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Abstracting System Behavior for Runtime Guarantees

critical region

possible states
abstraction

m Critical region: timing deadlines, energy budgets, memory bound
= Soundness of program analysis: encapsulate all possible system states
m Accuracy: avoid overestimations



Requirement of Worst-Case Behavior
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Resource Consumption

Time & Energy: worst-case execution time (WCET) & energy consumption (WCEC)
Static program code analysis techniques

Upper resource-consumption bounds ~» runtime guarantees

Static program analysis to meet safety standards (e.g., 1ISO 26262, DO-178)
Contrast to testing == verify the absence of runtime errors
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Embedded Real-Time Systems

Portable, energy-efficient computing

Equipped with devices € = 3, which require energy

m How to give timing guarantees?

= How to save energy, to operate as long as possible?
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The Clock Tree
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Real-Time Observations for Clock Subsystems

FusionClock [Den+23], Crépe [DW24],
Watwa-0S [Hab+25]:

m focus on energy-constrained real-time systems

embedded platforms

controllable with clock tree

guarantees with static analysis
= compliance to real-time constraints

energy optimization:
= achieve lowest possible energy consumption

evaluation on real hardware
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Problem Analysis Feedback-Based Approach
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feedback-based approach: reconfigurations during execution

e minimzation of energy consumption

x real-time guarantees
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Problem Analysis Static Approach
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Problem Analysis Static Approach
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without reconfiguration penalties

e minimzation of energy consumption
x real-time guarantees

x consideration of reconfiguration costs
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Concept of FusioNCLock and CREPE
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static approach with reconfiguration penalties

v~ minimzation of energy consumption
v real-time guarantees

v consideration of reconfiguration costs
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Clock-Tree Reconfiguration Graph
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Clock-Tree Reconfiguration Graph
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Min-Cost-Flow-Problem
= mathematically optimizable
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Distributing the slack:

= reconfiguration penalties
m idling: start times, durations, and configurations
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min energy costs of jobs and idling options
+ energy penalty for reconfiguration

w.r.t.
constraints in the clock-tree reconfiguration graph
all times sum up to hyperperiod
each job starts at or after its release time
each job finishes before or at its deadline
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Energy Savings compared to Clock-Agnostic Approach
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Clock Subsystems for Zephyr




Current Standings of Zephyr

Device-Tree Specifications:

specify available power and sleep states
m reconfiguration penalties (with min-residency-us, exit-latency-us)

processor clock sources and frequencies

power management states for devices

= Zephyr already provides access to much information required for optimization
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Goals for Zephyr

Goal 1: Fine-Granular Clock-Tree Modeling
We need...

m ... a modular system that supports multiple clock domains

m ... the resource demands of possible clock-tree configurations and transitions

m ... a greater level of detail for device tree:
= effects and ...

= power consumption of clock-tree configurations and transitions
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Goals for Zephyr

= This knowledge enables us to ...

Goal 2: Clock-Tree-Aware Resource Management

m ... help applications to manage their resource demand
m ... ensure minimal invasive interventions, preserving resources for applications
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Goals for Zephyr

= This knowledge enables us to ...

Goal 2: Clock-Tree-Aware Resource Management

m ... help applications to manage their resource demand
m ... ensure minimal invasive interventions, preserving resources for applications

Goal 3: Workload-Specific Clock-Configuration Optimization

m ... give bounds on resource consumption with static analysis
m ... determine the best clock configurations for different application phases
m ... use CCs that still adhere to application constraints, but minimize resource demand

= energy-optimized applications!
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Conclusion

Current standings:

m Existing work provides energy optimization methods
= Static approaches to guarantee runtime requirements: FusioNCLOCK and CREPE
m Zephyr provides fundamentals for clock-tree-dependent optimizations
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Conclusion

Current standings:

m Existing work provides energy optimization methods
= Static approaches to guarantee runtime requirements: FusioNCLOCK and CREPE
m Zephyr provides fundamentals for clock-tree-dependent optimizations

Next steps...?
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Questions and Discussion

Thoughts about our suggestions?

Enable more fine-grained clock trees - how?

Improve the clock domains - how?

Enable Zephyr to include statically determined energy optimizations for
applications - how?

= Determine Application Requirements

= Integration into compiler
.2
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