
PFIP: A UDP/IP Transactional Network Stack for
Power-Failure Resilience in Embedded Systems

Kai Vogelgesang1 , Ishwar Mudraje1 , Luis Gerhorst2 , Phillip Raffeck2 ,
Peter Wägemann2 , Thorsten Herfet1 , Wolfgang Schröder-Preikschat2

1 Saarland Informatics Campus (SIC), Germany, {vogelgesang,mudraje,herfet}@cs.uni-saarland.de
2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany, {gerhorst,raffeck,waegemann,wosch}@cs.fau.de

Abstract—Emerging embedded devices in the Battery-Free
Internet of Things have the benefit that they harvest their
required energy during runtime from the environment (e.g.,
through solar power). However, from the perspective of the sys-
tems’ networking stacks, the main challenge is resilience against
power failures: Existing network stacks for such systems (e.g.,
LwIP) face the problem that stored data, such as for address
translation, is likely to be lost or inconsistent after a power
outage. Besides the consistency of data, sending a packet without
the knowledge about the required and available energy can result
in energy inefficiency when the power failure occurs during
sending, because of the energy waste of the incomplete packet.

In this paper, we introduce PFIP, a network stack for UDP/IP
specifically targeting scenarios with intermittent power supply.
PFIP’s primary design consideration is to modularize the network
stack into distinct transactions in order to result in a state-
machine–compliant structure with states and according transi-
tions. The stack is able to introduce checkpoints between transac-
tions to persistently store the stack’s state. Besides handling data
consistency, we employ code-analysis techniques that determine
the energy demand of states/transitions. Combining the energy
demand of operations along with the available energy on our
hardware platform eventually yields runtime guarantees such
that started transactions will safely be completed without facing
power failures.

Index Terms—power-failure resilience, embedded systems,
UDP/IP, intermittent operation

I. INTRODUCTION

Battery-Free Internet of Things: With the Battery-Free
Internet of Things [1] appearing on the horizon, several novel
use-case scenarios of embedded (consumer) electronics are
becoming increasingly feasible: Battery-free systems acquire
their operational energy from the environment, for example,
by means of solar cells, RF-harvesting techniques, or ex-
ploiting temperature gradients. These systems come with the
primary benefit of being energy self-sufficient and not requir-
ing periodic battery replacement. Examples of such energy-
constrained systems include smart-home devices, wearable
devices, medical implants, or devices for predictive mainte-
nance. From a design and implementation perspective, these
connected systems come with several new challenges due to
their unstable and unpredictable power supply.

Intermittent Operation & Checkpointing: The power sup-
ply causes the system to only execute in between power
outages. Since our work targets network stacks that maintain
a (potentially increasing) state over time, our approach has to

persistently store this state within a checkpoint. One example
of relevant state within a network stack is its cache for storing
resolved mappings from IP addresses to MAC addresses,
which is referred to as the Address Resolution Protocol (ARP)
cache. Losing this state would require the embedded node
to initiate new requests for address resolution, which is an
undesired property, especially in highly energy-constrained
settings. Even worse, when losing parts of the data in case a
power failure hits during checkpointing, the stored state might
be inconsistent.

In Search of a Suitable Network Stack: Inherent to
these nodes in the Battery-Free Internet of Things is their
communication with other nodes, and thus a network stack.
Existing approaches in the context of intermittently-powered
systems target communication with Bluetooth Low Energy [2]
or LoRa [3], [4] due to their focus on low-power commu-
nication. However, numerous devices, for example in smart
homes, have the possibility to use an existing Wi-Fi network.
As a consequence thereof, the focus of our work is on wireless
IEEE 802.11 communication.

