• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Lehrstuhl für Informatik 4 & 16
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
  • Deutsch
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik

Lehrstuhl für Informatik 4 & 16

Navigation Navigation close
  • Chair
    • Mission Statement
    • Team
    • Contact and directions
    Portal Chair
  • Research
    • Research Fields
      • Distributed Systems
      • Energy-aware Systems
      • Operating Systems
      • Real-Time Systems
    • Research Projects
      • BFT2Chain
      • e.LARN
      • NEON
      • PAVE
      • PRIMaTE
      • REFIT
      • ResPECT
      • SURESOFT
      • TRR 89 C1: iRTSS
      • TRR 89 C5
      • Watwa
    • Project Initiatives
      • DOSS
      • maRE
    • Research Groups
      • ergoo
    Portal Research
  • Publications
  • Teaching
  • Theses
  1. Home
  2. Research
  3. E³

E³

In page navigation: Research
  • Research Fields
    • Distributed Systems
    • Energy-aware Systems
    • Operating Systems
    • Real-Time Systems
    • Other projects
  • BFT2Chain
  • DOSS
  • e.LARN
  • E³
  • EDC
  • maRE
  • NEON
  • PAVE
  • PRIMaTE
  • QRONOS
  • REFIT
  • ResPECT
  • SURESOFT
  • TRR 89 C1: iRTSS
  • TRR 89 C5
  • Watwa
  • Archive

E³

Energy-aware Execution Environments

(Own Funds)

Project leader: Tobias Distler
Project members: Christopher Eibel
Start date: 1. January 2016
Acronym: E³

Abstract:

The processing of large amounts of data on distributed execution platforms such as MapReduce or Heron contributes significantly to the energy consumption of today's data centers. The E³ project aims at minimizing the power consumption of such execution environments without sacrificing performance. For this purpose, the project develops means to make execution environments and data-processing platforms energy aware and to enable them to exploit knowledge about applications to dynamically adapt the power consumption of the underlying hardware. To measure and control the energy consumption of hardware units, E³'s energy-aware platforms rely on hardware features provided by modern processors that allow the system software of a server to regulate the server's power usage at runtime by enforcing configurable upper limits. As a key benefit, this approach makes it possible to build data-processing and execution platforms that, on the one hand, save energy during phases in which only low and medium workloads need to be handled and, on the other hand, are still able to offer full processing power during periods of high workloads.

Publications:

  • Lawniczak L., Distler T.:
    Stream-based State Machine Replication
    In: Proceedings of the 17th European Dependable Computing Conference (EDCC '21) 2021
  • Eibel C., Gulden C., Schröder-Preikschat W., Distler T.:
    Strome: Energy-Aware Data-Stream Processing
    Distributed Applications and Interoperable Systems (Madrid, 18. June 2018 - 21. June 2018)
    In: Proceedings of the 18th International Conference on Distributed Applications and Interoperable Systems (DAIS '18) 2018
    DOI: 10.1007/978-3-319-93767-0_4
  • Eibel C., Do TN., Meißner R., Distler T.:
    Empya: Saving Energy in the Face of Varying Workloads
    6th International Conference on Cloud Engineering (IC2E '18) (Orlando, USA)
    In: Proceedings of the 6th International Conference on Cloud Engineering (IC2E '18) 2018
    URL: https://www4.cs.fau.de/Publications/2018/eibel_18_ic2e.pdf
  • Eibel C., Do TN., Meißner R., Distler T.:
    Empya: An Energy-Aware Middleware Platform for Dynamic Applications
    (2018)
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Up