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Abstract—Emerging embedded systems have to increasingly
meet energy constraints besides their timing requirements. While
frequency-scaling techniques are well explored, existing operating
systems for embedded real-time systems have shortcomings in
comprehensively exploiting energy-saving features present in
modern system-on-chip (SoC) platforms. Existing systems lack
operating-system abstractions to exploit the tradeoff between
computing performance and energy efficiency. Consequently,
whole-system analysis techniques are not applicable to yield
optimal configurations tailored to the applications’ requirements.
Finally, the complexity of modern energy-saving hardware fea-
tures creates huge search spaces for optimal configurations.

In this paper, we present WATWAOS, a framework for
worst-case—aware tailoring and whole-system analysis of energy-
constrained real-time systems. WATWAOS acts as both an analy-
sis/tailoring framework and a (generated) real-time operating
system. The approach exploits knowledge acquired during whole-
system analysis and applies worst-case—aware tailoring of the
system for its runtime. WATWAOS has an awareness of the
application’s requirements (i.e., deadlines, peripheral devices)
and the underlying SoC’s energy-saving features. To achieve the
tailoring, WATWAOS introduces a concept of hierarchical ab-
stractions, which offer fine-grained power-management decisions.
These abstractions are designed to enable merging of their states
without loss of accuracy. Static analysis based on these abstrac-
tions yields worst-case—optimal (i.e., provably energy minimal)
solutions with regard to given deadlines. To tackle the enormous
search space of our bilevel problem, WATWAOS employs several
concepts to exploit advanced features of mathematical optimizing
tools. The evaluations of WATWAOS validate our claim of finding
worst-case—optimal solutions within acceptable analysis times.

Index Terms—real-time operating systems, resource minimiza-
tion, embedded system-on-chip, whole-system analysis, ILP solv-
ing, worst-case execution time, worst-case energy consumption

I. INTRODUCTION

Time- & Energy-Constrained Embedded Systems: The
number of Internet-of-Things (IoT) systems has reached 16
billion [1], and visions predict a route to one trillion sys-
tems [2]]. Many of these IoT systems are embedded in their
environment, making them face both timing and energy con-
straints, which describe this paper’s two central resources of
interest. With the increase of rather safety-uncritical consumer
electronics, likewise, more safety-critical (e.g., implantable)
medical devices and health-monitoring systems have critical
timing restrictions while also requiring energy awareness,
especially when being battery-powered [3]. For example,
battery-powered smart watches [4] or other wearables [J3]]

are increasingly used for medical purposes. Besides battery-
operated systems, the Internet of Batteryless Things (6], where
energy is harvested from the environment, requires meeting
both timing and energy constraints [[7].

Time-vs-Energy Tradeoff in Modern SoCs: Reducing the
energy demand while meeting timeliness has been mainly
achieved by dynamic (voltage and) frequency scaling (DVFES)
approaches, where we refer to the survey of Bambagini et
al. [8]. Frequency scaling still represents the state of the
art in embedded systems [9]. However, frequency scaling
alone yields minor benefits on modern system-on-chip (SoC)
platforms: These SoCs feature a complex intertwined clock
subsystem with configurable energy-saving features. Starting
from generating clock signals, modern SoCs have a plethora
of clock sources that differ in their (temperature-dependent)
stability, speed, startup time, and energy efficiency. On the op-
posing side of clock sources in the SoC are power-consuming
components, such as (co-)processors, sensors, (analog/digital-
to-digital/analog) converters, which are subsequently referred
to as generic devices. Using these devices, in turn, potentially
requires specific configurations of the clock subsystem.

Operating-System Support for Energy-Aware Real-Time
Systems: Time- and energy-constrained applications inevitably
require a real-time operating system (RTOS) to avoid the error-
prone and labor-intensive tuning of bare-metal applications.
For example, RIOT [10] is an OS with fixed-priority real-
time scheduling. In the context of RIOT’s energy savings,
Rottleuthner et al. pointed out the necessity of clock-subsystem
abstractions and their use for dynamic clock reconfigura-
tions [[L1]. With the same goal, Chiang et al. introduced the
Power Clocks approach to dynamically manage multiple clock
sources [12] for Tock OS [13]. Since RIOT and Tock address
energy savings with dynamic, feedback-based approaches,
they are incapable of giving static runtime guarantees.

Dynamic Reconfiguration vs. Static Guarantees: Con-
trary to the dynamic approaches, Crépe [14] and Fusion-
Clock [15] build a resource-consumption model of the clock
subsystem to reduce the energy demand under real-time con-
straints. To give runtime guarantees and yield optimal clock
configurations, the approaches have a notion of both worst-
case execution time (WCET) [16] as well as worst-case energy
consumption (WCEC) [17]. However, these RTOS-agnostic
approaches only target periodic task sets or task sets with a
single interrupt and software-controlled preemption control,



which do not meet the complexity of realistic task sets.
Real-world task sets usually contain multiple asynchronously
activated, sporadic tasks and, in most cases, at least timer
interrupts for the RTOS’ scheduler. Tackling sporadic task sets
is especially difficult since this task model comes with the
challenge of search-space explosion to find optimal solutions.

Whole-System Analysis & Optimization: This work has
the objective of finding optimal configurations (i.e., minimum
energy demand) under consideration of real-time constraints.
Further, we consider sporadic task sets (i.e., multiple asyn-
chronous interrupts) running on modern SoCs with a multi-
sourced clock subsystem. As we will show, this system
model leads to enormous search spaces. Asynchronous in-
terrupts (which can, in turn, activate higher-priority tasks)
inevitably lead to cycles in the entire system’s execution graph.
A common approach to handling the analysis and optimization
of such directed, cyclic graphs is to map them to a maximum-
cost flow problem. This type of problem can be — by means
of integer linear programming (ILP) techniques — solved
with powerful mathematical, linear-programming solvers (e.g.,
Gurobi [18]]). Being driven by the relevance of, for example,
business decision-making, these tools have been substantially
improved over the last decades [19], [20]. Although these
solvers are highly optimized and able to exploit the parallelism
of multi-core/cluster environments, naively formulating ILPs
and integrating them with ILP solvers potentially results in
poor solving performance. Likewise, choosing abstractions
that are too fine-grained (e.g., on the level of single machine-
code instructions) leads to practically infeasible results. As part
of this paper’s optimization-related contributions, we leverage
features (e.g., multi-scenario ILPs [21], model-modification
callbacks [22]) to significantly reduce optimization times.

Contributions: In this paper, we introduce WATWAOS,
a real-time operating-system framework that targets worst-
case—aware tailoring and whole-system analysis of energy-
constrained real-time applications. Our proposed contributions
concern the entire system-software stack, its whole-system
analysis, and several optimization techniques to provide prac-
tical analysis times:

1) System & Abstractions: We propose the open-source
WATWAOS real-time operating-system framework [23].
WATWAOS introduces hierarchical abstractions that are
specifically tailored to meet the complexity of modern
embedded SoCs. These abstractions support our graph-
merging techniques and keep analysis efforts practical.

2) Analysis & Tailoring: Its abstractions allow WATWAOS
to conduct fine-grained static analyses for time and
energy. As first of its kind, WATWAOS enables system-
wide energy minimization, by using modern hardware
features, of fixed-priority real-time systems with arbi-
trary asynchronous interrupts.