PFIP’s Contributions: To tackle the problem of inter-
mittency in wireless communication, we introduce the PFIP
network stack for power-failure–resilient IP networking. The
current state of PFIP builds upon our previous work [5]
and addresses UDP/IP networking. The contributions of this
work include an abstraction of the networking stack’s possible
states and transitions. Our implementation of PFIP relies on
this state-machine–like representation, specifically on Petri-
nets [6]. In short, the contributions of this paper are threefold:

1) Introduction of Petri-net–based semantics into an 802.11
network stack with PFIP

2) Static resource-bound analysis possible due to PFIP’s
model-based semantics

3) Evaluation of our open-source prototype implementation
of PFIP
Paper’s Structure: The remainder of this paper is struc-

tured as follows: First, we introduce necessary background
information and our system model in Section II. Subsequently,
we highlight the main problems for intermittently-powered
network stacks in Section III. Section IV gives insight into our
PFIP approach. We show evaluation results of our approach in
Section V. Works related to PFIP are the subject of Section VI.
Section VII outlines future work and concludes our paper.

Appears in: Proceedings of the IEEE Consumer Communications & Networking Conference (CCNC ’25)
Las Vegas, USA, 2025

https://orcid.org/0000-0002-7633-1880
https://orcid.org/0009-0003-6870-7862
https://orcid.org/0000-0002-3401-430X
https://orcid.org/0009-0006-3455-8071
https://orcid.org/0000-0002-3730-533X
https://orcid.org/0000-0002-3746-7638
https://orcid.org/0000-0002-5216-2103


SOCK_OUT L3_OUT L3_OUT_CHK L2_OUT ARP_WAIT ARP_OUT IF_OUT

IF_INARP_INL3_INL3_CHECKEDL4_INSOCK_IN

tx

rx

phy_tx

phy_rx

Fig. 1: Places used for packet processing. The transmit() function (marked tx here) is called from the application similar
to a send() call for POSIX sockets. It creates a token with the payload in the SOCK_OUT place, which is then subsequently
passed down the stack. In each place, operations such as appending a header or calculating a checksum for the respective layer
are performed. Once the token arrives in the IF_OUT place, it contains a fully formed packet, ready to be transmitted over the
physical interface. Similarly, any packets received there are placed into the IF_IN place and travel up the stack, with headers
being parsed and checksums verified at intermediate steps, until the application can receive the payload out of the SOCK_IN
place by calling try_receive().

II. BACKGROUND & SYSTEM MODEL

Layers in the Stack: The 802.11 standard specifies both
the medium access control (MAC) and physical layer (PHY)
protocols. For now, PFIP’s focus is on the higher layers,
that is, Layer 2 and above of the IP suite. Consequently, we
target platforms that support the IP suite. We require physical-
layer–agnostic transmit and receive primitives. Further, these
primitives have an upper bound on their energy demand in
order to encapsulate these operations into transactions.

Notion of Intermittency: We target energy-constrained
embedded systems that communicate with each other via Wi-
Fi. The focus of this work is on the intermittently-powered
embedded nodes; we assume routers have a stable power
supply. Since the embedded nodes are unable to rely on stable
power, PFIP inherently cannot give temporal guarantees when
to send packets from the perspective of nodes. However, we
require the systems to execute useful work with the available
energy. Specifically, we require the energy storage to hold
minimum budgets for operations: For example, for address
resolution, nodes require energy to send the request and receive
the answer within a given amount of time.

Security-Related Aspects: Security-related aspects go be-
yond the current scope of PFIP. In our implementation, in-
bound traffic blocks the processing of outbound traffic. Hence,
malicious filling of the inbound traffic chain could yield to
denial-of-service for outbound traffic and also drain the energy
storage. Security aspects have to be considered in future work.

Static Analyzability: PFIP relies on the fact that opera-
tions have a bounded amount of energy in order to guarantee
the safe completion of transactions. Likewise, interrupts are
bounded by a minimum inter-arrival time. To yield such worst-
case energy-consumption estimates, we require the system
to be analyzable by means of static program-path analysis
techniques [7], [8]. Our system model includes all power-
consuming operations being explicitly controlled by the soft-
ware (e.g., sending out a packet).

