [23].

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

0 5 10 15

bsort

temp

send

sca

sca-isr-lf

sca-isr-hf
(absolute: 3470ms)

(absolute: 4166ms)

(absolute: 2455ms)

(absolute: 1843ms)

(absolute: 5.38ms)

(absolute: 499ms)1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.23

1.58

1.28

4.33

4.90

1550

1542.00

runtime (normalized to WoCA)

WoCA

all-on

JIT-based

infeasible

Figure 8. Runtime for 100 execs. with intermittent power

We compare WoCA to a device-agnostic variant by using
the WCEC𝑎𝑙𝑙−𝑜𝑛 values derived in Section 6.2. As device-
agnostic approaches, such as RockClimb [12], have no know-
ledge of the selective device usage of tasks, they have to rely
on more pessimistic bounds. We also compare WoCA to the
JIT-based approach. Figure 7 shows the number of check-
points, Figure 8 the runtime for WoCA, all-on, and JIT-based
observed for 100 executions, again skipping the interrupt
benchmarks for JIT-based. We consistently observed fewer
checkpoints forWoCA compared to JIT-based. By design, JIT-
based requires a checkpoint before each device use, leading to
a notably larger number of checkpoints, especially for temp,
which is short enough to fit completely into the charging
period. This indicates that WoCA is able to avoid checkpoint-
ing due to its notion of resource bounds and the subsequent
execution guarantees. With the case study (sca), the advan-
tage of device awareness is visible as WoCA requires fewer
checkpoints than all-on. The need to checkpoint before each
device use leads to significantly larger runtimes for JIT-based.
For the case study (sca), WoCA achieves shorter runtimes
than all-on, as WoCA’s more accurate bounds allow shorter
charging times.
Another effect of WoCA’s more accurate bounds shows

for sca-isr-lf, as it is not safely executable with the pes-
simistic bound of all-on and the used capacitor. Dimension-
ing the capacitor and choosing the energy level at which
the system wakes up and starts executing is a crucial de-
sign parameter in intermittent systems. Waking up too early
risks wasting energy for checkpointing and unnecessary
re-execution, leading to starvation in the worst case. Wait-
ing for too much energy misses opportunities to execute
meaningful work in a timely manner.
The two extremes of the spectrum of potential wakeup

points are (at the upper end) a fully charged energy storage
and (at the lower end) sufficient energy to power the system
and perform a checkpoint. Especially for larger energy stor-
age with accordingly large charging times, a fully charged

0 2 4 6 8

send

sca

(absolute: 1454ms)

(absolute: 1700ms)

1.00

1.00

4.94

4.44

runtime (normalized to WoCA)

WoCA
JIT-based

Figure 9. Runtime for 100 execs. with short-active intermit-

tent power demonstrating WoCA’s starvation freedom

buffer may rarely be reached, depending on the environ-
mental conditions of the harvesting source. WoCA’s energy
bounds help to derive a sensible wakeup point, where it is
guaranteed that completely executing a task is possible.
The actual system behavior is highly dependent on the

energy-harvesting conditions and the system’s configured
wakeup charge. To validate this statement, we examine a sce-
nario where execution benefits fromWoCA’s energy bounds
for the two transceiver-using benchmarks (send, sca) as
the most prominent examples for the effect. To simulate
unstable energy-harvesting conditions, we toggle the con-
nection of the power source to have a short active time in
microsecond intervals (1 µs on, 10 µs off) for a total duration
of 6 s; afterwards, the power source is constantly connected.
Under these power-supply conditions, we compare the JIT-
based approach against WoCA. Due to lack of knowledge
about the energy consumption of tasks, the JIT-based ap-
proach can start execution either as soon as sufficient en-
ergy for creating a potential checkpoint is available or when
the energy storage is fully charged. As the fully-charged
state is never reached during the unstable phase, Figure 9
compares the runtime for the first 100 executions of the
send and sca benchmark for the JIT-based approach with
the low-energy wakeup level and WoCA with its derived
energy bounds as the wakeup level. The JIT-based approach
fails to make progress during the unstable conditions, only
finishing the first 100 executions when the power supply
becomes stable (i.e., after 6 seconds). During the unstable
phase, JIT-based faces starvation. WoCA, on the other hand,
benefits from its energy bounds, does not waste energy for
re-execution, and – due to its power-failure freedom – is able
to make progress and finish the first 100 executions during
the unstable conditions.

7 Related Work
The body of related work on intermittent systems has sub-
stantially increased over the last decade. However, to our
knowledge, WoCA is the first approach that achieves guar-
anteed execution of transactional operations with its whole-
system analysis, its handling of asynchronous interrupts,
its accounting for arbitrary device states, along with their
context-sensitive transition penalties.

Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States LCTES ’24, June 24, 2024, Copenhagen, Denmark

Samoyed [28] uses JIT-checkpointing and is related to
WoCA due to its peripheral handling. Samoyed’s support
for devices consists of an energy-profiling phase. Inher-
ent to profiling-based approaches is their lack of providing
resource-consumption bounds, which is in contrast toWoCA.
Further, Samoyed has a notion of how to split device ac-
cesses into smaller workloads when execution attempts fail.
However, this scaling of workloads only works for memory-
oriented device accesses, such as DMA interfaces. In contrast,
WoCA supports devices, such as transmitters, that have un-
avoidable transactional semantics for their service.
An approach that relies on worst-case analyses is Rock-

Climb [12]. It has the notion of a safe active time and uses
this information to guarantee safely reaching a subsequent
checkpoint. That way, RockClimb achieves rollback freedom.
For computing the safe active time, RockClimb conducts a
WCET analysis and combines this with the highest power
mode of the system. This device-unselective (i.e., all-always-
on) approach has the problem of yielding overly pessimistic
worst-case energy-consumption estimates. WoCA avoids
this pessimism through its context-sensitive handling of de-
vice states and their transition penalties.

A further approach that relies on WCEC estimates was
presented by Yarahmadi et al. [51]: This approach determines
WCEC values for basic blocks and uses this information in
order to decide whether to safely reach a checkpoint with-
out facing a power-failure interrupt. Thereby, these runtime
guarantees further lead to the property of having guaranteed
forward progress with the available, harvested energy. Com-
mon to WoCA is the guaranteed forward progress by means
of static worst-case analysis. However, in addition to their
work, we emphasize the necessity to accurately model inter-
actions of the system with devices since they are the most
power-hungry components in the system. EPIC motivates
the variability in power demand of intermittent systems and
proposes a respective energy model [2]. In contrast to this
work, WoCA is able to capture devices and statically provide
system-wide worst-case bounds for the energy demand.
Pudu [36] shares our view that devices are of major im-

portance in intermittent systems. Pudu uses the notion of
energy types to describe the various states of peripheral de-
vices. In contrast to WoCA, Pudu is not able to conduct
worst-case analyses with an underlying formal model that
captures all possible program flows. Thus, Pudu is unable
to give runtime guarantees, which are necessary for many
device-driven intermittent systems with guaranteed forward
progress. WoCA’s notion of the worst-case energy behavior
by means of maximum-flow techniques includes context-
sensitive device states to reduce analysis pessimism. Similar
to Pudu, Berthou et al. give a formal specification for inter-
mittent computing with peripherals [6]. In contrast to both
works, WoCA is able to give forward-progress guarantees
by means of device-aware worst-case analysis.

8 Conclusion
Existing intermittent-computing approaches have shortcom-
ings with regard to the transactional semantics of devices,
which can lead to starvation. With our WoCA approach,
we leverage whole-system WCEC analyses to guarantee the
transactional execution of operations under given energy
budgets. The employed analysis of WoCA keeps track of
all possible system paths and the respective device states.
WoCA’s awareness of context-sensitive programpaths avoids
analysis pessimism. Besides runtime guarantees, the WoCA
approach facilitates checkpointing and thereby avoids run-
time overheads. Our evaluations on WoCA’s hardware show
that WoCA uses the harvested energy more efficiently while
providing forward guarantees. As other researchers [38], we
share the concern that future trillion IoT devices could lead
to trillion dead batteries, which remain unrecycled. With
WoCA, we want to contribute with our safe execution to
more sustainable and reliable battery-free IoT systems.

Acknowledgments
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – project num-
ber 502615015, ResPECT; project number 502947440, Watwa.

WoCA’s hard- & software are publicly available:

gitos.rrze.fau.de/woca

References
[1] A. Cohen et al. 2018. Inter-Disciplinary Research Challenges in Computer

Systems for the 2020s. Technical Report. NSF, USA.
[2] Saad Ahmed, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad

Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2019. The betrayal
of constant power × time: finding the missing Joules of transiently-
powered computers. In Proc. of LCTES ’19. 97–109.

[3] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling,
Przemysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia,
Luca Mottola, Jacob Sorber, and Josiah Hester. 2024. The Internet of
Batteryless Things. Commun. ACM 67, 3 (2024), 64–73.

[4] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems 35, 12 (2016), 1968–
1980.

[5] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. 2004. lp_solve 5.5,
open source (mixed-integer) linear programming system. Software.

[6] Gautier Berthou, Pierre-Évariste Dagand, Delphine Demange, Rémi
Oudin, and Tanguy Risset. 2020. Intermittent computing with periph-
erals, formally verified. In Proc. of LCTES ’20. 85–96.