3) ILP-Solving Techniques: WATWAOS is the first ap-
proach for embedded systems that exploits advanced
features of ILP solvers to substantially reduce analysis
times, as we outline in our evaluation based on a real-
world embedded SoC platform.
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Fig. 1: The clock subsystem (simplified excerpt) is the core
component for the time-energy tradeoff on modern SoCs.
Multiplexers, dividers, and gates along the signal paths further
configure this tradeoff besides individual input clock sources.

II. BACKGROUND & SYSTEM MODEL

We give insights into WATWAOS’ background (in Sec-
tion [[I-A) and its system model (in Section [lI-B).

A. Background

Clock Distribution Networks: Our targeted platforms are
highly resource-constrained embedded devices. To manage
the time-energy tradeoff, these systems feature a mechanism
to control the system’s components, called the clock subsys-
tem, alternatively the clock tree or clock-distribution network.
Figure [I] gives a simplified example of the clock subsystem
from the RISC-V-based ESP32-C3 SoC platform. For further
insight into the complexity of this subsystem, we refer to its
detailed documentation [24]. The chosen SoC features a rather
complex clock tree, offering a large configuration space for the
time-energy tradeoff. While simpler clock subsystems exist,
this SoC serves as a representative platform for this paper,
highlighting the complexity of numerous SoCs. The clock
subsystem consists of several input signal nodes routed to
output devices such as the CPU or Wi-Fi device via a network
of nodes. These nodes are dividers that scale the incoming
signal by a factor or that select one of the
incoming signals as the output signal. Further, power gating
can be applied to switch components on or off. This allows the
system configuration to be realized in a very fine-grained way.
The main benefit of the configurability is the possible, fine-
tunable time-energy tradeoff: For example, if a device is not
required to be active, the system can deactivate it by turning
off the corresponding gate and thereby save energy (i.e.,
power over time). Another option is to run a device at a
lower frequency, resulting in a different power-consumption
behavior. For the CPU, this frequency reduction results in a
longer execution time but also reduces the energy consumption
per time unit. Note that some devices require specific system
configurations. For example, the transceiver (necessary for
sending Wi-Fi packets) of the ESP32-C3 requires an active
high-energy clock (phase-locked loop, PLL) [24]. For more
energy efficiency, the clock subsystem can configure the XTAL
crystal. Another option is the use of RC oscillators, which are
rather temperature-unstable but very energy-efficient.

Power-Consumption Behavior: We subsequently discuss
preferable clock-frequency configurations for specific work-
loads. For our targeted platforms, the power consumption
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Fig. 2: Our comparison of I/O-bound (green) and CPU-bound
(blue) workloads on an embedded SoC platform [25]].

consists of a static and a dynamic part [8]. The dynamic part
results from the switching activity within the system, while the
static part is caused by leakage currents through the transistors.
Two main groups of tasks are worth considering: (1) Compute-
intensive tasks (also called CPU-bound workloads) should be
executed at the highest possible clock frequency. While the
dynamic part stays high due to the workload, the task is
completed in the shortest possible time. Thereby, the time
spent per operation is minimized, resulting in a low static
power consumption. Since the internal memory bus is usually
clocked with the same speed as the CPU in our targeted
embedded SoCs [24], CPU-bound phases do not substantially
differ from memory-bound phases in terms of time and power
demand. Thus, memory-bound phases are part of the same
group. (2) In contrast, the other group consists of I/O-intensive
operations (I/O-bound), for example, communicating with
external or memory-mapped sensors. Here, the time needed
is usually bottlenecked by a relatively slow bus protocol
compared to the CPU frequency. Therefore, the goal is to
reduce the energy consumption per unit of time. The static
power consumption is fixed due to the timing behavior of
the I/0O operation. Consequently, reducing the dynamic part
by choosing a low CPU frequency results in reduced energy
consumption. This behavior is shown in Figure [J] for an
embedded SoC [25]: The green lines represent a workload
where data is read from a connected sensor. While the time
needed to perform the transaction stays consistent, the energy
requirements rise with increasing CPU frequency. The blue
lines, on the other hand, refer to a workload where the retrieved
data is processed. Here, both time and energy decrease with
an increasing CPU frequency, which motivates our work on
provably energy-minimal clock-subsystem configurations.

Static Worst-Case Analysis: A major challenge for any
energy-aware real-time system is to guarantee the safe ex-
ecution of all tasks within both time and energy budgets.
Determining suitable values for the WCET and WCEC is a
necessary prerequisite for a reasonable execution strategy. For
this, numerous approaches to both types of resource analyses
exist [16l], [L7], [26], [27], [28], [29]. A common way of
calculating these values is to use a bottom-up approach: The
analysis starts by adding up the time of single instructions
and then groups these into larger blocks. To achieve this

compositionality of resource demands, we assume the absence
of timing anomalies [30]. This prevails on our target plat-
form (ESP32-C3), which we configure to bypass caches. The
resulting blocks are used to construct a control-flow graph that
models all applications and the OS code. Using the Implicit
Path Enumeration Technique (IPET) [31], [32], the graph is
transformed into a mathematical optimization problem. The
IPET’s core idea is to derive flow constraints, for example,
from branches in the program’s control flow, and formulate an
integer linear program (ILP) from these constraints. By solving
the ILP, the IPET implicitly derives worst-case estimates in-
stead of explicitly enumerating all possible paths, which is not
practical given the myriad of possible execution paths in whole
systems. Practicality is a core goal of WATWAQOS, for which
solving ILP formulations efficiently is essential. While the
original IPET [31], [32] operates on single-threaded control-
flow graphs, WATWAOS exploits this ILP-based technique for
resource minimization across global control flows (i.e., inter-
task) with asynchronous activations.

Terminology for Whole-System Analysis: The term WCET
refers to the execution time of a task in isolation. When
accounting for preemptions (e.g., through asynchronous in-
terrupts or higher priority tasks), the worst-case response
time (WCRT) describes the end-to-end timespan from the be-
ginning to the task’s termination, including possible blocking
times or interferences through preemptions. For the energy-
related problems, the terminology refers to WCEC and worst-
case response energy consumption (WCRE), respectively.

B. System Model

Sporadic Task Model: WATWAOS features single-core,
fixed-priority real-time systems with preemptive, sporadic
tasks. Each task 7 is activated by an asynchronously occurring
interrupt I. The occurrence of sporadic tasks and interrupts
are bounded by their minimum inter-arrival time ty,;n 1.
Additionally, each asynchronous interrupt can have a release
jitter in WATWAOS. In the case of a task with specified
deadline requirements, WATWAOS ensures that the respective
task 7 meets its deadline D.. An asynchronously released
interrupt leads to the execution of an associated interrupt
service routine (ISR). An essential interrupt for most real-
time systems is the timer interrupt, which usually triggers the
scheduler. WATWAOS handles the timer’s ISR as any other
potentially occurring interrupt with either a periodic or spo-
radic arrival time. As a static analysis approach, WATWAOS
requires a priori knowledge of the source code, the target
platform’s clock tree, and the impact of device operations on
the power demand. WATWAOS can also incorporate dynamic
task startups as long as their code and device use is known
in advance. Currently, WATWAOS does not assume shared
resources (e.g., mutexes). However, this type of contention-
aware analysis has been shown in several works in the context
of real-time scheduling [33], [34], [35], [36]]. We consider the
benefits of integrating these blocking times into our model to
be minor in relation to our main objective of selecting provably
energy-minimal clock configurations.



