
This is the authors’ preprint version of an article to appear in the
Proceedings of the 20th International Conference on Availability, Reliability and Security (ARES ’25), Ghent, 11–14 August 2025.

TEE-Assisted Recovery and Upgrades for
Long-Running BFT Services

Ines Messadi �, Markus Elias Gerber,
Tobias Distler , and Rüdiger Kapitza

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
{ines.messadi,tobias.distler,ruediger.kapitza}@fau.de

Abstract. Integrating Byzantine fault-tolerant (BFT) replication with
trusted execution environments (TEEs) offers an unprecedented degree
of resilience and confidentiality. Nevertheless, vulnerabilities in both the
underlying infrastructure and the application software still exist, which
means that for long-running services there typically is a substantial risk
that eventually the number of faulty or compromised replicas exceeds a
system’s fault-tolerance threshold. We address this issue with Naboris,
the first approach in the area of confidential computing to provide long-
term resilience for critical BFT services. To achieve this, Naboris com-
bines (1) proactive recovery of replicas to remove faults with (2) support
for software upgrades to patch newly discovered vulnerabilities at run-
time. For both of these procedures, Naboris afterwards provides remote
entities with verifiable evidence that they actually took place. We im-
plement Naboris using AMD SEV-SNP and show that its performance
overhead is low compared to the state of the art in recovery procedures.

Keywords: Byzantine Fault Tolerance · Trusted Execution Environ-
ments · Long-Term Resilience · Recovery · Replica Evolution.

1 Introduction

Byzantine fault-tolerant (BFT) replication [29, 40] is an effective technique to
build systems that provide their service even if a subset of its replicas (usually up
to f out of 3f+1 [15]) are subjected to arbitrary faults caused by hardware errors,
software bugs, or intrusions. However, by itself Byzantine fault tolerance is not
able to address additional aspects that are vital for practical deployments such
as privacy or defense measures to reduce the probability of successful attacks.

In an effort to mitigate these issues, organizations are increasingly turning to
hardware-based trusted execution environments (TEEs) to shield sensitive code
and data, for example in the form of confidential virtual machines (CVMs). As
a reaction to the growing demand, CVMs based on technologies such as AMD
SEV-SNP and Intel TDX have already been integrated into major public-cloud
platforms [3, 8], allowing customers to rent virtual machines while the provider
cannot access their private data. Following this emergence of hardware-based
protection, several BFT systems have adopted TEEs [10,11,14,31,39].

https://orcid.org/0009-0003-6920-3594
https://orcid.org/0000-0002-2440-5366
https://orcid.org/0000-0002-8116-7763

2 I. Messadi et al.

Sadly, TEEs are not a panacea but themselves susceptible to vulnerabili-
ties [16,37,41,48], including software-based attacks that exploit application-level
bugs (e.g., synchronization bugs [48]) and can cause the bypassing of the CVM
protection [49]. Even worse, attacks are getting stealthier and detection tech-
niques are limited, giving adversaries more time to gather information and learn
from previous attacks on already compromised replicas. In such a stealthy at-
tack on the Ronin Blockchain Network, for example, attackers recently gained
undetected access for over a week, resulting in a loss of $615 million [47].

Taking these circumstances into account, for long-running services it is likely
that more than f replicas become faulty or compromised during a system’s
lifetime. Thus, it is essential to enable such BFT systems to self-heal by au-
tomatically recovering replicas from faults [15, 38, 42]. In addition, they should
offer mechanisms that allow replicas to evolve [32], meaning to dynamically
modify the replica code during recovery in order to eliminate (known) vulnera-
bilities [26,36,43]. Unfortunately, despite some approaches specifically targeting
virtualized environments [21,22,38,46], to our knowledge there are currently no
solutions supporting both the recovery and the evolution of CVM-based replicas.

In this paper we address this problem with Naboris, an approach that offers
resilience for long-running CVM-based services by proactively recovering repli-
cas and enabling upgrades during execution. Since many faults and attacks are
inherently difficult to identify, Naboris recovers replicas proactively [15] in con-
figurable intervals. As part of the recovery process, Naboris creates an entirely
new CVM instance for the affected replica containing the latest security patches,
safely transfers the current agreement-protocol and application state into this
instance, and refreshes the replica’s cryptographic keys. This way, attackers have
a reduced window of vulnerability and face a constantly changing attack surface.

To achieve flexibility with regard to deployment options, we designed Na-
boris to be as independent from the underlying infrastructure as possible. Rul-
ing out the use of special-purpose hardware components [15, 42], this goal re-
quired us to develop a new methodology for ensuring that recoveries actually
took place. More precisely, while traditional approaches rely on trusted subsys-
tems to always execute recovery procedures in a reliable and timely manner [15,
21, 22, 38, 42], Naboris enables its replicas to present a proof of recovery and
upgrade that is verifiable by both its peers as well as external parties (e.g., ser-
vice customers). Only after a recovering replica provides such a proof, the other
replicas in the system allow the replica to rejoin their group.

In summary, this work makes the following contributions: (1) It presents
Naboris, the first confidential-computing-aware approach to offer both replica
recovery and evolution. (2) It describes Naboris’s multi-phase recovery protocol
that performs replica rejuvenation with only negligible impact on overall system
performance due to replacing the old CVM instance of a replica with a new CVM
instance hosted on the same machine. (3) It offers details on the Naboris proto-
type implementation based on AMD SEV-SNP. (4) It outlines our vision of how
to provide “Naboris as a service” in public-cloud environments. (5) It evaluates
Naboris for multiple applications and in the presence of recovery procedures.

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 3

2 Background

In this section, we provide background on BFT state-machine replication and
give an overview of how trusted execution environments are able to offer verifi-
able proofs of integrity in the context of confidential computing.

2.1 BFT State-Machine Replication

Our target systems achieve resilience against arbitrary faults by replicating the
user application across multiple servers and executing a BFT agreement proto-
col (e.g., PBFT [15]) to keep the application state consistent (see Figure 1). To
tolerate up to f faulty replicas, these systems require a total of 3f +1 replicas. In
the use-case scenarios we address, the fault threshold f is typically small (e.g.,
f = 1) which is why support for recovering replicas from faults is crucial.

In a nutshell, BFT state-machine replication works as follows. To invoke op-
erations at the replicated service, clients submit requests to one of the replicas,
the leader, which then initiates a multi-phase consensus protocol that enables all
correct replicas in the system to agree on a common order in which to execute
the requests in the application. With the application designed as a determin-
istic state machine [40], this approach ensures that all correct replicas produce
the same replies to requests and also end up with the same application states.
To garbage-collect information belonging to completed consensus-protocol runs,
replicas periodically create checkpoints of the application state in predefined in-
tervals [24]. If necessary, such checkpoints can later be used by trailing replicas
to catch up with the rest of the group by performing a state transfer between
replicas. In case the leader is suspected or confirmed to be faulty, the other repli-
cas initiate a view-change mechanism that reassigns the leader role to a different
replica and consequently allows the overall system to make progress again.

2.2 Trusted Execution Environments

Trusted execution environments (TEEs) promise a hardware-encrypted environ-
ment for computations beyond the observation and control of hosting entities,
thereby laying the foundation for confidential computing. Depending on the
technology, the CPU has the ability to protect the integrity and encrypt either
specific application components [17] or entire virtual machines, which are then
referred to as confidential virtual machines (CVMs) [3].