Notion of Synchrony: In our current UDP/IP-centered
stack, we require a notion of synchrony for the individual
transactions. That is, waiting for an indefinite amount of time

for an acknowledgment, as part of bidirectional communica-
tion, goes beyond this paper’s scope. For waiting requests, our
model requires an upper bound on the time to wait in order
to limit the overall time, and likewise energy, of transactions.

III. PROBLEM STATEMENT

We address two main problems with PFIP, namely, main-
taining consistency in the network stack (see Section III-A)
and avoiding retransmit-induced energy waste (see Sec-
tion III-B).

A. Problem # 1: Consistency of Network Stack

Network stacks consist of several operations (e.g., com-
puting checksums) and a respective state (e.g., the ARP
cache for address resolution). Existing network stacks [9]–
[11], being unaware of power failures, face the problem that
these operations are interrupted, and the state is lost. Even
worse, when writing data to non-volatile memory and not
having a notion of transactional semantics, a power failure
might render the memory in an inconsistent state.

PfIP’s Approach to Consistency of Network Stack: In a
nutshell, we decompose the network stack into distinct states
and their associated transactions. If necessary, the system’s
state can be stored in non-volatile memory before each trans-
action in order to guarantee consistency and avoid data loss.

B. Problem # 2: Retransmit-Induced Energy Waste

While the transactional semantics allow for data consistency
in the stack, energy-agnostic transactions can still be inter-
rupted by power failures. For example, the system might start
to transmit a packet via the radio, and just after starting the
transmission, a power failure could interrupt the execution. As
a consequence thereof, the energy expended for transmitting
the incomplete packet is lost. Numerous approaches in the
domain of intermittent systems have the following notion of
intermittency: Instructions can be directly executed from the
non-volatile memory. That is, the system’s semantics allow
for incremental progress of the application. In contrast to
the direct execution of machine-code instructions from non-
volatile memory, when handling communication with radios,



the incremental, instruction-wise progress no longer holds:
Interrupting a network packet renders the entire packet in-
complete. Especially in highly energy-constrained systems, as
we target, such energy waste is undesired.

PfIP’s Approach to Retransmit-Induced Energy Waste: In
short, we estimate the worst-case energy demand of individual
transactions along with their transitions. Combined with the
online available energy, we can guarantee that transactions are
completed without risking a power failure in between.

IV. THE PFIP APPROACH

To communicate with the network, a system is often
equipped with multiple physical interfaces, e.g., a Wi-Fi radio
or an Ethernet port. For the application running on the system,
a high-level abstraction is desirable, and typically provided in
the form of sockets. The task of the network stack is to take
care of what happens in between by implementing the required
suite of protocols.

A. Transactional Semantics

As stated in Section III, our first main goal is to ensure
consistency of the network stack in case of a power failure.
We approach this goal by modeling the task of the network
stack using transactional semantics: The task is split into a set
of transactions, in a way that 1) the stack is in a consistent
state before and after a transaction is applied, 2) transactions
are independent of each other, and 3) the order in which they
are applied does not matter. This mimics the ACID principles
from database design and guarantees by design that the stack
is always in a consistent state. Furthermore, as seen below,
the representation of this state is clear and well-suited for
creating a checkpoint in case of an impending power failure.
In contrast to periodic checkpointing, our selective approach
reduces overheads.

We implement a stack for simple UDP/IP communication
based on datagrams or packets. This means that we need to
provide a primitive to transmit and receive a datagram to the
application. For the physical layer, we assume a “driver” prim-
itive, capable of transmitting and receiving layer 2 frames. Im-
plementation details on this are given below in Section IV-B1.

The task at hand is to formulate the processing steps
between these primitives in terms of transactions. We decided
to use a state machine, where each packet is represented by a
token that is moved between states by a respective transaction.
We draw inspiration from colored Petri nets, which are well
suited to represent this kind of state machine (hence the use
of “places” to mean the states in which a token can be).

