WoCA: Avoiding Intermittent Execution in Embedded Systems by Worst-Case Analyses with Device States

June 24th, 2024

Phillip Raffeck, Johannes Maier, Peter Wägemann

Friedrich-Alexander-Universität Erlangen-Nürnberg

Friedrich-Alexander-Universität Faculty of Engineering

Project no 502947440 (Watwa) Project no 502615015 (ResPECT)

Energy Harvesting

- Solar
- Radio frequencies
- Piezo-/thermo-electric

Energy Harvesting

- Solar
- Radio frequencies
- Piezo-/thermo-electric

Device-Bound Systems

- Embedded microcontroller
- Sensors
- Wireless communication

Energy Harvesting

- Solar
- Radio frequencies
- Piezo-/thermo-electric

Device-Bound Systems

- Embedded microcontroller
- Sensors
- Wireless communication

Intermittent Execution

Time

Power Outages in Energy-Harvesting Systems

- Maintain consistency in the system through power outages
- Resume operation when sufficient energy available
- System state checkpointing in non-volatile memory
- Potentially re-execute (partial) device operations

Intermittent Execution

Power Outages in

- Maintain consistency in the system through power outages
- Resume operation when sufficient energy available
- System state checkpointing in non-volatile memory
- Potentially re-execute (partial) device operations

Example Taskset

Example Taskset

A Device configuration determines power demand

Example Taskset

Whole-System Perspective

Whole-System Perspective

Whole-System Perspective

A System context determines power demand

- A Problem of device states with varying power demand
- A Problem of asynchronous device use in different contexts
- A Problem of **re-execution** due to transactional operation semantics

- A Problem of **device states** with **varying power demand**
- A Problem of asynchronous device use in different contexts
- A Problem of **re-execution** due to transactional operation semantics

Goals

- Forward-progress guarantees
- Consistency guarantees
- Efficient use of available energy

Motivation

The WoCA Approach

Evaluation

Conclusion

Device Graph

Device states

Device Graph

- Device states
- Maximum power consumption of states

Device Graph

- Device states
- Maximum power consumption of states
- Transitions between states

Device Graph

- Device states
- Maximum power consumption of states
- Transitions between states
- Internal device configuration
 - Output power
 - Bandwidth

- Identify device-state changes on all system paths
- Decompose system into states with constant power consumption

- Identify device-state changes on all system paths
- Decompose system into states with constant power consumption

- Identify device-state changes on all system paths
- Decompose system into states with constant power consumption

- Identify device-state changes on all system paths
- Decompose system into states with constant power consumption

Guarantees through Analysis

- Convert system graph to optimization problem
- Find whole-system worst-case energy consumption of tasks
- Dimension energy storage accordingly
- Start tasks only if sufficient energy is present
- Guaranteed transactional execution semantics

Employed Toolchain

- Compilation with modified Clang/LLVM
 - Input: annotated source code and device graphs
 - Output: system graph, control-flow information, executable
- Resource-bound analysis with Platin @ Hepp, KPS, 2015 @ Maroun, WCET, 2024
 - Input: system graph, control-flow information, executable
 - Output: energy-consumption bounds

Evaluation

Benchmarks

- bsort: computation only
- temp: uncomplicated device use (temperature-sensor readout)
- send: complex device use (LoRa transmission)
- send-{PL,BW,SF}: varying payload, bandwidth, spreading factor
- sca: sensing, computation, actuation
- sca-isr-{lf,hf}: sca with low- and high-frequency interrupts

Evaluation Setup

Benchmarks

- bsort: computation only
- temp: uncomplicated device use (temperature-sensor readout)
- send: complex device use (LoRa transmission)
- send-{PL,BW,SF}: varying payload, bandwidth, spreading factor
- sca: sensing, computation, actuation
- sca-isr-{lf,hf}: sca with low- and high-frequency interrupts

Approaches

- WoCA
- no-ctx: device-aware, context-agnostic approach
- all-on: device-agnostic approach
- JIT-based: checkpoints on energy interrupt and before device use

10

Evaluation Setup

Benchmarks

- bsort: computation only
- temp: uncomplicated device use (temperature-sensor readout)
- send: complex device use (LoRa transmission)
- send-{PL,BW,SF}: varying payload, bandwidth, spreading factor
- sca: sensing, computation, actuation
- sca-isr-{lf,hf}: sca with low- and high-frequency interrupts

Approaches

- WoCA
- no-ctx: device-aware, context-agnostic approach
- all-on: device-agnostic approach
- JIT-based: checkpoints on energy interrupt and before device use

Results: Internal Device State

Results: Internal Device State

Results: Intermittent Execution

12

Results: Intermittent Execution

A Problem of device states with varying power demand

A Problem of asynchronous device use in different contexts

A Problem of **re-execution** due to transactional operation semantics

Problem of device states with varying power demand

- Modeling of devices ~>> Device Graph
- A Problem of asynchronous device use in different contexts
- A Problem of **re-execution** due to transactional operation semantics

Problem of device states with varying power demand

- Modeling of devices ~>> Device Graph
- Problem of asynchronous device use in different contexts
 - Context-aware modeling of device usage ~→ System Graph
- A Problem of **re-execution** due to transactional operation semantics

- Problem of device states with varying power demand
 - Modeling of devices ~>> Device Graph
- Problem of asynchronous device use in different contexts
 - Context-aware modeling of device usage ~→ System Graph
- ✓ Problem of re-execution due to transactional operation semantics
 - Transactional guarantees through analysis bounds

Problem of device states with varying power demand

- Modeling of devices ~>> Device Graph
- Problem of asynchronous device use in different contexts
 - Context-aware modeling of device usage ~→ System Graph
- ✓ Problem of re-execution due to transactional operation semantics
 - Transactional guarantees through analysis bounds

Results: Starvation Freedom

Runtime for 100 Executions (Normalized to WoCA)

Experiment Observations

- Power supply constantly on after $6 \, \mathrm{s}$
- JIT-based only makes significant progress after supply is stable
- WoCA avoids starvation