CVM 1
Application

BFT

Host 1

CVM 2
Application

BFT

Host 2

CVM n

Application

BFT

Host n

… BFT
Protocol

Fig. 1. BFT state-machine replication architecture for CVM-based replicas

4 I. Messadi et al.

In this paper, we focus on AMD SEV [2] as technology for CVMs because it
has a lower adoption barrier than more fine-grained approaches. For the recent
release of Secure Nested Paging (SNP), a CVM mitigates attacks of a malicious
hypervisor. In the SEV-SNP architecture, the memory controller encrypts the
initial set of VM pages using a key unique to the VM. This is monitored by
a secure processor to provide essential security services for SEV-SNP. In addi-
tion, when a CVM is executed, its memory pages are decrypted by the memory
controller and reencrypted when the data leaves the CPU. Any communication
between the CVMs and the hypervisor occurs through shared memory pages.

SEV-SNP incorporates an attestation mechanism that allows communicat-
ing parties to prove the TEE’s genuineness. Attestation starts with the CVM
requesting an attestation report (including the initial measured pages) from
the secure processor. The report is signed with the versioned chip endorsement
key (VCEK) that is unique to the secure processor firmware and a unique chip
ID to ensure that the report originated from a specific machine and that the
system is properly patched. In addition, the verification process also involves a
remote key distribution service (KDS) that supplies certificates to authenticate
the VCEK’s validity. Existing works have proposed a variety of options when it
comes to leveraging TEEs for enhancing resilience and confidentiality in BFT
systems. Some approaches like Engraft [46] and CCF [39] encapsulate consen-
sus and transaction handling while maintaining untrusted storage and network
layers. Others aim to strengthen resilience by reducing the trusted computing
base, protecting only safety-critical components (e.g., message signing [11,31]).

2.3 System and Threat Model

As illustrated in Figure 1, with this work we target systems in which there is
a clear separation between, on the one hand, the customer application running
inside CVMs and, on the other hand, the underlying host infrastructure, which
is typically provided by a different entity. For fault tolerance, the application is
replicated using a BFT protocol that ensures safety in the presence of at most
f concurrent Byzantine replica faults, and liveness under partial synchrony [15].
We assume that by exploiting an existing vulnerability in the implementation
of an application replica, an adversary may cause the replica to behave in an
arbitrary way. For this reason, despite running replicas inside TEEs, our tar-
get systems cannot employ TEE-based BFT protocols such as Hybster [11] or
DAMYSUS [18], as those protocols require their TEE-based components to be
fully trusted. Hence, we rely on full-fledged BFT agreement provided by ap-
proaches like PBFT [15] to ensure consistency among n = 3f + 1 replicas.

Besides direct attacks on the application, another potential strategy of an
adversary involves gaining access to the host infrastructure. If the adversary
takes control over a server, we assume the TEE to ensure the confidentiality of the
local replica (i.e., our approach does not offer improvements regarding (rollback
or side-channel) attacks against the TEE itself [33,44,45]). However, during these
kinds of attacks the replica is no longer guaranteed to make progress; as discussed
in Section 7, such scenarios commonly do not pose a major problem in practice.

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 5

3 Challenges

Next, we identify the main challenges associated with ensuring resilience for long-
running CVM-based BFT services and highlight how Naboris addresses them.

3.1 Long-Term Resilience for CVM-based Services

As discussed in Section 2.1, the replicated BFT systems we target in our work
typically consist of a small number of replicas, therefore making it necessary
to provide some form of automated recovery to support long-running applica-
tions [20]. Specifically, the recovery of replicas ensures that faults do not ac-
cumulate over time, and hence allows a system to tolerate more than f faulty
replicas over the course of its lifetime.

In the past, several strategies have been proposed to address this issue, in-
cluding reactive-recovery procedures that are initiated once a fault was either
detected or at least suspected [27], proactive-recovery mechanisms that are time-
triggered [15,21,22,38], as well as combinations of both [42]. To further increase
the effectiveness of such measures, the recovery should be combined with the
concept of replica evolution [32] which entails modifications to the replica code
to remove existing vulnerabilities. Among other things, this may involve the use
of randomization techniques [13], recompiling replica executables to enhance the
diversity of implementations [36], and substitutions of port numbers and pass-
words [43]. Unfortunately, despite the large body of previous works on these
topics, it is still an open question how to perform replica recovery and evolution
in BFT systems consisting of a group of CVM-based replicas.

≻ Our Approach in a Nutshell. Naboris offers long-term resilience for repli-
cated BFT services by supporting proactive recovery of CVM-based replicas,
including the opportunity to dynamically eliminate vulnerabilities at runtime
by installing upgrades as part of the recovery process.

3.2 Proof of Recovery

In a nutshell, recovery procedures remove faults by replacing an existing (poten-
tially faulty) replica instance with a new instance that is created from a verified
state [20]. For this approach to be effective it is essential that an adversary must
not be able to prevent the initiation, execution, and completion of the recovery
process. Traditionally, this problem is addressed by introducing a trusted com-
ponent that cannot be compromised through attacks and takes care of handling
critical recovery steps. Examples for such components include a hardware-based
watchdog timer [15], a dedicated replica-local synchronous subsystem [42], or an
entire virtualization layer that is considered to be trustworthy [22,38].

For our target use cases, and especially potential future scenarios in which
Naboris is deployed as a service in a cloud environment (see Section 7), none of
these options represents a practical solution due to conflicting with our goal of
minimizing infrastructure dependence. Specifically, relying on any type of low-
level component to control the recovery process would mean to shift additional

6 I. Messadi et al.

responsibilities to the underlying infrastructure, and hence makes it more diffi-
cult to develop a generic design. Furthermore, to our knowledge no cloud provider
currently offers this kind of reliable-recovery functionality to upper layers. Thus,
there is no possibility to directly force faulty replicas to perform a timely recovery
under all circumstances and to the same extent as traditional approaches do.

≻ Our Approach in a Nutshell. To circumvent the lack of recovery support
from the underlying infrastructure, Naboris pursues a novel strategy that fo-
cuses on reliably detecting scenarios in which faulty replicas try to avoid recovery.
More precisely, once a recovery is due, the other replicas temporarily exclude the
affected replica from participating in the BFT protocol and only allow the replica
to rejoin after presenting a proof that it actually has recovered. To create such a
proof of recovery, we extend a CVM’s attestation report with a recovery counter
whose value is dictated by the other replicas and changes on each recovery.

3.3 Proof of Upgrade

Besides trying to hinder the execution of recovery procedures, an adversary may
also aim at preventing upgrades in an effort to keep the replica vulnerable, and
consequently make it easier to compromise a replica even after a recovery. To
solve this problem, replicas should not only prove that a recovery indeed took
place, but also that they are currently running the latest firmware and soft-
ware versions. For systems that do not support upgrades at runtime, the latter
can be achieved by assuming that the replica code is obtained from a non-
modifiable medium [15]. Otherwise, existing approaches typically resort to a
trusted component to perform upgrades in a reliable and timely manner [36,43],
which is why their designs do not incorporate mechanisms to dynamically vali-
date the replica code during execution.