However, there are a few notable differences: 1) Each
transition only takes one token as input. In particular, there
is no interaction between tokens. 2) Within a transition, we
allow for computation and even side effects (e.g., calculating
the checksum for the IP header or inserting an entry into the
ARP cache). 3) There may be side effects (e.g., a new entry
in the ARP cache), which affect whether a transition can fire.
Using “pure” Petri-net semantics to implement the stack is
possible, for example, by representing the ARP cache as a

Data:
Start:
End:
State: SOCK_OUT

Data:
Start:
End:
State: L3_OUT

Data:
Start:
End:
State: L3_OUT_CHK

T_ADD_L4_HEADER

T_ADD_L3_HEADER

Fig. 2: An outgoing token going through the first transitions
in the stack. Initially, it only holds the payload (blue) and
resides in SOCK_OUT. From there, the T_ADD_L4_HEADER
transition prepends the UDP header (orange), decreasing the
start offset accordingly, and places the token in L3_OUT.
Then, the IP header (red) is added by T_ADD_L3_HEADER,
again decreasing the start offset and moving the token to
L3_OUT_CHK, from where the next transition proceeds.

token as well. We decided against this approach for the sake
of simplicity, and to have a correspondence between tokens
and packets. Fig. 1 shows the places and transitions in our
implementation.

Like in colored Petri nets, each transition has a correspond-
ing guard function. This function also takes one token as
input and returns a boolean whether this token is eligible for
processing by the respective transition.

Consider the following example of how a payload is pro-
cessed by the stack: After being called from userspace, the
transmit primitive creates a token, holding the given payload,
in the initial state for outgoing packets. Only one transition
leads out of this state, and it prepends the UDP (L4) header to
the payload and moves the token to a state for L3 processing.
From there, the next transition prepends the IP header, and so
on, until the token arrives in a state for outgoing L2 frames.
It is then removed, and its content – a now fully formed L2
frame – is passed to the low-level transmit primitive. The first
steps of this process are shown in Fig. 2.

B. Implementation

Our target platform is the RISC-V–based ESP32-C3 [12]
from Espressif. The ESP-IDF environment uses FreeRTOS and
offers development support for a wide variety of applications.
Under the ESP-IDF, the default TCP/IP stack is LwIP [9], but
it can be exchanged for a custom implementation. ESP-IDF
provides a network interface library (esp_netif), which
interfaces the low-level Wi-Fi driver to the TCP/IP stack.



The Wi-Fi drivers provide high-level APIs for various tasks,
including but not limited to:

• Configuration of the MAC and PHY layer hardware
• Support for station mode operation, including WPA-based

authentication and association with an access point
• Registration of callbacks for packet reception

All operations can be monitored through FreeRTOS events
triggered by the Wi-Fi driver. However, the low-level 802.11
MAC and PHY layer operations are only accessible through
binary blobs that are tightly integrated with the FreeRTOS
operating system. We use an SPI-based FRAM chip to save
the state of the network stack in the event of a power loss.

1) Primitives: The hardware is initialized and configured
by an RTOS task. Wi-Fi tasks are carried out in a sep-
arate thread. We identified the undocumented public func-
tions for transmission and reception in order to circum-
vent the esp_netif library. The internal transmit function,
esp_wifi_internal_tx allows transmission of raw L2
packets in the Ethernet frame format. The 802.11 MAC and
PHY headers are crafted by the Wi-Fi driver, which also
queues the packet for transmission over the wireless hardware.

For packet reception, a callback is registered with the driver
using the internal esp_wifi_internal_reg_rxcb func-
tion. The Wi-Fi thread concurrently invokes our handler when-
ever an L2 packet is received. Towards the userspace, we
provide an interface similar to calling write and read on a
socket: The transmit function takes a buffer and its length
as arguments and starts the transmission of the buffer content
as one UDP packet. To receive a packet, we provide a non-
blocking try_receive function, also taking a buffer and
its length. If a packet is ready for reception and fits inside
the buffer, it is moved into the buffer and can be used by the
application. Otherwise, the function immediately returns.

Note that our implementation only supports a single, fixed
peer. The architecture can be expanded to multiple peers,
for instance, by attaching additional metadata to the tokens.
However, our current prototype is sufficient to demonstrate the
possibility of worst-case resource-consumption analysis.