Notion of Optimality: WATWAOS aims to give runtime
guarantees by means of static analysis, being essential for
safety-critical applications. Runtime guarantees describe that
no task executes beyond its assigned worst-case execution time
or worst-case energy consumption. During the actual runtime,
tasks likely consume less than their acquired budget, which is
of minor interest for the course of this work. Our objective is
to yield provably energy-optimal results under consideration
of timeliness. While the guarantees are given during design
time, the WATWAOS runtime dynamically reconfigures the
system based on the statically acquired knowledge. We refer
to execution scenarios as being worst-case—optimal when no
further energy reduction is possible under the assumption that
tasks require their assigned worst-case budget.

III. PROBLEM STATEMENT

In alignment with our contributions, we solve three prob-
lems with WATWAOS: the lack of OS abstractions for modern
clock subsystems (Section [[TI-A)), missing concepts for whole-
system analysis and tailoring of energy-constrained real-time
systems (Section[[[I-B]), and the problem of large search spaces
for finding worst-case—optimal solutions (Section [[II-C).

A. Problem#1: Missing Operating-System Abstractions

Previous approaches make use of the fact that the time-
energy tradeoff varies with I/O- and compute-intensive work-
loads. Power Clocks [12] features an operating system that
dynamically tracks I/O operations and adapts the system
frequency accordingly. ScaleClock [11], which builds upon
RIOT [10], tests the possible configurations in an initializa-
tion phase and relies on the best findings during runtime.
Although both systems include their clock reconfigurations
as part of the operating system, they do not support a fine-
grained and adjustable granularity of clock-subsystem recon-
figurations. Zephyr [37]], an operating system for embedded
devices gaining more and more attention, also misses a good
abstraction for the clock subsystem: Fischer [38] discussed a
potential clock-subsystem integration into Zephyr. However,
the proposal for a possible architecture is still a work in
progress [39]. Despite the relevance and benefits of this topic,
neither an implementation nor a concept on how to handle
(provably optimal) energy minimization by exploiting these
modern clock subsystems is available for Zephyr.

Approach of WATWAOS to Missing Operating-System
Abstractions: WATWAOS leverages the existing concept of
power-state—aware blocks [33]], [40] and their transitions in a
system-wide graph. WATWAOS extends this concept through
hierarchical abstractions, where information on different de-
vice states is embedded into the blocks at a specific layer.

B. Problem#2: Lacking Whole-System Analysis & Tailoring

Looking at the clock subsystems in embedded hardware
platforms, two questions arise regarding energy-saving strate-
gies: Which configuration is most suitable for a sequence
of instructions, and when should the OS change the config-
uration between sequences? Existing operating-system-level

approaches, such as Power Clocks [12] and ScaleClock [11],
address these questions by dynamically applying configura-
tions based on whether the current task is considered to be
I/O- or compute-intensive. However, when combining both
I/O and compute workloads, clock reconfigurations introduce
additional runtime overheads. For example, when switching
from a compute-intensive task, which might operate at a
high CPU frequency, to an I/O-heavy task, with an optimal
low CPU frequency regarding energy savings, additional,
potentially substantial reconfiguration penalties are involved.
Therefore, constantly changing to the best clock configuration
for the isolated workloads can lead to additional energy-
consumption penalties when considering the entire schedule.
As a consequence, both approaches neglect the impact of the
interaction of multiple tasks and, therefore, make suboptimal
decisions. To consider the best possible clock configurations
together with the resulting reconfiguration penalties, a whole-
system analysis and optimization approach is needed to be able
to handle all possible options. The challenge is to manage
the whole system with all possible states and to determine
the energy-optimal clock-configuration settings. The problem
regarding analysis optimization intensifies when moving be-
yond periodic task systems as analyzed in FusionClock [[15] or
Crépe [14]. As WATWAOS optimizes whole operating systems
with sporadic task sets, which adds more complexity to the
analysis, further optimization tailoring is necessary to succeed.
Approach of WATWAOS to Lacking Whole-System
Analysis & Tailoring: WATWAOS enables system-wide en-
ergy minimization by considering multiple points during run-
time at which clock reconfigurations could be beneficial.
Our novel approach solves multiple mathematical optimization
problems to determine a sequence of reconfigurations that
yields the system’s worst-case—optimal energy consumption.

C. Problem#3: Search Spaces & Unpractical Analysis Times

Because WATWAOS aims to analyze whole systems, there
is a rapidly expanding number of possible nodes. In particular,
considering possible system-state reconfigurations adds more
complexity. This, in turn, leads to an even larger number of
possible configuration options. Therefore, a proper energy-
consumption optimization results in large and complex analy-
sis problems. As a consequence, the resulting analysis time
substantially increases and may be practically infeasible. The
necessity to prune the search space arises: To make the
solving of such problems feasible, approaches are necessary
that compress all necessary information of the state graphs
describing the underlying system in a simpler problem.

Approach of WATWAOS to Search Spaces & Unpractical
Analysis Times: In a nutshell, to solve the search-space
problem, WATWAOS applies a two-fold approach: (1) Node-
merging techniques are applied to the resulting graph by
adding knowledge about possible device-state changes in
the form of a hierarchical formalization. (2) Additionally,
WATWAOS exploits advanced features of an ILP solver (i.e.,
callbacks and multi-scenario ILPs) to further cut down the
overall time for finding worst-case—optimal solutions.



IV. THE WATWAOS APPROACH

WATWAOS’ objective is to generate tailored OS instances
for real-time systems that automatically switch to a clock
configuration that is optimal with respect to worst-case as-
sumptions. We leverage techniques of existing approaches
and add the additional goal of finding a clock-reconfiguration
sequence that minimizes the overall energy consumption. To
reduce analysis times, WATWAOS introduces a novel layered
graph structure that reduces the number of states to be taken
into account and makes use of advanced ILP-solver features.
Subsequently, Section [[V-A]introduces the graph construction
to analyze and minimize the WCRE of an OS instance.
Sections and explain how this graph is transformed
into an ILP and how WATWAOS makes use of solver features
to speed up the optimization process. We share implementation
details in Section [[V-D] before summarizing in Section [[V-E]

A. Graph Construction

PABB Graph: A crucial part of finding a system’s worst-
case—optimal energy consumption is determining the worst-
case energy consumption itself. For this, we adopt an approach
similar to that used in existing research approaches [33l], [40].
The starting point for WATWAOS’ analysis is the control-
flow graph of the application and operating system, which
is available in the compiler backend. The nodes in this
graph, known as basic blocks, represent sets of instructions
executed sequentially. WATWAOS merges multiple of these
basic blocks into a superstructure called power-atomic basic
blocks (PABBs). A PABB can contain multiple connected basic
blocks during which the system’s power consumption remains
the same (since the set of active components is the same). The
last instruction of a PABB is usually a system call, such as a
clock-subsystem reconfiguration or scheduling operation. This
aggregation of basic blocks into PABBs reduces the number of
states that need to be considered later in the analysis without
sacrificing precision in the solution. Keeping the number of
possible states as small as possible is essential for achieving
practical optimization times. The final PABB graph subsumes
every executable task and interrupt, including the OS code.

Figure [3|(a) displays the PABB graph of an example appli-
cation. It consists of a single task with four PABBs, which
can be categorized into a compute-intensive phase (filter,
compute) and an I/O-intensive phase (send). The first node
R'P represents a reconfiguration point inserted by WATWAOS,
which will be discussed further below. The compute blocks of
the task can additionally be interrupted by an asynchronous
ISR (illustrated with the ¥ sign), which executes two PABBs.