≻ Our Approach in a Nutshell. As it is the case for recovery, Naboris does
not simply rely on the assumption that a replica upgrade has actually been
performed, but instead offers the other replicas in the system to verify such
a scenario based on a proof of upgrade. In general, Naboris replicas validate
the integrity of their peers by comparing the attestation measurements of other
replicas to their own, thereby ensuring that all participating replicas execute the
identical (unaltered) code; if a replica on such occasion presents a diverging mea-
surement, it is not allowed to (re)join the system. To support verifiable upgrades
(which change the code of the affected replica and hence its measurement), Na-
boris utilizes a special command that is sent through the agreement protocol
to inform all replicas about the new measurement in a consistent manner.

4 Naboris

Naboris is a TEE-based framework that offers long-term resilience for critical
BFT services by supporting both replica recovery as well as replica evolution. In
this section, we first present an overview of our approach and then discuss the
most important techniques and components in more detail.

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 7

4.1 Overview

Naboris provides Byzantine fault tolerance by running multiple replicas of the
same application on different servers and connecting them through a BFT agree-
ment protocol (PBFT [15] in our prototype). To protect the integrity of the
replicated service, each replica is located inside its own CVM. As illustrated in
Figure 2, in addition to the replica CVM every participating server also accom-
modates an auxiliary Naboris system component, the recovery agent, which
is responsible for assisting in proactive-recovery procedures for its local replica.
Specifically, whenever the Naboris protocol (which itself is running inside the
replica CVM) decides that the recovery of a replica is due, the recovery agent
starts a second CVM on the same host which at the end of the recovery process
becomes the new replica and fully replaces the old CVM. Among other things,
this approach has three main advantages: (1) By creating a new replica instance
in a separate CVM, from the overall replica’s perspective the Naboris recov-
ery process is able to remove any effects that a (potential) intrusion might have
had on the old CVM. (2) The use of a second CVM enables Naboris to not
only eliminate existing faults, but also close vulnerabilities by installing security
patches in the new CVM. (3) Hosting both the old and the new CVM on the same
server allows Naboris to bring the application state of the new replica instance
up to date via a state transfer that primarily relies on local operations [21, 22],
and therefore has only negligible impact on system availability and performance.

4.2 Proof of Recovery

Since Byzantine faults and successful attacks do not necessarily result in de-
tectable faulty behavior, Naboris recovers replicas in a periodic and proactive
manner, thereby ensuring that faults are removed after a configurable window of
time. Specifically, replicas are recovered individually using a round-robin strategy
to minimize the impact of recovery on overall system performance. To be compat-
ible with different underlying infrastructures, in contrast to other approaches (see
Section 3.2) Naboris does not rely on special-purpose hardware to trigger recov-
ery procedures but instead applies a coordinated timer to decide when the next
recovery is due. In a nutshell, Naboris’s coordinated timer works as follows.

To participate in the timer subprotocol, replicas maintain a recovery counter
as part of the state that is replicated using Naboris’s BFT agreement protocol.
Using a deterministic mapping to replica ids, the current value recno of this

1old
A

N

1new

A

N

RA Host 2

CVM 2old
Application

Naboris

CVM 2new
Application

Naboris

Recovery Agent

nold
A

N

nnew

A

N

RA

…

Fig. 2. Naboris replication infrastructure

8 I. Messadi et al.

counter indicates which replica i to recover next (e.g., recno % n = i, with n
denoting the total number of replicas). At the beginning of every recovery period,
each replica starts a local timer that is set to the end of the period (i.e., when
the next recovery should take place). Once its local timer expires, a replica
signals this event by distributing a message demanding the recovery counter to
be incremented. Combining such notifications from f+1 different replicas (i.e., at
least one correct replica), the current leader creates a special request and passes it
through the agreement protocol. When this request is committed, the execution
of the request causes the recovery counter to be updated, thereby informing all
replicas (including the one to be recovered) about the fact that the recovery is
due. At this point, the other replicas exclude the recovering replica from their
group and only allow the replica (more precisely: its new CVM instance running
on the same machine) to rejoin after supplying them with a proof of recovery.

To produce such a proof of recovery for Naboris, we extend a CVM’s attes-
tation report by adding the corresponding recovery-counter value. Specifically,
we instruct the hypervisor to add the recovery-counter value as host data during
the startup of the new CVM. Once such host data is set for a CVM, it is in-
cluded in all of its attestation reports and cannot be changed by either the host
or the CVM. Correct replicas only accept an attestation report if it contains the
expected recovery-counter value. This way, and as a consequence of the report
of a CVM being immutable at runtime, the old replica CVM is unable to rejoin
the group by impersonating the new instance.

A replica’s recovery agent (i.e., the Naboris infrastructure component run-
ning on each host server, see Section 4.1) learns about the need to perform a
recovery by acting as a special BFT-protocol client that periodically retrieves the
current recovery-counter value from the replica group. Based on the knowledge of
the deterministic mapping of counter values to replica ids, a recovery agent is able
to determine when the time has come to recover its local replica. In particular,
this approach offers two key benefits: (1) Triggering a recovery by evaluating the
recovery counter allows the recovery agent to directly obtain the counter value
to use for the configuration of the new CVM instance. (2) Having the recovery
agent fetch the recovery-counter value by sending a read request to the replica
group ensures that faulty replicas are unable to prevent recovery procedures.

4.3 Proof of Upgrade
To enable Naboris replicas to evolve by applying upgrades at runtime, we first
put each replica in the position to verify the integrity of other replicas, and then
further extend this mechanism to support dynamic changes.

Verifiable Integrity Overall, system integrity in Naboris builds on three
principles: (1) a verifiable boot chain ensures the integrity of each replica CVM
right from the beginning, (2) a running code-hash validation enables each replica
to verify the integrity of the code that is currently executed by another replica,
and (3) a read-only filesystem prevents adversaries from retroactively modifying
system files even in case of successful intrusions.

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 9

The SEV-SNP attestation process is limited to measuring the initial VM con-
text before the VM begins execution. The context is typically used only to place
and measure the initial firmware (Open Virtual Machine Firmware, OVMF),
which is sufficient to continue booting a VM. This is a significant weakness be-
cause it allows adversaries, for example, to load a malicious kernel undetected
because only the firmware is reflected in the attestation report. To mitigate
this risk, the initialization and boot process was updated to include the kernel,
initrd, and command-line hashes as part of the OVMF, referred to as Direct-
Measured Boot. However, this still leaves the system vulnerable to runtime at-
tacks (e.g., privilege escalation) where a privileged attacker could replace critical
system binaries or files, persisting across reboots. For this reason, for Naboris
we extend the verified boot process to protect the entire CVM state against tam-
pering [25]. Apart from the hashes incorporated during the directly measured
boot, the root hash of a Merkle tree created from the root file system is also
added. Upon the start of the CVM, the OVMF validates the hashes while loading
the kernel and initrd. Furthermore, the initrd mounts the root file system and
verifies its integrity using dm-verity. To secure and persist CVM runtime data
across reboots, we provide support for encrypted file systems using dm-crypt.
The required disk encryption key is wrapped and unwrapped using the sealing
key provided by the AMD secure processor. The wrapped key is stored on the
disk in an unencrypted partition and is therefore persisted and accessible across
reboots. The sealing key is unique to the CVM measurement and machine iden-
tification and can only be retrieved by a running CVM with that particular
measurement. Therefore only the CVM can access the encrypted file systems.

