• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Lehrstuhl für Informatik 4 (Systemsoftware)
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Deutsch
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität Lehrstuhl für Informatik 4 (Systemsoftware)
Navigation Navigation close
  • Chair
    • Team
    • News
    • Contact and directions
    • Mission Statement
    Portal Chair
  • Research
    • Research Fields
      • Confidential Computing
      • Distributed Systems
      • Embedded Systems Software
      • Operating Systems
    • Research Projects
      • AIMBOS
      • BALu
      • BFT2Chain
      • DOSS
      • Mirador
      • NEON
      • PAVE
      • ResPECT
      • Watwa
    • Project Initiatives
      • maRE
    • Seminar
      • Systemsoftware
    Portal Research
  • Publications
  • Teaching
    • List of German Lectures
    Portal Teaching
  • Theses
  1. Home
  2. Research
  3. DanceOS

DanceOS

In page navigation: Research
  • Research Fields
  • AIMBOS
  • BALu
  • BFT2Chain
  • DOSS
  • Mirador
  • NEON
  • NEON Note
  • NVRAM-ified Unixoid
  • PAVE
  • PAVE Note
  • REDOS Note
  • REFIT
  • ResPECT
  • Watwa
  • Archive

DanceOS

Dependability Aspects in Configurable Embedded Operating Systems

(Third Party Funds Group – Sub project)

Overall project: SPP 1500: Design and Architectures of Dependable Embedded Systems
Project leader: Daniel Lohmann
Start date: 1. October 2010
End date: 30. September 2017
Acronym: DanceOS
Funding source: DFG / Schwerpunktprogramm (SPP)

Abstract:

Future hardware designs for embedded systems will exhibit more parallelism at the price of being less reliable. This bears new challenges for system software, especially the operating system, which has to use and provide software measures to compensate for unreliable hardware. However, dependability in this respect is a nonfunctional concern that affects and depends on all parts of the system. Tackling it in a problem-oriented way by the operating system is an open challenge: (1) It is still unclear, which combination of software measures is most beneficial to compensate certain hardware failures – ideally these measures should be understood as a matter of configuration and adaptation. (2) To achieve overall dependability, the implementation of these measures, even though provided by the operating system, cannot be scoped just to the operating-system layer – it inherently crosscuts the whole software stack. (3) To achieve cost-efficiency with respect to hardware and energy, the measures have, furthermore, to be tailored with respect to the actual hardware properties and reliability requirements of the application. We address these challenges for operating-system design by a novel combination of (1) speculative and resource-efficient fault-tolerance techniques, which can (2) flexibly be applied to the operating system and the application by means of aspect-oriented programming, driven by (3) a tool-based (semi-)automatic analysis of the application and operating-system code, resulting in a strictly problem-oriented tailoring of the latter with respect to hardware-fault tolerance.

Publications:

  • Dietrich C., Wägemann P., Ulbrich P., Lohmann D.:
    SysWCET: Whole-System Response-Time Analysis for Fixed-Priority Real-Time Systems (Outstanding Paper)
    Real-Time and Embedded Technology and Applications Symposium (Pittsburgh, PA, USA, 17. April 2017 - 21. April 2017)
    In: Davis, Rob; Parmer, Gabriel (ed.): Proceedings of the 23rd Real-Time and Embedded Technology and Applications Symposium (RTAS '17), Los Alamitos, CA: 2017
    DOI: 10.1109/RTAS.2017.37
    URL: https://www4.cs.fau.de/Publications/2017/dietrich_17_rtas.pdf
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Xing
Up