[7] Gautier Berthou, Kevin Marquet, Tanguy Risset, and Guillaume
Salagnac. 2020. Accurate power consumption evaluation for peripher-
als in ultra low-power embedded systems. In Proc. of GIoTS ’20. 1–6.

[8] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code
instrumentation for transiently-powered embedded sensing. In Proc.

of IPSN ’17. 209–219.
[9] Markus Buschhoff, Robert Falkenberg, and Olaf Spinczyk. 2019.

Energy-aware device drivers for embedded operating systems. ACM
SIGBED Review 16, 3 (2019), 8–13.

https://gitos.rrze.fau.de/woca

LCTES ’24, June 24, 2024, Copenhagen, Denmark Phillip Raffeck, Johannes Maier, and Peter Wägemann

[10] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John
Sartori. 2017. Determining Application-Specific Peak Power and En-
ergy Requirements for Ultra-Low-Power Processors. ACM Trans. on

Computer Systems (ACM TOCS) 35, 3 (2017), 9:1–9:33.
[11] Holly Chiang, Hudson Ayers, Daniel Giffin, Amit Levy, and Philip

Levis. 2021. Power Clocks: Dynamic Multi-Clock Management for
Embedded Systems. In Proc. of EWSN ’21. 139–150.

[12] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung. 2022.
Compiler-Directed High-Performance Intermittent Computation with
Power Failure Immunity. In Proc. of RTAS ’22. 40–54.

[13] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. of POPL ’77. 238–252.

[14] Gerion Entrup, Benedikt Steinmeier, and Christian Dietrich. 2019. ARA:
Automatic Instance-Level Analysis in Real-Time Systems. In Proc. of

OSPERT ’19. 7–16.
[15] Espressif Systems. 2022. ESP32-C3 Series Datasheet.
[16] Espressif Systems. 2022. ESP32-C3 Technical Reference Manual.
[17] Gurobi Optimization, LLC. 2023. Reference Manual. gurobi.com/.
[18] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. 2015. Towards

Compositionality in Execution Time Analysis: Definition and Chal-
lenges. ACM SIGBED Review 12, 1 (2015), 28–36.

[19] Stefan Hepp, Benedikt Huber, Daniel Prokesch, and Peter Puschner.
2015. The platin Tool Kit – The T-CREST Approach for Compiler and
WCET Integration. In Proc. of KPS ’15. 277–292.

[20] Hope Microelectronics. 2013. RFM95/96/97/98(W) – Low Power Long

Range Tranceiver Module.
[21] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014.

QuickRecall: A low overhead HW/SW approach for enabling compu-
tations across power cycles in transiently powered computers. In Proc.

of VLSID ’14. 330–335.
[22] R. Jayaseelan, T. Mitra, and X. Li. 2006. Estimating the Worst-Case

Energy Consumption of Embedded Software. In Proc. of RTAS ’06.
81–90.

[23] Jetperch LLC. [n. d.]. Joulescope JS220 User’s Guide Precision DC Energy

Analyzer.
[24] Steve Kerrison and Kerstin Eder. 2015. Energy Modeling of Software

for a Hardware Multithreaded Embedded Microprocessor. ACM Trans.

on Embedded Computing Systems (ACM TECS) 14, 3 (2015), 56.
[25] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In Proc. of CGO

’04. 75–86.
[26] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance Analysis

of Embedded Software Using Implicit Path Enumeration. In ACM

SIGPLAN Notices, Vol. 30. ACM.
[27] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily

Ruppel. 2017. Intermittent Computing: Challenges and Opportunities.
In Proc. of SNAPL ’17, Vol. 71. 8:1–8:14.

[28] Kiwan Maeng and Brandon Lucia. 2019. Supporting Peripherals in
Intermittent Systems with Just-in-time Checkpoints. In Proc. of PLDI

’19. 1101–1116.
[29] J. Pallister, S. Kerrison, J. Morse, and K. Eder. 2017. Data Dependent

Energy Modeling for Worst Case Energy Consumption Analysis. In
Proc. of SCOPES ’17.

[30] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Geb-
hard. 2013. The T-CREST Approach of Compiler and WCET-Analysis
Integration. In Proc. of ISORC ’13. 1–8.

[31] P. Puschner and A. Schedl. 1997. Computing Maximum Task Execution
Times: A Graph-Based Approach. Real-Time Systems 13 (1997), 67–91.

[32] Phillip Raffeck, Christian Eichler, Peter Wägemann, and Wolfgang
Schröder-Preikschat. 2019. Worst-Case Energy-Consumption Analy-
sis by Microarchitecture-Aware Timing Analysis for Device-Driven
Cyber-Physical Systems. In Proc. of WCET ’19. 6:1–6:12.