2) Semantics: We implement tokens as buffers, together
with attached metadata (current place, and content start and
end offsets) as shown in Fig. 2. The size of these buffers is
1500 bytes, since this value is most likely to fit the path’s
maximum transmission unit. To avoid unnecessary copies, we
leave a “headroom” before the payload when we create a
new token, similar to the sk_buff1 structure used in Linux.
Headers can then simply be prepended by writing them into
the available headroom and decreasing the start offset.

Transitions are implemented as functions operating on these
buffers, modifying their content and metadata. These functions
receive a token via a pointer and return void, token output
is realized by updating the place of the given token. In case
more than one token needs to be produced, they are allocated.
Tokens are allocated from a fixed-size pool. This removes

1https://docs.kernel.org/networking/skbuff.html

the overhead of dynamic allocations, lowering the variance
of worst-case execution time and energy cost.

Each transition has a corresponding guard function, which
also receives a token via pointer and returns a boolean. For
these functions, we keep a low-cost, in most cases just one,
memory lookup since they are often evaluated in the code.

To implement the “business logic” of the stack, we aim for
one transition per ISO/OSI layer, but we extract, e.g., the IP
checksum calculation into its own transition. Where to “draw
the lines” between transitions is a design decision: Having
smaller but more transitions gives better granularity and lower
worst-case cost per transition. We refer to Section V for our
approach to determining this worst-case cost. Choosing the
transitions too small leads to overhead, and moves the control
flow into the state machine. This makes it difficult to reason
about the code, and whether progress is ensured in case of
power failures.

Up until layer 2, tokens go through a “pipeline” of tran-
sitions. The transmit chain adds headers, while the receive
chain removes them. If an unexpected value is encountered in
a received packet, for instance, if the IP checksum is invalid
or the UDP destination port is wrong, the token is discarded.

Other than this, the only token-level branching happens for
ARP: In case the corresponding MAC address is unknown for
a destination IP, the packet is put into the ARP_WAIT state
and a request is scheduled in form of a token in ARP_OUT.
Otherwise, the layer 2 header is appended, and the packet is
put into IF_OUT and subsequently transmitted.

C. Resource-Consumption Bounds

In order to give guarantees on the completion of individual
transactions, we require an upper bound on the energy demand
of single states and transactions. Namely, we require estimates
of their worst-case energy consumption, or WCEC for short.
These resource-consumption estimates can be determined with
static worst-case analysis tools, such as the Platin toolkit [13].
Such tools rely on two central pillars: (1) a hardware-agnostic
program-path analysis and (2) a hardware-specific cost model.
First, the program-path analysis derives path constraints from
the control flow of the program under analysis. To facilitate
this analysis part, we implemented PFIP with a focus on
analyzability. Specifically, PFIP uses loops with a statically
determinable loop count and avoids recursion. Secondly, the
cost model gives the analysis tool a notion of the actual cost
of individual operations, for example, the time and energy
demand for sending a packet over the physical layer (i.e., layer-
2 packets). The results of both the hardware-agnostic and the
hardware-aware pillar are combined in a mathematical prob-
lem formulation (i.e., an integer linear program). Solving this
formulation eventually yields a worst-case estimate for the an-
alyzed part. These offline-determined estimates are then used
during the runtime phase: Assessing the currently available
energy and comparing it with the worst-case estimate answers
whether the completion of an operation can be guaranteed.

https://docs.kernel.org/networking/skbuff.html


D. Checkpointing

We implement a simple checkpointing scheme to save the
network state. Owing to the transactional semantics of PFIP,
it suffices to only store currently used tokens from the token
pool. For each token, its place, start and end point of data and
the data itself is saved to FRAM. The ARP cache is also stored
to ensure progress of tokens in the L2_ARP_WAITING state.
In addition, a value indicating the number of stored buffers
as well as a flag to indicate a power loss are saved.2 Upon
waking up, the ARP cache and the tokens are restored.