Supporting Upgrades During periods without upgrades, a Naboris replica is
able to validate the integrity of other (recovering) replicas by comparing their at-
testation measurements to its own. However, with Naboris recovering replicas
using a round-robin strategy, this is no longer possible once an administrator
applies a patch to fix a discovered vulnerability, because changes to the code
result in diverging attestation reports. To address this issue, when performing
upgrades Naboris administrators not only update the replica code but also
submit a corresponding command to the replica group (via the BFT replication
protocol) that informs replicas of the new attestation value to use for the mea-
surement comparison. This way, Naboris enables upgrades while at the same
time allowing continuous integrity verification.

4.4 Recovery Protocol
We use the established PBFT-PR [15] protocol as basis for the Naboris recov-
ery mechanism and adapt it to fit our needs. In the following, we highlight the
differences to PBFT-PR and describe the Naboris recovery phases in detail.

Properties In order to be applicable to our target use cases, the Naboris
recovery protocol offers improvements over PBFT-PR with regard to several
properties that are summarized in Table 1 and further discussed next.

10 I. Messadi et al.

Table 1. Comparison between PBFT-PR and Naboris

Aspect Property PBFT-PR [15] Naboris
Recovery strategy Proactive Proactive
Code protection U ROM Read-only rootfs
Rejuvenation A Same server New CVM
Trusted component C Secure co-processor CVM protection
Recovery trigger C HW watchdog Coordinated timer

U Upgrade Support As part of the recovery process, PBFT-PR ensures the
integrity of the operating-system and application code by verifying the code
based on a digest that was stored in read-only memory prior to the system start.
Since this digest cannot be modified, PBFT-PR does not support dynamic code
changes and hence makes it impossible to fix newly discovered vulnerabilities.
In contrast, Naboris replicas validate the integrity of their peers by comparing
attestation measurements and allow an administrator to consistently update the
expected measurement, thereby enabling upgrades while the system is running.

A Availability In PBFT-PR, a replica spans a whole server and is recovered by
rebooting the physical machine. As a consequence, the recovery of a PBFT-PR
replica is typically associated with a significant period of time during which the
replica is not able to regularly participate in the system. For services requiring
high availability, this only leaves two options: counting the recovering replica as a
temporary fault with regard to the fault-tolerance threshold f (and hence being
able to tolerate fewer actual faults during this period), or extending the system
with additional replicas at the cost of an increased resource footprint [42]. In
Naboris, we circumvent this problem by implementing the recovery as a switch
from the old replica CVM to a new replica CVM hosted on the same physical ma-
chine. As a key benefit, this allows Naboris to keep the old replica CVM running
while the new replica CVM is started, initialized, and brought up to date, thereby
minimizing unavailability to a negligibly short period during the local switch.

C Cloud Readiness Involving the reboot of an entire physical machine, the re-
covery process in PBFT-PR is triggered by a trusted hardware-based watchdog
timer. For potential cloud-based use-case scenarios (see Section 7), neither the
reboot of an entire physical machine nor the reliance on a special-purpose hard-
ware component is feasible, especially for approaches that seek to offer provider
independence. To enable the use of Naboris in these kinds of environments,
we designed the Naboris recovery protocol in such a way that it can be op-
erated within CVMs using standard cloud infrastructure services (e.g., starting
and terminating CVMs) and without requiring additional specialized hardware.

Recovery Phases As illustrated in Figure 3, Naboris’s protocol for recovering
replicas consists of several phases. Once the replicas’ local timers signal that the
next recovery is due, the replicas 1 execute the coordinated-timer subprotocol
to trigger the recovery in a consistent manner (see Section 4.2). In response to
this, 2 the old replica CVM instance saves its volatile application state to disk;

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 11

Timeout Recovery Trigger State Persistence Secure Join Protocol

State InspectionState TransferNormal Operation

1 2 3

45
Timer Expires Join Success

Fig. 3. Naboris recovery protocol phases

this data serves as basis for the new replica CVM instance, which is subsequently
started by the recovery. If the old replica instance is faulty and fails to comply in
this phase, the recovery agent fetches the necessary data from another replica.
Once the new replica instance is running, 3 it provides the other replicas with its
proof of recovery (and upgrade) in order to rejoin the group. After that, with as-
sistance from the group, 4 the new replica instance executes a subprotocol that
allows the replica to clear faulty residue that the old replica instance potentially
left on disk. Finally, in a last step 5 the new instance fetches recently updated
application-state parts from other replicas to compensate for the state changes
that occurred while the replica was recovering, before eventually returning to
normal operation. In the following, we discuss each of these phases in detail.

Recovery Trigger The expiration of the timer in each replica marks the recovery
start. At this point, Naboris replicas execute a consensus round to establish the
new recovery-counter value for the recovering replica (see Section 4.2). For this
purpose, each replica sends an ⟨Init-rec, recnoi +1⟩ message to propose a value
to the leader. The leader waits for matching Init-rec messages from f + 1 dif-
ferent replicas (possibly including its own) to start the agreement. This prevents
both accidental and malicious recovery triggers from individual replicas. Upon
reaching an agreement, replicas notify clients to reject messages from the recov-
ering replica, and then set up a timeout to wait for the rejuvenated replica to
reconnect. If the replica fails to return within this interval, the protocol triggers
failure handling (e.g., sending a blame signal to the administrator), as this situ-
ation implies a problem with the underlying infrastructure that is beyond Na-
boris’s control. Finally, the retreating replica instance sends a ⟨Signal, recno⟩
message with the newly agreed counter value to the recovery agent to inform the
agent about the value to use in the attestation report of the new replica instance.

State Persistence After the recovery is triggered, the old replica instance writes
its state (including consensus and application data) to an encrypted disk. This
step occurs for two reasons that are explained in the following.

Firstly, in order to ensure protocol safety, it is essential that the recovery pro-
cess does not cause correct replicas to become faulty by losing their states [15].
More precisely, due to the correctness of BFT agreement protocols depending
on the decisions made by a quorum of correct replicas, after recovery a correct
replica must remember all statements it made to other replicas before the recov-
ery took place. In Naboris, we fulfill this condition by having the old replica
instance flush all necessary state to disk and afterwards attaching this disk to the
new replica instance. Notice that the aforementioned requirement does not apply

12 I. Messadi et al.

to faulty replicas. Specifically, if the state of a faulty replica is lost, or a malicious
replica refuses to persist its current state, the new replica instance may be initial-
ized with an older checkpoint (e.g., provided by another replica in the system).

Secondly, this approach allows to leverage the fact that in many use-case
scenarios the replicated application already maintains large parts of its state on
disk. As a consequence, forwarding the state via the same medium represents an
efficient method to load the data into the new replica instance.

Secure Join Protocol Upon initialization by the recovery agent, the newly started
replica instance generates a fresh pair of keys and broadcasts a join-request
message (Algorithm 1, Line 6). The other replicas validate the joining replica
by comparing its measurement against their attestation values (Lines 21-27). As
part of the process, this verification requires reproducible CVM builds to ensure
consistent measurements across all replicas, as discussed in Section 4.3. Since
the join request contains the versioned chip endorsement key, there is no need
for the other replicas to perform a query to the key distribution service (see
Section 2.2). A replica accepts a join request provided that: (1) the key digest
in the join request report matches the computed digest of the public key pkirej ;
(2) the recovery number recnoi matches the agreed-upon number in the current
view; (3) the report data in attReportirej matches the report data from at least
2f +1 replicas in the current view; (4) the SNP certificate chain verifies correctly
using the vcekirej included in the join-request message.

