• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Informatik 4 (Systemsoftware)
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • English
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität Lehrstuhl für Informatik 4 (Systemsoftware)
Menu Menu schließen
  • Lehrstuhl
    • Team
    • Aktuelles
    • Kontakt und Anfahrt
    • Leitbild
    • 50-jähriges Jubiläum
    Portal Lehrstuhl
  • Forschung
    • Forschungsbereiche
      • Betriebssysteme
      • Confidential Computing
      • Eingebettete Systemsoftware
      • Verteilte Systeme
    • Projekte
      • AIMBOS
      • BALu
      • BFT2Chain
      • DOSS
      • Mirador
      • NEON
      • PAVE
      • ResPECT
      • Watwa
    • Projektkampagnen
      • maRE
    • Seminar
      • Systemsoftware
    Portal Forschung
  • Publikationen
  • Lehre
    • Sommersemester 2025
      • Applied Software Architecture
      • Ausgewählte Kapitel der Systemsoftware
      • Betriebssystemtechnik
      • Projekt angewandte Systemsoftwaretechnik
      • System-Level Programming
      • Systemnahe Programmierung in C
      • Systemprogrammierung 1
      • Verteilte Systeme
    • Wintersemester 2024/25
      • Betriebssysteme
      • Middleware – Cloud Computing
      • Systemprogrammierung 2
      • Verlässliche Echtzeitsysteme
      • Virtuelle Maschinen
      • Web-basierte Systeme
    Portal Lehre
  • Examensarbeiten
  1. Startseite
  2. Extern

Extern

Bereichsnavigation: Lehre
  • Betriebssystemtechnik
    • Vorlesung
      • Folien
      • Glossar
    • Übung
      • Aufgaben
      • Dokumentation
        • Blog
          • Entwicklungsumgebung
            • Assembler Crashkurs
              • C++ Crashkurs
                • 🔗 Testrechnerverwaltung
                • Kontakt
              • Evaluation

              Dokumentation

              • interrupt
              Classes | Functions | Constants
              handler.h File Reference

              interrupt_handler() Interrupt handler More...

              #include "types.h"
              #include "machine/core_interrupt.h"
              + Include dependency graph for handler.h:

              Classes

              struct  InterruptContext
               Preserved interrupt context. More...
               

              Functions

              void interrupt_handler (Core::Interrupt::Vector vector, InterruptContext *context)
               High-Level Interrupt Handling. More...
               

              Constants

              void *const interrupt_entry []
               Array of function pointer to the default low-level interrupt handlers. More...
               

              Detailed Description

              interrupt_handler() Interrupt handler


              Class Documentation

              struct InterruptContext

              Preserved interrupt context.

              After an interrupt was triggered, the core first saves the basic context (current code- & stack segment, instruction & stack pointer and the status flags register) and looks up the handling function for the vector using the IDT. In StuBS for each vector an own interrupt_entry_VECTOR function (written in assembly in interrupt/handler.asm) was registered during boot by kernel_init(), which all save the scratch registers on the stack before calling the C++ function interrupt_handler(). The high-level handler gets a pointer to the part of the stack which corresponds to the InterruptContext structure as second parameter. After returning from the high-level handler, the previous state is restored from this context (scratch register in assembly and basic context while executing iret) so it can continue transparently at the previous position.

              Class Members
              uintptr_t r11 scratch register R11
              uintptr_t r10 scratch register R10
              uintptr_t r9 scratch register R9
              uintptr_t r8 scratch register R8
              uintptr_t rdi scratch register RDI
              uintptr_t rsi scratch register RSI
              uintptr_t rdx scratch register RDX
              uintptr_t rcx scratch register RCX
              uintptr_t rax scratch register RAX
              uintptr_t error_code Error Code.
              uintptr_t ip Instruction Pointer (at interrupt)
              uintptr_t cs: 16 Code segment (in case of a ring switch it is the segment of the user mode)
              uintptr_t __pad0__: 0 Alignment (due to 16 bit code segment)
              uintptr_t flags Status flags register.
              uintptr_t sp Stack pointer (at interrupt)
              uintptr_t ss: 16 Stack segment (in case of a ring switch it is the segment of the user mode)
              uintptr_t __pad1__: 0 Alignment (due to 16 bit stack segment)

              Variable Documentation

              void* const interrupt_entry[]

              Array of function pointer to the default low-level interrupt handlers.

              The index corresponds to the vectors entry function, e.g. interrupt_entry[6] points to interrupt_entry_6, handling the trap for invalid opcode.

              The entry functions and this array are defined in assembly in interrupt/handler.asm and used in kernel_init() to initialize the Interrupt Descriptor Table (IDT).

              Friedrich-Alexander-Universität
              Erlangen-Nürnberg

              Schlossplatz 4
              91054 Erlangen
              • Impressum
              • Datenschutz
              • Barrierefreiheit
              • Facebook
              • RSS Feed
              • Xing
              Nach oben