V. EVALUATION

We design our measurement-based evaluation to validate
that each of our networking stack’s transactions has a pre-
dictable execution time and energy consumption. The longest-
running and most energy-intensive transaction dictates the size
of the energy storage that must be provisioned for the system.
Therefore, our evaluation focuses on identifying the upper
bound of our transaction’s energy consumption.

A. Evaluation Setup

To evaluate PFIP, we use two devices connected through a
2.4GHz 802.11bgn Wi-Fi Network with WPA2 PSK (CCMP)
security. One ESP32-C3 runs PFIP and sends out UDP packets
to a second device that relays the payload back. The second
device and the router therefore only impact the networking
latency and not our measurement results. The payload has
random content and a random size of 0B to 1024B, and
we repeat each measurement 100 times. In our test setup and
configuration, the Wi-Fi chip wakes up at the DTIM interval
of 204.8ms. This background activity potentially influences
the energy consumption of our network-stack transitions.

To measure PFIP’s energy consumption, we use the Joule-
Scope JS220 energy measurement device. To synchronize the
code execution with the measurement device, we use a GPIO-
based trigger. We validate our execution-time measurements
with the chip’s internal µs-accurate hardware timer.

For guaranteed upper bounds on the energy consumption,
we analyze each of PFIP’s transitions with the Platin [13]
toolkit. As Platin’s approach involves collecting high-level
information about the program control flow by the compiler,
source-code access is detrimental. As the low-level driver
code for the Wi-Fi chip of the ESP32-C3 is not available,
we had to exclude the transmission T_TX_PACKET from
our analysis, as it relies on using the closed-source function
esp_wifi_internal_tx.

2In our prototype, we measure that this unoptimized approach to check-
pointing takes 27.3ms for saving the state with an 8 kB Adafruit SPI Non-
Volatile FRAM Breakout Module (ADA1897) on our evaluation platform.
Even without switching to a higher-performance non-volatile memory, we
estimate that this could be reduced to 4-5 ms since only some buffers are
useful and each buffer must not be stored entirely. We choose not to pursue
this, as this work focuses on the predictability of the networking stack.

0

0.02

0.04

0.06

0.08

Ex
ec

ut
io

n
T

im
e

[m
s]

AD
D_

L4
_H

EA
DE

R
AD

D_
L3

_H
EA

DE
R

AD
D_

L3
_C

HE
CK

SU
M

AR
P_

RE
QU

ES
T

AD
D_

L2
_H

EA
DE

R

AD
D_

L2
_H

EA
DE

R_
AR

P
CH

EC
K_

ET
HT

YP
E

AR
P_

RE
SP

ON
SE

AR
P_

SE
ND

_R
EP

LY

CH
EC

K_
L3

_C
HE

CK
SU

M

PA
RS

E_
L3

_H
EA

DE
R

PA
RS

E_
L4

_H
EA

DE
R

TX
_P

AC
KE

T

0

10

20

30

40

En
er

gy
D

em
an

d
[u

J]
Fig. 3: Execution time and energy demand of transitions:
measurements as box plots on the left, analysis bounds as
a bar on the right for each transition.

B. Evaluation Results

Fig. 3 shows the timing and energy results of our evaluation.
In our measurements, PFIP’s transactions take less than 30 µs
to execute and consume less than 10 µJ of energy. The
measurement results are plotted as box plots, showing a very
narrow interquartile range. Cross-validation with the chip’s
hardware timer confirms that most transactions take less than
5 µs. On the ESP32-C3, which is a relatively fast embedded
system running at 160MHz, there is a high probability of
executing multiple transactions in succession. On less powerful
chips, the granularity of our transactions ensures the ability to
make progress, although the computations take longer.

Due to the analysis-aware implementation of PFIP, we
are able to statically derive upper bounds on the resource
consumption for all transitions (except T_TX_PACKET). The
energy bounds account for the worst case of ongoing back-
ground activity. All values represent overestimations of the
observed values. The largest bounds of all transactions are
84 µs and 39 µJ. In summary, our evaluation shows that the
variation in the UDP-packet processing delay and energy
consumption can be eliminated on embedded systems.