Reconfiguration Points: After constructing the PABB
graph, WATWAOS inserts reconfiguration points RP to reach
the objective of energy minimization. To keep the problem
analyzable, we adjust the clock configuration only at strategic
points where reconfigurations have significant potential.
Since I/O system calls are more energy-efficient at lower
frequencies (see Section , we cover these I/O sections
with added clock-configuration decisions. WATWAOS adds
reconfiguration points at three locations:

(1) Before & after I/0 system calls: When a device is queried
once, switching to a different clock configuration for that
specific interaction can yield energy-optimal configurations.
(2) Before & after loops: Loops with repeated device
operations occur, for example, when reading sensor values.
Alternating between clock configurations for each iteration
may decrease both time and energy efficiency because of
switching overheads. Therefore, WATWAOS also takes clock
reconfigurations for the entire loop into account.

(3) At beginning & end of a task: A task can execute
multiple I/O operations, with short bursts of compute sections
in between. Similar to the switching overheads in loops,
frequent clock reconfigurations in tasks may result in an
overall energy-consumption increase; this is why WATWAOS
considers different clock configurations for the entire task.

In the example in Figure [3] WATWAOS added a single
reconfiguration point RP at the start of the task (@®). The
example considers two clock configurations enabling the use
of a low or a high clock frequency. This doubles the number of
possible states, as the rest of the task can potentially execute at
two frequencies (see device-state layer in part (b)). The novel
idea of our approach is that each specific sequence of recon-
figuration points will later be transformed into its own mathe-
matical optimization problem representing the WCRE (i.e., the
WCEC including all possible interferences) of the application.
The sequence with the lowest WCRE then corresponds to the
worst-case—optimal sequence of reconfiguration points.

State-Transition Graph with Power Information: The
next step involves constructing the power-state—transition
graph (PSTG) of the system, starting from an entry node in
a predefined state (e.g., a low-frequency clock configuration).
The PSTG consists of nodes that represent all possible states
that may occur during system runtime, including transitions to
higher-priority tasks or asynchronous ISRs. WATWAOS subdi-
vides a state into three layers, whereby lower layers include the
information of the upper layers. Besides the layered structure
of multiple nodes in Figure [3] the layered structure of a single
PSTG node is further detailed in Figure |4 Subsequently, we
give further insights into the individual layers:

Layer (a): PABB Layer. This layer tracks the currently
executed PABB of a node. Across the different PSTG layers,
multiple nodes can execute the same PABB. Figure [3] shows a
scenario where all PABBs except the first one can be executed
either at a low (JUL) or a high (JUUIL) clock frequency.

Layer (b): Device-State Layer. The second layer addi-
tionally tracks the state of all system devices. In WATWAOS,
a device refers to any power-consuming component, such as
the CPU, UART controller, or Wi-Fi chip. Each device’s state
influences the system’s overall power consumption. Addition-
ally, some device properties may depend on the state of other
devices. For instance, the time it takes to transmit a character
via UART depends on the speed of the UART controller,
which itself may be controlled by the CPU clock frequency. To
account for these dependencies, WATWAOS allows definitions
of custom costs per device system call.
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Fig. 3: WATWAOS’ hierarchical abstraction structure for an example application with one task and one ISR. (a) The PABB layer
is an abstraction from the application’s control-flow graph. (b) The device-state layer extends (a) by adding the device context,
such as the clock frequency. (c) The system-state layer is fully context-sensitive and extends (b) by scheduling information.

Layer (c): System-State Layer. The third layer additionally
includes the context-sensitive (i.e., program-path—sensitive)
state of all ISRs and tasks in the system. This information is
essential for accurately determining all possible successors of a
node. Specifically, the state of each task or ISR comprises both
a static and a context-sensitive part. The static part remains
unchanged during runtime and is statically configured in the
system’s description. It includes attributes such as the priority
of a task and the minimum inter-arrival time of an interrupt.
WATWAOS supports annotating such information directly in
the source code using compiler #pragmas. The context-
sensitive state information changes while the system is running
and is captured by the PSTG construction’s path analysis. With
regard to ISRs, this state tracks whether respective interrupts
are en-/disabled. Depending on the context-sensitive path
constraints, transitions into the ISRs are present as successors.
With regard to tasks, the context-sensitive state includes the
current process state of a task and whether a task has been
interrupted. This information is crucial for determining to
which node WATWAOS returns when transitioning from a
high-priority task (or ISR) 7, back to a low-priority task
Tiow: (1) If node my in 7y, is interrupted by 7ye;, then, after
Thigh finishes, ny should be resumed. This creates a cycle in
the graph. (2) If 73, is instead started by node n; in 7,,, then
we execute the successor of node nq in 7y, after 7, finishes,
which does not create a cycle in the graph. WATWAOS’ PSTG
construction algorithm starts at an entry node with a known
state. The successor of this node is the first PABB of the initial
OS task. WATWAOS knows about the system model and the
semantics of all available system calls. Consequently, when a
low-priority task 7, activates a higher-priority task 73,5, then
the first PABB of 73, is visited next. When 7y, activates 7y,
then this information is stored in the state of each node in the
PSTG up until the point where a scheduling decision has to
be made and 7y, is scheduled.

Stateful power-atomic blocks at the device-state layer solve
the problem of missing OS abstractions (see Problem#1 in
Section [III-A). These abstractions include devices and clock
configurations and enable configuration switches at runtime.

Hierarchical Abstractions: The PSTG for the example
introduced previously is shown in Figure 3|(c). Here, after the
entry eyq, the R'P node is a reconfiguration point at which
either a low-frequency or a high-frequency clock is chosen.
The edge ey, marks the start of a context with a low and ep;gp
with a high clock speed. Thus, at the device-state layer (b),
all successor PABBs exist twice. On the system-state layer (c),
the number of interrupt nodes increases again (see collect
and process nodes). This is because when an ISR is entered,
WATWAOS needs to keep track of the interrupted node so that
the correct node is resumed when leaving the ISR.

The presented example shows how the presence of inter-
rupts can significantly inflate the number of states in the
PSTG. As these states are later transformed into variables
and constraints of an ILP, they directly impact the complexity
of the mathematical problem and its solving time. Existing
approaches use the most fine-granular version of the PSTG
to determine the WCEC [28], [40]. In contrast, WATWAOS’
novel understanding of a hierarchical PSTG structure opens up
the possibility of notably reducing the number of considered
states. This reduction is achieved by using nodes and edges
of the device-state layer instead of the system-state layer
whenever feasible. This is possible because, when calculating
the WCEC, the information of the second layer, specifically
the power consumption of each device, is sufficient. To ensure
that only valid control-flow paths are considered in the ILP,
additional measures are necessary, which will be described
in Section [[V-B] Compared to existing analysis techniques,
WATWAOQOS effectively merges nodes and edges within the
PSTG to minimize the number of states. We subsequently refer
to this strategy as the node-merging mechanism of WATWAOS.