Algorithm 1 Secure Join Protocol
1: as a rejuvenated replica
2: upon connection to all do
3: pki ← generateP ublicKey()
4: attReporti ← requestReport(Hash(pki))
5: vceki ← requestV cek(attReporti)
6: send ⟨join-request, attReporti, pki, vceki⟩ to all
7: verify remote replicas’ report
8: upon receiving ⟨join-response, status, recno, c, p, v⟩ do
9: if status = accept then

10: (hm, viewi)← estimateHm(c, p, v) ▷ Get high water mark and view estimate
11: joinProcessingRequests()
12: else ▷ status = reject
13: send ⟨signal, recno⟩ to agent ▷ Use correct recno
14: end if
15: as a remote replica
16: upon receiving ⟨join-request, attReportirej , pkirej , vcekirej⟩ do
17: keyHash← getHash(attReportirej)
18: recno← getRecCounter(attReportirej)
19: c← ∅
20: p← ∅
21: if keyHash = Hash(pki) ∧ verifyCertifChain(vcek) ∧ recno = agreedRecno then
22: c← lastCheckpointSeqNum()
23: p← lastP reparedReq()
24: status← accept
25: else
26: status← reject
27: end if
28: send⟨join-response, status, recno, c, p, viewi⟩ to rejuvenated replica

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 13

State Inspection Once accepted back into the group, the new replica instance
examines the state that the old replica instance supplied via encrypted disk as
part of the state-persistence phase. For this purpose, the new instance requests
the corresponding disk encryption key (dm-crypt key) from the old instance,
which, upon successful attestation verification, transmits this key and afterwards
instructs the recovery agent to shut it down. Similar to the scenarios discussed
above, if the old instance is faulty and does not cooperate, Naboris resorts to
a stable checkpoint provided by another replica to initialize the new instance.

Apart from being non-cooperative, a faulty old instance may also try to trick
the new instance into using a corrupted state. To handle such cases, Naboris
executes a mechanism that closely resembles PBFT-PR’s estimation subproto-
col [15], which is why we omit specifics. In a nutshell, this subprotocol enables
the new instance to determine an upper bound (in the form of a high water
mark hm, see Algorithm 1, Line 10) up to which the old instance at most may
have contributed to the consensus progress. Consequently, if the provided state
contains information beyond this point, the old instance must have deliberately
planted it there, meaning that the new instance can safely ignore it.

State Transfer If during the state-inspection phase the new instance determines
that parts of its state are corrupted or missing, the new instance in a final step
initiates a secure state transfer to repair/obtain the affected partitions. As part
of this procedure, other replicas not only provide the requested state parts but
also verifiable proof (in the form of quorum certificates that are backed up by
2f +1 replicas [15]) of the transmitted data’s correctness. Once the state transfer
finishes, the recovery process of the replica is complete.

4.5 Discussion

As discussed in Section 3.2, our decision to forgo trusted recovery support from
the underlying infrastructure in order to achieve a more flexible design may
result in scenarios in which a timely recovery cannot always be guaranteed if
an adversary managed to launch a successful intrusion of the host machine.
Specifically, there may be situations where the recovery of a replica does not
proceed as expected or is delayed due to a malicious actor at the host level,
causing the recovering replica to become unavailable. If this happens to more
than f hosts at the same time, the service is no longer live, however its safety is
still ensured even under such circumstances. We argue that such cases of delayed
recovery can be detected early by monitoring the Naboris protocol’s control
messages using a special monitoring client. If a replica fails to recover within a
specified time, this is detected by the monitoring client and the administrator is
contacted to resolve the problem at the host-system level.

Having compromised a host, an adversary may try to exploit CVM reboots to
launch forking attacks that violate state continuity, which can create divergent
replica groups serving inconsistent responses to clients. To prevent such attacks,
we can adopt Narrator’s blockchain-based approach [35], where each CVM regis-
ters its unique identifier (provided by the AMD secure processor) with a trusted

14 I. Messadi et al.

tamper-proof blockchain during initialization, or let the leader dictate the CVM
instance the group should communicate with. In AMD CVMs, each fork is a new
instance for which the platform security processor generates a unique REPORT_ID.
By registering this identifier, other replicas can detect forked identities.

5 Implementation

Our implementation builds on the PBFT components of the Themis codebase [5],
reusing its core consensus functionality and extending it with our proactive re-
covery implementation. We realized the Naboris prototype in 2,802 lines of
code (LOC), the PBFT-PR [15] protocol (which serves as baseline in our eval-
uation, see Section 6) in 2,297 LOC, and the agent logic using the Rust nightly
2023-04-01. To digitally sign protocol messages, we rely on the 256-bit ED25519
from the ring library (v0.16.20). The attestation functionality in our prototype
is embedded as a Rust module (304 LOC) using the VirTEE API [6].

Naboris and PBFT-PR handle replica recoveries through different mecha-
nisms. Naboris involves the recovery agent and starts new replica instances with
the recovery-counter value determined by the replica group. Besides, SEV-SNP
CVMs are architecturally restricted from performing internal reboots. In con-
trast, PBFT-PR replicas autonomously shut down and restart using systemd
services on the host to maintain CPU pinning configurations across reboots.

Providing CVMs via AMD SEV-SNP Naboris’s prototype runs inside
a CVM built using a modified Revelio assembling scripts as a base [25]. The
root filesystem is constructed through a Docker-based build process that in-
corporates an SEV-SNP-capable kernel and other essential packages. The build
process eliminates nondeterministic elements to guarantee reproducible mea-
surements across different instances. The resulting CVM integrates additional
mechanisms: dm-verity for root filesystem integrity verification in the initramfs
and dm-crypt for disk encryption. Furthermore, we added a service started at
boot time to request the necessary VCEK from the KDS keyserver in order
to enable the validation of attestation reports. Some configuration information
(e.g., basic network settings) that is not critical to the integrity of the CVM
but needed for a proper integration into the system is injected via a separate
partition that is not part of the measurement of the CVM. During transition
to the rejuvenated CVM, the retreating CVM’s disk is mounted as removable
storage, enabling state recovery by the rejuvenated CVM.

Can Naboris be Implemented Based on Other CVM Technologies
Such as Intel TDX? The Naboris protocol is CVM-agnostic and can be re-
alized using other TEE architectures that provide similar confidentiality and in-
tegrity properties, host-provided data (i.e., for the recovery counter), and trusted
timers using accurate instruction timing (i.e., recovery triggers). In our case, the

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 15

AMD trusted-timer feature [2] queries timestamps from the AMD secure proces-
sor using encrypted communication, preventing time manipulation attacks. Fur-
thermore, using a distributed consensus between CVMs, our design strengthens
the timing guarantees. To enable verifiable recovery counters in attestation re-
ports, we leverage host_data in AMD SEV-SNP. Intel TDX provides equivalent
functionality via its measurement registers (mrconfigid, mrowner, and mrow-
nerconfig) [30]. For cloud-based deployments (see Section 7), some features in
Azure such as the configuration of host_data in the interface for creating SEV-
SNP CVMs may be restricted, however this is not a fundamental problem as the
host_data setting could be made available to customers.