VI. RELATED WORK

To our knowledge, PFIP is the first approach that targets
the property of transactional semantics for a UDP/IP network
stack. Nevertheless, several works on energy-constrained and
real-time systems inspired our work, outlined in the following.



Energy-Constrained Systems: For embedded devices, IP
implementations such as uIP [9] and lwIP [10] are available.
However, they were not designed for intermittent systems.
In contrast to these stacks, PFIP introduces transactional
semantics to the network stack. Analyzing the energy demand
of individual transactions enables us to give guarantees that
they do not face a power failure once they are started.

Communication under Intermittency: De Winkel et al. [2]
introduce the FreeBie communication stack for intermittently-
powered Bluetooth Low Energy (BLE) devices. Routing prob-
lems for BLE-mesh–based intermittent systems were explored
by RICS [14]. With PFIP, we follow a similar path of
checkpointing the system’s stack; however, with the difference
of considering Wi-Fi communication. Behnke et al. proposed
modifications to existing IP stacks to differentiate between
traffic flows and ensure progress guarantees under heavy
incoming traffic [15]. PFIP complements these approaches
since it also guarantees progress during packet processing.
In general, networking stacks for intermittent systems require
protocols designed with intermittency in mind [16], [17].

Predictable (Real-Time) Systems: Related to the aspect
of giving runtime guarantees are real-time systems where
guarantees on the timely execution are crucial. Similar to
timeliness in real-time systems, our goal is to guarantee the
execution of transactions within given energy budgets during
runtime. In the context of real-time systems, Schoeberl et al.
introduced the TPIP stack [11] for time-predictable real-time
systems. PFIP and TPIP share several design considerations,
such as statically bounded loops in the control flow or the
avoidance of dynamic memory allocations. However, TPIP is
not directly suited for intermittently powered systems and the
requirement of checkpointing their state, in contrast to PFIP.

VII. FUTURE WORK & CONCLUSION

An interesting avenue for future work is the open MAC
implementation for the ESP32 processor family [18], [19].
Our current implementation for the RISC-V–based ESP32-
C3 platform has to rely on a comparably large binary blob
for transmitting packets from the platform’s vendor. The open
MAC project [18] managed to successfully reverse engineer
the hardware for the Xtensa-based ESP32 for sending and
receiving Wi-Fi packets. However, the open-source stack is
not (yet) capable of handling the ESP32-C3 platform. Having
deeper access to the platform’s Wi-Fi stack presumably yields
more fine-grained energy-budget handling. In addition, future
work will explore how to include more complex network-
ing semantics, e.g., TCP. It remains an open question how
application-related aspects can be propagated through the com-
munication stack. This is also related to our current assumption
of synchrony, which we strive to loosen in our future work.

In this paper, we introduced our idea of PFIP, a UDP/IP net-
work stack with the target of having transactional semantics.
We use Petri nets to model the network stack’s distinct states
and transactions. By exploiting worst-case analysis techniques,
we are able to give runtime guarantees on the uninterrupted
execution of states/transitions.

The prototype implementation of PFIP’s is available:
https://git.nt.uni-saarland.de/open-access/pfip

ACKNOWLEDGMENTS

The author order corresponds to the SDC (sequence determines
credit) model. This work is supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG) as part of SPP
2378 (Resilient Worlds: project number 502615015, Resilient Power-
Constrained Embedded Communication Terminals, ResPECT).

REFERENCES

[1] S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, P. Pawełczak, M. H.
Alizai, B. Lucia, L. Mottola, J. Sorber, and J. Hester, “The internet of
batteryless things,” Communications of the ACM, vol. 67, no. 3, pp. 64–
73, 2024.

[2] J. de Winkel, H. Tang, and P. Pawełczak, “Intermittently-powered
bluetooth that works,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services (MobiSys
’22), MobiSys ’22, (New York, NY, USA), pp. 287–301, Association
for Computing Machinery, 2022.