B. ILP Formulation

After enumerating all system states, WATWAOS transforms
the PSTG into multiple ILPs, based on the context-sensitive
constraints of the PSTG. Each ILP represents a specific
sequence of clock reconfigurations and each ILP is formulated
as a maximization problem for determining the WCRE. The
PSTG’s system-state layer comprises a set of nodes A and
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edges £. Each node n € N gets assigned a variable in the
ILP that corresponds to its execution count f(n). The same
applies to each edge e € £ with f(e). In the source code, edges
are typically formed by control-flow structures such as if-else
statements or loops. The ILP’s objective is to maximize the
WCEC of all nodes and edges multiplied by their respective
execution frequencies:

max (WCRE ) = max ( Y onen WCEC(n) - f(n)

+ S.ce WCEC(e)- fle) )

The WCEC (n) of a node n is calculated using its power con-
sumption and its worst-case execution time as WCEC (n) =
P(n)- WCET (n). P(n) is derived from the maximum power
consumption of all active devices in the PSTG’s device-state
layer. These values are configured in a configuration file for
the target platform. WCET (n) is determined for each node
on the device-state layer using the existing worst-case analysis
framework Platin [26]]. The costs of clock reconfigurations are
assigned to the edges (see ey, and ej;g, in Figure since they
result from hardware reconfiguration penalties (e.g., waiting
for a clock to stabilize) rather than from the code itself.

WATWAOS solves multiple ILPs — one for each sequence of
clock reconfigurations RP. Among all solutions, the one with
the lowest value represents a worst-case—optimal sequence
of reconfigurations and, thus, the best energy consumption
achievable under worst-case conditions. As a result, our ap-
proach consists of the following two interdependent optimiza-
tion problems, as listed in the following Equation [I}

WCRE ;= min ( max  (WCRExp) ) (1)

inner problem

outer problem

The presented type of a hierarchical optimization structure
is commonly referred to as a bilevel optimization problem.
The outer problem identifies the minimal energy consumption
across all ILPs, each of which represents an instance of the
inner problem. The total number of ILPs depends on the
number of possible clock configurations # CC' and the num-
ber of reconfiguration points #RP, resulting in #CC #~P
scenarios. The example of two clock configurations and 20
RP, resulting in over a million scenarios, underlines the
rapid growth of the search space. By finding a solution
for WCRE,,;, WATWAOS addresses the problem of lacking

whole-system analysis and worst-case—optimal tailoring (see
Problem#2 in Section [[II-B). Based on the optimal sequence
of clock reconfigurations found by the ILP solver, WATWAOS
generates a tailored OS instance that automatically switches
its configuration at the determined points.

Basic Constraints: To map valid paths through the PSTG
in the ILP, we add several different constraints comparable
to the ILP-based IPET for control-flow graphs [31l], [32].
The most important of these are structural constraints, which
enforce that the count of all outgoing edges &,,(n) from a
node n is equal to the count of its incoming edges &;,(n):

VneN Zeegm(n) fle) = Zee&m(n) f(e)

In Figure for example, the basic constraint f(egqr) =
f(enigh) + f(ewow) holds. Additionally, the count of a node
itself must generally be equal to the total sum of its incoming
edge frequencies. We exclude the set of edges Esr(n) where
the system returns to node n from an interrupt, as such edges
merely resume a previously interrupted execution.

fn) =

For our ILP, we define an artificial start node s with exactly
one outgoing edge {s — *} with a count of 1. Likewise,
exactly one of the edges to the end nodes n € N, is active:

Vn € Nopa Decenm) fle) =1

Control-Flow Loops: Loops pose a major challenge when
defining the ILP as they introduce cycles leading to unbounded
solutions. In WATWAOS, loops can thus be annotated with an
upper bound in the source code, which is transformed into
corresponding constraints in the ILP. A loop ! consists of a
set of nodes N; C N, one of which is the loop header nyq, €
N;. The loop has one or more entry edges Eontryl = {n —
Npar |m € N\N}, as well as backlink edges Epueriines =
{n = npar |n € N;}. For each loop I, a constraint is added
that limits the backlink count by the upper bound u; with
regard to the count of all entry edges:

Zebegharklink,l f(eb) S Zeeegemrm f(@e)

If no entry edge is activated, all backlink-edge frequencies
must be 0, resulting in no loop activation. Otherwise, if the
loop is activated, u; bounds the backlink-edge frequencies.
Timing Constraints: WATWAOQOS allows specifying timing
constraints for each task 7 by annotating deadlines D, via

Zeiyxegin(n) \EISR(TL) f(ein)



source code #pragmas. In the ILP, we add variables corre-
sponding to each task’s WCRT to detect deadline misses:

WCRT (1) = ZnENT WCET(n) - f(n)
+ Zee& WCET(e) - f(e)

The sets NV, and &, contain all nodes and edges where task 7
is potentially runnable, that is, either preempted (e.g., by an
interrupt) or actively running (see example of Process state in
Figure[)). This way, WATWAOS accounts for the task itself and
all potential interrupts and activations of higher-priority tasks.
Our flow constraints ensure that the ILP solver only selects
the nodes and edges belonging to the same (i.e., connected)
execution paths of 7. Considering all nodes A and edges £
yields the total execution time 7', which is needed by other
constraints to bound the number of interrupts:

T =3 ,cn WCET(n) - f(n) + > .cc WCET(e) - f(e)

The WCRT variables for each task serve as criteria to de-
termine feasible solutions during ILP solving. Depending on
the employed strategy, the solving time can be reduced by
terminating early when deadline violations become apparent.

Node Merging: WATWAOS uses the nodes and edges of
the device-state layer whenever possible. In the ILP, WAT-
WAOS achieves this by replacing multiple counter variables
of nodes of the system-state layer with one counter variable
that effectively represents the node at the device-state layer.
In the example of Figure [3|(c), the two low-frequency nodes
collect and process at the system-state layer can be
replaced with the respective single node of the device-state
layer (Figure [3|(b)). By doing so, WATWAOS reduces the ILP’s
complexity by keeping the number of variables low. Additional
constraints ensure that the ILP solver only considers valid
control-flow paths. Without such constraints, in the example,
the solver might enter the ISR via edge filter —+collect,
and incorrectly leave it via edge process — compute. To
maintain accuracy in the ILP solution, WATWAOS adds the
following constraint: The number of times a new task (ISR)
is entered via a specific edge must be equal to the number
of times the same task (ISR) is left. This is where the
state information Entered via: from the system-state layer
(see Figure ) becomes essential. During state enumeration,
WATWAQS tracks the node through which a new task or ISR
is entered. When that task or ISR is left, a new constraint is
added to the ILP to link the entry edge to the corresponding
exit edge. This ensures that control-flow paths remain valid
throughout the optimization process.

Interrupts: Interrupts require special handling as they
introduce loops in the PSTG. Contrary to control-flow loops,
no static bound on the occurrence of interrupts is known.
To consider the actual worst-case bound during ILP solving,
WATWAOS supports annotating the minimum inter-arrival
time t,,,,7 for interrupt /. Combined with the frequencies of
its entry edges Eenryr = {N \ N7 — N7}, where N7 denotes
the set of nodes belonging to interrupt I, t,,;, r relates the
occurrence of interrupts to the total execution time 7'. Release
jitter for I is considered by adding one additional slot %, :

tmin,l : Zee&nm;l f(e) < T+ tmin,[

The occurrence of interrupts increases 7', and with increasing
T, in turn, more interrupt occurrences are possible. However,
this circular dependency does not pose a problem for the ILP
solver as long as a minimum inter-arrival time ¢, iS given.