6 Evaluation

In this section, we evaluate Naboris using PBFT-PR (see Section 4.4) as base-
line. For this purpose, we conduct experiments with two different applications:
(1) A counter (incremented on each client request) to measure the overhead of
the recovery protocol in isolation. (2) An in-memory key-value store (KVS) that
operates at a workload of 50%/50% read/write operations using 10,000 keys.

In our evaluation, we primarily focus on examining how Naboris performs
compared to a system (PBFT-PR) which also supports proactive recovery, but
offers lower security guarantees than Naboris. In this context, it is important to
note that we do not claim Naboris to be a means for improving throughput or
latency in TEE-based replicated systems, which is why our experiments neither
include protocols that exploit TEEs for enhancing the performance of Byzantine
agreement [11,18], nor approaches that speed up the recovery process by optimiz-
ing the state transfer between old and new replica instance [21,22]. As discussed
in Section 3, our goal in this paper is to provide proofs of recovery and upgrade
for CVM-based replicas, hence in the evaluation we are interested in studying
whether Naboris is able to achieve this without notable performance overhead.

6.1 Experimental Setup

We evaluate Naboris using virtual machines with SEV-SNP-enabled kernels,
comparing it against PBFT-PR running on virtual machines without SEV-SNP.
Each virtual machine is configured with 4 vCPUs and 8 GiB memory, running
Ubuntu 20.04. To optimize performance, each virtual machine is pinned to cores
sharing the same physical CPU to prevent context switching. Both prototypes
comprise 4 replicas and utilize a thread pool of 4 workers implementing the
work stealing algorithm from the Tokio library, where networking and message
authentication are parallelized while maintaining sequential protocol execution.

Client requests carry 100-byte payloads and the agreement on them is per-
formed in batches of 50 requests. In all experiments, the checkpointing interval
is set to 1,000 requests and the workload is produced by 100 client threads. Each
client continuously issues synchronous requests and measures the time it takes

16 I. Messadi et al.

after the submission of a request to obtain a stable result. During the experi-
ments, a new recovery procedure is triggered 40 seconds after the completion of
the previous recovery procedure. Before a leader replica is recovered, the replica
group initiates a view change to reassign the leader role to another replica.

6.2 Impact of Recoveries on Performance

The results of our experiments in Figures 4 and 5 show that the recovery process
in Naboris requires approximately 64 seconds on average from start to finish,
while PBFT-PR completes recovery in 19 seconds. This difference is due to
several factors: Firstly, CVM boot times are 220% higher compared to VM boot
times in non-SEV environments due to the additional memory pre-allocation
and initialization required for SEV-SNP CVMs. Secondly, the Naboris recov-
ery protocol (see Section 4.4) involves additional steps compared to PBFT-PR,
including VM disk mounting and secure exchange of disk encryption keys. How-
ever, despite the longer recovery period Naboris maintains stable throughput
outside of view changes even during recoveries. For both Naboris and PBFT-
PR, the temporary drops in throughput (and the associated spikes in latency)
that are observable in the graphs (e.g., at t = 45 seconds in Figure 4) are a
result of the systems performing a view change prior to recovering the active
leader replica. In a production setting, the windows between two recoveries are
typically significantly longer than in our experiments (e.g., up to several hours),
which is why the higher duration of Naboris’s recovery procedure does not
pose a problem, especially due to the fact that over the course of this process
Naboris is able to provide normal-case performance.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

PBFT-PR

Recovery Recovery Recovery

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

NABORIS

0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8

Time [s]

La
te

nc
y

[m
s]

PBFT-PR

Recovery Recovery Recovery

0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8

Time [s]

La
te

nc
y

[m
s]

NABORIS

Fig. 4. Comparison of throughput and latency results for PBFT-PR (left) and Na-
boris (right) during and outside of recovery procedures for the counter application.

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 17

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

PBFT-PR

Recovery Recovery Recovery

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

NABORIS

0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8

Time [s]

La
te

nc
y

[m
s]

PBFT-PR

Recovery Recovery Recovery

0 50 100 150 200 250 300 350 400
0
1
2
3
4
5
6
7
8

Time [s]

La
te

nc
y

[m
s]

NABORIS

Fig. 5. Comparison of throughput and latency results for PBFT-PR (left) and Na-
boris (right) during and outside of recovery procedures for the key-value store.

6.3 The Cost of SEV-SNP CVM Mechanisms

To better understand the difference between Naboris and PBFT-PR, we mea-
sure the average latency of the protocols’ main phases. Table 2 presents a detailed
comparison. The total boot time shows that SEV-SNP CVMs have approxi-
mately 3.2× higher latency than non-SEV VMs, primarily due to the additional
memory initialization and pre-allocation. The most significant performance dif-
ference appears in the key-exchange mechanism. Naboris’s attestation exchange
requires 8 ms, compared to PBFT-PR’s new-key message which takes about
53 µs (99% faster). The attestation message also carries a larger payload (876
bytes total: 748-byte report, 32-byte key, 96-byte VCEK) compared to PBFT-
PR’s simple 32-byte public-key message.

At boot time, a Naboris replica must request a report from the AMD secure
processor and in principle a VCEK from the key distribution service. The key
distribution service introduces rate limiting when multiple similar CVMs request
VCEKs running on the same host and it could be unavailable. However, the
VCEK of a machine does not change unless the firmware of the SVE-SNP is
upgraded, so the VCEK can be prefetched, cached and included in attestation
messages. The duration of the estimation protocol varies based on replica load
and message processing queues, particularly after performing a view change.

Updating the entire CVM requires about 5 minutes in which the VM is
reassembled from scratch including rebuilding the base Docker image. However,
this occurs outside the critical path by pre-preparing assembled VMs. Similarly,
the one-time partition decryption and mounting cost of 1,217 ms (including a 1 s
sleep to wait for decryption) is only necessary because Naboris, in contrast to
PBFT-PR, is designed for use in confidential-computing environments.

18 I. Messadi et al.

Table 2. Comparison of system functions

Primitive Naboris PBFT-PR
Booting Time 32 s 10 s

Pre-kernel 7 s 4 s
Integrity protection (dm-verity) 4 ms -
Disk encryption (dm-crypt) 33 ms 33 ms

Attestation vs. new-key message 8 ms 53 µs
Verifying report 4 ms -

Requesting report from AMD-SP 833 ms -
Requesting VCEK from KDS 794 ms -
Decryption and mount partition 1,217 ms -
Saving state in files (KVS) 464 ms 123 ms
Estimation protocol 20 ms 10 ms
Re-assembling the VM (Upgrades) 5 m -

7 Naboris as a Service

With more and more critical applications being moved to the cloud, we envision
that it can be beneficial to provide the Naboris functionality as a cloud service
to customers who need long-term resilience for their applications. For this pur-
pose, it is important to avoid vendor lock-in by not relying on a specific provider
so that the Naboris service is able to run on different clouds. Fortunately, by
designing Naboris in such a way that it requires the underlying infrastructure
to only offer basic operations like starting and terminating CVMs, from a tech-
nical perspective there are no additional barriers in this regard. Hence, in the
following we focus our discussion on the question how provider independence can
be achieved. The key to solve this is to take the special characteristics of cloud
environments and its stakeholders into account, which we do by distinguishing
between different roles that each are associated with a distinct set of privileges
and responsibilities. Specifically, we separate the tasks that are related to the
cloud infrastructure (→ cloud provider) from the tasks necessary to perform
replica recovery and evolution (→ Naboris operator).