[3] P. Raffeck, J. Maier, and P. Wägemann, “WoCA: Avoiding intermittent
execution in embedded systems by worst-case analyses with device
states,” in Proceedings of the 25th ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’24), 2024.

[4] M. Nardello, H. Desai, D. Brunelli, and B. Lucia, “Camaroptera: A
batteryless long-range remote visual sensing system,” in Proceedings of
the 7th International Workshop on Energy Harvesting & Energy-Neutral
Sensing Systems (EnsSys ’19), pp. 8–14, 2019.

[5] K. Vogelgesang, P. Raffeck, P. Wägemann, T. Herfet, and W. Schröder-
Preikschat, “WIP: Towards a transactional network stack for power-
failure resilience,” in Proceedings of the 21st IEEE Consumer Communi-
cations & Networking Conference (CCNC WiP ’24) - Work-In-Progress,
2024.

[6] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9,
no. 3, pp. 223–252, 1977.

[7] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in ACM SIGPLAN Notices, vol. 30,
pp. 88–98, ACM, 1995.

[8] P. Puschner and A. Schedl, “Computing maximum task execution times:
A graph-based approach,” Real-Time Systems, vol. 13, pp. 67–91, 1997.

[9] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack,”
Swedish Institute of Computer Science, vol. 2, no. 77, 2001.

[10] A. Dunkels, “uip-a free small tcp/ip stack,” UIP, vol. 1, pp. 1–17, 2002.
[11] M. Schoeberl and R. U. Pedersen, “tpip: A time-predictable tcp/ip stack

for cyber-physical systems,” in 2018 IEEE 21st International Symposium
on Real-Time Distributed Computing (ISORC), pp. 75–82, IEEE, 2018.

[12] Espressif Systems, ESP32-C3 Series Datasheet, 2022.
[13] E. J. Maroun, E. Dengler, C. Dietrich, S. Hepp, H. Herzog, B. Huber,

J. Knoop, D. Wiltsche-Prokesch, P. Puschner, P. Raffeck, M. Schoeberl,
S. Schuster, and P. Wägemann, “The platin multi-target worst-case
analysis tool,” in Proceedings of the 22nd International Workshop on
Worst-Case Execution Time Analysis (WCET ’24), 2024.

[14] G. Liu and L. Wang, “Routing for intermittently-powered sensing
systems,” in 2023 IEEE International Performance, Computing, and
Communications Conference (IPCCC), pp. 274–282, IEEE, 2023.

[15] I. Behnke, C. Blumschein, R. Danicki, P. Wiesner, L. Thamsen, and
O. Kao, “Towards a real-time iot: Approaches for incoming packet
processing in cyber–physical systems,” Journal of Systems Architecture,
vol. 140, p. 102891, 2023.

[16] S. Fu, V. Narayanan, M. L. Wymore, V. Deep, H. Duwe, and D. Qiao,
“No battery, no problem: Challenges and opportunities in batteryless in-
termittent networks,” Journal of Communications and Networks, vol. 25,
no. 6, pp. 806–813, 2023.

[17] A. Torrisi, K. S. Yıldırım, and D. Brunelli, “Reliable transiently-powered
communication,” IEEE Sensors Journal, vol. 22, no. 9, pp. 9124–9134,
2022.

[18] ESP32 Open MAC Contributors, “esp32-open-mac: Reverse engineered
wifi driver for the esp32.” 2024.

[19] J. Devreker, “Unveiling secrets of the esp32: creating an open-source
mac layer.” 2024/12.

https://git.nt.uni-saarland.de/open-access/pfip

	Introduction
	Background & System Model
	Problem Statement
	Problem#1: Consistency of Network Stack
	Problem#2: Retransmit-Induced Energy Waste

	The PfIP Approach
	Transactional Semantics
	Implementation
	Primitives
	Semantics

	Resource-Consumption Bounds
	Checkpointing

	Evaluation
	Evaluation Setup
	Evaluation Results

	Related Work
	Future Work & Conclusion
	References