Another challenge with interrupts arises when the device
state is modified inside an ISR (e.g., by changing to another
clock configuration). In such cases, leaving the ISR will not
resume the previously interrupted node n,;; but, instead, return
to a new node n,,,, with a different device state. The execution
of only one of these two nodes should be counted to keep the
ILP solution as small as possible. To ensure a valid upper
bound for the WCRE, WATWAOS counts the node that results
in higher overall energy consumption. This is accomplished by
introducing a new variable Uporensiar, Which is subtracted from
f(nyq) and added to f (7). Using this variable, the solver
has the flexibility to move the execution count of 1,y t0 1
if doing so leads to a higher energy consumption. This way
of adjusting node frequencies ensures a sound bound for the
ILP solution while keeping accuracy.

C. ILP-Solving Techniques

WATWAOS creates and solves multiple ILPs, one for each
possible sequence of clock reconfigurations, using the solver
Gurobi [18]. Each ILP maps the entire state-transition graph,
including all reconfigurations. To allow for only one specific
sequence of reconfigurations per ILP, we disable all other
possible edges by setting their respective bound to 0. Gurobi
offers several optimization techniques for efficiently solving
multiple similar ILPs [21]], [22], and we exploit five different
optimization methods, which are presented below.

Method single-scenario: This is a naive approach that
solves all ILPs sequentially, one after another. Gurobi utilizes
all available cores to solve an individual ILP.

Method single-scenario+callback: Gurobi provides the
ability to invoke a callback function whenever a new tem-
porary solution is found. This feature is referred to as model-
modification callbacks [22]. WATWAOS leverages this callback
to prematurely terminate the solving process of an ILP if the
temporary solution is higher than any previously computed
ILP solution. Early termination is possible since we are only
interested in the minimum solution among all ILPs, that is,
WATWAOS’ outer problem (see Equation|[T). The callbacks can
also be used to terminate early whenever any of the specified
task deadlines D are violated.

Method single-scenario+multithreading: While Gurobi
already parallelizes the ILP-solving process, it only does this
for single ILPs. However, since a single ILP can be solved
relatively quickly for most of our application scenarios (i.e.,
in the range of seconds), the scheduling overhead can have an
impact on the overall solving time. In WATWAOS’ respective
implementation, we distribute the ILPs to all available cores in
our system, whereas a single ILP is solved on only one core.

Method single-scenario+callback+multithreading: This
method combines the two previous approaches. The callbacks
keep track of the lowest WCRE solution of all threads.
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Method multi-scenario: Gurobi has a special multi-
scenario ILP feature [21], which is particularly suited for
WATWAOS’ approach. When using the multi-scenario feature,
a base ILP needs to be defined. Each following ILP scenario
is allowed to modify the constraints of this base ILP. In our
approach, the base ILP represents the entire PSTG. Then, for
each scenario, we set the upper bound of each disabled clock
configuration to 0. Gurobi can use data acquired in previous
scenarios to speed up the solving process of the following
ones, leading to a decreased overall solving time. Currently,
Gurobi’s callback functions cannot be used to terminate an
individual scenario within a multi-scenario ILP; only the entire
model can be terminated. Despite Gurobi’s missing support,
we will show significant analysis-time reductions with the
multi-scenario approach in Section

Reconsidering our problem statement, WATWAOS’ node-
merging technique and use of special solver features address
the problem of large search spaces and unpractical analysis
times (see Problem#3 in Section [[II-C). Node merging sim-
plifies the ILPs by reducing their complexity, while leveraging
Gurobi’s features further accelerates the analysis process.

D. Implementation

WATWAOS leverages information provided by the LLVM
compiler framework [41]. For example, it uses the control-
flow graph available in LLVM to construct the needed
graphs. Moreover, the ILP construction uses information about
control-flow loops obtained from LLVM’s LoopAnalysis pass.
Consequently, most of WATWAOS’ core functionality is im-
plemented as a pass within the LLVM. Thereby, WATWAOS
exploits sophisticated features from the LLVM infrastructure.

Figure [5] gives an overview of the tools involved in the
creation of a tailored OS instance. There are two primary
components to WATWAOS’ implementation: Analysis Q and
Tailoring ¥. The analysis component is primarily integrated
into the compiler. It constructs the PSTG and defines all vari-
ables and constraints required to formulate the mathematical
optimization problem. To calculate the WCEC, WATWAOS
needs to know the maximum power consumption of a node and
its WCET. The maximum power consumption is configured
per device state in a configuration file for the target platform.
The (frequency-dependent) WCET, on the other hand, is deter-
mined for each block using the Platin analysis framework [26].
WATWAOS’ tailoring component is invoked after the analysis
phase and uses its output to construct multiple ILPs, which
are then solved using Gurobi [18]. WATWAOS modifies the
application bitcode by inserting clock reconfigurations at the
identified worst-case—optimal points. The modified bitcode is
then compiled into machine code using LLVM’s 11c tool.

E. Summary of Approach

The given system is transformed into a PSTG, which
includes system states, device information, and reconfiguration
options. WATWAOS finds the WCRE for all possible recon-
figuration sequences and, therefore, obtains energy-optimal
configurations. The use of path constraints encoded in ILPs
leads to the fact that WATWAOS inherently finds worst-case—
optimal energy-saving configurations. By merging the PSTG
before solving, WATWAOS reduces the overall solution time.

V. EVALUATION

Subsequently, we present WATWAOS’ evaluation: After
describing our measurement setup (Section [V-A), we focus
on the analysis and optimization time of example applications
in Section Section presents the energy reductions
achievable in a real-world scenario, and Section [V-D]evaluates
the impact on the schedulability of generated task sets. Finally,
Section compares WATWAOS to a DVFS approach.

A. Measurement Setup

WATWAOS’ implementation has been evaluated on an
ESP32-C3 [24]. It offers a single RISC-V core with a 4-stage
in-order pipeline and 400 KiB of single-cycle access SRAM.
Especially relevant for WATWAOS is the chip’s extensively
configurable clock subsystem. Unfortunately, the available
documentation does not reveal details about the SoC’s energy
consumption at different clock configurations. Thus, we based
our energy consumption model on worst-observed power mea-
surements. To evaluate the power drawn by the ESP32-C3, we
use a Joulescope JS220 energy-measurement unit [42]. It can
measure both voltage and current for the device under test at
two million samples per second and is thus able to provide
precise values even for relatively short tests. The JS220 also
supports four general-purpose inputs, one of which has been
utilized to determine the start and end of a measurement.

We use a host system with an eight-core AMD Ryzen
Pro 7 8840HS and 64 GiB RAM for WATWAOS’ analysis
and tailoring. For ILP solving, we use the Python API of
Gurobi (version v12.0.1) [18] with a free academic license.
The SoC and the energy-measurement unit are connected to
the host system via USB, enabling automated test execution.
In the following experiments, we support two clock configu-
rations: a high-frequency configuration for compute-intensive
tasks and a low-frequency configuration for I/O-intensive
tasks. The high-frequency configuration uses a clock frequency
of 160 MHz, which is the highest available option on the
ESP32-C3. For the low-frequency configuration, we chose a
clock frequency of 40 MHz, which we measured to be most
energy-efficient. The source code of all presented experiments
is available as part of WATWAOS’ evaluation artifact [23]].

B. Analysis & Optimization Time

1) Node Merging: WATWAOS applies node-merging tech-
niques to reduce the number of variables and constraints in the
PSTG’s mathematical formalization. Using these techniques,
we are able to merge similar control-flow paths while still



TABLE I: Effect of node merging on the optimization time of TABLE II: ILP solving time for different amounts of tasks and

OS instances with different numbers of interrupts.

