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Problems & Goals

Problems
m Propagation throughout whole system stack

= Hardware — Software
=« Software — Hardware

m Multi-objective design choices
m Lack of proper abstractions

Goals
m HW/SW co-design framework for carbon-conscious design

m Achieve sustainable designs of battery-free systems




CO,CoDe Case Study




Carbon-Conscious System Design

Multiple Objectives
® Minimizing the embodied carbon of the designed system
m Maximizing the available energy for execution




Carbon-Conscious System Design

Multiple Objectives
® Minimizing the embodied carbon of the designed system
m Maximizing the available energy for execution

Capacitor Selection
m Undersizing threatens ability to make meaningful progress
m Oversizing leads to longer charging times to reach target voltage




Carbon-Conscious System Design

Multiple Objectives
® Minimizing the embodied carbon of the designed system
m Maximizing the available energy for execution

Capacitor Selection
m Undersizing threatens ability to make meaningful progress

Oversizing leads to longer charging times to reach target voltage
Minimize ESR
Minimize carbon footprint




Carbon-Conscious System Design

Multiple Objectives
® Minimizing the embodied carbon of the designed system
m Maximizing the available energy for execution

Capacitor Selection
m Undersizing threatens ability to make meaningful progress

Oversizing leads to longer charging times to reach target voltage
Minimize ESR
Minimize carbon footprint

} in conflict




Carbon-Conscious System Design

Multiple Objectives
® Minimizing the embodied carbon of the designed system
m Maximizing the available energy for execution

Capacitor Selection
m Undersizing threatens ability to make meaningful progress

Oversizing leads to longer charging times to reach target voltage
Minimize ESR
Minimize carbon footprint

} in conflict

Maximizing Available Energy Through Task Schedules
m Order tasks while taking maximum power demand into account

= Diminish impacts of ESR-related voltage drop
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Capacitor Selection
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Capacitor Selection
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Chosen Capacitors: ceramics and supercaps
m Low carbon footprint
m Ceramics: low ESR but low energy density
m Supercaps: high energy density but high ESR




Voltage Trace

Task1
BLE
3.4 7
3.2
> 3.0 1 Task2 Task3
j; LoRa Sense
on
T 2.8 1
o
= 26 -
' power-failure threshold Vs
2.4 (brown-out detection)
2.2 7
0.0 /( T

10000 20000, 30000 40000 50000
Time [us] 7



Voltage Trace

Task 1
BLE .
3.4 - —— ceramics (2.31mF)
3.2 1
> 3.0 1 Task?2 Task3
j; LoRa Sense
T 2.8 1
o
~ 2.6 1
' power-failure threshold Vs
2.4 1 \\ (brown-out detection)
2.2 7
0.0 /( T

10000 20000, 30000 40000 50000
Time [us] 7



Voltage Trace

Voltage [V]

w
o

N
[od

N
o

N
»

on
oN

A

Task 1

BLE

Task?2
LoRa

ceramics (2.31mF)
supercap (47 mF)

Task3
Sense

power-failure threshold Vs

\,\ (brown-out detection)

10000

20000, 30000 40000 50000

Time [us]



Voltage Trace
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Conclusion

Recap
m Multi-objective, contradicting design choices
m Current lack of proper abstractions
m Case study: capacitor selection with conflicting properties
m Energy-storage design propagates through entire system stack

Future Work
m Create a hardware/software co-design framework for
carbon-conscious design decisions

m Bridge gap between system-level functionality and carbon awareness

m Sustainable design of carbon-aware and battery-free systems

CO,CoDe’s project repository: https://gitos.rrze.fau.de/co2code
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