[33] Ceferino Gabriel Ramirez, Anton Sergeyev, Assya Dyussenova, and
Bob Iannucci. 2019. LongShoT: Long-Range Synchronization of Time.

In Proc. of IPSN ’19. 289–300.
[34] John Regehr and Usit Duongsaa. 2005. Preventing interrupt overload.

In Proc. of LCTES ’05. 50–58.
[35] Michel Rottleuthner, Thomas C. Schmidt, and Matthias Wahlisch. 2023.

Dynamic Clock Reconfiguration for the Constrained IoT and Its Appli-
cation to Energy-Efficient Networking. In Proc. of EWSN ’22. 168–179.

[36] Emily Ruppel. 2022. Peripheral and Power Management in Battery-

less, Energy-Harvesting Systems. Ph. D. Dissertation. Carnegie Mellon
University.

[37] Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang
Schröder-Preikschat. 2021. Annotate Once – Analyze Anywhere:
Context-Aware WCET Analysis by User-Defined Abstractions. In Proc.

of LCTES ’21.
[38] Esther Shein. 2021. A battery-free internet of things. Commun. ACM

64, 7 (2021), 16–18.
[39] V. Sieh, R. Burlacu, T. Hönig, H. Janker, P. Raffeck, P. Wägemann,

and W. Schröder-Preikschat. 2017. An End-to-End Toolchain: From
Automated Cost Modeling to Static WCET and WCEC Analysis. In
Proc. of ISORC ’17.

[40] Philip Sparks. 2017. White paper: The economics of a trillion connected
devices.

[41] Texas Instruments Inc. 2018. MSP430FR57xx Family.
[42] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla. 2019. Worst-Case

Energy Consumption: A New Challenge for Battery-Powered Critical
Devices. IEEE Trans. on Sustainable Computing (2019), 1–8.

[43] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computa-
tion without hardware support or programmer intervention. In Proc.

of OSDI ’16. 17–32.
[44] Lorenzo Vangelista. 2017. Frequency shift chirp modulation: The LoRa

modulation. IEEE Signal Processing Letters 24, 12 (2017), 1818–1821.
[45] Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich,

and Wolfgang Schröder-Preikschat. 2018. Whole-System Worst-Case
Energy-Consumption Analysis for Energy-Constrained Real-Time
Systems. In Proc. of ECRTS ’18, Vol. 106. 24:1–24:25.

[46] Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger
Kapitza, and Wolfgang Schröder-Preikschat. 2015. Worst-Case Energy
Consumption Analysis for Energy-Constrained Embedded Systems.
In Proc. of ECRTS ’15. 105–114.

[47] Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder.
2023. EnergyAnalyzer: Using Static WCET Analysis Techniques to
Estimate the Energy Consumption of Embedded Applications. In Proc.

of WCET ’23. 9:1–9:14.
[48] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case
Execution-time Problem – Overview of Methods and Survey of Tools.
ACM Trans. on Embedded Computing Systems (ACM TECS) 7, 3 (2008),
1–53.

[49] Harrison Williams, Xun Jian, and Matthew Hicks. 2020. Forget Failure:
Exploiting SRAM Data Remanence for Low-Overhead Intermittent
Computation. In Proc. of ASPLOS ’20.

[50] Weitao Xu, Jun Young Kim, Walter Huang, Salil S Kanhere, Sanjay K
Jha, and Wen Hu. 2019. Measurement, characterization, and modeling
of LoRa technology in multifloor buildings. IEEE Internet of Things

Journal 7, 1 (2019), 298–310.
[51] Bahram Yarahmadi and Erven Rohou. 2020. Compiler optimizations

for safe insertion of checkpoints in intermittently powered systems.
In Proc. of SAMOS ’20. 169–185.

[52] Eren Yildiz, Saad Ahmed, Bashima Islam, Josiah Hester, and
Kasim Sinan Yildirim. 2023. Efficient and Safe I/O Operations for
Intermittent Systems. In Proc. of EuroSys ’23.

Received 2024-02-29; accepted 2024-04-01

gurobi.com/

	Abstract
	1 Introduction
	2 Background & System Model
	3 Problem Statement
	3.1 The Problem of Device Uses
	3.2 The Problem of Interrupts

	4 The WoCA Approach
	4.1 WoCA's Offline Analysis
	4.2 WoCA's Online Runtime

	5 Implementation
	5.1 WoCA's Printed Circuit Boards (PCBs)
	5.2 Energy-Model Implementation
	5.3 Analysis Implementation
	5.4 Device-Related Timing Bounds

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Static Analysis
	6.3 Continuous Power
	6.4 Intermittent Power

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