#% Merging | Var | Constr. | Solving time (3000 scenarios)

0 Off 98 87 10.10s
On 98 87 10.10s

1 Off 984 663 [12.74s
On 270 238 [12.29s

9 Off 1854 1229 [C779.65s
On 430 386 15268

3 Off 2724 1795 11334
On 590 534 [16.56s

4 Off 3594 2361 115.68s
On 750 682 [ 19.245

obtaining the same solution as without node merging. In this
experiment, we evaluate the effects of node merging on the
ILP solving time on a system with a varying number of ISRs.
All benchmarks comprise one low-priority task 7, and up
to four ISRs, each of which activates a high-priority task
Thigh- Task T, is divided into a compute-intensive and an 1/O-
intensive phase, resulting in 13 interruptible PABBs. Task 73,5,
communicates with a connected device via the UART protocol
by sending a fixed amount of characters. Table |I| compares
the number of variables, constraints, and the ILP solving time
for each benchmark with and without node merging for an
increasing number of ISRs (#¥%). WATWAOS was configured
to insert one reconfiguration point R’P before and after tasks
and loops with I/O activity. For each benchmark, the solving
time for up to the first 3000 ILP scenarios was measured.

Without interrupts, no difference exists in the number of
variables and constraints between node merging en-/disabled.
This is expected since WATWAOS only merges control-flow
paths that exist multiple times in the PSTG. With a single
interrupt, the node merging employed by WATWAOS already
shows a significant reduction in the number of variables (-
72.6 %) and constraints (-64.1 %), as well as a 5.2 % reduction
in ILP solving time. WATWAOS achieves these reductions by
merging similar states in the PSTG that execute the ISR or the
high-priority task. When node merging is disabled, these states
exist multiple times: For each interruptible PABB in 7y,,,, there
exists a different set of PSTG states corresponding to the ISR
and 7y, Our approach consolidates such redundant states,
thereby reducing the number of variables and constraints in
the ILP and thus the solving time. As the number of interrupts
increases to up to four in Table[l] the benefit of node merging
becomes even more pronounced, leading to a reduction of up
to 50.8 %. These results underline the substantial advantages
of node merging made possible by WATWAOS’ hierarchical
abstractions. In particular, real-world systems with interrupts
experience a significant decrease in analysis time.

2) ILP-Solving Optimizations: To determine an optimal se-
quence of reconfigurations, WATWAOS solves multiple ILPs,
each of which corresponds to the application’s worst-case
energy consumption for a particular clock-configuration se-
quence. In Figure [0] we compare the impact of WATWAOS’
ILP optimization techniques (see Section on the time to
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ILP scenarios. Each benchmark also consists of one interrupt.

Tasks ILP Scenarios

10 100 1000 10000
1 0.1s 0.1s n.a. n.a.
2 0.1s 0.2s 0.7s n.a.
3 0.2s 0.5s 0.7s 14.8s
4 0.4s 0.9s 3.3s 25.3s
5 1.2s 2.3s 6.6s 54.7s
6 2.6s 5.2s 14.7s 126.0s
7 7.9s 14.2s 37.7s 331.8s

Time [s]

23.922

T

961 variables

SISSSSSSSSISIISSISY
A Y

2965 variables 3787 variables

Fig. 6: Effects on the analysis time of different task sets (first
3000 scenarios, mean of 5 iterations) for five ILP-solving
methods: single-scenario (1), single-scenario + callback (#4),
single-scenario + multithreading (£3), single-scenario + call-
back + multithreading (#2) and multi-scenario (£3).

solve the first 3000 ILPs for three applications with varying
complexity and, thus, different numbers of ILP variables. Each
application comprises two tasks and one ISR with either I/O-
or compute-intensive workloads.

As a baseline, shown as single-scenario, all ILP scenarios
are solved sequentially after another. This method is the slow-
est for all tested PSTGs, since no information from previous
solutions is leveraged. Introducing a callback function allows
early termination of the solving process for single ILP and
decreased the solving time by up to 37 % in our tests. Using
multithreading to distribute the ILPs to all available cores
enhances the solving performance, up to 70% faster than
single-scenario. Combining the callback with multithread-
ing (callback + multithreading) further reduces the solving
time. Finally, the multi-scenario option achieves the most sig-
nificant solving-time reduction: Compared to single-scenario,
using the multi-scenario feature reduces the solving time by
up to 90 %. While exact solving times depend on the number
of tasks and ISRs (determining the number of variables and
constraints), multi-scenario provides the fastest solution in
most observed cases and performs best overall. The results
confirm that WATWAOS’ use of advanced solver features
drastically reduces the overall solving time.

3) Scalability: The duration of WATWAOS’ tailoring step
is primarily influenced by two factors: the complexity of
the application (i.e., the number of tasks/interrupts) and the
number of clock reconfiguration points. In this experiment,
we compare the ILP solving time for different amounts of
tasks and clock reconfiguration sequences, i.e., ILP scenarios.
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Fig. 7: Energy reduction of WATWAOS: Green areas mark
I/O operations, blue areas computations, and purple areas ISR
executions. The grey line marks the prediction of WATWAOS.

Each benchmark includes one interrupt and up to seven tasks,
covering both compute- and I/O-intensive operations.

Table [[T] presents the total solving times for all benchmarks.
As expected, the time needed to solve all ILP scenarios
increases with both the system’s complexity and the number
of considered scenarios. Nevertheless, the results indicate that
even for larger systems, WATWAOS achieves reasonable solv-
ing times in the range of minutes. Opting for coarse-grained
clock reconfiguration points results in fewer ILP scenarios and,
thus, less overall solving time. Choosing a finer granularity
increases solving times but improves the chances of identifying
a more energy-efficient clock-reconfiguration sequence.

In summary, WATWAOS provides reasonable solving times
depending on the system’s complexity and the number of ILP
scenarios. By allowing developers to adjust the granularity of
clock reconfigurations, we provide the flexibility to balance
solving time against potential energy efficiency gains.

C. Energy-Reduction Analysis

In the next experiment, we evaluate the energy reductions
achievable with WATWAOS for real-world applications. The
test application consists of a single task that simulates a typ-
ical sense-compute-send scenario, comprising one compute-
intensive and two I/O-intensive phases. Additionally, another
device may interrupt the task, triggering an I/O-intensive ISR.

Figure [/| plots the cumulative energy consumption mea-
sured on the ESP32-C3 (a) without and (b) with the clock
reconfigurations determined by WATWAOS. The green areas
represent the I/O-intensive workloads, the blue areas describe
the compute-intensive phase. ISR executions happen in the
purple areas. In the upper figure, the entire application is
executed at a low clock frequency. In contrast, the lower figure
shows the system switching to a high clock frequency after
the first I/O-intensive phase and back to a low frequency after
the compute-intensive phase. Then, before returning from the
ISR, the system again switches to a high-frequency clock
configuration. This sequence of clock reconfigurations has
been identified as worst-case optimal by WATWAOS. The
compute-intensive phase takes significantly longer at a low
frequency (a) than at a high frequency (b). Switching to a
higher frequency for this compute-intensive phase accounts for
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Fig. 8: Schedulability and energy consumption for 1000 task
sets. Compared to a baseline system operating at the SoC’s
default clock fixed at 80 MHz, WATWAOS exploits time-
energy tradeoffs by using both slower (energy-saving) and
faster (energy-intensive) configurations.

most of the energy savings achieved by WATWAOS. Overall,
the worst-observed energy consumption of the application was
reduced by 41 % from 2.52uJ down to 1.48 uJ.

