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Problems & Goals

Problems
Propagation throughout whole system stack

Hardware 7→ Software
Software 7→ Hardware

Multi-objective design choices
Lack of proper abstractions

Goals
HW/SW co-design framework for carbon-conscious design
Achieve sustainable designs of battery-free systems
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CO2CoDe Case Study



Carbon-Conscious System Design

Multiple Objectives
Minimizing the embodied carbon of the designed system
Maximizing the available energy for execution

Capacitor Selection
Undersizing threatens ability to make meaningful progress
Oversizing leads to longer charging times to reach target voltage

Minimize ESR
Minimize carbon footprint

Maximizing Available Energy Through Task Schedules
Order tasks while taking maximum power demand into account

⇒ Diminish impacts of ESR-related voltage drop

in conflict
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Results



Capacitor Selection
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Conclusion

Recap
Multi-objective, contradicting design choices
Current lack of proper abstractions
Case study: capacitor selection with conflicting properties
Energy-storage design propagates through entire system stack

Future Work
Create a hardware/software co-design framework for
carbon-conscious design decisions
Bridge gap between system-level functionality and carbon awareness
Sustainable design of carbon-aware and battery-free systems

CO2CoDe’s project repository: https://gitos.rrze.fau.de/co2code
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