Cloud Provider The cloud provider’s central task is to maintain and operate
the underlying infrastructure, offering the trusted execution environment that
Naboris relies on for confidentiality and integrity. For this purpose, the cloud
provider does not require any knowledge about Naboris in general, or of the
recovery procedures and the replicated application in particular. In fact, as a
result of the trusted execution environment ensuring confidentiality, the appli-
cation state is completely hidden from the cloud provider.

If the cloud provider fails to preserve the availability of its infrastructure
(e.g., by unilaterally shutting down CVMs), the liveness of the replicated ser-
vice can no longer be guaranteed, however even in this case Naboris’s BFT
agreement protocol ensures that safety is not at stake. Overall, we do not expect
provider-induced liveness issues to become a major problem in practice for two
reasons. On the one hand, cloud providers typically do not have an incentive
to violate service level agreements, because doing so hurts their reputation and
consequently their business. On the other hand, if the dependability of an in-

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 19

dividual cloud provider is of concern, Naboris’s provider-independent design
makes it possible to distribute a Naboris deployment across different clouds
in order to reduce the reliance on a specific provider [12].

Naboris Operator The Naboris operator leverages the cloud infrastructure
to offer Naboris as a service to its customers. In this context, the operator is
primarily responsible for running the Naboris recovery agent associated with
each replica and for performing timely upgrades to the replica CVMs to fix criti-
cal bugs. To ensure that a newly started CVM is co-located with the old CVM of
the same replica, the operator may either rent a bare-metal instance [7] or rely on
a dedicated host service [1,4]. As with the cloud provider, the trusted execution
environment prevents the Naboris operator from learning application secrets.

Using a CVM’s attestation report measurement, customers (and other exter-
nal entities) are able to validate the code by accessing a public repository that
features a deterministic build process, and hence allows them to recompute the
measurement offline. This way, they can verify whether upgrades were actually
performed, and if necessary (i.e., when the replica code does not match the ex-
pected version) blame the Naboris operator for not meeting its responsibilities.

8 Related Work

We consider works on recovery and rejuvenation of Byzantine fault-tolerant sys-
tems and approaches that build on TEEs to implement a hybrid fault model and
support recovery as most relevant to Naboris.

BFT Fault Recovery and Rejuvenation The problem of replica recovery
with the goal of evicting adversaries has been studied in previous works [15,
22,38,42]. Castro and Liskov’s work [15], PBFT-PR, inspired the development
of several approaches in this area. PBFT-PR relies on trusted subsystems and
watchdogs to proactively rejuvenate replicas one by one after a predefined time.
As discussed in Section 4.4, the Naboris approach shares similarities with the
protocol when triggering a stateful recovery, but offers advantages with regard
to properties such as upgrade support, availability, and cloud readiness.

VM-FIT [38] proposes a virtualization-based recovery initializing a new vir-
tual machine replica in parallel to the normal execution to minimize the recovery
overhead. SPARE [22] represents a design with f + 1 active replicas handling
request processing and voting, while f passive replicas in a paused state receive
periodic state updates; during proactive-recovery procedures, the passive repli-
cas serve as foundation for the new replica instances. Sousa et al. [42] explored
a reactive-recovery scheme introducing wormholes as trusted subsystems that
coordinate rejuvenation, an approach that demands additional resources. Other
systems, like Dynamic BFT [23], treat recovery as a reconfiguration problem,
replacing faulty replicas rather than simply restarting them.

20 I. Messadi et al.

Various evolution techniques modify replica configurations across recoveries
to prevent attackers from repeatedly compromising recovered replicas. These in-
clude code obfuscation [34] and parameter updates [43]. Building on this concept
of evolution, our system generates a new CVM instance with distinct configura-
tions after each recovery. The Eternal system [32] enables live software upgrades,
where one replica can be upgraded while others maintain service availability.
Compared to these works, Naboris is the first to propose proactive recovery and
upgrade support using commodity hardware support for TEEs such as CVMs.

Recovering TEE-based Replication Systems Several works have explored
protecting consensus protocols using TEEs [10,28,46]. However, they commonly
assume that code running inside a TEE cannot be exploited and focus on han-
dling crash failures and their consequences, particularly state recovery and roll-
back attack prevention. Dinis et al. [19] propose a restart-rollback model for state
replication during TEE restarts, with replicas verifying state freshness through
digest comparisons. Engraft [46] encapsulates Raft consensus in TEEs and uses
a two-phase protocol for state recovery after restarts. Nimble [9] prevents roll-
back attacks using trusted TEE endorsers that maintain signed ledger states and
require majority consensus. While CCF [28] provides disaster recovery through
ledger recovery and node restart protocols, its recovery model is purely reactive,
initiating only after failures occur. Naboris assumes that the hardware and
firmware support implementing the TEE mechanisms can only fail by crashing,
but imposes no further restrictions regarding Byzantine failures. Hence, it has a
smaller trusted computing base than previous TEE-based replication systems.

9 Conclusion

Naboris provides long-term resilience for CVM-based BFT services by sup-
porting both proactive recovery and dynamic software upgrades. In contrast to
existing recovery approaches, Naboris does not rely on trusted special-purpose
(hardware) components, but instead applies a novel concept that builds on the
idea of only allowing recovering replicas to rejoin the system after having pre-
sented verifiable proof (in the form of CVM attestation reports) confirming that
recoveries and upgrades indeed took place.

Acknowledgements This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 446811880, 541017677.

References

1. Amazon EC2 dedicated hosts, https://aws.amazon.com/ec2/dedicated-hosts/
2. AMD secure encrypted virtualization (SEV). https://developer.amd.com/sev/
3. AMD SEV-SNP on Amazon EC2 instances, https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/sev-snp.html

https://aws.amazon.com/ec2/dedicated-hosts/
https://developer.amd.com/sev/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html

TEE-Assisted Recovery and Upgrades for Long-Running BFT Services 21

4. Azure dedicated host, https://azure.microsoft.com/en-us/products/virtual-
machines/dedicated-host

5. Themis: BFT framework in Rust, https://github.com/ibr-ds/themis
6. VirTEE: Virtualized Trusted Execution Environments, https://github.com/virtee
7. What is BareMetal infrastructure on Azure? https://learn.microsoft.com/en-us/

azure/baremetal-infrastructure/concepts-baremetal-infrastructure-overview
8. Announcing the public preview of Azure confidential VMs with Intel

TDX (2023), https://azure.microsoft.com/en-us/updates/confidential-vms-with-
intel-tdx-dcesv5-ecesv5-public-preview/

9. Angel, S., Basu, A., Cui, W., Jaeger, T., Lau, S., Setty, S., Singanamalla, S.:
Nimble: Rollback protection for confidential cloud services. In: OSDI ’23 (2023)

10. Bailleu, M., Giantsidi, D., Gavrielatos, V., Quoc, D.L., Nagarajan, V., Bhatotia,
P.: Avocado: A secure in-memory distributed storage system. In: ATC ’21 (2021)

11. Behl, J., Distler, T., Kapitza, R.: Hybrids on steroids: SGX-based high performance
BFT. In: EuroSys ’17 (2017)

12. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: Dependable
and secure storage in a cloud-of-clouds. ACM Transactions on Storage 9(4) (2013)

13. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a board range of memory error exploits. In: USENIX Security ’03 (2003)

14. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Trusted computing
meets blockchain: Rollback attacks and a solution for Hyperledger Fabric. In:
SRDS ’19 (2019)

15. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20(4) (2002)

16. Chen, Z., Vasilakis, G., Murdock, K., Dean, E., Oswald, D., Garcia, F.D.: VoltPil-
lager: Hardware-based fault injection attacks against Intel SGX enclaves using the
SVID voltage scaling interface. In: USENIX Security ’21 (2021)

17. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016(86) (2016)

18. Decouchant, J., Kozhaya, D., Rahli, V., Yu, J.: DAMYSUS: Streamlined BFT
consensus leveraging trusted components. In: EuroSys ’22 (2022)

19. Dinis, B., Druschel, P., Rodrigues, R.: RR: A fault model for efficient TEE repli-
cation. In: NDSS ’23 (2023)

20. Distler, T.: Byzantine fault-tolerant state-machine replication from a systems per-
spective. ACM Computing Surveys 54(1) (2021)

21. Distler, T., Kapitza, R., Reiser, H.P.: State transfer for hypervisor-based proactive
recovery of heterogeneous replicated services. In: SICHERHEIT ’10 (2010)

22. Distler, T., Popov, I., Schröder-Preikschat, W., Reiser, H.P., Kapitza, R.: SPARE:
Replicas on hold. In: NDSS ’11 (2011)

23. Duan, S., Zhang, H.: Foundations of dynamic BFT. In: SP ’22 (2022)
24. Eischer, M., Büttner, M., Distler, T.: Deterministic fuzzy checkpoints. In: SRDS ’19
25. Galanou, A., Bindlish, K., Preibsch, L., Pignolet, Y.A., Fetzer, C., Kapitza, R.:

Trustworthy confidential virtual machines for the masses. In: Middleware ’23 (2023)
26. Garcia, M., Bessani, A., Neves, N.: Lazarus: Automatic management of diversity

in BFT systems. In: Middleware ’19 (2019)
27. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability

for distributed systems. In: SOSP ’07 (2007)
28. Howard, H., Alder, F., Ashton, E., Chamayou, A., Clebsch, S., Costa, M., Delignat-

Lavaud, A., Fournet, C., Jeffery, A., Kerner, M., Kounelis, F., Kuppe, M.A., et al.:
Confidential consortium framework: Secure multiparty applications with confiden-
tiality, integrity, and high availability. arXiv preprint arXiv:2310.11559 (2023)

https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
https://github.com/ibr-ds/themis
https://github.com/virtee
https://learn.microsoft.com/en-us/azure/baremetal-infrastructure/concepts-baremetal-infrastructure-overview
https://learn.microsoft.com/en-us/azure/baremetal-infrastructure/concepts-baremetal-infrastructure-overview
https://azure.microsoft.com/en-us/updates/confidential-vms-with-intel-tdx-dcesv5-ecesv5-public-preview/
https://azure.microsoft.com/en-us/updates/confidential-vms-with-intel-tdx-dcesv5-ecesv5-public-preview/

22 I. Messadi et al.

29. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. In: Concur-
rency: The Works of Leslie Lamport (2019)

30. Li, X.: QEMU patch submission (2024), https://patchew.org/QEMU/
20241105062408.3533704-1-xiaoyao.li@intel.com/20241105062408.3533704-15-
xiaoyao.li@intel.com/

31. Messadi, I., Becker, M.H., Bleeke, K., Jehl, L., Mokhtar, S.B., Kapitza, R.: Split-
BFT: Improving Byzantine fault tolerance safety using trusted compartments. In:
Middleware ’22 (2022)

32. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P., Tewksbury, L.A., Kalogeraki,
V.: Eternal: Fault tolerance and live upgrades for distributed object systems. In:
DISCEX ’00 (2000)

33. Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against Intel SGX. In: IEEE
S&P ’20 (2020)

34. Padilha, R., Pedone, F.: Belisarius: BFT storage with confidentiality. In: NCA ’11
35. Peng, W., Li, X., Niu, J., Zhang, X., Zhang, Y.: Ensuring state continuity for

confidential computing: A blockchain-based approach. IEEE Transactions on De-
pendable and Secure Computing (2024)

36. Platania, M., Obenshain, D., Tantillo, T., Sharma, R., Amir, Y.: Towards a prac-
tical survivable intrusion tolerant replication system. In: SRDS ’14 (2014)

37. Puddu, I., Schneider, M., Haller, M., Capkun, S.: Frontal attack: Leaking control-
flow in SGX via the CPU frontend. In: USENIX Security ’21 (2021)

38. Reiser, H.P., Kapitza, R.: Hypervisor-based efficient proactive recovery. In:
SRDS ’07 (2007)

39. Russinovich, M., Ashton, E., Avanessians, C., Castro, M., Chamayou, A., Clebsch,
S., Costa, M., Fournet, C., Kerner, M., et al.: CCF: A framework for building con-
fidential verifiable replicated services. Technical Report MSR-TR-2019-16 (2019)

40. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4) (1990)

41. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: Eradicating controlled-channel
attacks against enclave programs. In: NDSS ’17 (2017)

42. Sousa, P., Bessani, A.N., Correia, M., Neves, N.F., Verissimo, P.: Highly available
intrusion-tolerant services with proactive-reactive recovery. IEEE Transactions on
Parallel and Distributed Systems 21(4) (2010)

43. Sousa, P., Bessani, A.N., Obelheiro, R.R.: The FOREVER service for fault/intru-
sion removal. In: WRAITS ’08 (2008)

44. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-
stein, M., Wenisch, T.F., et al.: Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In: USENIX Security ’18 (2018)

45. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: A practical attack framework
for precise enclave execution control. In: SysTEX ’17 (2017)

46. Wang, W., Deng, S., Niu, J., Reiter, M.K., Zhang, Y.: Engraft: Enclave-guarded
Raft on Byzantine faulty nodes. In: CCS ’22 (2022)

47. Warren-Kachelein, D.: Crypto hackers exploit Ronin network for $615 million
(2022), https://www.bankinfosecurity.com/crypto-hackers-exploit-ronin-network-
for-615-million-a-18810

48. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: Exploiting
synchronisation bugs in Intel SGX enclaves. In: ESORICS ’16 (2016)

49. Zhang, R., Center, C.H., Gerlach, L., Weber, D., Hetterich, L., Lü, Y., Kogler, A.,
Schwarz, M.: CacheWarp: Software-based fault injection using selective state reset.
In: USENIX Security ’24 (2024)

https://patchew.org/QEMU/20241105062408.3533704-1-xiaoyao.li@intel.com/20241105062408.3533704-15-xiaoyao.li@intel.com/
https://patchew.org/QEMU/20241105062408.3533704-1-xiaoyao.li@intel.com/20241105062408.3533704-15-xiaoyao.li@intel.com/
https://patchew.org/QEMU/20241105062408.3533704-1-xiaoyao.li@intel.com/20241105062408.3533704-15-xiaoyao.li@intel.com/
https://www.bankinfosecurity.com/crypto-hackers-exploit-ronin-network-for-615-million-a-18810
https://www.bankinfosecurity.com/crypto-hackers-exploit-ronin-network-for-615-million-a-18810