Note that in the optimized scenario, the second I/O phase
is executed at a high clock frequency. For this particular
instance, it would have been more energy-efficient to switch
to a low clock frequency after the ISR (purple area). How-
ever, this ISR may also occur during the compute-intensive
phase, where switching to a lower frequency would drastically
increase energy consumption. WATWAOS currently supports
only non-contextual clock reconfigurations, meaning that it
is not possible to switch to different clock configurations
depending on the current state. Extending our approach to
support contextual clock configurations is a topic of future
research on WATWAOS.

In summary, WATWAOS is able to determine worst-case—
optimal sequences of clock reconfigurations that result in
a significant reduction in energy consumption compared to
static clock configurations. As illustrated by a representative
scenario for embedded systems, WATWAOS’ combination of
worst-case analysis (i.e., inner problem in Equation [I) and
ILP-based tailoring (i.e., outer problem in Equation [I)) substan-
tially (i.e., 41 %) decreases the worst-observed energy demand.

D. Schedulability Evaluation

In this experiment, we evaluate the impact of WATWAOS on
the schedulability and WCRE of 1000 randomly generated task
sets consisting of 5-9 tasks with fixed priorities. We assume
that device interactions occur in a sense-compute-send pattern.
To reflect varying device usage patterns, we classify tasks as
either I/O-intensive or compute-intensive, with 40 %-80 % of
tasks in each set designated as I/O-intensive. The reconfigu-
ration penalty for configuration switching is 1ms. For each
task set, the overall duration is 7" = 25 ms for the baseline at
utilization of 100 %. This baseline assumes the SoC is using
the PLL clock at 80 MHz [24]]: It represents the center in the
time-energy tradeoff and the SoC’s default for energy-sensitive
applications [43]], [44]. The task utilizations are distributed
using the UUniFast algorithm [45]]. All task periods are chosen
to be the same, which enables us to achieve total utilizations
of 100% for each baseline task set. For utilizations other
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Fig. 9: Energy and Time Reduction of WATWAOS for a
compute—1/O—compute transition in comparison to DVFS
approaches. Green areas mark I/O operations, blue areas
computations, and red areas reconfigurations.

than 100 %, the overall duration T is adjusted accordingly
while the task parameters stay the same. To achieve variety
in the sequences of I/O- and compute-insensitive tasks, this
experiment uses randomly assigned priorities. In Figure [§] we
compare the performance of WATWAOS against the baseline.
In contrast to the 80 MHz-baseline, WATWAQOS has awareness
of all clocks and their speeds. Of particular relevance here is
that clocks can run up to 160 MHz, allowing schedulability
beyond the 100 % baseline. The baseline system can schedule
all task sets up to 100 % utilization and none beyond (see
drop of red line). WATWAOS can schedule more task sets, as
it can execute compute-intensive tasks in a shorter amount of
time at higher speeds. Notably, WATWAOS can still schedule
over half of all task sets at 120 % utilization. For utilizations
<100 %, WATWAOS achieves considerably lower WCREs by
switching to more energy-efficient configurations. While some
task sets show minor potential for energy optimization (up-
per whiskers), others see reductions of up to 50% (lower
whiskers). Across all evaluated task sets, the median WCRE is
around 75 % of the 80 MHz baseline. In summary, WATWAOS
achieves reductions in both time and energy demands. Its
awareness of reconfiguration penalties and goal of worst-case
optimality ensures that the WCRE never increases.

E. Comparison to DVFS Approaches

Lastly, we compare WATWAOS to a DVES approach.
Figure [9] shows measurements on our hardware platform
for a task set representing the common pattern of com-
pute—1/O—compute. The upper part (a) shows the outcome
for a DVFS approach comparable to ScaleClock [11]], which
uses high clock frequencies for compute-intensive tasks and
low frequencies for I/O tasks. Changing the frequency requires
clock reconfigurations before and after the I/O task, adding
extra time and energy penalties. In comparison, the lower part
(b) shows WATWAOS’ optimal solution. Taking the penalties
into account, WATWAOS executes the I/O task at the same fre-
quency as the compute tasks. Here, WATWAOS determines to
avoid reconfigurations and thus eliminates penalties. Thereby,
WATWAOS reduces the energy consumption and also shortens
the execution time. Consequently, our approach can meet
task deadlines, while dynamic approaches that lack deadline
awareness can violate timing constraints.

12

VI. RELATED WORK

To our knowledge, WATWAOS advances the state of the
art in energy-aware real-time systems with its contributions
of (1)hierarchical abstractions for modeling clock subsys-
tems, (2)reconfiguration-aware whole-system analyses, and
(3) tighter integration with ILP-solving techniques.This section
discusses our contributions based on the state of the art,
specifically, for whole-system analysis and ILP solving.

Other approaches, such as Hoeller et al. [46], rely on
hierarchical abstractions to optimize the energy consumption
of systems. Compared to WATWAOS, existing approaches lack
the ability to generate worst-case—optimal solutions. The ARA
approach analyzes whole real-time systems without energy
constraints [34], [35], [47]. ARA introduces abstraction layers
to handle different OSs. Unlike WATWAOS, these layers
cannot map energy-related application requirements to SoCs.
Our objective is provable energy minimization while meeting
real-time guarantees under worst-case assumptions. However,
ARA’s concepts for multi-core systems are an interesting
avenue for WATWAOS.

In ILP-based optimization of multicast traffic [48], con-
straint reductions like our node-merging techniques reduced
the solver’s runtime. In contrast to WATWAOS, their problem
is not bilevel. Luppold et al. [49] evaluated the performance
of ILP solvers in the context of embedded systems. They
show that choosing the proper tooling for ILPs can achieve
substantial analysis-runtime reductions. In their experiments,
Gurobi [[18]] outperformed CPLEX [50Q], without using specific
solver features. For WATWAOS’ target of worst-case optimal-
ity, we leverage such features: The use of model-modification
callbacks and multi-scenario ILPs drastically reduces the
analysis time. Beyond the work of Luppold et al. [49], we are
unaware of related works on advanced ILP-solving techniques
for worst-case analysis. We argue that further interdisciplinary
research on embedded systems and mathematical optimization
techniques is necessary to tackle the complexity of resource-
constrained and -optimized systems.

VII. CONCLUSION

The complexity of modern SoCs, expressed by their multi-
tude of clock-subsystem features, requires both comprehensive
analysis techniques and operating-system support to enable
resource-optimal execution. State-of-the-art operating systems
lack abstractions to exploit these features, which hinders them
from yielding worst-case—optimal solutions. Further, finding
these solutions within acceptable analysis times is challenging.

We presented our WATWAOS approach, featuring both an
analysis framework and a real-time operating system. WAT-
WAOS exploits hierarchical abstractions to express energy-
saving features. In essence, these abstractions represent fine-
grained transitions within the analyzed system. The abstrac-
tions are designed to enable node-merging techniques that sub-
stantially reduce analysis times. Exploiting several features of
ILP solvers further shortens analysis times. As our evaluations
show, WATWAOS can reduce the solving time by up to 90 %.
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